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Graph modification problems

Let C be a target graph class (planar graphs, bounded degree, ...).

LetM be a set of allowed graph modification operations
(vertex deletion, edge deletion/addition/contraction, ...).

M-Modification to C
Input: A graph G and an integer k.
Question: Can we transform G to a graph in C by applying
spaceeeeeerrrat most k operations fromM?

This meta-problem has a huge expressive power.
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Many possible interesting variants

M = vertex deletion, C = forbidden induced subgraphs.
[S., Souza. 2020: arXiv 2004.08324]

M = vertex deletion, C = generalization of bipartite graphs.
[Baste, Faria, Klein, S. 2015: arXiv 1504.05515]

M = edge contraction, C = graph transversal parameters.
[Lima, dos Santos, S., Souza. 2020: arXiv 2005.01460]

[Lima, dos Santos, S., Souza, Tale. 2022: arXiv 2202.03322]

. . . and many more!
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This talk: forbidden minors
M = vertex deletion (or more), C = excluded minors.

Linear kernels on sparse graph classes.
[Garnero, Paul, S., Thilikos. 2014: arXiv 1312.6585]

[Garnero, Paul, S., Thilikos. 2016: arXiv 1610.06131]

FPT algorithms parameterized by treewidth.
[Baste, S., Thilikos. 2017: arXiv 1704.07284]
[Baste, S., Thilikos. 2018: arXiv 2103.06536]
[Baste, S., Thilikos. 2019: arXiv 2103.06614]
[Baste, S., Thilikos. 2019: arXiv 1907.04442]

FPT algorithms parameterized by the solution size (# modifications).
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2012: arXiv 1207.0835]

[S., Stamoulis, Thilikos. 2020: arXiv 2004.12692]
[S., Stamoulis, Thilikos. 2021: arXiv 2103.00882]

More general modification operations.
[Fomin, Golovach, S., Stamoulis, Thilikos. 2021: arXiv 2111.02755]

[Morelle, S., Stamoulis, Thilikos. 2022: arXiv 2210.02167]
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Graph minors

A graph H is a minor of a graph G , denoted by H 6m G , if H can be
obtained from a subgraph of G by contracting edges.
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Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

G ∈ C ⇒ H ∈ C for every H 6m G .

Let F be a (possibly infinite) family of graphs. We define exc(F) as the
class of all graphs that do not contain any of the graphs in F as a minor.

Every minor-closed graph class C can be characterized by excluded minors:
List all the graphs FC := {G1,G2, . . .} that do not belong to C, and
then C = exc(FC).

Note that, in general, this list FC = {G1,G2, . . .} may be infinite.
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Forbidden minors for some minor-closed graph classes

If C = independent sets, then C = exc(K2).

If C = forests, then C = exc(K3).
If C = series-parallel graphs, then C = exc(K4).
If C = outerplanar graphs, then C = exc(K4,K2,3).
If C = planar graphs, then C = exc(K5,K3,3). [Kuratowski. 1930]
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Ks k3,3

If C = graphs embeddable in the projective plane, then |FC | = 35.
If C = graphs embeddable in a fixed non-orientable surface,

then FC is finite. [Archdeacon, Huneke. 1989]

If C = graphs embeddable in a fixed orientable surface,
then FC is finite. [Robertson, Seymour. 1990]
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Wagner’s conjecture

Conjecture (Wagner. 1970)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).
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Wagner’s conjecture... now Robertson-Seymour’s theorem

Theorem (Robertson, Seymour. 1983-2004)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).
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Parameterized complexity in a nutshell

Idea Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established and very active area.
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Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Clique: Does a graph G contain a set S ⊆ V (G), with |S| ≥ k, of
pairwise adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?
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They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n))

= f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk)

= f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard
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Hitting forbidden minors

If C = {edgeless graphs}, then F = {K2}.
If C = {forests}, then F = {K3}.
If C = {outerplanar graphs}, then F = {K4,K2,3}.
If C = {planar graphs}, then F = {K5,K3,3}.

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
F = {K3}: Feedback Vertex Set.
F = {K5,K3,3}: Vertex Planarization.
F = {diamond}: Cactus Vertex Deletion.

15
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We consider the following two parameterizations of F-M-Deletion:

1 Structural parameter: tw(G).

2 Solution size: k.

Joint work with Julien Baste, Laure Morelle, Giannos Stamoulis, and
Dimitrios M. Thilikos.
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Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.
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Treewidth measures the tree-likeness of a graph
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Theorem (Courcelle. 1990)
Every problem Π expressible in MSOL can be solved in time fΠ(tw) · n on
graphs on n vertices and treewidth at most tw.

It is not difficult to see that can F-M-Deletion be expressed in MSOL:

————-F-M-Deletion is FPT parameterized by tw...

fF (tw) · n

= 2345678tw

· n

Goal For every F , find the smallest possible function fF (tw).

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n).
[Impagliazzo, Paturi. 1999]
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What was known for particular collections F
Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1).

[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1).

[Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]
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With Julien Baste and Dimitrios M. Thilikos (2016-2020)

Objective

Determine, for every fixed F , the (asymptotically) smallest function fF
such that F-M-Deletion on n-vertex graphs can be solved in time

fF (tw) · nO(1).

We do not want to optimize the degree of the polynomial factor.

We do not want to optimize the constants.

Our hardness results hold under the ETH.
[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. I. General upper bounds. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. II. Single-exponential algorithms. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. III. Lower bounds. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. IV. An optimal algorithm. 2021]

22



With Julien Baste and Dimitrios M. Thilikos (2016-2020)

Objective

Determine, for every fixed F , the (asymptotically) smallest function fF
such that F-M-Deletion on n-vertex graphs can be solved in time

fF (tw) · nO(1).

We do not want to optimize the degree of the polynomial factor.

We do not want to optimize the constants.

Our hardness results hold under the ETH.
[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. I. General upper bounds. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. II. Single-exponential algorithms. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. III. Lower bounds. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. IV. An optimal algorithm. 2021]

22



Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every planar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23



Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every planar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23



Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every planar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23



Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every���XXXplanar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23



Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every���XXXplanar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23



Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every���XXXplanar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23



Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every���XXXplanar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected:

complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23



Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every���XXXplanar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23



A dichotomy for hitting a connected minor

Theorem (Baste, S., Thilikos. 2016-2020)
Let H be a connected graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H 6c or H 6c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip
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Complexity of hitting a single connected minor H

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

Classification of the complexity of {H}-M-Deletion for all connected
simple planar graphs H with |V (H)| ≤ 5 and |E (H)| ≥ 1: for the 9 graphs
on the left (resp. 20 graphs on the right), the problem is solvable in time
2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion, K1,4
should be on the left.
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A compact statement for a single connected graph

bull butterfly
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C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)
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P2 ∪ P3
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All these cases can be succinctly described as follows:

All graphs on the left are contractions of or

All graphs on the right are not contractions of or
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Next subsection is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research
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We parameterize by the size of the desired solution
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

It is easy to see that, for every k > 1, the class of graphs

Ck = {G | (G , k) is a positive instance of F-M-Deletion}

is minor-closed.

Theorem (Robertson and Seymour. 1983-2004)
For every minor-closed graph class C, deciding whether an n-vertex graph
G belongs to C can be solved in time f (C) · n2.
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Can we do better?

The function f (Ck) is constructible. [Adler, Grohe, Kreutzer. 2008]

If F contains a planar graph: 2OF (k) · nO(1).
[Fomin, Lokshtanov, Misra, Saurabh. 2012]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

For some non-planar collections F :

F = {K5,K3,3}: 2O(k log k) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014]

Deletion to genus at most g : 2Og (k2 log k) · nO(1). [Kociumaka, Ma. Pilipczuk. 2019]

For every F , some enormous explicit function fF (k) can be derived
from an FPT algorithm for hitting topological minors:

thisisjustsomespacefF (k) · nO(1). [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi. 2020]
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Our results

Theorem (S., Stamoulis, Thilikos. 2020)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n3.

Here, poly(k) is a polynomial whose degree depends on F .

Theorem (S., Stamoulis, Thilikos. 2020)
If F contains an apex graph, the F-M-Deletion problem can be solved
in time 2poly(k) · n2.

Again, poly(k) is a polynomial whose degree depends on F .

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n2.

skip
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Recall the statement of the problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?
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We have three types of results

1 General algorithms
For every F : time 22O(tw·log tw) · nO(1).
F planar: time 2O(tw·log tw) · nO(1).
F ���XXXplanar: time 2O(tw·log tw) · nO(1).
G planar: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]
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Algorithm in time 2OF (tw·log tw) · nO(1) for any collection F
[Fig. by Valentin Garnero]

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F 6m G ′ ⊕ G1 ⇐⇒ F 6m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R ∈ R(F ,t):

p(GB,R) = min{|S| : S ⊆ V (GB) ∧ repF ,t(GB \ S) = R}

This gives an algorithm running in time |R(F ,t)|O(1) · nO(1).

Goal Bound the number of representatives: |R(F ,t)| = 2OF (tw·log tw).
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Bounding the set of representatives

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

Then, by the sparsity of the representatives,

|R(F ,t)| = OF (1) ·
(
t2

t

)
= 2OF (t·log t),

and we are done!

Flat Wall Theorem [Robertson, Seymour. GMXIII. 1995]

As a representative R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.
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Basic principle of the irrelevant vertex technique

This technique was invented in [Robertson and Seymour. 1995]

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

Strategy:

1 If tw(G) > f (k), find an irrelevant vertex:

A vertex v ∈ V (G) such that (G ,T , k) and (G \ v ,T , k) are
equivalent instances.

2 Otherwise, if tw(G) ≤ f (k), solve the problem using dynamic
programming (by Courcelle).
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How to find an irrelevant vertex when the treewidth is large?

By using the Grid Exclusion Theorem!

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.
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How to find an irrelevant vertex when the treewidth is large?

By using the Wall Exclusion Theorem!

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.
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Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.246 D.M. Thilikos

Fig. 5. A subdivided wall W ′ and the way a 13-linkage L is traversing its compass K′.
The only vertices that are depicted are the endpoints of the paths in L (white vertices).
The only edges that are depicted are those of the paths in L and the edges of W ′. The
grey area contains the vertices and the edges of the graph G that do not belong to K′.

so that the paths of L could be rerouted to an equivalent linkage that does not
enter very deeply inside K ′. To formalize this claim Robertson and Seymour
defined the notion of a vital linkage in [111].

A linkage L in a graph G is called vital if its vertices meet all the vertices of
G and if there is no other linkage in G that is equivalent to L. An example of
a vital k-linkage in a graph is depicted in Figure 6. Clearly, if a solution of the
k-Disjoint Paths Problem corresponds to a vital linkage, then no irrelevant
vertex can be detected. The main result of [111] asserts that this possible “lack
of flexibility” of linkages vanishes when graphs have big enough treewidth.

Theorem 13. There exists a recursive function λ : N → N such that every
graph with a vital k-linkage has treewidth at most λ(k).

Actually, it was also proved in [111] that treewidth can be replaced by pathwidth
in Theorem 13. As the proof of 13 uses the Structure Theorem of the GMT [109],
the upper bound for λ that follows from [111] is immense. However it was proved
in [3] that in the case of planar graphs it holds that λ(k) = 2O(k). Moreover, this
bound is, in a sense, tight: as argued in [3], for each k it is possible to construct
a planar graph that contains a vital k-linkage and has treewidth 2Ω(k) (the 5-
linkage in the graph of Figure 6 already gives the flavor of such a construction).

Let now G′ be the subgraph of G defined by the union of the paths in L, and
the compass K ′ of W ′. At this point, a naive idea might be to directly apply
Theorem 13 and set q′ = λ(k) so that the linkage L of G′, corresponding to a
solution of the k-Disjoint Paths problem, cannot be vital. However, from this
alone, we cannot expect nothing better than avoiding some vertices that will not

[Figure by Dimitrios M. Thilikos]
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Goal: declare one of the central vertices of the wall irrelevant.246 D.M. Thilikos
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This is only possible if the wall is insulated from the exterior!
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This is only possible if the wall is insulated from the exterior!
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Flat walls

Goal: enrich the notion of wall so that we can insulate it from the exterior.
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Flat walls

We need to allow some extra edges in the interior of the wall.

 

g
t Ii

K A
a

41



Flat walls
We impose a topological property that defines the “flatness” of the wall.
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Flat walls
There are no crossing paths s1 − t1 and s2 − t2 from/to the perimeter.
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Flat walls
A real flat wall can be quite wild... [Figure by Dimitrios M. Thilikos]
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Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]
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Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]
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Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]
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Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]
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Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]
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The Flat Wall Theorem

Theorem (Robertson and Seymour. 1995)
There exist recursive functions f1 : N2 → N and f2 : N→ N, such that for
every graph G and every q, r ∈ N, one of the following holds:

1 Kq is a minor of G.

2 The treewidth of G is at most f1(q, r).

3 There exists A ⊆ V (G) (apices) with |A| ≤ f2(q) such that G \ A
contains as a subgraph a flat wall W of height r .

There are several different variants and optimizations of this theorem...
[Chuzhoy. 2015]

[Kawarabayashi, Thomas, Wollan. 2018]
[S., Stamoulis, Thilikos. 2021]

Important: possible to find one of the outputs in time f (q, r) · |V (G)|.
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Back to the Disjoint Paths problem

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

By the Flat Wall Theorem:

If tw(G) ≤ f (k): solve using dynamic programming.

If G contains a Kg(k)-minor: “easy” to find an irrelevant vertex.

If G contains a “small” apex set A and a flat wall W in G \ A of size
at least h(k): declare the central vertex of the flat wall irrelevant.

The irrelevant vertex technique has been applied to many problems...
usually with a lot of technical pain.
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Rerouting inside a big flat wall...

f11 b

f10

Df10

Cp

[Figure by Dimitrios M. Thilikos]
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Crucial notion: homogeneity
In order to declare a vertex irrelevant for some problem, usually we need to
consider a homogenous flat wall, which we proceed to define.
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Crucial notion: homogeneity
We consider a flap-coloring encoding the relevant information of our
favorite problem inside each flap (similar to tables of DP).
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Crucial notion: homogeneity
For every brick of the wall, we define its palette as the colors appearing in
the flaps it contains.
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Crucial notion: homogeneity
A flat wall is homogenous if every (internal) brick has the same palette.
Fact: every brick of a homogenous flat wall has the same “behavior”.
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Crucial notion: homogeneity
Price of homogeneity to obtain a homogenous flat r -wall (zooming):
If we have c colors, we need to start with a flat r c -wall. (why?)
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Next subsection is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research
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Recall the statement of the problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

Theorem (S., Stamoulis, Thilikos. 2020)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n3.
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General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:

Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:

Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.
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Main idea of our improved algorithm

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n2.

Improvement from n3 to n2: avoiding iterative compression.

How to achieve it?

We are able to detect a vertex that must belong to every solution.

Approach inspired by [Marx, Schlotter. 2012]
[S., Stamoulis, Thilikos. 2020]
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Finding a vertex belonging to every solution of size k

Let F be a finite collection of graphs.

The apex number aF is the smallest number of vertices that can be re-
moved from a graph of F such that the remaining graph is planar.

[Figure by Laure Morelle]

aF = 1 → apex graph
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Finding a vertex belonging to every solution of size k

[Figure by Laure Morelle]
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Finding a vertex belonging to every solution of size k

[Figure by Laure Morelle]
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Finding a vertex belonging to every solution of size k

[Figure by Laure Morelle]
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Strategy for solving F-M-Deletion in time 2polyF (k) · n2:

If the treewidth of G is small (namely, tw ≤ polyF (k)):

Dynamic programming using algorithm of [Baste, S., Thilikos. 2020]
Solve in time 2polyF (tw log tw) · n.

If the treewidth of G is big, remove a vertex from G using one of the
following approaches:

Irrelevant vertex technique: time O∗(n).
Detect vertex v such that (G , k) and (G \ {v}, k) are equivalent
instances of F-M-Deletion.

Branching: time O∗(n2).
Find set A of aF vertices that intersects every k-apex set.
“Guess” a vertex v ∈ A in a k-apex set and solve (G \ {v}, k − 1).

(Branching tree is of size ak
F , so we do not get an extra factor n).
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Next section is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research
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Motivation: distance from triviality
Distance from triviality: [Guo, Hüffner, Niedermeier. 2004]

Concept to express the closeness of a graph G to a “trivial” graph class H.

Motivation: Solve problems parameterized by the “distance to H”.

→ Vertex Deletion to H

[Figure by Laure Morelle]

→ Elimination Distance to H
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Notion recently introduced by [Bulian, Dawar. 2016]

The elimination distance of a graph G to a graph class H is:

edH(G) =


0 if G ∈ H,

1 + min{edH(G \ {v}) | v ∈ V (G)} if G is connected,

max{edH(H) | H is a connected component of G} otherwise.

[Figure by Laure Morelle]

k-elimination set: set of removed vertices such that edH(G) ≤ k.
Remark: the size of a k-elimination set is not necessarily a function of k!
→ H = {∅}: treedepth
Stronger parameter than vertex deletion: edH(G) ≤ VertexDeletionH(G)
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Elimination Distance to H
Input: A graph G and a k ∈ N.
Question: Is edH(G) ≤ k?

58



What is known about Elimination Distance to H?

Let Ek(H) = {G | edH(G) ≤ k}.

(G , k) yes-instance of Elimination Distance to H ⇔ G ∈ Ek(H).

H minor-closed ⇒ Ek(H) minor-closed ⇒ non-constructive FPT-algo.

If we are given F = Obs(H), it is possible to construct Obs(Ek(H)).
[Bulian, Dawar. 2017]

⇒ constructive FPT-algorithm: f (k) · n2

Can we provide an explicit function f (k)?
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Taking the treewidth as the parameter

If H = {∅} (treedepth): [Reidl, Rossmanith, Sanchez Villaamil, Sikdar. 2014]

Dynamic programming algorithm parameterized by treewidth in 2O(k·tw) · n.

Since tw(G) ≤ td(G) ≤ tw(G) · log n → time nO(tw2) and 2O(k2) · n.

(Open problem: computing td parameterized by tw is FPT?)

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and with treewidth at most tw, and k ∈ N,
there is an algorithm that solves Elimination Distance to H for the
instance (G , k) in time 2OH(k·tw+tw log tw) · n.

→ algorithm in time nOH(tw2) for Elimination Distance to H.
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Our results for Elimination Distance to H

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and k ∈ N, there is an algorithm that solves
Elimination Distance to H for the instance (G , k) in time

222polyH(k)
· n2 for a general minor-closed class H,

22polyH(k) · n2 if Obs(H) contains an apex graph.

[Figure by Laure Morelle]

Main challenge compared to Vertex Deletion to H:
The size of a k-elimination set may be unbounded, so we cannot branch!
We always have to find an irrelevant vertex: larger treewidth bounds.
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What’s next about F -M-Vertex-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:
Dichotomy for {H}-TM-Deletion when H connected (+planar)?

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented an algorithm in time 2kOF (1) · n2.
With parameter kmIs 2OF (kc ) · nO(1) possible for some constant c?

skip parameter kmIs the price of homogeneity unavoidable?
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For topological minors, there is (at least) one change

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1
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Gràcies!
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