
Graph modification problems with forbidden minors

Ignasi Sau

LIRMM, Université de Montpellier, CNRS, France

CALDAM 2023, Gandhinagar
February 10, 2023

1

Outline of the talk

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research

2

Next section is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research

3

Graph modification problems

Let C be a target graph class (planar graphs, bounded degree, ...).

LetM be a set of allowed graph modification operations
(vertex deletion, edge deletion/addition/contraction, ...).

M-Modification to C
Input: A graph G and an integer k.
Question: Can we transform G to a graph in C by applying
spaceeeeeerrrat most k operations fromM?

This meta-problem has a huge expressive power.

4

Graph modification problems

Let C be a target graph class (planar graphs, bounded degree, ...).

LetM be a set of allowed graph modification operations
(vertex deletion, edge deletion/addition/contraction, ...).

M-Modification to C
Input: A graph G and an integer k.
Question: Can we transform G to a graph in C by applying
spaceeeeeerrrat most k operations fromM?

This meta-problem has a huge expressive power.

4

Many possible interesting variants

M = vertex deletion, C = forbidden induced subgraphs.
[S., Souza. 2020: arXiv 2004.08324]

M = vertex deletion, C = generalization of bipartite graphs.
[Baste, Faria, Klein, S. 2015: arXiv 1504.05515]

M = edge contraction, C = graph transversal parameters.
[Lima, dos Santos, S., Souza. 2020: arXiv 2005.01460]

[Lima, dos Santos, S., Souza, Tale. 2022: arXiv 2202.03322]

. . . and many more!

5

This talk: forbidden minors
M = vertex deletion (or more), C = excluded minors.

Linear kernels on sparse graph classes.
[Garnero, Paul, S., Thilikos. 2014: arXiv 1312.6585]

[Garnero, Paul, S., Thilikos. 2016: arXiv 1610.06131]

FPT algorithms parameterized by treewidth.
[Baste, S., Thilikos. 2017: arXiv 1704.07284]
[Baste, S., Thilikos. 2018: arXiv 2103.06536]
[Baste, S., Thilikos. 2019: arXiv 2103.06614]
[Baste, S., Thilikos. 2019: arXiv 1907.04442]

FPT algorithms parameterized by the solution size (# modifications).
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2012: arXiv 1207.0835]

[S., Stamoulis, Thilikos. 2020: arXiv 2004.12692]
[S., Stamoulis, Thilikos. 2021: arXiv 2103.00882]

More general modification operations.
[Fomin, Golovach, S., Stamoulis, Thilikos. 2021: arXiv 2111.02755]

[Morelle, S., Stamoulis, Thilikos. 2022: arXiv 2210.02167]

6

This talk: forbidden minors
M = vertex deletion (or more), C = excluded minors.

Linear kernels on sparse graph classes.
[Garnero, Paul, S., Thilikos. 2014: arXiv 1312.6585]

[Garnero, Paul, S., Thilikos. 2016: arXiv 1610.06131]

FPT algorithms parameterized by treewidth.
[Baste, S., Thilikos. 2017: arXiv 1704.07284]
[Baste, S., Thilikos. 2018: arXiv 2103.06536]
[Baste, S., Thilikos. 2019: arXiv 2103.06614]
[Baste, S., Thilikos. 2019: arXiv 1907.04442]

FPT algorithms parameterized by the solution size (# modifications).
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2012: arXiv 1207.0835]

[S., Stamoulis, Thilikos. 2020: arXiv 2004.12692]
[S., Stamoulis, Thilikos. 2021: arXiv 2103.00882]

More general modification operations.
[Fomin, Golovach, S., Stamoulis, Thilikos. 2021: arXiv 2111.02755]

[Morelle, S., Stamoulis, Thilikos. 2022: arXiv 2210.02167]

6

This talk: forbidden minors
M = vertex deletion (or more), C = excluded minors.

Linear kernels on sparse graph classes.
[Garnero, Paul, S., Thilikos. 2014: arXiv 1312.6585]

[Garnero, Paul, S., Thilikos. 2016: arXiv 1610.06131]

FPT algorithms parameterized by treewidth.
[Baste, S., Thilikos. 2017: arXiv 1704.07284]
[Baste, S., Thilikos. 2018: arXiv 2103.06536]
[Baste, S., Thilikos. 2019: arXiv 2103.06614]
[Baste, S., Thilikos. 2019: arXiv 1907.04442]

FPT algorithms parameterized by the solution size (# modifications).
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2012: arXiv 1207.0835]

[S., Stamoulis, Thilikos. 2020: arXiv 2004.12692]
[S., Stamoulis, Thilikos. 2021: arXiv 2103.00882]

More general modification operations.
[Fomin, Golovach, S., Stamoulis, Thilikos. 2021: arXiv 2111.02755]

[Morelle, S., Stamoulis, Thilikos. 2022: arXiv 2210.02167]

6

This talk: forbidden minors
M = vertex deletion (or more), C = excluded minors.

Linear kernels on sparse graph classes.
[Garnero, Paul, S., Thilikos. 2014: arXiv 1312.6585]

[Garnero, Paul, S., Thilikos. 2016: arXiv 1610.06131]

FPT algorithms parameterized by treewidth.
[Baste, S., Thilikos. 2017: arXiv 1704.07284]
[Baste, S., Thilikos. 2018: arXiv 2103.06536]
[Baste, S., Thilikos. 2019: arXiv 2103.06614]
[Baste, S., Thilikos. 2019: arXiv 1907.04442]

FPT algorithms parameterized by the solution size (# modifications).
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2012: arXiv 1207.0835]

[S., Stamoulis, Thilikos. 2020: arXiv 2004.12692]
[S., Stamoulis, Thilikos. 2021: arXiv 2103.00882]

More general modification operations.
[Fomin, Golovach, S., Stamoulis, Thilikos. 2021: arXiv 2111.02755]

[Morelle, S., Stamoulis, Thilikos. 2022: arXiv 2210.02167]

6

This talk: forbidden minors
M = vertex deletion (or more), C = excluded minors.

Linear kernels on sparse graph classes.
[Garnero, Paul, S., Thilikos. 2014: arXiv 1312.6585]

[Garnero, Paul, S., Thilikos. 2016: arXiv 1610.06131]

FPT algorithms parameterized by treewidth.
[Baste, S., Thilikos. 2017: arXiv 1704.07284]
[Baste, S., Thilikos. 2018: arXiv 2103.06536]
[Baste, S., Thilikos. 2019: arXiv 2103.06614]
[Baste, S., Thilikos. 2019: arXiv 1907.04442]

FPT algorithms parameterized by the solution size (# modifications).
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2012: arXiv 1207.0835]

[S., Stamoulis, Thilikos. 2020: arXiv 2004.12692]
[S., Stamoulis, Thilikos. 2021: arXiv 2103.00882]

More general modification operations.
[Fomin, Golovach, S., Stamoulis, Thilikos. 2021: arXiv 2111.02755]

[Morelle, S., Stamoulis, Thilikos. 2022: arXiv 2210.02167]
6

This talk: forbidden minors
M = vertex deletion (or more), C = excluded minors.

Linear kernels on sparse graph classes.
[Garnero, Paul, S., Thilikos. 2014: arXiv 1312.6585]

[Garnero, Paul, S., Thilikos. 2016: arXiv 1610.06131]

F FPT algorithms parameterized by treewidth.
[Baste, S., Thilikos. 2017: arXiv 1704.07284]
[Baste, S., Thilikos. 2018: arXiv 2103.06536]
[Baste, S., Thilikos. 2019: arXiv 2103.06614]
[Baste, S., Thilikos. 2019: arXiv 1907.04442]

F FPT algorithms parameterized by the solution size (# modifications).
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2012: arXiv 1207.0835]

[S., Stamoulis, Thilikos. 2020: arXiv 2004.12692]
[S., Stamoulis, Thilikos. 2021: arXiv 2103.00882]

F More general modification operations.
[Fomin, Golovach, S., Stamoulis, Thilikos. 2021: arXiv 2111.02755]

[Morelle, S., Stamoulis, Thilikos. 2022: arXiv 2210.02167]
6

Graph minors

A graph H is a minor of a graph G , denoted by H 6m G , if H can be
obtained from a subgraph of G by contracting edges.

It Xz
this is a test

00

I FTW
ing

I urIip to
t 2

H Ha
7

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

G ∈ C ⇒ H ∈ C for every H 6m G .

Let F be a (possibly infinite) family of graphs. We define exc(F) as the
class of all graphs that do not contain any of the graphs in F as a minor.

Every minor-closed graph class C can be characterized by excluded minors:
List all the graphs FC := {G1,G2, . . .} that do not belong to C, and
then C = exc(FC).

Note that, in general, this list FC = {G1,G2, . . .} may be infinite.

8

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

G ∈ C ⇒ H ∈ C for every H 6m G .

Let F be a (possibly infinite) family of graphs. We define exc(F) as the
class of all graphs that do not contain any of the graphs in F as a minor.

Every minor-closed graph class C can be characterized by excluded minors:
List all the graphs FC := {G1,G2, . . .} that do not belong to C, and
then C = exc(FC).

Note that, in general, this list FC = {G1,G2, . . .} may be infinite.

8

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

G ∈ C ⇒ H ∈ C for every H 6m G .

Let F be a (possibly infinite) family of graphs. We define exc(F) as the
class of all graphs that do not contain any of the graphs in F as a minor.

Every minor-closed graph class C can be characterized by excluded minors:
List all the graphs FC := {G1,G2, . . .} that do not belong to C, and
then C = exc(FC).

Note that, in general, this list FC = {G1,G2, . . .} may be infinite.

8

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

G ∈ C ⇒ H ∈ C for every H 6m G .

Let F be a (possibly infinite) family of graphs. We define exc(F) as the
class of all graphs that do not contain any of the graphs in F as a minor.

Every minor-closed graph class C can be characterized by excluded minors:
List all the graphs FC := {G1,G2, . . .} that do not belong to C, and
then C = exc(FC).

Note that, in general, this list FC = {G1,G2, . . .} may be infinite.

8

Forbidden minors for some minor-closed graph classes

If C = independent sets, then C = exc(K2).

If C = forests, then C = exc(K3).
If C = series-parallel graphs, then C = exc(K4).
If C = outerplanar graphs, then C = exc(K4,K2,3).
If C = planar graphs, then C = exc(K5,K3,3). [Kuratowski. 1930]

ii00

Ks k3,3

If C = graphs embeddable in the projective plane, then |FC | = 35.
If C = graphs embeddable in a fixed non-orientable surface,

then FC is finite. [Archdeacon, Huneke. 1989]

If C = graphs embeddable in a fixed orientable surface,
then FC is finite. [Robertson, Seymour. 1990]

9

Forbidden minors for some minor-closed graph classes

If C = independent sets, then C = exc(K2).
If C = forests, then C = exc(K3).

If C = series-parallel graphs, then C = exc(K4).
If C = outerplanar graphs, then C = exc(K4,K2,3).
If C = planar graphs, then C = exc(K5,K3,3). [Kuratowski. 1930]

ii00

Ks k3,3

If C = graphs embeddable in the projective plane, then |FC | = 35.
If C = graphs embeddable in a fixed non-orientable surface,

then FC is finite. [Archdeacon, Huneke. 1989]

If C = graphs embeddable in a fixed orientable surface,
then FC is finite. [Robertson, Seymour. 1990]

9

Forbidden minors for some minor-closed graph classes

If C = independent sets, then C = exc(K2).
If C = forests, then C = exc(K3).
If C = series-parallel graphs, then C = exc(K4).

If C = outerplanar graphs, then C = exc(K4,K2,3).
If C = planar graphs, then C = exc(K5,K3,3). [Kuratowski. 1930]

ii00

Ks k3,3

If C = graphs embeddable in the projective plane, then |FC | = 35.
If C = graphs embeddable in a fixed non-orientable surface,

then FC is finite. [Archdeacon, Huneke. 1989]

If C = graphs embeddable in a fixed orientable surface,
then FC is finite. [Robertson, Seymour. 1990]

9

Forbidden minors for some minor-closed graph classes

If C = independent sets, then C = exc(K2).
If C = forests, then C = exc(K3).
If C = series-parallel graphs, then C = exc(K4).
If C = outerplanar graphs, then C = exc(K4,K2,3).

If C = planar graphs, then C = exc(K5,K3,3). [Kuratowski. 1930]

ii00

Ks k3,3

If C = graphs embeddable in the projective plane, then |FC | = 35.
If C = graphs embeddable in a fixed non-orientable surface,

then FC is finite. [Archdeacon, Huneke. 1989]

If C = graphs embeddable in a fixed orientable surface,
then FC is finite. [Robertson, Seymour. 1990]

9

Forbidden minors for some minor-closed graph classes

If C = independent sets, then C = exc(K2).
If C = forests, then C = exc(K3).
If C = series-parallel graphs, then C = exc(K4).
If C = outerplanar graphs, then C = exc(K4,K2,3).
If C = planar graphs, then C = exc(K5,K3,3). [Kuratowski. 1930]

ii00

Ks k3,3

If C = graphs embeddable in the projective plane, then |FC | = 35.
If C = graphs embeddable in a fixed non-orientable surface,

then FC is finite. [Archdeacon, Huneke. 1989]

If C = graphs embeddable in a fixed orientable surface,
then FC is finite. [Robertson, Seymour. 1990]

9

Forbidden minors for some minor-closed graph classes

If C = independent sets, then C = exc(K2).
If C = forests, then C = exc(K3).
If C = series-parallel graphs, then C = exc(K4).
If C = outerplanar graphs, then C = exc(K4,K2,3).
If C = planar graphs, then C = exc(K5,K3,3). [Kuratowski. 1930]

ii00

Ks k3,3

If C = graphs embeddable in the projective plane, then |FC | = 35.

If C = graphs embeddable in a fixed non-orientable surface,
then FC is finite. [Archdeacon, Huneke. 1989]

If C = graphs embeddable in a fixed orientable surface,
then FC is finite. [Robertson, Seymour. 1990]

9

Forbidden minors for some minor-closed graph classes

If C = independent sets, then C = exc(K2).
If C = forests, then C = exc(K3).
If C = series-parallel graphs, then C = exc(K4).
If C = outerplanar graphs, then C = exc(K4,K2,3).
If C = planar graphs, then C = exc(K5,K3,3). [Kuratowski. 1930]

ii00

Ks k3,3

If C = graphs embeddable in the projective plane, then |FC | = 35.
If C = graphs embeddable in a fixed non-orientable surface,

then FC is finite. [Archdeacon, Huneke. 1989]

If C = graphs embeddable in a fixed orientable surface,
then FC is finite. [Robertson, Seymour. 1990]

9

Forbidden minors for some minor-closed graph classes

If C = independent sets, then C = exc(K2).
If C = forests, then C = exc(K3).
If C = series-parallel graphs, then C = exc(K4).
If C = outerplanar graphs, then C = exc(K4,K2,3).
If C = planar graphs, then C = exc(K5,K3,3). [Kuratowski. 1930]

ii00

Ks k3,3

If C = graphs embeddable in the projective plane, then |FC | = 35.
If C = graphs embeddable in a fixed non-orientable surface,

then FC is finite. [Archdeacon, Huneke. 1989]

If C = graphs embeddable in a fixed orientable surface,
then FC is finite. [Robertson, Seymour. 1990]

9

Wagner’s conjecture

Conjecture (Wagner. 1970)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).

10

Wagner’s conjecture... now Robertson-Seymour’s theorem

Theorem (Robertson, Seymour. 1983-2004)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).

10

Parameterized complexity in a nutshell

Idea Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established and very active area.

11

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Clique: Does a graph G contain a set S ⊆ V (G), with |S| ≥ k, of
pairwise adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

12

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Clique: Does a graph G contain a set S ⊆ V (G), with |S| ≥ k, of
pairwise adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

12

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Clique: Does a graph G contain a set S ⊆ V (G), with |S| ≥ k, of
pairwise adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

12

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n))

= f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk)

= f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

13

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

13

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

13

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

13

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

13

Next section is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research

14

Hitting forbidden minors

If C = {edgeless graphs}, then F = {K2}.
If C = {forests}, then F = {K3}.
If C = {outerplanar graphs}, then F = {K4,K2,3}.
If C = {planar graphs}, then F = {K5,K3,3}.

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
F = {K3}: Feedback Vertex Set.
F = {K5,K3,3}: Vertex Planarization.
F = {diamond}: Cactus Vertex Deletion.

15

Hitting forbidden minors

If C = {edgeless graphs}, then F = {K2}.
If C = {forests}, then F = {K3}.
If C = {outerplanar graphs}, then F = {K4,K2,3}.
If C = {planar graphs}, then F = {K5,K3,3}.

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
F = {K3}: Feedback Vertex Set.
F = {K5,K3,3}: Vertex Planarization.
F = {diamond}: Cactus Vertex Deletion.

15

Hitting forbidden minors

If C = {edgeless graphs}, then F = {K2}.
If C = {forests}, then F = {K3}.
If C = {outerplanar graphs}, then F = {K4,K2,3}.
If C = {planar graphs}, then F = {K5,K3,3}.

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
F = {K3}: Feedback Vertex Set.
F = {K5,K3,3}: Vertex Planarization.
F = {diamond}: Cactus Vertex Deletion.

15

Hitting forbidden minors

If C = {edgeless graphs}, then F = {K2}.
If C = {forests}, then F = {K3}.
If C = {outerplanar graphs}, then F = {K4,K2,3}.
If C = {planar graphs}, then F = {K5,K3,3}.

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
F = {K3}: Feedback Vertex Set.
F = {K5,K3,3}: Vertex Planarization.
F = {diamond}: Cactus Vertex Deletion.

15

Hitting forbidden minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

NP-hard if F contains a graph with some edge. [Lewis, Yannakakis. 1980]

We consider the following two parameterizations of F-M-Deletion:

1 Structural parameter: tw(G).

2 Solution size: k.

Joint work with Julien Baste, Laure Morelle, Giannos Stamoulis, and
Dimitrios M. Thilikos.

16

Hitting forbidden minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

NP-hard if F contains a graph with some edge. [Lewis, Yannakakis. 1980]

We consider the following two parameterizations of F-M-Deletion:

1 Structural parameter: tw(G).

2 Solution size: k.

Joint work with Julien Baste, Laure Morelle, Giannos Stamoulis, and
Dimitrios M. Thilikos.

16

Hitting forbidden minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

NP-hard if F contains a graph with some edge. [Lewis, Yannakakis. 1980]

We consider the following two parameterizations of F-M-Deletion:

1 Structural parameter: tw(G).

2 Solution size: k.

Joint work with Julien Baste, Laure Morelle, Giannos Stamoulis, and
Dimitrios M. Thilikos.

16

Next subsection is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research

17

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G , denoted tw(G):
smallest integer k such that G is a partial k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G , denoted tw(G):
smallest integer k such that G is a partial k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G , denoted tw(G):
smallest integer k such that G is a partial k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

18

Treewidth measures the tree-likeness of a graph

19

Treewidth measures the tree-likeness of a graph

19

Treewidth measures the tree-likeness of a graph

19

Treewidth measures the tree-likeness of a graph

19

Treewidth measures the tree-likeness of a graph

19

Treewidth measures the tree-likeness of a graph

19

Treewidth measures the tree-likeness of a graph

19

Theorem (Courcelle. 1990)
Every problem Π expressible in MSOL can be solved in time fΠ(tw) · n on
graphs on n vertices and treewidth at most tw.

It is not difficult to see that can F-M-Deletion be expressed in MSOL:

————-F-M-Deletion is FPT parameterized by tw...

fF (tw) · n

= 2345678tw

· n

Goal For every F , find the smallest possible function fF (tw).

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n).
[Impagliazzo, Paturi. 1999]

20

Theorem (Courcelle. 1990)
Every problem Π expressible in MSOL can be solved in time fΠ(tw) · n on
graphs on n vertices and treewidth at most tw.

It is not difficult to see that can F-M-Deletion be expressed in MSOL:

————-F-M-Deletion is FPT parameterized by tw...

fF (tw) · n

= 2345678tw

· n

Goal For every F , find the smallest possible function fF (tw).

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n).
[Impagliazzo, Paturi. 1999]

20

Theorem (Courcelle. 1990)
Every problem Π expressible in MSOL can be solved in time fΠ(tw) · n on
graphs on n vertices and treewidth at most tw.

It is not difficult to see that can F-M-Deletion be expressed in MSOL:

————-F-M-Deletion is FPT parameterized by tw...

fF (tw) · n

= 2345678tw

· n

Goal For every F , find the smallest possible function fF (tw).

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n).
[Impagliazzo, Paturi. 1999]

20

Theorem (Courcelle. 1990)
Every problem Π expressible in MSOL can be solved in time fΠ(tw) · n on
graphs on n vertices and treewidth at most tw.

It is not difficult to see that can F-M-Deletion be expressed in MSOL:

————-F-M-Deletion is FPT parameterized by tw...

fF (tw) · n = 2345678tw

· n

Goal For every F , find the smallest possible function fF (tw).

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n).
[Impagliazzo, Paturi. 1999]

20

Theorem (Courcelle. 1990)
Every problem Π expressible in MSOL can be solved in time fΠ(tw) · n on
graphs on n vertices and treewidth at most tw.

It is not difficult to see that can F-M-Deletion be expressed in MSOL:

————-F-M-Deletion is FPT parameterized by tw...

fF (tw) · n = 2345678tw

· n

Goal For every F , find the smallest possible function fF (tw).

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n).
[Impagliazzo, Paturi. 1999]

20

Theorem (Courcelle. 1990)
Every problem Π expressible in MSOL can be solved in time fΠ(tw) · n on
graphs on n vertices and treewidth at most tw.

It is not difficult to see that can F-M-Deletion be expressed in MSOL:

————-F-M-Deletion is FPT parameterized by tw...

fF (tw) · n = 2345678tw

· n

Goal For every F , find the smallest possible function fF (tw).

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n).
[Impagliazzo, Paturi. 1999]

20

What was known for particular collections F
Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1).

[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1).

[Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

21

What was known for particular collections F
Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.

Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1).

[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1).

[Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

21

What was known for particular collections F
Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1).

[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1).

[Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

21

What was known for particular collections F
Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.

“Hardly” solvable in time 2Θ(tw) · nO(1).
[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1).

[Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

21

What was known for particular collections F
Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1).

[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1).

[Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

21

What was known for particular collections F
Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1).

[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

F = {K5,K3,3}: Vertex Planarization.

Solvable in time 2Θ(tw·log tw) · nO(1).
[Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

21

What was known for particular collections F
Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1).

[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1).

[Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

21

With Julien Baste and Dimitrios M. Thilikos (2016-2020)

Objective

Determine, for every fixed F , the (asymptotically) smallest function fF
such that F-M-Deletion on n-vertex graphs can be solved in time

fF (tw) · nO(1).

We do not want to optimize the degree of the polynomial factor.

We do not want to optimize the constants.

Our hardness results hold under the ETH.
[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. I. General upper bounds. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. II. Single-exponential algorithms. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. III. Lower bounds. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. IV. An optimal algorithm. 2021]

22

With Julien Baste and Dimitrios M. Thilikos (2016-2020)

Objective

Determine, for every fixed F , the (asymptotically) smallest function fF
such that F-M-Deletion on n-vertex graphs can be solved in time

fF (tw) · nO(1).

We do not want to optimize the degree of the polynomial factor.

We do not want to optimize the constants.

Our hardness results hold under the ETH.
[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. I. General upper bounds. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. II. Single-exponential algorithms. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. III. Lower bounds. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. IV. An optimal algorithm. 2021]

22

Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every planar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23

Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every planar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23

Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every planar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23

Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every���XXXplanar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23

Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every���XXXplanar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23

Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every���XXXplanar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23

Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every���XXXplanar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected:

complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23

Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every���XXXplanar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
23

A dichotomy for hitting a connected minor

Theorem (Baste, S., Thilikos. 2016-2020)
Let H be a connected graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H 6c or H 6c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip

24

A dichotomy for hitting a connected minor

Theorem (Baste, S., Thilikos. 2016-2020)
Let H be a connected graph.

The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H 6c or H 6c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip

24

A dichotomy for hitting a connected minor

Theorem (Baste, S., Thilikos. 2016-2020)
Let H be a connected graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H 6c or H 6c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip

24

A dichotomy for hitting a connected minor

Theorem (Baste, S., Thilikos. 2016-2020)
Let H be a connected graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H 6c or H 6c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip

24

A dichotomy for hitting a connected minor

Theorem (Baste, S., Thilikos. 2016-2020)
Let H be a connected graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H 6c or H 6c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip

24

Complexity of hitting a single connected minor H

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

Classification of the complexity of {H}-M-Deletion for all connected
simple planar graphs H with |V (H)| ≤ 5 and |E (H)| ≥ 1: for the 9 graphs
on the left (resp. 20 graphs on the right), the problem is solvable in time
2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion, K1,4
should be on the left.

25

A compact statement for a single connected graph

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

All these cases can be succinctly described as follows:

All graphs on the left are contractions of or

All graphs on the right are not contractions of or

26

A compact statement for a single connected graph

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

All these cases can be succinctly described as follows:

All graphs on the left are contractions of or

All graphs on the right are not contractions of or

26

A compact statement for a single connected graph

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

All these cases can be succinctly described as follows:

All graphs on the left are contractions of or

All graphs on the right are not contractions of or
26

Next subsection is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research

27

We parameterize by the size of the desired solution
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

It is easy to see that, for every k > 1, the class of graphs

Ck = {G | (G , k) is a positive instance of F-M-Deletion}

is minor-closed.

Theorem (Robertson and Seymour. 1983-2004)
For every minor-closed graph class C, deciding whether an n-vertex graph
G belongs to C can be solved in time f (C) · n2.

For every k ≥ 1, there exists an FPT algorithm for F-M-Deletion.

But... only existential, non-uniform, f (Ck) astronomical.

28

We parameterize by the size of the desired solution
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

It is easy to see that, for every k > 1, the class of graphs

Ck = {G | (G , k) is a positive instance of F-M-Deletion}

is minor-closed.

Theorem (Robertson and Seymour. 1983-2004)
For every minor-closed graph class C, deciding whether an n-vertex graph
G belongs to C can be solved in time f (C) · n2.

For every k ≥ 1, there exists an FPT algorithm for F-M-Deletion.

But... only existential, non-uniform, f (Ck) astronomical.

28

We parameterize by the size of the desired solution
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

It is easy to see that, for every k > 1, the class of graphs

Ck = {G | (G , k) is a positive instance of F-M-Deletion}

is minor-closed.

Theorem (Robertson and Seymour. 1983-2004)
For every minor-closed graph class C, deciding whether an n-vertex graph
G belongs to C can be solved in time f (C) · n2.

For every k ≥ 1, there exists an FPT algorithm for F-M-Deletion.

But... only existential, non-uniform, f (Ck) astronomical.

28

We parameterize by the size of the desired solution
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

It is easy to see that, for every k > 1, the class of graphs

Ck = {G | (G , k) is a positive instance of F-M-Deletion}

is minor-closed.

Theorem (Robertson and Seymour. 1983-2004)
For every minor-closed graph class C, deciding whether an n-vertex graph
G belongs to C can be solved in time f (C) · n2.

For every k ≥ 1, there exists an FPT algorithm for F-M-Deletion.

But... only existential, non-uniform, f (Ck) astronomical.

28

We parameterize by the size of the desired solution
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

It is easy to see that, for every k > 1, the class of graphs

Ck = {G | (G , k) is a positive instance of F-M-Deletion}

is minor-closed.

Theorem (Robertson and Seymour. 1983-2004)
For every minor-closed graph class C, deciding whether an n-vertex graph
G belongs to C can be solved in time f (C) · n2.

For every k ≥ 1, there exists an FPT algorithm for F-M-Deletion.

But... only existential, non-uniform, f (Ck) astronomical.
28

Can we do better?

The function f (Ck) is constructible. [Adler, Grohe, Kreutzer. 2008]

If F contains a planar graph: 2OF (k) · nO(1).
[Fomin, Lokshtanov, Misra, Saurabh. 2012]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

For some non-planar collections F :

F = {K5,K3,3}: 2O(k log k) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014]

Deletion to genus at most g : 2Og (k2 log k) · nO(1). [Kociumaka, Ma. Pilipczuk. 2019]

For every F , some enormous explicit function fF (k) can be derived
from an FPT algorithm for hitting topological minors:

thisisjustsomespacefF (k) · nO(1). [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi. 2020]

29

Can we do better?

The function f (Ck) is constructible. [Adler, Grohe, Kreutzer. 2008]

If F contains a planar graph: 2OF (k) · nO(1).
[Fomin, Lokshtanov, Misra, Saurabh. 2012]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

For some non-planar collections F :

F = {K5,K3,3}: 2O(k log k) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014]

Deletion to genus at most g : 2Og (k2 log k) · nO(1). [Kociumaka, Ma. Pilipczuk. 2019]

For every F , some enormous explicit function fF (k) can be derived
from an FPT algorithm for hitting topological minors:

thisisjustsomespacefF (k) · nO(1). [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi. 2020]

29

Can we do better?

The function f (Ck) is constructible. [Adler, Grohe, Kreutzer. 2008]

If F contains a planar graph: 2OF (k) · nO(1).
[Fomin, Lokshtanov, Misra, Saurabh. 2012]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

For some non-planar collections F :

F = {K5,K3,3}: 2O(k log k) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014]

Deletion to genus at most g : 2Og (k2 log k) · nO(1). [Kociumaka, Ma. Pilipczuk. 2019]

For every F , some enormous explicit function fF (k) can be derived
from an FPT algorithm for hitting topological minors:

thisisjustsomespacefF (k) · nO(1). [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi. 2020]

29

Can we do better?

The function f (Ck) is constructible. [Adler, Grohe, Kreutzer. 2008]

If F contains a planar graph: 2OF (k) · nO(1).
[Fomin, Lokshtanov, Misra, Saurabh. 2012]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

For some non-planar collections F :

F = {K5,K3,3}: 2O(k log k) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014]

Deletion to genus at most g : 2Og (k2 log k) · nO(1). [Kociumaka, Ma. Pilipczuk. 2019]

For every F , some enormous explicit function fF (k) can be derived
from an FPT algorithm for hitting topological minors:

thisisjustsomespacefF (k) · nO(1). [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi. 2020]

29

Can we do better?

The function f (Ck) is constructible. [Adler, Grohe, Kreutzer. 2008]

If F contains a planar graph: 2OF (k) · nO(1).
[Fomin, Lokshtanov, Misra, Saurabh. 2012]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

For some non-planar collections F :

F = {K5,K3,3}: 2O(k log k) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014]

Deletion to genus at most g : 2Og (k2 log k) · nO(1). [Kociumaka, Ma. Pilipczuk. 2019]

For every F , some enormous explicit function fF (k) can be derived
from an FPT algorithm for hitting topological minors:

thisisjustsomespacefF (k) · nO(1). [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi. 2020]

29

Our results

Theorem (S., Stamoulis, Thilikos. 2020)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n3.

Here, poly(k) is a polynomial whose degree depends on F .

Theorem (S., Stamoulis, Thilikos. 2020)
If F contains an apex graph, the F-M-Deletion problem can be solved
in time 2poly(k) · n2.

Again, poly(k) is a polynomial whose degree depends on F .

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n2.

skip

30

Our results

Theorem (S., Stamoulis, Thilikos. 2020)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n3.

Here, poly(k) is a polynomial whose degree depends on F .

Theorem (S., Stamoulis, Thilikos. 2020)
If F contains an apex graph, the F-M-Deletion problem can be solved
in time 2poly(k) · n2.

Again, poly(k) is a polynomial whose degree depends on F .

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n2.

skip

30

Our results

Theorem (S., Stamoulis, Thilikos. 2020)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n3.

Here, poly(k) is a polynomial whose degree depends on F .

Theorem (S., Stamoulis, Thilikos. 2020)
If F contains an apex graph, the F-M-Deletion problem can be solved
in time 2poly(k) · n2.

Again, poly(k) is a polynomial whose degree depends on F .

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n2.

skip
30

Next section is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research

31

Next subsection is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research

32

Recall the statement of the problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

33

We have three types of results

1 General algorithms
For every F : time 22O(tw·log tw) · nO(1).
F planar: time 2O(tw·log tw) · nO(1).
F ���XXXplanar: time 2O(tw·log tw) · nO(1).
G planar: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

skip

34

We have three types of results

1 General algorithms
For every F : time 22O(tw·log tw) · nO(1).
F planar: time 2O(tw·log tw) · nO(1).
F ���XXXplanar: time 2O(tw·log tw) · nO(1).
G planar: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

skip

34

We have three types of results

1 General algorithms
For every F : time 22O(tw·log tw) · nO(1).
F planar: time 2O(tw·log tw) · nO(1).
F ���XXXplanar: time 2O(tw·log tw) · nO(1).
G planar: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

skip

34

We have three types of results

1 General algorithms
For every F : time 22O(tw·log tw) · nO(1).
F planar: time 2O(tw·log tw) · nO(1).
F ���XXXplanar: time 2O(tw·log tw) · nO(1).
G planar: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

skip

34

We have three types of results

1 General algorithms
For every F : time 22O(tw·log tw) · nO(1).
F planar: time 2O(tw·log tw) · nO(1).

F F ���XXXplanar: time 2O(tw·log tw) · nO(1).
G planar: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

skip

34

Algorithm in time 2OF (tw·log tw) · nO(1) for any collection F
[Fig. by Valentin Garnero]

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F 6m G ′ ⊕ G1 ⇐⇒ F 6m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R ∈ R(F ,t):

p(GB,R) = min{|S| : S ⊆ V (GB) ∧ repF ,t(GB \ S) = R}

This gives an algorithm running in time |R(F ,t)|O(1) · nO(1).

Goal Bound the number of representatives: |R(F ,t)| = 2OF (tw·log tw).

35

Algorithm in time 2OF (tw·log tw) · nO(1) for any collection F
[Fig. by Valentin Garnero]

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F 6m G ′ ⊕ G1 ⇐⇒ F 6m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R ∈ R(F ,t):

p(GB,R) = min{|S| : S ⊆ V (GB) ∧ repF ,t(GB \ S) = R}

This gives an algorithm running in time |R(F ,t)|O(1) · nO(1).

Goal Bound the number of representatives: |R(F ,t)| = 2OF (tw·log tw).

35

Algorithm in time 2OF (tw·log tw) · nO(1) for any collection F
[Fig. by Valentin Garnero]

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F 6m G ′ ⊕ G1 ⇐⇒ F 6m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R ∈ R(F ,t):

p(GB,R) = min{|S| : S ⊆ V (GB) ∧ repF ,t(GB \ S) = R}

This gives an algorithm running in time |R(F ,t)|O(1) · nO(1).

Goal Bound the number of representatives: |R(F ,t)| = 2OF (tw·log tw).

35

Algorithm in time 2OF (tw·log tw) · nO(1) for any collection F
[Fig. by Valentin Garnero]

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F 6m G ′ ⊕ G1 ⇐⇒ F 6m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R ∈ R(F ,t):

p(GB,R) = min{|S| : S ⊆ V (GB) ∧ repF ,t(GB \ S) = R}

This gives an algorithm running in time |R(F ,t)|O(1) · nO(1).

Goal Bound the number of representatives: |R(F ,t)| = 2OF (tw·log tw).

35

Algorithm in time 2OF (tw·log tw) · nO(1) for any collection F
[Fig. by Valentin Garnero]

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F 6m G ′ ⊕ G1 ⇐⇒ F 6m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R ∈ R(F ,t):

p(GB,R) = min{|S| : S ⊆ V (GB) ∧ repF ,t(GB \ S) = R}

This gives an algorithm running in time |R(F ,t)|O(1) · nO(1).

Goal Bound the number of representatives: |R(F ,t)| = 2OF (tw·log tw).

35

Algorithm in time 2OF (tw·log tw) · nO(1) for any collection F
[Fig. by Valentin Garnero]

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F 6m G ′ ⊕ G1 ⇐⇒ F 6m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R ∈ R(F ,t):

p(GB,R) = min{|S| : S ⊆ V (GB) ∧ repF ,t(GB \ S) = R}

This gives an algorithm running in time |R(F ,t)|O(1) · nO(1).

Goal Bound the number of representatives: |R(F ,t)| = 2OF (tw·log tw).
35

Bounding the set of representatives

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

Then, by the sparsity of the representatives,

|R(F ,t)| = OF (1) ·
(
t2

t

)
= 2OF (t·log t),

and we are done!

Flat Wall Theorem [Robertson, Seymour. GMXIII. 1995]

As a representative R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

36

Bounding the set of representatives

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

Then, by the sparsity of the representatives,

|R(F ,t)| = OF (1) ·
(
t2

t

)
= 2OF (t·log t),

and we are done!

Flat Wall Theorem [Robertson, Seymour. GMXIII. 1995]

As a representative R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

36

Bounding the set of representatives

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

Then, by the sparsity of the representatives,

|R(F ,t)| = OF (1) ·
(
t2

t

)
= 2OF (t·log t),

and we are done!

Flat Wall Theorem [Robertson, Seymour. GMXIII. 1995]

As a representative R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

36

Bounding the set of representatives

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

Then, by the sparsity of the representatives,

|R(F ,t)| = OF (1) ·
(
t2

t

)
= 2OF (t·log t),

and we are done!

Flat Wall Theorem [Robertson, Seymour. GMXIII. 1995]

As a representative R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

36

Bounding the set of representatives

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

Then, by the sparsity of the representatives,

|R(F ,t)| = OF (1) ·
(
t2

t

)
= 2OF (t·log t),

and we are done!

Flat Wall Theorem [Robertson, Seymour. GMXIII. 1995]

As a representative R is F-minor-free, if tw(R \ B) > cF ,

R \B contains a large flat wall, where we can find an irrelevant vertex.

36

Bounding the set of representatives

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

Then, by the sparsity of the representatives,

|R(F ,t)| = OF (1) ·
(
t2

t

)
= 2OF (t·log t),

and we are done!

Flat Wall Theorem [Robertson, Seymour. GMXIII. 1995]

As a representative R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall,

where we can find an irrelevant vertex.

36

Bounding the set of representatives

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

Then, by the sparsity of the representatives,

|R(F ,t)| = OF (1) ·
(
t2

t

)
= 2OF (t·log t),

and we are done!

Flat Wall Theorem [Robertson, Seymour. GMXIII. 1995]

As a representative R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

36

Next subsection is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research

37

Basic principle of the irrelevant vertex technique

This technique was invented in [Robertson and Seymour. 1995]

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

Strategy:

1 If tw(G) > f (k), find an irrelevant vertex:

A vertex v ∈ V (G) such that (G ,T , k) and (G \ v ,T , k) are
equivalent instances.

2 Otherwise, if tw(G) ≤ f (k), solve the problem using dynamic
programming (by Courcelle).

38

Basic principle of the irrelevant vertex technique

This technique was invented in [Robertson and Seymour. 1995]

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

Strategy:

1 If tw(G) > f (k), find an irrelevant vertex:

A vertex v ∈ V (G) such that (G ,T , k) and (G \ v ,T , k) are
equivalent instances.

2 Otherwise, if tw(G) ≤ f (k), solve the problem using dynamic
programming (by Courcelle).

38

Basic principle of the irrelevant vertex technique

This technique was invented in [Robertson and Seymour. 1995]

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

Strategy:

1 If tw(G) > f (k), find an irrelevant vertex:

A vertex v ∈ V (G) such that (G ,T , k) and (G \ v ,T , k) are
equivalent instances.

2 Otherwise, if tw(G) ≤ f (k), solve the problem using dynamic
programming (by Courcelle).

38

Basic principle of the irrelevant vertex technique

This technique was invented in [Robertson and Seymour. 1995]

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

Strategy:

1 If tw(G) > f (k), find an irrelevant vertex:

A vertex v ∈ V (G) such that (G ,T , k) and (G \ v ,T , k) are
equivalent instances.

2 Otherwise, if tw(G) ≤ f (k), solve the problem using dynamic
programming (by Courcelle).

38

How to find an irrelevant vertex when the treewidth is large?

By using the Grid Exclusion Theorem!

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.

s I[Figure by Dimitrios M. Thilikos]

39

How to find an irrelevant vertex when the treewidth is large?

By using the Grid Exclusion Theorem!

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.

s I[Figure by Dimitrios M. Thilikos]

39

How to find an irrelevant vertex when the treewidth is large?

By using the Wall Exclusion Theorem!

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.

s I[Figure by Dimitrios M. Thilikos]

39

How to find an irrelevant vertex when the treewidth is large?

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.

s I[Figure by Dimitrios M. Thilikos]
39

How to find an irrelevant vertex when the treewidth is large?

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.246 D.M. Thilikos

Fig. 5. A subdivided wall W ′ and the way a 13-linkage L is traversing its compass K′.
The only vertices that are depicted are the endpoints of the paths in L (white vertices).
The only edges that are depicted are those of the paths in L and the edges of W ′. The
grey area contains the vertices and the edges of the graph G that do not belong to K′.

so that the paths of L could be rerouted to an equivalent linkage that does not
enter very deeply inside K ′. To formalize this claim Robertson and Seymour
defined the notion of a vital linkage in [111].

A linkage L in a graph G is called vital if its vertices meet all the vertices of
G and if there is no other linkage in G that is equivalent to L. An example of
a vital k-linkage in a graph is depicted in Figure 6. Clearly, if a solution of the
k-Disjoint Paths Problem corresponds to a vital linkage, then no irrelevant
vertex can be detected. The main result of [111] asserts that this possible “lack
of flexibility” of linkages vanishes when graphs have big enough treewidth.

Theorem 13. There exists a recursive function λ : N → N such that every
graph with a vital k-linkage has treewidth at most λ(k).

Actually, it was also proved in [111] that treewidth can be replaced by pathwidth
in Theorem 13. As the proof of 13 uses the Structure Theorem of the GMT [109],
the upper bound for λ that follows from [111] is immense. However it was proved
in [3] that in the case of planar graphs it holds that λ(k) = 2O(k). Moreover, this
bound is, in a sense, tight: as argued in [3], for each k it is possible to construct
a planar graph that contains a vital k-linkage and has treewidth 2Ω(k) (the 5-
linkage in the graph of Figure 6 already gives the flavor of such a construction).

Let now G′ be the subgraph of G defined by the union of the paths in L, and
the compass K ′ of W ′. At this point, a naive idea might be to directly apply
Theorem 13 and set q′ = λ(k) so that the linkage L of G′, corresponding to a
solution of the k-Disjoint Paths problem, cannot be vital. However, from this
alone, we cannot expect nothing better than avoiding some vertices that will not

[Figure by Dimitrios M. Thilikos]
39

Goal: declare one of the central vertices of the wall irrelevant.246 D.M. Thilikos

Fig. 5. A subdivided wall W ′ and the way a 13-linkage L is traversing its compass K′.
The only vertices that are depicted are the endpoints of the paths in L (white vertices).
The only edges that are depicted are those of the paths in L and the edges of W ′. The
grey area contains the vertices and the edges of the graph G that do not belong to K′.

so that the paths of L could be rerouted to an equivalent linkage that does not
enter very deeply inside K ′. To formalize this claim Robertson and Seymour
defined the notion of a vital linkage in [111].

A linkage L in a graph G is called vital if its vertices meet all the vertices of
G and if there is no other linkage in G that is equivalent to L. An example of
a vital k-linkage in a graph is depicted in Figure 6. Clearly, if a solution of the
k-Disjoint Paths Problem corresponds to a vital linkage, then no irrelevant
vertex can be detected. The main result of [111] asserts that this possible “lack
of flexibility” of linkages vanishes when graphs have big enough treewidth.

Theorem 13. There exists a recursive function λ : N → N such that every
graph with a vital k-linkage has treewidth at most λ(k).

Actually, it was also proved in [111] that treewidth can be replaced by pathwidth
in Theorem 13. As the proof of 13 uses the Structure Theorem of the GMT [109],
the upper bound for λ that follows from [111] is immense. However it was proved
in [3] that in the case of planar graphs it holds that λ(k) = 2O(k). Moreover, this
bound is, in a sense, tight: as argued in [3], for each k it is possible to construct
a planar graph that contains a vital k-linkage and has treewidth 2Ω(k) (the 5-
linkage in the graph of Figure 6 already gives the flavor of such a construction).

Let now G′ be the subgraph of G defined by the union of the paths in L, and
the compass K ′ of W ′. At this point, a naive idea might be to directly apply
Theorem 13 and set q′ = λ(k) so that the linkage L of G′, corresponding to a
solution of the k-Disjoint Paths problem, cannot be vital. However, from this
alone, we cannot expect nothing better than avoiding some vertices that will not

This is only possible if the wall is insulated from the exterior!

40

Goal: declare one of the central vertices of the wall irrelevant.246 D.M. Thilikos

Fig. 5. A subdivided wall W ′ and the way a 13-linkage L is traversing its compass K′.
The only vertices that are depicted are the endpoints of the paths in L (white vertices).
The only edges that are depicted are those of the paths in L and the edges of W ′. The
grey area contains the vertices and the edges of the graph G that do not belong to K′.

so that the paths of L could be rerouted to an equivalent linkage that does not
enter very deeply inside K ′. To formalize this claim Robertson and Seymour
defined the notion of a vital linkage in [111].

A linkage L in a graph G is called vital if its vertices meet all the vertices of
G and if there is no other linkage in G that is equivalent to L. An example of
a vital k-linkage in a graph is depicted in Figure 6. Clearly, if a solution of the
k-Disjoint Paths Problem corresponds to a vital linkage, then no irrelevant
vertex can be detected. The main result of [111] asserts that this possible “lack
of flexibility” of linkages vanishes when graphs have big enough treewidth.

Theorem 13. There exists a recursive function λ : N → N such that every
graph with a vital k-linkage has treewidth at most λ(k).

Actually, it was also proved in [111] that treewidth can be replaced by pathwidth
in Theorem 13. As the proof of 13 uses the Structure Theorem of the GMT [109],
the upper bound for λ that follows from [111] is immense. However it was proved
in [3] that in the case of planar graphs it holds that λ(k) = 2O(k). Moreover, this
bound is, in a sense, tight: as argued in [3], for each k it is possible to construct
a planar graph that contains a vital k-linkage and has treewidth 2Ω(k) (the 5-
linkage in the graph of Figure 6 already gives the flavor of such a construction).

Let now G′ be the subgraph of G defined by the union of the paths in L, and
the compass K ′ of W ′. At this point, a naive idea might be to directly apply
Theorem 13 and set q′ = λ(k) so that the linkage L of G′, corresponding to a
solution of the k-Disjoint Paths problem, cannot be vital. However, from this
alone, we cannot expect nothing better than avoiding some vertices that will not

Si ti

v

i

This is only possible if the wall is insulated from the exterior!

40

Flat walls

Goal: enrich the notion of wall so that we can insulate it from the exterior.

s I
41

Flat walls

We need to allow some extra edges in the interior of the wall.

g
t Ii

K A
a

41

Flat walls
We impose a topological property that defines the “flatness” of the wall.

s I
41

Flat walls
There are no crossing paths s1 − t1 and s2 − t2 from/to the perimeter.

s I
41

Flat walls
A real flat wall can be quite wild... [Figure by Dimitrios M. Thilikos]

41

Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]

42

Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]

42

Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]

42

Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]

42

Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]

42

The Flat Wall Theorem

Theorem (Robertson and Seymour. 1995)
There exist recursive functions f1 : N2 → N and f2 : N→ N, such that for
every graph G and every q, r ∈ N, one of the following holds:

1 Kq is a minor of G.

2 The treewidth of G is at most f1(q, r).

3 There exists A ⊆ V (G) (apices) with |A| ≤ f2(q) such that G \ A
contains as a subgraph a flat wall W of height r .

There are several different variants and optimizations of this theorem...
[Chuzhoy. 2015]

[Kawarabayashi, Thomas, Wollan. 2018]
[S., Stamoulis, Thilikos. 2021]

Important: possible to find one of the outputs in time f (q, r) · |V (G)|.

43

The Flat Wall Theorem

Theorem (Robertson and Seymour. 1995)
There exist recursive functions f1 : N2 → N and f2 : N→ N, such that for
every graph G and every q, r ∈ N, one of the following holds:

1 Kq is a minor of G.

2 The treewidth of G is at most f1(q, r).

3 There exists A ⊆ V (G) (apices) with |A| ≤ f2(q) such that G \ A
contains as a subgraph a flat wall W of height r .

There are several different variants and optimizations of this theorem...
[Chuzhoy. 2015]

[Kawarabayashi, Thomas, Wollan. 2018]
[S., Stamoulis, Thilikos. 2021]

Important: possible to find one of the outputs in time f (q, r) · |V (G)|.

43

The Flat Wall Theorem

Theorem (Robertson and Seymour. 1995)
There exist recursive functions f1 : N2 → N and f2 : N→ N, such that for
every graph G and every q, r ∈ N, one of the following holds:

1 Kq is a minor of G.

2 The treewidth of G is at most f1(q, r).

3 There exists A ⊆ V (G) (apices) with |A| ≤ f2(q) such that G \ A
contains as a subgraph a flat wall W of height r .

There are several different variants and optimizations of this theorem...
[Chuzhoy. 2015]

[Kawarabayashi, Thomas, Wollan. 2018]
[S., Stamoulis, Thilikos. 2021]

Important: possible to find one of the outputs in time f (q, r) · |V (G)|.

43

The Flat Wall Theorem

Theorem (Robertson and Seymour. 1995)
There exist recursive functions f1 : N2 → N and f2 : N→ N, such that for
every graph G and every q, r ∈ N, one of the following holds:

1 Kq is a minor of G.

2 The treewidth of G is at most f1(q, r).

3 There exists A ⊆ V (G) (apices) with |A| ≤ f2(q) such that G \ A
contains as a subgraph a flat wall W of height r .

There are several different variants and optimizations of this theorem...
[Chuzhoy. 2015]

[Kawarabayashi, Thomas, Wollan. 2018]
[S., Stamoulis, Thilikos. 2021]

Important: possible to find one of the outputs in time f (q, r) · |V (G)|.

43

The Flat Wall Theorem

Theorem (Robertson and Seymour. 1995)
There exist recursive functions f1 : N2 → N and f2 : N→ N, such that for
every graph G and every q, r ∈ N, one of the following holds:

1 Kq is a minor of G.

2 The treewidth of G is at most f1(q, r).

3 There exists A ⊆ V (G) (apices) with |A| ≤ f2(q) such that G \ A
contains as a subgraph a flat wall W of height r .

There are several different variants and optimizations of this theorem...
[Chuzhoy. 2015]

[Kawarabayashi, Thomas, Wollan. 2018]
[S., Stamoulis, Thilikos. 2021]

Important: possible to find one of the outputs in time f (q, r) · |V (G)|.

43

The Flat Wall Theorem

Theorem (Robertson and Seymour. 1995)
There exist recursive functions f1 : N2 → N and f2 : N→ N, such that for
every graph G and every q, r ∈ N, one of the following holds:

1 Kq is a minor of G.

2 The treewidth of G is at most f1(q, r).

3 There exists A ⊆ V (G) (apices) with |A| ≤ f2(q) such that G \ A
contains as a subgraph a flat wall W of height r .

There are several different variants and optimizations of this theorem...
[Chuzhoy. 2015]

[Kawarabayashi, Thomas, Wollan. 2018]
[S., Stamoulis, Thilikos. 2021]

Important: possible to find one of the outputs in time f (q, r) · |V (G)|.
43

Back to the Disjoint Paths problem

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

By the Flat Wall Theorem:

If tw(G) ≤ f (k): solve using dynamic programming.

If G contains a Kg(k)-minor: “easy” to find an irrelevant vertex.

If G contains a “small” apex set A and a flat wall W in G \ A of size
at least h(k): declare the central vertex of the flat wall irrelevant.

The irrelevant vertex technique has been applied to many problems...
usually with a lot of technical pain.

44

Back to the Disjoint Paths problem

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

By the Flat Wall Theorem:

If tw(G) ≤ f (k): solve using dynamic programming.

If G contains a Kg(k)-minor: “easy” to find an irrelevant vertex.

If G contains a “small” apex set A and a flat wall W in G \ A of size
at least h(k): declare the central vertex of the flat wall irrelevant.

The irrelevant vertex technique has been applied to many problems...
usually with a lot of technical pain.

44

Back to the Disjoint Paths problem

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

By the Flat Wall Theorem:

If tw(G) ≤ f (k): solve using dynamic programming.

If G contains a Kg(k)-minor: “easy” to find an irrelevant vertex.

If G contains a “small” apex set A and a flat wall W in G \ A of size
at least h(k): declare the central vertex of the flat wall irrelevant.

The irrelevant vertex technique has been applied to many problems...
usually with a lot of technical pain.

44

Back to the Disjoint Paths problem

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

By the Flat Wall Theorem:

If tw(G) ≤ f (k): solve using dynamic programming.

If G contains a Kg(k)-minor: “easy” to find an irrelevant vertex.

If G contains a “small” apex set A and a flat wall W in G \ A of size
at least h(k): declare the central vertex of the flat wall irrelevant.

The irrelevant vertex technique has been applied to many problems...
usually with a lot of technical pain.

44

Back to the Disjoint Paths problem

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

By the Flat Wall Theorem:

If tw(G) ≤ f (k): solve using dynamic programming.

If G contains a Kg(k)-minor: “easy” to find an irrelevant vertex.

If G contains a “small” apex set A and a flat wall W in G \ A of size
at least h(k): declare the central vertex of the flat wall irrelevant.

The irrelevant vertex technique has been applied to many problems...

usually with a lot of technical pain.

44

Back to the Disjoint Paths problem

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

By the Flat Wall Theorem:

If tw(G) ≤ f (k): solve using dynamic programming.

If G contains a Kg(k)-minor: “easy” to find an irrelevant vertex.

If G contains a “small” apex set A and a flat wall W in G \ A of size
at least h(k): declare the central vertex of the flat wall irrelevant.

The irrelevant vertex technique has been applied to many problems...
usually with a lot of technical pain.

44

Rerouting inside a big flat wall...

f11 b

f10

Df10

Cp

[Figure by Dimitrios M. Thilikos]
45

Crucial notion: homogeneity
In order to declare a vertex irrelevant for some problem, usually we need to
consider a homogenous flat wall, which we proceed to define.

46

Crucial notion: homogeneity
We consider a flap-coloring encoding the relevant information of our
favorite problem inside each flap (similar to tables of DP).

46

Crucial notion: homogeneity
We consider a flap-coloring encoding the relevant information of our
favorite problem inside each flap (similar to tables of DP).

A y 1 s

2,342 3
2

2

32 s
a 41 s 4 3

2 Y 2 2 4
4

3 3 2 1
3

s a
3 s

2 2
y

3 2 3 1 3 2
4

2
5 4

25 4
s

4 3 2
7

46

Crucial notion: homogeneity
For every brick of the wall, we define its palette as the colors appearing in
the flaps it contains.

723ms HITS 225.4

2,4 11213,4 249

He 244A HE

112,344 112394,5 2464

46

Crucial notion: homogeneity
A flat wall is homogenous if every (internal) brick has the same palette.
Fact: every brick of a homogenous flat wall has the same “behavior”.

723ms HITS 225.4

2,4 11213,4 249

He 244A HE

112,344 112394,5 2464

46

Crucial notion: homogeneity
Price of homogeneity to obtain a homogenous flat r -wall (zooming):
If we have c colors, we need to start with a flat r c -wall. (why?)

723ms HITS 225.4

2,4 11213,4 249

He 244A HE

112,344 112394,5 2464

46

Next subsection is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research

47

Recall the statement of the problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

Theorem (S., Stamoulis, Thilikos. 2020)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n3.

48

Recall the statement of the problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

Theorem (S., Stamoulis, Thilikos. 2020)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n3.

48

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:

Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:

Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.

49

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.

If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:

Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:

Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.

49

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:

Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:

Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.

49

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.

2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:

Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:

Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.

49

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.

3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:

Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:

Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.

49

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:

Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:

Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.

49

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:

Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:

Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.

49

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:
Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:

Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.

49

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:
Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:

Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.

49

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:
Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:
Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.

49

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:
Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:
Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.

49

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:
Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:
Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1): our previous FPT algo gives 2kOF (1) · n2.
49

Main idea of our improved algorithm

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n2.

Improvement from n3 to n2: avoiding iterative compression.

How to achieve it?

We are able to detect a vertex that must belong to every solution.

Approach inspired by [Marx, Schlotter. 2012]
[S., Stamoulis, Thilikos. 2020]

skip

50

Main idea of our improved algorithm

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n2.

Improvement from n3 to n2: avoiding iterative compression.

How to achieve it?

We are able to detect a vertex that must belong to every solution.

Approach inspired by [Marx, Schlotter. 2012]
[S., Stamoulis, Thilikos. 2020]

skip

50

Finding a vertex belonging to every solution of size k

Let F be a finite collection of graphs.

The apex number aF is the smallest number of vertices that can be re-
moved from a graph of F such that the remaining graph is planar.

[Figure by Laure Morelle]

aF = 1 → apex graph

51

Finding a vertex belonging to every solution of size k

[Figure by Laure Morelle]

52

Finding a vertex belonging to every solution of size k

[Figure by Laure Morelle]
53

Finding a vertex belonging to every solution of size k

[Figure by Laure Morelle]

54

Strategy for solving F-M-Deletion in time 2polyF (k) · n2:

If the treewidth of G is small (namely, tw ≤ polyF (k)):

Dynamic programming using algorithm of [Baste, S., Thilikos. 2020]
Solve in time 2polyF (tw log tw) · n.

If the treewidth of G is big, remove a vertex from G using one of the
following approaches:

Irrelevant vertex technique: time O∗(n).
Detect vertex v such that (G , k) and (G \ {v}, k) are equivalent
instances of F-M-Deletion.

Branching: time O∗(n2).
Find set A of aF vertices that intersects every k-apex set.
“Guess” a vertex v ∈ A in a k-apex set and solve (G \ {v}, k − 1).

(Branching tree is of size ak
F , so we do not get an extra factor n).

skip

55

Strategy for solving F-M-Deletion in time 2polyF (k) · n2:

If the treewidth of G is small (namely, tw ≤ polyF (k)):

Dynamic programming using algorithm of [Baste, S., Thilikos. 2020]
Solve in time 2polyF (tw log tw) · n.

If the treewidth of G is big, remove a vertex from G using one of the
following approaches:

Irrelevant vertex technique: time O∗(n).
Detect vertex v such that (G , k) and (G \ {v}, k) are equivalent
instances of F-M-Deletion.

Branching: time O∗(n2).
Find set A of aF vertices that intersects every k-apex set.
“Guess” a vertex v ∈ A in a k-apex set and solve (G \ {v}, k − 1).

(Branching tree is of size ak
F , so we do not get an extra factor n).

skip

55

Strategy for solving F-M-Deletion in time 2polyF (k) · n2:

If the treewidth of G is small (namely, tw ≤ polyF (k)):

Dynamic programming using algorithm of [Baste, S., Thilikos. 2020]
Solve in time 2polyF (tw log tw) · n.

If the treewidth of G is big, remove a vertex from G using one of the
following approaches:

Irrelevant vertex technique: time O∗(n).
Detect vertex v such that (G , k) and (G \ {v}, k) are equivalent
instances of F-M-Deletion.

Branching: time O∗(n2).
Find set A of aF vertices that intersects every k-apex set.
“Guess” a vertex v ∈ A in a k-apex set and solve (G \ {v}, k − 1).

(Branching tree is of size ak
F , so we do not get an extra factor n).

skip

55

Strategy for solving F-M-Deletion in time 2polyF (k) · n2:

If the treewidth of G is small (namely, tw ≤ polyF (k)):

Dynamic programming using algorithm of [Baste, S., Thilikos. 2020]
Solve in time 2polyF (tw log tw) · n.

If the treewidth of G is big, remove a vertex from G using one of the
following approaches:

Irrelevant vertex technique: time O∗(n).
Detect vertex v such that (G , k) and (G \ {v}, k) are equivalent
instances of F-M-Deletion.

Branching: time O∗(n2).
Find set A of aF vertices that intersects every k-apex set.
“Guess” a vertex v ∈ A in a k-apex set and solve (G \ {v}, k − 1).

(Branching tree is of size ak
F , so we do not get an extra factor n).

skip

55

Strategy for solving F-M-Deletion in time 2polyF (k) · n2:

If the treewidth of G is small (namely, tw ≤ polyF (k)):

Dynamic programming using algorithm of [Baste, S., Thilikos. 2020]
Solve in time 2polyF (tw log tw) · n.

If the treewidth of G is big, remove a vertex from G using one of the
following approaches:

Irrelevant vertex technique: time O∗(n).
Detect vertex v such that (G , k) and (G \ {v}, k) are equivalent
instances of F-M-Deletion.

Branching: time O∗(n2).
Find set A of aF vertices that intersects every k-apex set.
“Guess” a vertex v ∈ A in a k-apex set and solve (G \ {v}, k − 1).

(Branching tree is of size ak
F , so we do not get an extra factor n).

skip

55

Strategy for solving F-M-Deletion in time 2polyF (k) · n2:

If the treewidth of G is small (namely, tw ≤ polyF (k)):

Dynamic programming using algorithm of [Baste, S., Thilikos. 2020]
Solve in time 2polyF (tw log tw) · n.

If the treewidth of G is big, remove a vertex from G using one of the
following approaches:

Irrelevant vertex technique: time O∗(n).
Detect vertex v such that (G , k) and (G \ {v}, k) are equivalent
instances of F-M-Deletion.

Branching: time O∗(n2).
Find set A of aF vertices that intersects every k-apex set.
“Guess” a vertex v ∈ A in a k-apex set and solve (G \ {v}, k − 1).

(Branching tree is of size ak
F , so we do not get an extra factor n).

skip

55

Strategy for solving F-M-Deletion in time 2polyF (k) · n2:

If the treewidth of G is small (namely, tw ≤ polyF (k)):

Dynamic programming using algorithm of [Baste, S., Thilikos. 2020]
Solve in time 2polyF (tw log tw) · n.

If the treewidth of G is big, remove a vertex from G using one of the
following approaches:

Irrelevant vertex technique: time O∗(n).
Detect vertex v such that (G , k) and (G \ {v}, k) are equivalent
instances of F-M-Deletion.

Branching: time O∗(n2).
Find set A of aF vertices that intersects every k-apex set.
“Guess” a vertex v ∈ A in a k-apex set and solve (G \ {v}, k − 1).

(Branching tree is of size ak
F , so we do not get an extra factor n).

skip

55

Next section is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research

56

Motivation: distance from triviality
Distance from triviality: [Guo, Hüffner, Niedermeier. 2004]

Concept to express the closeness of a graph G to a “trivial” graph class H.

Motivation: Solve problems parameterized by the “distance to H”.

→ Vertex Deletion to H

[Figure by Laure Morelle]

→ Elimination Distance to H

57

Motivation: distance from triviality
Distance from triviality: [Guo, Hüffner, Niedermeier. 2004]

Concept to express the closeness of a graph G to a “trivial” graph class H.

Motivation: Solve problems parameterized by the “distance to H”.

→ Vertex Deletion to H

[Figure by Laure Morelle]

→ Elimination Distance to H

57

Motivation: distance from triviality
Distance from triviality: [Guo, Hüffner, Niedermeier. 2004]

Concept to express the closeness of a graph G to a “trivial” graph class H.

Motivation: Solve problems parameterized by the “distance to H”.

→ Vertex Deletion to H

[Figure by Laure Morelle]

→ Elimination Distance to H

57

Motivation: distance from triviality
Distance from triviality: [Guo, Hüffner, Niedermeier. 2004]

Concept to express the closeness of a graph G to a “trivial” graph class H.

Motivation: Solve problems parameterized by the “distance to H”.

→ Vertex Deletion to H

[Figure by Laure Morelle]

→ Elimination Distance to H
57

Notion recently introduced by [Bulian, Dawar. 2016]

The elimination distance of a graph G to a graph class H is:

edH(G) =

0 if G ∈ H,

1 + min{edH(G \ {v}) | v ∈ V (G)} if G is connected,

max{edH(H) | H is a connected component of G} otherwise.

[Figure by Laure Morelle]

k-elimination set: set of removed vertices such that edH(G) ≤ k.
Remark: the size of a k-elimination set is not necessarily a function of k!
→ H = {∅}: treedepth
Stronger parameter than vertex deletion: edH(G) ≤ VertexDeletionH(G)

58

Notion recently introduced by [Bulian, Dawar. 2016]

The elimination distance of a graph G to a graph class H is:

edH(G) =

0 if G ∈ H,

1 + min{edH(G \ {v}) | v ∈ V (G)} if G is connected,

max{edH(H) | H is a connected component of G} otherwise.

[Figure by Laure Morelle]

k-elimination set: set of removed vertices such that edH(G) ≤ k.
Remark: the size of a k-elimination set is not necessarily a function of k!
→ H = {∅}: treedepth
Stronger parameter than vertex deletion: edH(G) ≤ VertexDeletionH(G)

58

Notion recently introduced by [Bulian, Dawar. 2016]

The elimination distance of a graph G to a graph class H is:

edH(G) =

0 if G ∈ H,

1 + min{edH(G \ {v}) | v ∈ V (G)} if G is connected,

max{edH(H) | H is a connected component of G} otherwise.

[Figure by Laure Morelle]

k-elimination set: set of removed vertices such that edH(G) ≤ k.

Remark: the size of a k-elimination set is not necessarily a function of k!
→ H = {∅}: treedepth
Stronger parameter than vertex deletion: edH(G) ≤ VertexDeletionH(G)

58

Notion recently introduced by [Bulian, Dawar. 2016]

The elimination distance of a graph G to a graph class H is:

edH(G) =

0 if G ∈ H,

1 + min{edH(G \ {v}) | v ∈ V (G)} if G is connected,

max{edH(H) | H is a connected component of G} otherwise.

[Figure by Laure Morelle]

k-elimination set: set of removed vertices such that edH(G) ≤ k.
Remark: the size of a k-elimination set is not necessarily a function of k!

→ H = {∅}: treedepth
Stronger parameter than vertex deletion: edH(G) ≤ VertexDeletionH(G)

58

Notion recently introduced by [Bulian, Dawar. 2016]

The elimination distance of a graph G to a graph class H is:

edH(G) =

0 if G ∈ H,

1 + min{edH(G \ {v}) | v ∈ V (G)} if G is connected,

max{edH(H) | H is a connected component of G} otherwise.

[Figure by Laure Morelle]

k-elimination set: set of removed vertices such that edH(G) ≤ k.
Remark: the size of a k-elimination set is not necessarily a function of k!
→ H = {∅}: treedepth

Stronger parameter than vertex deletion: edH(G) ≤ VertexDeletionH(G)

58

Notion recently introduced by [Bulian, Dawar. 2016]

The elimination distance of a graph G to a graph class H is:

edH(G) =

0 if G ∈ H,

1 + min{edH(G \ {v}) | v ∈ V (G)} if G is connected,

max{edH(H) | H is a connected component of G} otherwise.

[Figure by Laure Morelle]

k-elimination set: set of removed vertices such that edH(G) ≤ k.
Remark: the size of a k-elimination set is not necessarily a function of k!
→ H = {∅}: treedepth
Stronger parameter than vertex deletion: edH(G) ≤ VertexDeletionH(G)

58

Notion recently introduced by [Bulian, Dawar. 2016]

The elimination distance of a graph G to a graph class H is:

edH(G) =

0 if G ∈ H,

1 + min{edH(G \ {v}) | v ∈ V (G)} if G is connected,

max{edH(H) | H is a connected component of G} otherwise.

[Figure by Laure Morelle]

Elimination Distance to H
Input: A graph G and a k ∈ N.
Question: Is edH(G) ≤ k?

58

What is known about Elimination Distance to H?

Let Ek(H) = {G | edH(G) ≤ k}.

(G , k) yes-instance of Elimination Distance to H ⇔ G ∈ Ek(H).

H minor-closed ⇒ Ek(H) minor-closed ⇒ non-constructive FPT-algo.

If we are given F = Obs(H), it is possible to construct Obs(Ek(H)).
[Bulian, Dawar. 2017]

⇒ constructive FPT-algorithm: f (k) · n2

Can we provide an explicit function f (k)?

59

What is known about Elimination Distance to H?

Let Ek(H) = {G | edH(G) ≤ k}.

(G , k) yes-instance of Elimination Distance to H ⇔ G ∈ Ek(H).

H minor-closed ⇒ Ek(H) minor-closed ⇒ non-constructive FPT-algo.

If we are given F = Obs(H), it is possible to construct Obs(Ek(H)).
[Bulian, Dawar. 2017]

⇒ constructive FPT-algorithm: f (k) · n2

Can we provide an explicit function f (k)?

59

What is known about Elimination Distance to H?

Let Ek(H) = {G | edH(G) ≤ k}.

(G , k) yes-instance of Elimination Distance to H ⇔ G ∈ Ek(H).

H minor-closed ⇒ Ek(H) minor-closed ⇒ non-constructive FPT-algo.

If we are given F = Obs(H), it is possible to construct Obs(Ek(H)).
[Bulian, Dawar. 2017]

⇒ constructive FPT-algorithm: f (k) · n2

Can we provide an explicit function f (k)?

59

What is known about Elimination Distance to H?

Let Ek(H) = {G | edH(G) ≤ k}.

(G , k) yes-instance of Elimination Distance to H ⇔ G ∈ Ek(H).

H minor-closed

⇒ Ek(H) minor-closed ⇒ non-constructive FPT-algo.

If we are given F = Obs(H), it is possible to construct Obs(Ek(H)).
[Bulian, Dawar. 2017]

⇒ constructive FPT-algorithm: f (k) · n2

Can we provide an explicit function f (k)?

59

What is known about Elimination Distance to H?

Let Ek(H) = {G | edH(G) ≤ k}.

(G , k) yes-instance of Elimination Distance to H ⇔ G ∈ Ek(H).

H minor-closed ⇒ Ek(H) minor-closed

⇒ non-constructive FPT-algo.

If we are given F = Obs(H), it is possible to construct Obs(Ek(H)).
[Bulian, Dawar. 2017]

⇒ constructive FPT-algorithm: f (k) · n2

Can we provide an explicit function f (k)?

59

What is known about Elimination Distance to H?

Let Ek(H) = {G | edH(G) ≤ k}.

(G , k) yes-instance of Elimination Distance to H ⇔ G ∈ Ek(H).

H minor-closed ⇒ Ek(H) minor-closed ⇒ non-constructive FPT-algo.

If we are given F = Obs(H), it is possible to construct Obs(Ek(H)).
[Bulian, Dawar. 2017]

⇒ constructive FPT-algorithm: f (k) · n2

Can we provide an explicit function f (k)?

59

What is known about Elimination Distance to H?

Let Ek(H) = {G | edH(G) ≤ k}.

(G , k) yes-instance of Elimination Distance to H ⇔ G ∈ Ek(H).

H minor-closed ⇒ Ek(H) minor-closed ⇒ non-constructive FPT-algo.

If we are given F = Obs(H), it is possible to construct Obs(Ek(H)).
[Bulian, Dawar. 2017]

⇒ constructive FPT-algorithm: f (k) · n2

Can we provide an explicit function f (k)?

59

What is known about Elimination Distance to H?

Let Ek(H) = {G | edH(G) ≤ k}.

(G , k) yes-instance of Elimination Distance to H ⇔ G ∈ Ek(H).

H minor-closed ⇒ Ek(H) minor-closed ⇒ non-constructive FPT-algo.

If we are given F = Obs(H), it is possible to construct Obs(Ek(H)).
[Bulian, Dawar. 2017]

⇒ constructive FPT-algorithm: f (k) · n2

Can we provide an explicit function f (k)?

59

What is known about Elimination Distance to H?

Let Ek(H) = {G | edH(G) ≤ k}.

(G , k) yes-instance of Elimination Distance to H ⇔ G ∈ Ek(H).

H minor-closed ⇒ Ek(H) minor-closed ⇒ non-constructive FPT-algo.

If we are given F = Obs(H), it is possible to construct Obs(Ek(H)).
[Bulian, Dawar. 2017]

⇒ constructive FPT-algorithm: f (k) · n2

Can we provide an explicit function f (k)?

59

Taking the treewidth as the parameter

If H = {∅} (treedepth): [Reidl, Rossmanith, Sanchez Villaamil, Sikdar. 2014]

Dynamic programming algorithm parameterized by treewidth in 2O(k·tw) · n.

Since tw(G) ≤ td(G) ≤ tw(G) · log n → time nO(tw2) and 2O(k2) · n.

(Open problem: computing td parameterized by tw is FPT?)

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and with treewidth at most tw, and k ∈ N,
there is an algorithm that solves Elimination Distance to H for the
instance (G , k) in time 2OH(k·tw+tw log tw) · n.

→ algorithm in time nOH(tw2) for Elimination Distance to H.

60

Taking the treewidth as the parameter

If H = {∅} (treedepth): [Reidl, Rossmanith, Sanchez Villaamil, Sikdar. 2014]

Dynamic programming algorithm parameterized by treewidth in 2O(k·tw) · n.

Since tw(G) ≤ td(G) ≤ tw(G) · log n

→ time nO(tw2) and 2O(k2) · n.

(Open problem: computing td parameterized by tw is FPT?)

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and with treewidth at most tw, and k ∈ N,
there is an algorithm that solves Elimination Distance to H for the
instance (G , k) in time 2OH(k·tw+tw log tw) · n.

→ algorithm in time nOH(tw2) for Elimination Distance to H.

60

Taking the treewidth as the parameter

If H = {∅} (treedepth): [Reidl, Rossmanith, Sanchez Villaamil, Sikdar. 2014]

Dynamic programming algorithm parameterized by treewidth in 2O(k·tw) · n.

Since tw(G) ≤ td(G) ≤ tw(G) · log n → time nO(tw2)

and 2O(k2) · n.

(Open problem: computing td parameterized by tw is FPT?)

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and with treewidth at most tw, and k ∈ N,
there is an algorithm that solves Elimination Distance to H for the
instance (G , k) in time 2OH(k·tw+tw log tw) · n.

→ algorithm in time nOH(tw2) for Elimination Distance to H.

60

Taking the treewidth as the parameter

If H = {∅} (treedepth): [Reidl, Rossmanith, Sanchez Villaamil, Sikdar. 2014]

Dynamic programming algorithm parameterized by treewidth in 2O(k·tw) · n.

Since tw(G) ≤ td(G) ≤ tw(G) · log n → time nO(tw2) and 2O(k2) · n.

(Open problem: computing td parameterized by tw is FPT?)

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and with treewidth at most tw, and k ∈ N,
there is an algorithm that solves Elimination Distance to H for the
instance (G , k) in time 2OH(k·tw+tw log tw) · n.

→ algorithm in time nOH(tw2) for Elimination Distance to H.

60

Taking the treewidth as the parameter

If H = {∅} (treedepth): [Reidl, Rossmanith, Sanchez Villaamil, Sikdar. 2014]

Dynamic programming algorithm parameterized by treewidth in 2O(k·tw) · n.

Since tw(G) ≤ td(G) ≤ tw(G) · log n → time nO(tw2) and 2O(k2) · n.

(Open problem: computing td parameterized by tw is FPT?)

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and with treewidth at most tw, and k ∈ N,
there is an algorithm that solves Elimination Distance to H for the
instance (G , k) in time 2OH(k·tw+tw log tw) · n.

→ algorithm in time nOH(tw2) for Elimination Distance to H.

60

Taking the treewidth as the parameter

If H = {∅} (treedepth): [Reidl, Rossmanith, Sanchez Villaamil, Sikdar. 2014]

Dynamic programming algorithm parameterized by treewidth in 2O(k·tw) · n.

Since tw(G) ≤ td(G) ≤ tw(G) · log n → time nO(tw2) and 2O(k2) · n.

(Open problem: computing td parameterized by tw is FPT?)

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and with treewidth at most tw, and k ∈ N,
there is an algorithm that solves Elimination Distance to H for the
instance (G , k) in time 2OH(k·tw+tw log tw) · n.

→ algorithm in time nOH(tw2) for Elimination Distance to H.

60

Taking the treewidth as the parameter

If H = {∅} (treedepth): [Reidl, Rossmanith, Sanchez Villaamil, Sikdar. 2014]

Dynamic programming algorithm parameterized by treewidth in 2O(k·tw) · n.

Since tw(G) ≤ td(G) ≤ tw(G) · log n → time nO(tw2) and 2O(k2) · n.

(Open problem: computing td parameterized by tw is FPT?)

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and with treewidth at most tw, and k ∈ N,
there is an algorithm that solves Elimination Distance to H for the
instance (G , k) in time 2OH(k·tw+tw log tw) · n.

→ algorithm in time nOH(tw2) for Elimination Distance to H.

60

Our results for Elimination Distance to H

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and k ∈ N, there is an algorithm that solves
Elimination Distance to H for the instance (G , k) in time

222polyH(k)
· n2 for a general minor-closed class H,

22polyH(k) · n2 if Obs(H) contains an apex graph.

[Figure by Laure Morelle]

Main challenge compared to Vertex Deletion to H:
The size of a k-elimination set may be unbounded, so we cannot branch!
We always have to find an irrelevant vertex: larger treewidth bounds.

61

Our results for Elimination Distance to H

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and k ∈ N, there is an algorithm that solves
Elimination Distance to H for the instance (G , k) in time

222polyH(k)
· n2 for a general minor-closed class H,

22polyH(k) · n2 if Obs(H) contains an apex graph.

[Figure by Laure Morelle]

Main challenge compared to Vertex Deletion to H:
The size of a k-elimination set may be unbounded, so we cannot branch!
We always have to find an irrelevant vertex: larger treewidth bounds.

61

Our results for Elimination Distance to H

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and k ∈ N, there is an algorithm that solves
Elimination Distance to H for the instance (G , k) in time

222polyH(k)
· n2 for a general minor-closed class H,

22polyH(k) · n2 if Obs(H) contains an apex graph.

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
If Obs(H) contains an apex graph, given a graph G on n vertices and
k ∈ N, there is an algorithm that solves Elimination Distance to H
for the instance (G , k) in time 2polyH(k) · n3.

Main challenge compared to Vertex Deletion to H:

The size of a k-elimination set may be unbounded, so we cannot branch!
We always have to find an irrelevant vertex: larger treewidth bounds.

61

Our results for Elimination Distance to H

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and k ∈ N, there is an algorithm that solves
Elimination Distance to H for the instance (G , k) in time

222polyH(k)
· n2 for a general minor-closed class H,

22polyH(k) · n2 if Obs(H) contains an apex graph.

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
If Obs(H) contains an apex graph, given a graph G on n vertices and
k ∈ N, there is an algorithm that solves Elimination Distance to H
for the instance (G , k) in time 2polyH(k) · n3.

Main challenge compared to Vertex Deletion to H:

The size of a k-elimination set may be unbounded, so we cannot branch!

We always have to find an irrelevant vertex: larger treewidth bounds.

61

Our results for Elimination Distance to H

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and k ∈ N, there is an algorithm that solves
Elimination Distance to H for the instance (G , k) in time

222polyH(k)
· n2 for a general minor-closed class H,

22polyH(k) · n2 if Obs(H) contains an apex graph.

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
If Obs(H) contains an apex graph, given a graph G on n vertices and
k ∈ N, there is an algorithm that solves Elimination Distance to H
for the instance (G , k) in time 2polyH(k) · n3.

Main challenge compared to Vertex Deletion to H:

The size of a k-elimination set may be unbounded, so we cannot branch!
We always have to find an irrelevant vertex: larger treewidth bounds.

61

Next section is...

1 Introduction

2 Hitting forbidden minors: survey of known results
Parameterized by treewidth
Parameterized by solution size

3 Some ingredients of the proofs
Parameterized by treewidth
Irrelevant vertex technique
Parameterized by solution size

4 More general modification operations

5 Further research

62

What’s next about F -M-Vertex-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:
Dichotomy for {H}-TM-Deletion when H connected (+planar)?

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented an algorithm in time 2kOF (1) · n2.
With parameter kmIs 2OF (kc) · nO(1) possible for some constant c?

skip parameter kmIs the price of homogeneity unavoidable?

63

What’s next about F -M-Vertex-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:
Dichotomy for {H}-TM-Deletion when H connected (+planar)?

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented an algorithm in time 2kOF (1) · n2.
With parameter kmIs 2OF (kc) · nO(1) possible for some constant c?

skip parameter kmIs the price of homogeneity unavoidable?

63

What’s next about F -M-Vertex-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:
Dichotomy for {H}-TM-Deletion when H connected (+planar)?

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented an algorithm in time 2kOF (1) · n2.
With parameter kmIs 2OF (kc) · nO(1) possible for some constant c?

skip parameter kmIs the price of homogeneity unavoidable?

63

What’s next about F -M-Vertex-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:
Dichotomy for {H}-TM-Deletion when H connected (+planar)?

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented an algorithm in time 2kOF (1) · n2.
With parameter kmIs 2OF (kc) · nO(1) possible for some constant c?

skip parameter kmIs the price of homogeneity unavoidable?

63

What’s next about F -M-Vertex-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar)?

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented an algorithm in time 2kOF (1) · n2.
With parameter kmIs 2OF (kc) · nO(1) possible for some constant c?

skip parameter kmIs the price of homogeneity unavoidable?

63

What’s next about F -M-Vertex-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:
Dichotomy for {H}-TM-Deletion when H connected (+planar)?

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented an algorithm in time 2kOF (1) · n2.
With parameter kmIs 2OF (kc) · nO(1) possible for some constant c?

skip parameter kmIs the price of homogeneity unavoidable?

63

What’s next about F -M-Vertex-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:
Dichotomy for {H}-TM-Deletion when H connected (+planar)?

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented an algorithm in time 2kOF (1) · n2.
With parameter kmIs 2OF (kc) · nO(1) possible for some constant c?

skip parameter kmIs the price of homogeneity unavoidable?

63

What’s next about F -M-Vertex-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:
Dichotomy for {H}-TM-Deletion when H connected (+planar)?

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented an algorithm in time 2kOF (1) · n2.

With parameter kmIs 2OF (kc) · nO(1) possible for some constant c?
skip parameter kmIs the price of homogeneity unavoidable?

63

What’s next about F -M-Vertex-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:
Dichotomy for {H}-TM-Deletion when H connected (+planar)?

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented an algorithm in time 2kOF (1) · n2.
With parameter kmIs 2OF (kc) · nO(1) possible for some constant c?

skip parameter kmIs the price of homogeneity unavoidable?

63

What’s next about F -M-Vertex-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:
Dichotomy for {H}-TM-Deletion when H connected (+planar)?

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented an algorithm in time 2kOF (1) · n2.
With parameter kmIs 2OF (kc) · nO(1) possible for some constant c?

skip parameter kmIs the price of homogeneity unavoidable?

63

For topological minors, there is (at least) one change

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

64

Gràcies!

65

	Introduction
	Hitting forbidden minors: survey of known results
	Parameterized by treewidth
	Parameterized by solution size

	Some ingredients of the proofs
	Parameterized by treewidth
	Irrelevant vertex technique
	Parameterized by solution size

	More general modification operations
	Further research

