Dynamic programming for graphs on surfaces

Ignasi Sau

CNRS, LIRMM, Montpellier

Joint work with:

Juanjo Rué

École Polytechnique, Paris, France Instituto de Ciencias Matemáticas, Madrid, Spain

Dimitrios M. Thilikos

Department of Mathematics, NKU of Athens, Greece

[An extended abstract appeared in ICALP'10]

Outline

- Background
- Motivation and previous work
- Main ideas of our approach
- Sketch of the enumerative part
- 5 Conclusions and further research

Outline

- Background
- 2 Motivation and previous work
- Main ideas of our approach
- Sketch of the enumerative part
- Conclusions and further research

Branch decompositions and branchwidth

- A branch decomposition of a graph G = (V, E) is tuple (T, μ) where:
 - T is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of T and E(G).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} |\mathbf{mid}(e)|$.
- The branchwidth of a graph G (denoted bw(G)) is the minimum width over all branch decompositions of G:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\mathbf{mid}(e)|$$

Surfaces

- SURFACE = TOPOLOGICAL SPACE, LOCALLY "FLAT"
- Surface Classification Theorem:

any compact, connected and without boundary surface can be obtained from the sphere \mathbb{S}^2 by adding handles and cross-caps.

Orientable surfaces:

obtained by adding $g \ge 0$ handles to the sphere \mathbb{S}^2 , obtaining the g-torus \mathbb{T}_g with Euler genus $\mathbf{eg}(\mathbb{T}_g) = 2g$.

Non-orientable surfaces:

obtained by adding h > 0 *cross-caps* to the sphere \mathbb{S}^2 , obtaining a non-orientable surface \mathbb{P}_h with Euler genus $\mathbf{eg}(\mathbb{P}_h) = h$.

Surfaces

- SURFACE = TOPOLOGICAL SPACE, LOCALLY "FLAT"
- Surface Classification Theorem:

any compact, connected and without boundary surface can be obtained from the sphere \mathbb{S}^2 by adding handles and cross-caps.

Orientable surfaces:

obtained by adding $g \ge 0$ handles to the sphere \mathbb{S}^2 , obtaining the g-torus \mathbb{T}_g with Euler genus $\mathbf{eg}(\mathbb{T}_g) = 2g$.

Non-orientable surfaces:

obtained by adding h > 0 *cross-caps* to the sphere \mathbb{S}^2 , obtaining a non-orientable surface \mathbb{P}_h with Euler genus $\mathbf{eg}(\mathbb{P}_h) = h$.

Graphs on surfaces

EMBEDDED GRAPH: GRAPH DRAWN ON A SURFACE, NO CROSSINGS

• The Euler genus of a graph G, eg(G), is the least Euler genus of the surfaces in which G can be embedded.

Some words on parameterized complexity

• Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a VERTEX COVER.

 Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

$$f(k) \cdot n^{\mathcal{O}(1)}$$
, for some function f .

Examples: *k*-Vertex Cover, *k*-Longest Path.

Outline

- Background
- 2 Motivation and previous work
- Main ideas of our approach
- Sketch of the enumerative part
- 5 Conclusions and further research

FPT and single-exponential algorithms

• Courcelle's theorem (1988):

Graph problems expressible in Monadic Second Order Logic (MSOL) can be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$ in graphs G such that $\mathbf{bw}(G) \leq k$.

- **Problem**: f(k) can be huge!!! (for instance, $f(k) = 2^{3^{4^{56^{k}}}}$)
- A single-exponential parameterized algorithm is a FPT algo s.t.

$$f(k)=2^{\mathcal{O}(k)}.$$

Objective: build a framework to obtain single-exponential parameterized algorithms for a class of NP-hard problems in graphs embedded on surfaces.

FPT and single-exponential algorithms

• Courcelle's theorem (1988):

Graph problems expressible in Monadic Second Order Logic (MSOL) can be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$ in graphs G such that $\mathbf{bw}(G) \leq k$.

- **Problem**: f(k) can be huge!!! (for instance, $f(k) = 2^{3^{4^{56^{k}}}}$)
- A single-exponential parameterized algorithm is a FPT algo s.t.

$$f(k)=2^{\mathcal{O}(k)}.$$

Objective: build a framework to obtain single-exponential parameterized algorithms for a class of NP-hard problems in graphs embedded on surfaces.

FPT and single-exponential algorithms

Courcelle's theorem (1988):

Graph problems expressible in Monadic Second Order Logic (MSOL) can be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$ in graphs G such that $\mathbf{bw}(G) \leq k$.

- **Problem**: f(k) can be huge!!! (for instance, $f(k) = 2^{3^{4^{56^{k}}}}$)
- A single-exponential parameterized algorithm is a FPT algo s.t.

$$f(k) = 2^{\mathcal{O}(k)}.$$

Objective: build a framework to obtain **single-exponential parameterized algorithms** for a class of NP-hard problems in **graphs embedded on surfaces**.

Dynamic programming (DP)

- Applied in a bottom-up fashion on a rooted branch decomposition of the input graph G.
- For each graph problem, DP requires the suitable definition of tables encoding how potential (global) solutions are restricted to a middle set mid(e).
- The size of the tables reflects the dependence on $k = |\mathbf{mid}(e)|$ in the running time of the DP.
- The precise definition of the tables of the DP depends on each particular problem.

How can we certificate a solution in a middle set mid(e)?

- ① A subset of vertices of mid(e) (not restricted by some global condition). **Examples**: VERTEX COVER, DOMINATING SET, 3-COLORING. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
- A connected pairing of vertices of mid(e).

 Examples: Longest Path, Cycle Packing, Hamiltonian Cycle. The # of pairings in a set of k elements is $k^{\Theta(k)} = 2^{\Theta(k \log k)}...$ Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05] Done for graphs on surfaces [Dorn, Fomin, Thillikos. SWAT'06].
- Connected packing of vertices of mid(e) into subsets of arbitrary size.
 Examples: Connected Vertex Cover, Max Leaf Spanning Tree Again, # of packings in a set of k elements is 2^{\text{\text{\text{O}}(k \log k)}}.
 None of the current techniques seemed to fit in this class of

How can we certificate a solution in a middle set mid(e)?

- **1** A subset of vertices of mid(e) (not restricted by some global condition). **Examples**: VERTEX COVER, DOMINATING SET, 3-COLORING. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
- ② A connected pairing of vertices of mid(e). **Examples**: Longest Path, Cycle Packing, Hamiltonian Cycle. The # of pairings in a set of k elements is $k^{\Theta(k)} = 2^{\Theta(k \log k)}$... Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin, ESA'05] Done for graphs on surfaces [Dorn, Fomin, Thillikos, SWAF'06].
- Connected packing of vertices of mid(e) into subsets of arbitrary size.
 Examples: Connected Vertex Cover, Max Leaf Spanning Trees
 Again, # of packings in a set of k elements is 2^{Θ(k log k)}.
 None of the current techniques seemed to fit in this class of

How can we certificate a solution in a middle set mid(e)?

- **1** A subset of vertices of mid(e) (not restricted by some global condition). **Examples**: VERTEX COVER, DOMINATING SET, 3-COLORING. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
- ② A connected pairing of vertices of mid(e).

 Examples: Longest Path, Cycle Packing, Hamiltonian Cycle. The # of pairings in a set of k elements is $k^{\Theta(k)} = 2^{\Theta(k \log k)}$...

 Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05] Done for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
- Connected packing of vertices of mid(e) into subsets of arbitrary size.
 Examples: Connected Vertex Cover, Max Leaf Spanning Tree Again, # of packings in a set of k elements is 2^{\text{O}(k \log k)}.
 None of the current techniques seemed to fit in this class of

How can we certificate a solution in a middle set mid(e)?

- **1** A subset of vertices of mid(e) (not restricted by some global condition). **Examples**: VERTEX COVER, DOMINATING SET, 3-COLORING. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
- ② A connected pairing of vertices of mid(e).

 Examples: Longest Path, Cycle Packing, Hamiltonian Cycle. The # of pairings in a set of k elements is $k^{\Theta(k)} = 2^{\Theta(k \log k)}$...

 Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05] Done for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
- Connected packing of vertices of mid(e) into subsets of arbitrary size. **Examples:** Connected Vertex Cover, Max Leaf Spanning Tree Again, # of packings in a set of k elements is $2^{\Theta(k \log k)}$.

 None of the current techniques seemed to fit in this class of

How can we certificate a solution in a middle set mid(e)?

- **1** A subset of vertices of mid(e) (not restricted by some global condition). **Examples**: VERTEX COVER, DOMINATING SET, 3-COLORING. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
- ② A connected pairing of vertices of **mid**(e). **Examples**: Longest Path, Cycle Packing, Hamiltonian Cycle. The # of pairings in a set of k elements is $k^{\Theta(k)} = 2^{\Theta(k \log k)}$...

 Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05]
 - Done for graphs on surfaces [Dorn, Fomin, Thilikos. *SWAT'06*].
- © Connected packing of vertices of mid(e) into subsets of arbitrary size. Examples: Connected Vertex Cover, Max Leaf Spanning Tree Again, # of packings in a set of k elements is $2^{\Theta(k \log k)}$.

How can we certificate a solution in a middle set mid(e)?

- **1** A subset of vertices of mid(e) (not restricted by some global condition). **Examples**: VERTEX COVER, DOMINATING SET, 3-COLORING. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
- ② A connected pairing of vertices of mid(e). **Examples**: Longest Path, Cycle Packing, Hamiltonian Cycle. The # of pairings in a set of k elements is $k^{\Theta(k)} = 2^{\Theta(k \log k)}$...

 Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05]; Done for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
- **3** Connected packing of vertices of mid(e) into subsets of arbitrary size. **Examples**: Connected Vertex Cover, Max Leaf Spanning Tree. Again, # of packings in a set of k elements is $2^{\Theta(k \log k)}$.

How can we certificate a solution in a middle set mid(e)?

- **1** A subset of vertices of mid(e) (not restricted by some global condition). **Examples**: VERTEX COVER, DOMINATING SET, 3-COLORING. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
- A connected pairing of vertices of mid(e).

 Examples: Longest Path, Cycle Packing, Hamiltonian Cycle. The # of pairings in a set of k elements is $k^{\Theta(k)} = 2^{\Theta(k \log k)}$...

 Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05]; Done for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
- **3** Connected packing of vertices of mid(e) into subsets of arbitrary size. **Examples:** Connected Vertex Cover, Max Leaf Spanning Tree. Again, # of packings in a set of k elements is $2^{\Theta(k \log k)}$.

How can we certificate a solution in a middle set mid(e)?

- **1** A subset of vertices of mid(e) (not restricted by some global condition). **Examples**: VERTEX COVER, DOMINATING SET, 3-COLORING. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
- ② A connected pairing of vertices of mid(e).

 Examples: Longest Path, Cycle Packing, Hamiltonian Cycle. The # of pairings in a set of k elements is $k^{\Theta(k)} = 2^{\Theta(k \log k)}$...

 Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05]; Done for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
- **3** Connected packing of vertices of mid(e) into subsets of arbitrary size. **Examples**: Connected Vertex Cover, Max Leaf Spanning Tree. Again, # of packings in a set of k elements is $2^{\Theta(k \log k)}$.

How can we certificate a solution in a middle set mid(e)?

- **1** A subset of vertices of mid(e) (not restricted by some global condition). **Examples**: VERTEX COVER, DOMINATING SET, 3-COLORING. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
- ② A connected pairing of vertices of mid(e).

 Examples: Longest Path, Cycle Packing, Hamiltonian Cycle. The # of pairings in a set of k elements is $k^{\Theta(k)} = 2^{\Theta(k \log k)}$...

 Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05]; Done for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
- **Onnected packing** of vertices of mid(e) into subsets of arbitrary size. **Examples**: Connected Vertex Cover, Max Leaf Spanning Tree. Again, # of packings in a set of k elements is $2^{\Theta(k \log k)}$.

Outline

- Background
- 2 Motivation and previous work
- Main ideas of our approach
- Sketch of the enumerative part
- Conclusions and further research

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
 [Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
 [Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
 [Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

$$\operatorname{CN}(k) = \frac{1}{k+1} \binom{2k}{k} \sim \frac{4^k}{\sqrt{\pi} k^{3/2}} \approx 4^k.$$

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
 [Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

$$\operatorname{CN}(k) = \frac{1}{k+1} \binom{2k}{k} \sim \frac{4^k}{\sqrt{\pi} k^{3/2}} \approx 4^k.$$

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
 [Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

$$CN(k) = \frac{1}{k+1} {2k \choose k} \sim \frac{4^k}{\sqrt{\pi} k^{3/2}} \approx 4^k.$$

"Old" idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT'06]:

- Perform a planarization of the input graph by splitting the potential solutions into a number of pieces depending on the surface.
- Then, apply the sphere cut decomposition technique to a more complicated version of the problem where the number of pairings is still bounded by some Catalan number.
- Drawbacks of this technique:
 - ★ It depends on each particular problem.
 - Cannot (a priori) be applied to the class of connected packing-encodable problems.

"Old" idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT'06]:

- Perform a planarization of the input graph by splitting the potential solutions into a number of pieces depending on the surface.
- Then, apply the sphere cut decomposition technique to a more complicated version of the problem where the number of pairings is still bounded by some Catalan number.
- Drawbacks of this technique:
 - ★ It depends on each particular problem.
 - ★ Cannot (a priori) be applied to the class of connected packing-encodable problems.

From sphere to surface cut decompositions

Our approach is based on a new type of branch decomposition, called surface cut decomposition.

- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs.
 [Seymour and Thomas. Combinatorica'94]
- That is, we exploit directly the combinatorial structure of the potential solutions in the surface (without planarization).
- Using surface cut decompositions, we provide in a unified way single-exponential algorithms for connected packing-encodable problems, and with better genus dependence.

From sphere to surface cut decompositions

Our approach is based on a new type of branch decomposition, called surface cut decomposition.

- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs.
 [Seymour and Thomas. Combinatorica'94]
- That is, we exploit directly the combinatorial structure of the potential solutions in the surface (without planarization).
- Using surface cut decompositions, we provide in a unified way single-exponential algorithms for connected packing-encodable problems, and with better genus dependence.

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ , with $eg(\Sigma) = g$.

A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A| = \mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

- either $|\mathbf{mid}(e) \setminus A| \le 2$,
- OI
- * the vertices in $mid(e) \setminus A$ are contained in a set $\mathcal N$ of $\mathcal O(\mathbf g)$ nooses.
- ★ these nooses intersect in O(g) vertices;
- * $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ , with $eg(\Sigma) = g$.

A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A| = \mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

- either $|\mathbf{mid}(e) \setminus A| \leq 2$,
- or
 - * the vertices in $mid(e) \setminus A$ are contained in a set $\mathcal N$ of $\mathcal O(\mathbf g)$ nooses.
 - ★ these nooses intersect in O(g) vertices;
 - * $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ , with $eg(\Sigma) = g$.

A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A| = \mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

- either $|\mathbf{mid}(e) \setminus A| \leq 2$,
- or
 - \star the vertices in $mid(e) \setminus A$ are contained in a set $\mathcal N$ of $\mathcal O(\mathbf g)$ nooses;
 - * these nooses intersect in $\mathcal{O}(\mathbf{g})$ vertices;
 - * $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.

Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus \mathbf{g} , with $\mathbf{bw}(G) \leq k$, one can construct in $2^{3k+\mathcal{O}(\log k)} \cdot n^3$ time a surface cut decomposition (T, μ) of G of width at most $27k + \mathcal{O}(\mathbf{g})$.

Sketch of the construction of surface cut decompositions:

- Partition *G* into **polyhedral** pieces, plus a set of *A* vertices, with |A| = O(g).
- For each piece *H*, compute a branch decomposition, using Amir's algorithm.
- Transform this branch decomposition to a carving decomposition of the medial graph of H.
- Make the carving decomposition bond, using Seymour and Thomas' algorithm.
- Transform it to a bond branch decomposition of *H*.
- Construct a branch decomposition of G by merging the branch decompositions of all the pieces.

Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus \mathbf{g} , with $\mathbf{bw}(G) \leq k$, one can construct in $2^{3k+\mathcal{O}(\log k)} \cdot n^3$ time a surface cut decomposition (T, μ) of G of width at most $27k + \mathcal{O}(\mathbf{g})$.

Sketch of the construction of surface cut decompositions:

- Partition G into **polyhedral** pieces, plus a set of A vertices, with |A| = O(g).
- For each piece *H*, compute a branch decomposition, using Amir's algorithm.
- Transform this branch decomposition to a carving decomposition of the medial graph of H.
- Make the carving decomposition bond, using Seymour and Thomas' algorithm.
- Transform it to a bond branch decomposition of H.
- Construct a branch decomposition of G by merging the branch decompositions of all the pieces.

Main results (II)

The main result is that if DP is applied on surface cut decompositions, then the time dependence on branchwidth is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem P in a graph G embedded in a surface of Euler genus \mathbf{g} , with $\mathbf{bw}(G) \leq \mathbf{k}$, the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by $2^{\mathcal{O}(\log \mathbf{g} \cdot \mathbf{k} + \log \mathbf{k} \cdot \mathbf{g})}$.

- This fact is proved using analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.
- Upper bound of [Dorn, Fomin, Thilikos. SWAT'06]: 2^{O(g·k+log k·g²)}.

Outline

- Background
- Motivation and previous work
- Main ideas of our approach
- 4 Sketch of the enumerative part
- Conclusions and further research

Bipartite subdivisions

- Subdivision of the surface in vertices, edges and 2-dimensional regions (not necessary contractible).
- All vertices lay in the boundary.
- 2 types of 2-dimensional regions: black and white.
- Each vertex is incident with exactly 1 black region (also called *block*).
- Each border is rooted.

Fixing the number of vertices on a given surface, we have an infinite number of bipartite subdivisions.

Non-crossing partitions in higher genus surfaces

- Each bipartite subdivision induces a non-crossing partition on the set of vertices.
- **Problem:** Different bipartite subdivisions can define the same non-crossing partition.

• Objective: finding "good" bounds for the number of non-crossing partitions on a given surface.

The strategy

We make the problem "easier" by reducing it to a **map enumeration** problem:

- For each bipartite subdivision there exists another bipartite subdivision, with all the blocks **contractible**, with the same associated non-crossing partition.
- We show that the greatest contribution comes from bipartite subdivisions where white faces are contractible.
- We get upper bounds for non-crossing partitions by enumerating bipartite subdivisions where all 2-dimensional regions are contractible.

The strategy

We make the problem "easier" by reducing it to a map enumeration problem:

- For each bipartite subdivision there exists another bipartite subdivision, with all the blocks **contractible**, with the same associated non-crossing partition.
- We show that the greatest contribution comes from bipartite subdivisions where white faces are contractible.
- 3 We get upper bounds for non-crossing partitions by enumerating bipartite subdivisions where all 2-dimensional regions are contractible.

The strategy

We make the problem "easier" by reducing it to a **map enumeration** problem:

- For each bipartite subdivision there exists another bipartite subdivision, with all the blocks **contractible**, with the same associated non-crossing partition.
- We show that the greatest contribution comes from bipartite subdivisions where white faces are contractible.
- We get upper bounds for non-crossing partitions by enumerating bipartite subdivisions where all 2-dimensional regions are contractible.

The enumeration (I)

We exploit the ideas used to asymptotically count simplicial decompositions on surfaces with boundaries [Bernardi, Rué. *Manuscript'09*]:

Roughly speaking, a map of this type can be constructed from a map on the initial surface with a fixed number of faces (hence, from a finite number of maps).

The enumeration (II)

The previous construction is "inversible":

Maps with a fixed number of faces and the maximum number of edges are **cubic maps** ⇒ They bring the greatest contribution to the asymptotics.

Outline

- Background
- 2 Motivation and previous work
- Main ideas of our approach
- Sketch of the enumerative part
- 5 Conclusions and further research

How to use this framework?

- We presented a framework for the design of DP algorithms on **surface-embedded** graphs running in time $2^{O(k)} \cdot n$.
- How to use this framework?
 - Let P be a connected packing-encodable problem on a surface-embedded graph G.
 - As a preprocessing step, build a surface cut decomposition of G, using the 1st Theorem.
 - Run a "clever" DP algorithm to solve P over the obtained surface cut decomposition.
 - The single-exponential running time of the algorithm is a consequence of the 2nd Theorem.

How to use this framework?

- We presented a framework for the design of DP algorithms on **surface-embedded** graphs running in time $2^{O(k)} \cdot n$.
- How to use this framework?
 - Let P be a connected packing-encodable problem on a surface-embedded graph G.
 - As a preprocessing step, build a surface cut decomposition of G, using the 1st Theorem.
 - Run a "clever" DP algorithm to solve P over the obtained surface cut decomposition.
 - The single-exponential running time of the algorithm is a consequence of the 2nd Theorem.

- Improve the constants in the running times.
- ② Can this framework be applied to **more complicated problems**? Fundamental problem: H-minor containment
 - * Minor containment for host graphs G on surfaces. [Adler, Dorn, Fomin, S., Thilikos. SWAT'10]

 With running time $2^{\mathcal{O}(k)} \cdot h^{2k} \cdot 2^{\mathcal{O}(h)} \cdot n$. $(h = |V(H)|, k = \mathbf{bw}(G), n = |V(G)|)$
 - Single-exponential algorithm for planar host graphs.
 [Adler, Dorn, Fomin, S., Thilikos. ESA'10]
 Truly single-exponential: 2^{O(h)} · n.
 Can it be generalized to host graphs on arbitrary surface.

- Improve the constants in the running times.
- ② Can this framework be applied to **more complicated problems**? Fundamental problem: H-minor containment
 - * Minor containment for host graphs G on surfaces. [Adler, Dorn, Fomin, S., Thilikos. SWAT'10]

 With running time $2^{\mathcal{O}(k)} \cdot h^{2k} \cdot 2^{\mathcal{O}(h)} \cdot n$. (h = |V(H)|, k = bw(G), n = |V(G)|)
 - Single-exponential algorithm for planar host graphs. [Adler, Dorn, Fomin, S., Thilikos. ESA'10]
 Truly single-exponential: 2^{O(h)} · n.
 - Can it be generalized to host graphs on arbitrary surfaces?

- Improve the constants in the running times.
- Can this framework be applied to more complicated problems? Fundamental problem: H-minor containment
 - Minor containment for host graphs G on surfaces. [Adler, Dorn, Fomin, S., Thilikos. SWAT'10]
 With running time 2^{O(k)} ⋅ h^{2k} ⋅ 2^{O(h)} ⋅ n. (h = |V(H)|, k = bw(G), n = |V(G)|)
 - ★ Single-exponential algorithm for planar host graphs. [Adler, Dorn, Fomin, S., Thilikos. ESA'10]
 Truly single-exponential: 2^{O(h)} · n.

Can it be generalized to host graphs on arbitrary surfaces?

- Improve the constants in the running times.
- Can this framework be applied to more complicated problems? Fundamental problem: H-minor containment
 - Minor containment for host graphs G on surfaces. [Adler, Dorn, Fomin, S., Thilikos. SWAT'10]
 With running time 2^{O(k)} ⋅ h^{2k} ⋅ 2^{O(h)} ⋅ n. (h = |V(H)|, k = bw(G), n = |V(G)|)
 - Single-exponential algorithm for planar host graphs.
 [Adler, Dorn, Fomin, S., Thilikos. ESA'10]
 Truly single-exponential: 2^{O(h)} · n.
 Can it be generalized to host graphs on arbitrary surface.

Can it be generalized to host graphs on arbitrary surfaces?

- Improve the constants in the running times.
- ② Can this framework be applied to **more complicated problems**? Fundamental problem: H-minor containment
 - * Minor containment for host graphs G on surfaces. [Adler, Dorn, Fomin, S., Thilikos. SWAT'10]

 With running time $2^{\mathcal{O}(k)} \cdot h^{2k} \cdot 2^{\mathcal{O}(h)} \cdot n$. (h = |V(H)|, k = bw(G), n = |V(G)|)
 - ★ Single-exponential algorithm for planar host graphs.
 [Adler, Dorn, Fomin, S., Thilikos. ESA'10]
 Truly single-exponential: 2^{O(h)} · n.
 Can it be generalized to host graphs on arbitrary surfaces?
- Ongoing work: minor-free graphs...

Gràcies!