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How to prove hardness results
Class APX (Approximable):
an optimization problem is in APX if it admits to be approximated
within a constant factor.
Example: VERTEX COVER

Class PTAS (Polynomial-Time Approximation Scheme):
an optimization problem is in PTAS if it admits to be approximated
within a factor 1 + ε, for all ε > 0.
(the best one can hope for an NP-hard optimization problem).
Ex.: TRAVELING SALESMAN PROBLEM in the Euclidean plane

We know that

PTAS  APX

So, if Π is an optimization problem:

Π is APX-hard ⇒ Π /∈ PTAS
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Traffic Grooming
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Introduction

WDM (Wavelength Division Multiplexing) networks
I 1 wavelength (or frequency) = up to 40 Gb/s
I 1 fiber = hundreds of wavelengths = Tb/s

Idea
Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

−→ we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

Objectives
I Better use of bandwidth
I Reduce the equipment cost (mostly given by electronics)
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ADM and OADM

OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber
ADM (Add/Drop Multiplexer)= insert/extract an OC/STM
(electric low-speed signal) to/from a wavelength

ADM ADM ADM

OADMOADM OADM

−→ we want to minimize the number of ADMs
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Definitions
Request (i , j): a pair of vertices i , j that want to exchange
(low-speed) traffic
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Definitions
Request (i , j): a pair of vertices (i , j) that want to exchange
(low-speed) traffic
Grooming factor g:

For each wavelenght and each  
 arc between two nodes, there can be 

only g requests routed through this arc

g=5
node i node j

requests
in λk

Example:
Capacity of one wavelength = 2400 Mb/s
Capacity used by a request = 600 Mb/s ⇒ g = 4
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Definitions
Request (i , j): a pair of vertices (i , j) that want to exchange
(low-speed) traffic
Grooming factor g:

For each wavelenght and each  
 arc between two nodes, there can be 

only g requests routed through this arc

g=5
node i node j

requests
in λk

load of an arc in a wavelength: number of requests using this arc
in this wavelength (≤ g)
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ADM and OADM
OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber
ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric
low-speed signal) to/from a wavelength

ADM ADM ADM

OADMOADM OADM

Idea: Use an ADM only at the endpoints of a request
(lightpaths) in order to save as many ADMs as possible
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To fix ideas...

Model:

Topology → oriented graph G
Request set → oriented graph R
Grooming factor → integer g
Request in a wavelength → arcs in a subgraph of R
ADM in a wavelength → node in a subgraph of R

We study the cases when G = Cn (ring) or G = Pn (path)
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Statement of the problem

Ring traffic grooming

Input A cycle Cn on n nodes (network)
An oriented graph R (request set)
A grooming factor g

Output Find for each arc r ∈ R a path P(r)
in Cn, and a partition of the arcs of R into
subgraphs Rω, 1 ≤ ω ≤W , in such a way that

∀ e ∈ E(Cn), load(Rω,e) ≤ g

Objective Minimize
∑W

ω=1 |V (Rω)|
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Example: n = 5, R = K5, and g = 2
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Example: n = 5, R = K5, and g = 2
We partition the edges of R in two ways, both using two wavelengths:
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State of the art (in the ring)
Complexity:

I TRAFFIC GROOMING (TG) is NP-complete considering g as part of
the input
(T.Chow et P.Lin, Networks’04)

I TG remains also NP-complete for fixed g ≥ 1
(M.Shalom, W.Unger et S.Zaks, FUN’07)

I If g is part of the input, TG is not in APX
(S.Huang, R.Dutta et G.N.Rouskas, IEEE JSAC’06)

I Open problem: inapproximability for fixed g

Approximability:
I Finding a

√
g-approximation is trivial (in polynomial time in n and g)

I The best approximation algorithm has ratio O(log g), but the
running time is exponential in g (more precisely, ng)
(M.Flammini et al., ISAAC’05)

I Open problem: good algorithm in polynomial time in g and n
(i.e. when g is also part of the input)
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Different models of TRAFFIC GROOMING (in COST 293):

There are many different models of TRAFFIC GROOMING in the
literature.

We focus on a particular model (minimizing the number of
ADMs)

Other models: G/MPLS, light-trails, light-tours, multi-cast
aggregation, ...

Some of the people who is working in other models:
T.Cinkler, M.Marciniak, J.-L.Marzo, F.Solano, J.Moulierac, A.Somani, ...
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Evolution of Traffic Grooming in COST 293:
2003 Coudert, Muñoz et al. (ONDM’03):

Statement of the problem in unidirectional rings (all-to-all case).
2004 Shalom and Zaks (BROADNETS’04):

( 10
7 + ε)-approximation of grooming in rings for g = 1.

2005 Coudert, Muñoz et al. (SIAM JDM’05):
Grooming in unidirectional rings for g = 6 (all-to-all case).

2005 Coudert et al. (SIROCCO’05):
Grooming in unidirectional paths for g = 1,2.

2005 Flammini, Moscadelli, Shalom and Zaks (ISAAC’05):
O(log g)-approximation of grooming in rings.

2006 Flammini, Moscadelli, Shalom, Zaks et al. (WG’06):
O(log g)-approximation of grooming in paths and stars.

2006 Coudert, Muñoz, Sau et al. (ICTON’06):
Grooming in bidirectional rings (all-to-all case).

2007 Shalom, Unger and Zaks (FUN’07):
Grooming in rings is NP-complete for fixed g.

2007 Amini, Pérennes and Sau (ISAAC’07):
Hardness and approximation of traffic grooming in rings and paths.
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2003 Coudert, Muñoz et al. (ONDM’03):

Statement of the problem in unidirectional rings (all-to-all case).
2004 Shalom and Zaks (BROADNETS’04):

( 10
7 + ε)-approximation of grooming in rings for g = 1.
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Grooming in rings is NP-complete for fixed g.

2007 Amini, Pérennes and Sau (ISAAC’07):
Hardness and approximation of traffic grooming in rings and paths.
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Evolution of Traffic Grooming in COST 293:
2003 Coudert, Muñoz et al. (ONDM’03):

Statement of the problem in unidirectional rings (all-to-all case).
2004 Shalom and Zaks (BROADNETS’04):

( 10
7 + ε)-approximation of grooming in rings for g = 1.

2005 Coudert, Muñoz et al. (SIAM JDM’05):
Grooming in unidirectional rings for g = 6 (all-to-all case).
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Summing up: open questions

(1) Inapproximability (hardness) of TRAFFIC GROOMING for fixed g.

(2) Good algorithm for approximating TRAFFIC GROOMING, running in
polynomial time in both g and n, and with an approximation ratio
not depending on g.
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Hardness of grooming for fixed g

Now we are going to answer to the first open question:

Theorem
Traffic grooming in the ring is APX-complete for fixed g ≥ 1.

Theorem
Traffic grooming in the path is APX-complete for fixed g ≥ 2.

To prove these results, we reduce traffic grooming to the following
problem:

Finding the maximum number of edge-disjoint triangles in a
graph.
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MECT-B

MAXIMUM BOUNDED EDGE COVERING BY TRIANGLES (MECT-B):
Find the maximum number of edge-disjoint triangles in a graph of
bounded degree B.

The problem is NP-complete
(I.Holyer, SIAM J.Comput’81)

Finding node-disjoint triangles is APX-complete
(V.Kann, Inf. Proces. Let’91)

We have proved that MECT-B is also APX-complete
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Idea of the proof

Reduction from MAXIMUM BOUNDED COVERING BY 3-SETS (MAX

3SC-B).
For each subset ci = {xi , yi , zi} we build the following graph:

1
2

3
4

5
6

7
8

9
10

11
12

13

x [0] x[1] y [0] y [1] z[0] z [1]

a [1]i
a [2]i

a [3]i
a [4]i

a [5]i
a [6]i a [7]i

i

a [8]i
a [9]i

We deduce that

OPT (MECT-B) ≤ (18B + 1)OPT (MAX 3SC-B)
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APX-completeness of RING TRAFFIC GROOMING

Idea of the proof for g = 1: we take a tripartite request graph:

The problem of traffic grooming is equivalent to finding the
maximum number of edge-disjoint triangles
Thus, traffic grooming is APX-complete
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APX-completeness of PATH TRAFFIC GROOMING

The problem is in P for g = 1
(J.-C.Bermond, L.Braud and D.Coudert, SIROCCO’05)

The complexity for fixed g ≥ 2 (even if P/NP?) has been an open
problem for a while

We have proved that the problem is APX-complete for fixed g ≥ 2
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Approximation algorithm for TRAFFIC GROOMING

Now we are going to answer to the second open question:

approximation algorithm (for rings and paths) with running time
polynomial in both n and g, with an approximation ratio depending
only on n:

Theorem
There exists a polynomial-time approximation algorithm that
approximates RING TRAFFIC GROOMING within a factor O(n1/3 log2 n)
for any g ≥ 1.
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Idea of the algorithm: first step

Divide the request set into log n classes Ci , i = 0, . . . , log n − 1 s.t.
in each class Ci the length of the requests is in [2i ,2i+1):

C0 → length in the interval [1,2)

C1 → length in the interval [2,4)

C2 → length in the interval [4,8)

. . .

Clog n−1 → length in the interval [
n
2
,n)
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First step of the algorithm (II)

For each class Ci → the ring can be divided into intervals of
length 2i s.t. the only requests are between consecutive
intervals.

we obtain n
2i subproblems for each class:

each one consists in finding an optimal solution in a bipartite
graph of size 2 · 2i .

BIPARTITE TRAFFIC GROOMING

Input: A bipartite graph R, and a grooming factor g.
Output: Partition of the edges of R into subgraphs Rω with at
most g edges, 1 ≤ ω ≤W .
Objective: Minimize

∑W
ω=1 |V (Rω)|.

Solve all these BIPARTITE TRAFFIC GROOMING subproblems
independently, and output the union of all solutions.
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Second step of the algorithm

The density ρ(G) of a graph G = (V ,E): is its edges-to-vertices
ratio, that is:

ρ(G) :=
|E(G)|
|V (G)|

More generally, for any subset S ⊂ V , we call density of S, ρG(S)
or simply ρ(S), to the density of the induced graph on S, i.e.
ρ(S) := ρ(G[S]).

We use theDENSE k -SUBGRAPH optimization problem:

DENSE k -SUBGRAPH (DkS):
Input: a graph G = (V ,E).
Output: a subset S ⊆ V , with |S| = k , such that ρ(S) is
maximized.

(U.Feige, D.Peleg and G.Kortsarz, Algorithmica’01)
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Second step of the algorithm (II)

To solve each BIPARTITE TRAFFIC GROOMING subproblem in a
bipartite graph R:

proceed greedily (until all edges are covered),
by finding at step i a subgraph

Ri ⊆ G \ (R1 ∪ · · · ∪ Ri−1)

with at most g edges in the following way:

For each k = 2, . . . ,2g find a subgraph

Bk ⊆ R \ (R1 ∪ · · · ∪ Ri−1)

using the best algorithm for the DENSE k -SUBGRAPH problem.
(U.Feige, D.Peleg and G.Kortsarz, Algorithmica’01)

Now we have to choose one of these Bk .
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Second step of the algorithm (III)

If for some k∗,

|E(Bk∗)| > g , and |E(Bi)| ≤ g for all i < k∗,

remove |E(B∗k )| − g arbitrary edges of Bk∗ , and replace
B∗k with this new graph.

Stop the search at k∗, and output the densest graph among
B2, . . . ,Bk∗−1,Bk∗ .

If not, output the densest subgraph among B2, . . . ,B2g .
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Approximation ratio?
Recall: n is the number of nodes, and g is the grooming factor.

Step 1: divide the request set into subsets (according to the
length), and solve each problem independently.

We loose a factor 2 log n

Step 2: proceed greedily by removing a subgraph found using the
algorithm for DENSE k -SUBGRAPH (removing edges if necessary).

We loose a factor 2 log n due to the greedy approach,
and a factor 2n1/3 due to DENSE k -SUBGRAPH

So, the approximation ratio of the algorithm is at most:

2 log n · 2 log n · 2n1/3 = 8n1/3 log2 n

Remark: if the request graph is H-minor free, then the approximation
ratio becomes O(log2 n).
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Conclusions and further research

We have proved that TRAFFIC GROOMING for a fixed grooming
factor g does not accept to be approximated within any constant
factor.

We have exhibited a polynomial-time approximation algorithm for
TRAFFIC GROOMING when both the number of nodes and the
grooming factor belong to the input.

Further research (for both PATH and RING):
I For fixed g: improve the best constant-factor approximation

algorithm.
So far is O(log g)

I For g belonging to the input: improve the algorithm and/or the
best existing hardness result.
So far is not APX, we conjecture that it is nε for some constant ε > 0
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Thanks!
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