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How to prove hardness results
@ Class APx (Approximable):

an optimization problem is in APX if it admits to be approximated
within a constant factor.

Example: VERTEX COVER
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How to prove hardness results
@ Class APx (Approximable):

an optimization problem is in APX if it admits to be approximated
within a constant factor.

Example: VERTEX COVER

@ Class PTAS (Polynomial-Time Approximation Scheme):

an optimization problem is in PTAS if it admits to be approximated
within a factor 1 + ¢, for all ¢ > 0.
(the best one can hope for an NP-hard optimization problem).

Ex.: TRAVELING SALESMAN PROBLEM in the Euclidean plane

@ We know that

PTAS ¢ APx

@ So, if N is an optimization problem:
Mis Apx-hard = 1 ¢ PTAS
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Traffic Grooming
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Introduction

@ WDM (Wavelength Division Multiplexing) networks

» 1 wavelength (or frequency) = up to 40 Gb/s
» 1 fiber = hundreds of wavelengths = Tb/s
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Introduction

@ WDM (Wavelength Division Multiplexing) networks
» 1 wavelength (or frequency) = up to 40 Gb/s
» 1 fiber = hundreds of wavelengths = Tb/s
@ |dea
Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

— we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

@ Objectives
» Better use of bandwidth
» Reduce the equipment cost (mostly given by electronics)
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ADM and OADM

@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength

to/from an optical fiber

@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM
(electric low-speed signal) to/from a wavelength

OADM OADM OADM
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@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength

to/from an optical fiber

@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM
(electric low-speed signal) to/from a wavelength
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— we want to minimize the number of ADMs
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Definitions

@ Request (/,/): a pair of vertices i/, j that want to exchange
(low-speed) traffic

Ignasi Sau (COST 293) Hardness of Traffic Grooming 30th October 2007 7137



Definitions
@ Request (/,/): a pair of vertices (i, /) that want to exchange
(low-speed) traffic
@ Grooming factor g:

node i . node |
\ /
\ [ \
| \ |
\ / \

requests

|
/ inl,

For each wavelenght and each
arc between two nodes, there can be
only g requests routed through this arc
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Definitions
@ Request (/,/): a pair of vertices (i, /) that want to exchange
(low-speed) traffic
@ Grooming factor g:

node i . node |
\ /
\ [ \
| \ |
\ / \

\j requests
/ inl,
For each wavelenght and each

arc between two nodes, there can be
only g requests routed through this arc

Example:
Capacity of one wavelength = 2400 Mb/s
Capacity used by a request = 600 Mb/s = g=4
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Definitions
@ Request (/,/): a pair of vertices (i, /) that want to exchange
(low-speed) traffic
@ Grooming factor g:

node i . node |
\ /
\ [ \
| \ |
\ / \

\j requests
/ inl,
For each wavelenght and each

arc between two nodes, there can be
only g requests routed through this arc

@ load of an arc in a wavelength: number of requests using this arc
in this wavelength (< g)
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ADM and OADM

@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber

@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric
low-speed signal) to/from a wavelength

OADM OADM

i Il

@ Idea: Use an ADM only at the endpoints of a request
(lightpaths) in order to save as many ADMs as possible
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To fix ideas...

@ Model:

Topology

Request set

Grooming factor
Request in a wavelength
ADM in a wavelength

oriented graph G
oriented graph R
integer g

arcs in a subgraph of R
node in a subgraph of R

Lol
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To fix ideas...

@ Model:

Topology

Request set

Grooming factor
Request in a wavelength
ADM in a wavelength

oriented graph G
oriented graph R
integer g

arcs in a subgraph of R
node in a subgraph of R

A

@ We study the cases when G = C,, (ring) or G = P, (path)
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Statement of the problem

Ring traffic grooming

Input A cycle C, on n nodes (network)
An oriented graph R (request set)
A grooming factor g

Output Find for each arc r € R a path P(r)
in Cp, and a partition of the arcs of R into
subgraphs R, 1 < w < W, in such a way that

Vee E(Cy), load(R.,,e)<g

Objective Minimize -V, |V(R.)|
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Example: n=5 R=Ks,and g =2
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Example: n=5 R=Ks,and g =2

We partition the edges of R in two ways, both using two wavelengths:

10 ADMS
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Example: n=5 R=Ks,and g =2

We partition the edges of R in two ways, both using two wavelengths:

10 ADMS

p=e
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Example: n=5 R=Ks,and g =2

We partition the edges of R in two ways, both using two wavelengths:

10 ADMS

Oy .
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State of the art (in the ring)

@ Complexity:
» TRAFFIC GROOMING (TG) is NP-complete considering g as part of
the input
(T.Chow et PLin, Networks’04)
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running time is exponential in g (more precisely, n9)
(M.Flammini et al., ISAAC’05)

Ignasi Sau (COST 293) Hardness of Traffic Grooming 30th October 2007 20/37



State of the art (in the ring)

@ Complexity:

» TRAFFIC GROOMING (TG) is NP-complete considering g as part of
the input
(T.Chow et PLin, Networks’04)

» TG remains also NP-complete for fixed g > 1
(M.Shalom, W.Unger et S.Zaks, FUN’07)

» If g is part of the input, TG is not in APX
(S.Huang, R.Dutta et G.N.Rouskas, IEEE JSAC’06)

» Open problem: inapproximability for fixed g

@ Approximability:

» Finding a \/g-approximation is trivial (in polynomial time in nand g)
» The best approximation algorithm has ratio O(log g), but the
running time is exponential in g (more precisely, n9)
(M.Flammini et al., ISAAC’05)

» Open problem: good algorithm in polynomial time in g and n
(i.e. when g is also part of the input)
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Different models of TRAFFIC GROOMING (in COST 293):

@ There are many different models of TRAFFIC GROOMING in the
literature.

@ We focus on a particular model (minimizing the number of
ADMs)

@ Other models: G/MPLS, light-trails, light-tours, multi-cast
aggregation, ...

@ Some of the people who is working in other models:

T.Cinkler, M.Marciniak, J.-L.Marzo, F.Solano, J.Moulierac, A.Somani, ...
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Evolution of Traffic Grooming in COST 293:

@ 2003 Coudert, Munoz et al. (ONDM'03):
Statement of the problem in unidirectional rings (all-to-all case).
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Grooming in bidirectional rings (all-to-all case).

@ 2007 Shalom, Unger and Zaks (FUN'07):
Grooming in rings is NP-complete for fixed g.

@ 2007 Amini, Pérennes and Sau (ISAAC’07):
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Summing up: open questions

(1) Inapproximability (hardness) of TRAFFIC GROOMING for fixed g.

(2) Good algorithm for approximating TRAFFIC GROOMING, running in
polynomial time in both g and n, and with an approximation ratio
not depending on g.
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Hardness of grooming for fixed g
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Hardness of grooming for fixed g

@ Now we are going to answer to the first open question:
Theorem
Traffic grooming in the ring is APX-complete for fixed g > 1.

Theorem

Traffic grooming in the path is APX-complete for fixed g > 2.
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Hardness of grooming for fixed g

@ Now we are going to answer to the first open question:
Theorem
Traffic grooming in the ring is APX-complete for fixed g > 1.

Theorem
Traffic grooming in the path is APX-complete for fixed g > 2. J

@ To prove these results, we reduce traffic grooming to the following
problem:

Finding the maximum number of edge-disjoint triangles in a
graph.
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MECT-B

@ MAXIMUM BOUNDED EDGE COVERING BY TRIANGLES (MECT-B):

Find the maximum number of edge-disjoint triangles in a graph of
bounded degree B.
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MECT-B

@ MAXIMUM BOUNDED EDGE COVERING BY TRIANGLES (MECT-B):

Find the maximum number of edge-disjoint triangles in a graph of
bounded degree B.

@ The problem is NP-complete
(I.Holyer, SIAM J.Comput'81)

@ Finding node-disjoint triangles is APX-complete
(V.Kann, Inf. Proces. Let’91)
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MECT-B

@ MAXIMUM BOUNDED EDGE COVERING BY TRIANGLES (MECT-B):

Find the maximum number of edge-disjoint triangles in a graph of
bounded degree B.

@ The problem is NP-complete
(I.Holyer, SIAM J.Comput'81)

@ Finding node-disjoint triangles is APX-complete
(V.Kann, Inf. Proces. Let’91)

@ We have proved that MECT-B is also APX-complete
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Idea of the proof

@ Reduction from MAXIMUM BOUNDED COVERING BY 3-SETS (MAX
3SC-B).
@ For each subset ¢; = {x;, y;, z;} we build the following graph:

a[l] a[2 a3 a4 a5 ae  a[r]

x0 X1 ag oyl Y[ o ae o zZo o z[]
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Idea of the proof

@ Reduction from MAXIMUM BOUNDED COVERING BY 3-SETS (MAX
3SC-B).
@ For each subset ¢; = {x;, y;, z;} we build the following graph:

a[l] a[2 a3 a4 a5 ae  a[r]

x0 X1 ag oyl Y[ o ae o zZo o z[]

@ We deduce that

OPT(MECT-B) < (18B -+ 1)OPT(MAX 3SC-B)
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Apx-completeness of RING TRAFFIC GROOMING

@ |dea of the proof for g = 1: we take a tripartite request graph:

ZaY

/) A
4@7’-_.‘-—-

:!a‘\\""'
A
TN\
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Apx-completeness of RING TRAFFIC GROOMING

@ |dea of the proof for g = 1: we take a tripartite request graph:

2

V4

=X\,
A .

@ The problem of traffic grooming is equivalent to finding the
maximum number of edge-disjoint triangles

@ Thus, traffic grooming is APX-complete
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Apx-completeness of PATH TRAFFIC GROOMING

@ The problemisin P for g = 1
(J.-C.Bermond, L.Braud and D.Coudert, SIROCCQO’05)

@ The complexity for fixed g > 2 (even if P/NP?) has been an open
problem for a while
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Approximation algorithm for TRAFFIC GROOMING

@ Now we are going to answer to the second open question:

approximation algorithm (for rings and paths) with running time
polynomial in both n and g, with an approximation ratio depending
only on n:
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Approximation algorithm for TRAFFIC GROOMING

@ Now we are going to answer to the second open question:

approximation algorithm (for rings and paths) with running time

polynomial in both n and g, with an approximation ratio depending
only on n:

Theorem

There exists a polynomial-time approximation algorithm that

approximates RING TRAFFIC GROOMING within a factor O(n'/3 log? n)
forany g > 1.
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Idea of the algorithm: first step

@ Divide the request set into log n classes C;, i = 0,..., logn—1 s.t.
in each class C; the length of the requests is in [2/, 2/ 1):

Co — lengthintheinterval [1,2)
Ci — lengthin the interval [2,4)
C> —  lengthin the interval [4,8)

Ciogn—1 — lengthin the interval [g, n)

Ignasi Sau (COST 293) Hardness of Traffic Grooming 30th October 2007 30/37



First step of the algorithm (11)
@ Foreachclass C; — the ring can be divided into intervals of

length 2/ s.t. the only requests are between consecutive
intervals.
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First step of the algorithm (11)

@ For each class C; — thering can be divided into intervals of
length 2’ s.t. the only requests are between consecutive
intervals.

@ we obtain g subproblems for each class:
each one consists in finding an optimal solution in a bipartite
graph of size 2 - 2'.
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First step of the algorithm (11)

@ For each_ class C; — thering can be divided into intervals of
length 2’ s.t. the only requests are between consecutive
intervals.

@ we obtain g subproblems for each class:
each one consists in finding an optimal solution in a bipartite
graph of size 2 - 2'.

BIPARTITE TRAFFIC GROOMING

Input: A bipartite graph R, and a grooming factor g.

Output: Partition of the edges of R into subgraphs R, with at
most g edges, 1 <w < W.

Objective: Minimize > . [V(R.)!.
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First step of the algorithm (11)

@ For each class C; — thering can be divided into intervals of
length 2’ s.t. the only requests are between consecutive
intervals.

@ we obtain g subproblems for each class:
each one consists in finding an optimal solution in a bipartite
graph of size 2 - 2'.

BIPARTITE TRAFFIC GROOMING

Input: A bipartite graph R, and a grooming factor g.

Output: Partition of the edges of R into subgraphs R, with at
most g edges, 1 <w < W.

Objective: Minimize > . [V(R.)!.

@ Solve all these BIPARTITE TRAFFIC GROOMING subproblems
independently, and output the union of all solutions.
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Second step of the algorithm

@ The density p(G) of a graph G = (V, E): is its edges-to-vertices
ratio, that is: £G)
G) =+ =
AG = o)
@ More generally, for any subset S C V, we call density of S, pg(S)
or simply p(S), to the density of the induced graph on S, i.e.

p(S) == p(G[S]).
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Second step of the algorithm

@ The density p(G) of a graph G = (V, E): is its edges-to-vertices
ratio, that is: £G)
Q) = ——
A9 = 1via)
@ More generally, for any subset S C V, we call density of S, pg(S)
or simply p(S), to the density of the induced graph on S, i.e.
p(S) == p(G[9)).
@ We use theDENSE k-SUBGRAPH optimization problem:

DENSE k-SUBGRAPH (DkS):

Input: a graph G = (V, E).

Output: a subset S C V, with |S| = k, such that p(S) is
maximized.

(U.Feige, D.Peleg and G.Kortsarz, Algorithmica’01)
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Second step of the algorithm (1l)

@ To solve each BIPARTITE TRAFFIC GROOMING subproblem in a
bipartite graph R:
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Second step of the algorithm (1l)

@ To solve each BIPARTITE TRAFFIC GROOMING subproblem in a
bipartite graph R:

proceed greedily (until all edges are covered),
by finding at step i a subgraph

R € G\(RiU---UR;_4)

with at most g edges in the following way:
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Second step of the algorithm (1l)

@ To solve each BIPARTITE TRAFFIC GROOMING subproblem in a
bipartite graph R:

proceed greedily (until all edges are covered),
by finding at step i a subgraph

R € G\(RiU---UR;_4)
with at most g edges in the following way:

Foreach k =2,...,2g find a subgraph

BKQR\(R1U---UR,'_1)

using the best algorithm for the DENSE k-SUBGRAPH problem.
(U.Feige, D.Peleg and G.Kortsarz, Algorithmica’01)

@ Now we have to choose one of these By.
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Second step of the algorithm (l11)

@ If for some k*,

|E(Bk+)| > g ,and |E(B;)| <g forall i< k",

Ignasi Sau (COST 293) Hardness of Traffic Grooming 30th October 2007 34/37



Second step of the algorithm (l11)

@ If for some k*,
|E(Bk+)| > g ,and |E(B;)| <g forall i< k",

remove |E(B;)| — g arbitrary edges of By-, and replace
B;; with this new graph.

Stop the search at k*, and output the densest graph among
827 ceey Bk*_1, Bk*
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Second step of the algorithm (l11)

@ |f for some k*,
|E(Bk<)| >g ,and |E(B))| <g forall i< k",

remove |E(B;)| — g arbitrary edges of By-, and replace
B;; with this new graph.

Stop the search at k*, and output the densest graph among
827 ceey Bk*_1, Bk*.

@ If not, output the densest subgraph among B, . . ., Byg.
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Approximation ratio?
@ Recall: nis the number of nodes, and g is the grooming factor.
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@ Step 1: divide the request set into subsets (according to the
length), and solve each problem independently.
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Approximation ratio?
@ Recall: nis the number of nodes, and g is the grooming factor.

@ Step 1: divide the request set into subsets (according to the
length), and solve each problem independently.

We loose a factor 2log n

@ Step 2: proceed greedily by removing a subgraph found using the
algorithm for DENSE k-SUBGRAPH (removing edges if necessary).
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@ Recall: nis the number of nodes, and g is the grooming factor.

@ Step 1: divide the request set into subsets (according to the
length), and solve each problem independently.

We loose a factor 2log n

@ Step 2: proceed greedily by removing a subgraph found using the
algorithm for DENSE k-SUBGRAPH (removing edges if necessary).

We loose a factor 2log n due to the greedy approach,
and a factor 2n'/3 due to DENSE k-SUBGRAPH

Ignasi Sau (COST 293) Hardness of Traffic Grooming 30th October 2007 35/37



Approximation ratio?
@ Recall: nis the number of nodes, and g is the grooming factor.

@ Step 1: divide the request set into subsets (according to the
length), and solve each problem independently.

We loose a factor 2log n
@ Step 2: proceed greedily by removing a subgraph found using the
algorithm for DENSE k-SUBGRAPH (removing edges if necessary).
We loose a factor 2log n due to the greedy approach,
and a factor 2n'/3 due to DENSE k-SUBGRAPH
@ So, the approximation ratio of the algorithm is at most:
2logn-2logn-2n'/° =8n'2log®n

@ Remark: if the request graph is H-minor free, then the approximation
ratio becomes O(log? n).
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Conclusions and further research

@ We have proved that TRAFFIC GROOMING for a fixed grooming
factor g does not accept to be approximated within any constant
factor.
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@ We have exhibited a polynomial-time approximation algorithm for
TRAFFIC GROOMING when both the number of nodes and the
grooming factor belong to the input.
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factor g does not accept to be approximated within any constant
factor.

@ We have exhibited a polynomial-time approximation algorithm for
TRAFFIC GROOMING when both the number of nodes and the
grooming factor belong to the input.

@ Further research (for both PATH and RING):

» For fixed g: improve the best constant-factor approximation
algorithm.
So far is O(log g)
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Conclusions and further research

@ We have proved that TRAFFIC GROOMING for a fixed grooming
factor g does not accept to be approximated within any constant
factor.

@ We have exhibited a polynomial-time approximation algorithm for
TRAFFIC GROOMING when both the number of nodes and the
grooming factor belong to the input.

@ Further research (for both PATH and RING):

» For fixed g: improve the best constant-factor approximation
algorithm.
So far is O(log g)

» For g belonging to the input: improve the algorithm and/or the
best existing hardness result.
So far is not APX, we conjecture that it is n° for some constante > 0
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Ignasi Sau (COST 293)
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