Hardness and Approximation of Traffic Grooming

Omid Amini Stéphane Pérennes Ignasi Sau Projet MASCOTTE, CNRS/I3S-INRIA-UNSA, France

COST 293 - Rome

A (10) A (10)

Outline of the talk

- Introduction
- Traffic Grooming
 - Definition of the problem
 - Example
 - State of the art
 - Evolution in COST 293
- Problem of MECT-B
- Hardness results
- Approximation algorithm
- Conclusions

How to prove hardness results

• Class APX (Approximable):

an optimization problem is in APX if it admits to be approximated within a constant factor.

Example: VERTEX COVER

 Class PTAS (Polynomial-Time Approximation Scheme): an optimization problem is in PTAS if it admits to be approximated within a factor 1 + ε, for all ε > 0. (the best one can hope for an NP-hard optimization problem).
 Ex.: TRAVELING SALESMAN PROBLEM in the Euclidean plane

We know that

$\mathsf{PTAS} \varsubsetneq \mathsf{APX}$

So, if Π is an optimization problem:

 $\exists is APX-hard \Rightarrow \Pi \notin PTAS$

How to prove hardness results

• Class APX (Approximable):

an optimization problem is in APX if it admits to be approximated within a constant factor.

Example: VERTEX COVER

• Class PTAS (Polynomial-Time Approximation Scheme):

an optimization problem is in PTAS if it admits to be approximated within a factor 1 + ε , for all ε > 0.

(the best one can hope for an NP-hard optimization problem).

Ex.: TRAVELING SALESMAN PROBLEM in the Euclidean plane

We know that

$\mathsf{PTAS}\varsubsetneq\mathsf{APX}$

• So, if Π is an optimization problem:

 $\exists is APX-hard \Rightarrow \Pi \notin PTAS$

How to prove hardness results

• Class APX (Approximable):

an optimization problem is in APX if it admits to be approximated within a constant factor.

Example: VERTEX COVER

• Class PTAS (Polynomial-Time Approximation Scheme):

an optimization problem is in PTAS if it admits to be approximated within a factor 1 + ε , for all $\varepsilon > 0$.

(the best one can hope for an NP-hard optimization problem).

Ex.: TRAVELING SALESMAN PROBLEM in the Euclidean plane

We know that

$$\mathsf{PTAS} \subsetneq \mathsf{APX}$$

• So, if Π is an optimization problem:

 $\Pi \text{ is } \mathsf{A}\mathsf{P}\mathsf{X}\text{-hard} \ \Rightarrow \ \Pi \notin \mathsf{P}\mathsf{T}\mathsf{A}\mathsf{S}$

Traffic Grooming

< 🗇 🕨

H 16

Introduction

WDM (Wavelength Division Multiplexing) networks

- 1 wavelength (or frequency) = up to 40 Gb/s
- 1 fiber = hundreds of wavelengths = Tb/s

• <u>Idea</u>

Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 \longrightarrow we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

Objectives

- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

- WDM (Wavelength Division Multiplexing) networks
 - 1 wavelength (or frequency) = up to 40 Gb/s
 - I fiber = hundreds of wavelengths = Tb/s

• <u>Idea</u>

Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 \longrightarrow we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

Objectives

- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

- WDM (Wavelength Division Multiplexing) networks
 - 1 wavelength (or frequency) = up to 40 Gb/s
 - I fiber = hundreds of wavelengths = Tb/s

• <u>Idea</u>

Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 \longrightarrow we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

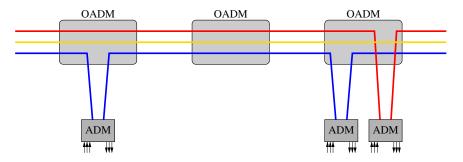
Objectives

- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

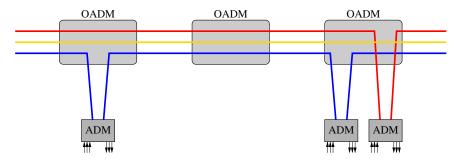


→ we want to minimize the number of ADMs

< ロ > < 同 > < 回 > < 回 >

ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

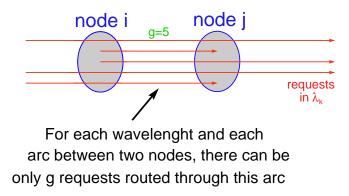


→ we want to minimize the number of ADMs

< ロ > < 同 > < 回 > < 回 >

• **Request** (*i*, *j*): a pair of vertices *i*, *j* that want to exchange (low-speed) traffic

- **Request** (*i*, *j*): a pair of vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor g:

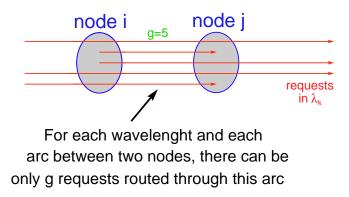


Example: Capacity of one wavelength = 2400 *Mb/s* $\Rightarrow g = 4$ $\Rightarrow g = 4$

Ignasi Sau (COST 293)

Hardness of Traffic Grooming

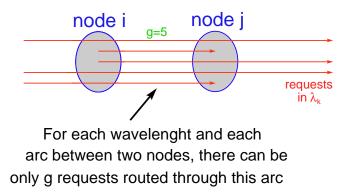
- **Request** (*i*, *j*): a pair of vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor g:



Example:Capacity of one wavelength = 2400 Mb/sCapacity used by a request = 600 Mb/s $\Rightarrow g = 4$

Ignasi Sau (COST 293)

- **Request** (*i*, *j*): a pair of vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor g:



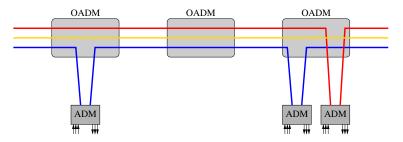
 load of an arc in a wavelength: number of requests using this arc in this wavelength (≤ g)

Ignasi Sau (COST 293)

Hardness of Traffic Grooming

ADM and OADM

- **OADM** (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength



• <u>Idea:</u> Use an **ADM only at the endpoints of a request** (lightpaths) in order to save as many ADMs as possible

Ignasi Sau (COST 293)

Hardness of Traffic Grooming

To fix ideas...

Model:

- Topology Request set Grooming factor Request in a wavelength ADM in a wavelength
- \rightarrow oriented graph *G*
- \rightarrow oriented graph *R*
- \rightarrow integer *g*
- \rightarrow arcs in a subgraph of *R*
- \rightarrow node in a subgraph of *R*

• We study the cases when $G = C_n$ (ring) or $G = P_n$ (path)

12 N A 12

To fix ideas...

Model:

- We study the cases when $G = C_n$ (ring) or $G = P_n$ (path)

Statement of the problem

Ring traffic grooming

Input A cycle *C_n* on *n* nodes (network) An oriented graph *R* (request set) A grooming factor *g*

Output Find for each arc $r \in R$ a path P(r)in C_n , and a partition of the arcs of R into subgraphs R_{ω} , $1 \le \omega \le W$, in such a way that

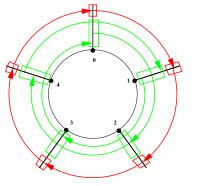
 $\forall e \in E(C_n), \quad \mathsf{load}(R_\omega, e) \leq g$

Objective Minimize $\sum_{\omega=1}^{W} |V(R_{\omega})|$

-2

A D F A B F A B F A B F

We partition the edges of *R* in two ways, both using two wavelengths:

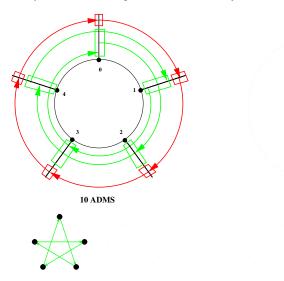


10 ADMS

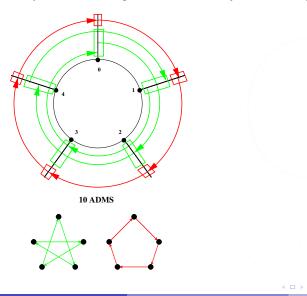
Ignasi Sau (COST 293)

A .

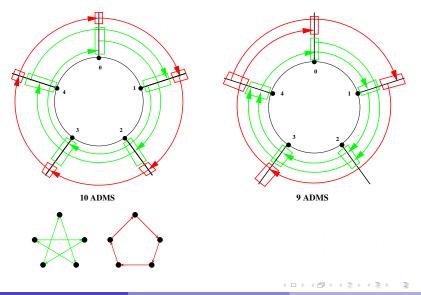
We partition the edges of *R* in two ways, both using two wavelengths:



We partition the edges of *R* in two ways, both using two wavelengths:



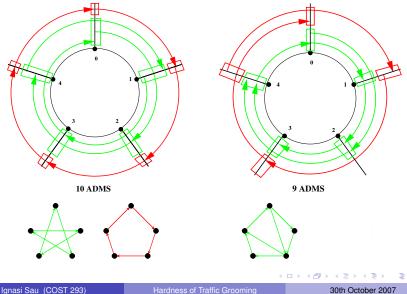
We partition the edges of *R* in two ways, both using two wavelengths:



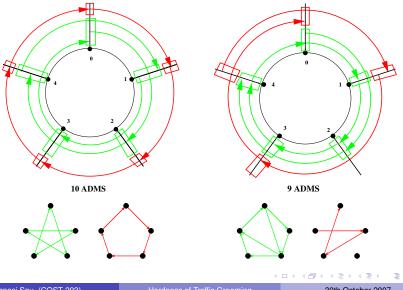
Ignasi Sau (COST 293)

Hardness of Traffic Grooming

We partition the edges of *R* in two ways, both using two wavelengths:



We partition the edges of *R* in two ways, both using two wavelengths:



Ignasi Sau (COST 293)

Hardness of Traffic Grooming

- Complexity:
 - TRAFFIC GROOMING (TG) is NP-complete considering g as part of the input

(T.Chow et P.Lin, Networks'04)

- ► TG remains also NP-complete for fixed g ≥ 1 (M.Shalom, W.Unger et S.Zaks, FUN'07)
- If g is part of the input, TG is not in Apx (S.Huang, R.Dutta et G.N.Rouskas, IEEE JSAC'06)
- Open problem: inapproximability for fixed g

Approximability:

- Finding a \sqrt{g} -approximation is trivial (in polynomial time in *n* and *g*)
- The best approximation algorithm has ratio O(log g), but the running time is exponential in g (more precisely, n^g) (M.Flammini et al., ISAAC'05)
- Open problem: good algorithm in polynomial time in g and n (i.e. when g is also part of the input)

- Complexity:
 - TRAFFIC GROOMING (TG) is NP-complete considering g as part of the input

(T.Chow et P.Lin, Networks'04)

- ► TG remains also NP-complete for fixed g ≥ 1 (M.Shalom, W.Unger et S.Zaks, FUN'07)
- If g is part of the input, TG is not in APX (S.Huang, R.Dutta et G.N.Rouskas, IEEE JSAC'06)
- Open problem: inapproximability for fixed g

• Approximability:

- Finding a \sqrt{g} -approximation is trivial (in polynomial time in *n* and *g*)
- The best approximation algorithm has ratio O(log g), but the running time is exponential in g (more precisely, n^g) (M.Flammini et al., ISAAC'05)
- Open problem: good algorithm in polynomial time in g and n (i.e. when g is also part of the input)

- Complexity:
 - TRAFFIC GROOMING (TG) is NP-complete considering g as part of the input

(T.Chow et P.Lin, Networks'04)

- ► TG remains also NP-complete for fixed g ≥ 1 (M.Shalom, W.Unger et S.Zaks, FUN'07)
- If g is part of the input, TG is not in Apx (S.Huang, R.Dutta et G.N.Rouskas, IEEE JSAC'06)
- Open problem: inapproximability for fixed g

• Approximability:

- Finding a \sqrt{g} -approximation is trivial (in polynomial time in *n* and *g*)
- The best approximation algorithm has ratio O(log g), but the running time is exponential in g (more precisely, n^g) (M.Flammini et al., ISAAC'05)
- Open problem: good algorithm in polynomial time in g and n (i.e. when g is also part of the input)

- Complexity:
 - TRAFFIC GROOMING (TG) is NP-complete considering g as part of the input

(T.Chow et P.Lin, Networks'04)

- ► TG remains also NP-complete for fixed g ≥ 1 (M.Shalom, W.Unger et S.Zaks, FUN'07)
- If g is part of the input, TG is not in APX (S.Huang, R.Dutta et G.N.Rouskas, IEEE JSAC'06)
- Open problem: inapproximability for fixed g

• Approximability:

- Finding a \sqrt{g} -approximation is trivial (in polynomial time in *n* and *g*)
- The best approximation algorithm has ratio O(log g), but the running time is exponential in g (more precisely, n^g) (*M.Flammini et al.*, *ISAAC'05*)
- Open problem: good algorithm in polynomial time in g and n (i.e. when g is also part of the input)

- Complexity:
 - TRAFFIC GROOMING (TG) is NP-complete considering g as part of the input

(T.Chow et P.Lin, Networks'04)

- ► TG remains also NP-complete for fixed g ≥ 1 (M.Shalom, W.Unger et S.Zaks, FUN'07)
- If g is part of the input, TG is not in APX (S.Huang, R.Dutta et G.N.Rouskas, IEEE JSAC'06)
- Open problem: inapproximability for fixed g

Approximability:

- Finding a \sqrt{g} -approximation is trivial (in polynomial time in *n* and *g*)
- The best approximation algorithm has ratio O(log g), but the running time is exponential in g (more precisely, n^g) (*M.Flammini et al.*, *ISAAC'05*)
- **Open problem:** *good* algorithm in polynomial time in *g* and *n* (i.e. when *g* is also part of the input)

- Complexity:
 - TRAFFIC GROOMING (TG) is NP-complete considering g as part of the input

(T.Chow et P.Lin, Networks'04)

- ► TG remains also NP-complete for fixed g ≥ 1 (M.Shalom, W.Unger et S.Zaks, FUN'07)
- If g is part of the input, TG is not in APX (S.Huang, R.Dutta et G.N.Rouskas, IEEE JSAC'06)
- Open problem: inapproximability for fixed g
- Approximability:
 - Finding a \sqrt{g} -approximation is trivial (in polynomial time in *n* and *g*)
 - The best approximation algorithm has ratio O(log g), but the running time is exponential in g (more precisely, n^g) (*M.Flammini et al.*, *ISAAC'05*)
 - Open problem: good algorithm in polynomial time in g and n (i.e. when g is also part of the input)

- Complexity:
 - TRAFFIC GROOMING (TG) is NP-complete considering g as part of the input

(T.Chow et P.Lin, Networks'04)

- ► TG remains also NP-complete for fixed g ≥ 1 (M.Shalom, W.Unger et S.Zaks, FUN'07)
- If g is part of the input, TG is not in APX (S.Huang, R.Dutta et G.N.Rouskas, IEEE JSAC'06)
- Open problem: inapproximability for fixed g
- Approximability:
 - Finding a \sqrt{g} -approximation is trivial (in polynomial time in *n* and *g*)
 - The best approximation algorithm has ratio O(log g), but the running time is exponential in g (more precisely, n^g) (*M.Flammini et al., ISAAC'05*)
 - Open problem: good algorithm in polynomial time in g and n (i.e. when g is also part of the input)

Different models of TRAFFIC GROOMING (in COST 293):

- There are many different models of TRAFFIC GROOMING in the literature.
- We focus on a particular model (minimizing the number of ADMs)
- Other models: G/MPLS, light-trails, light-tours, multi-cast aggregation, ...
- Some of the people who is working in other models: T.Cinkler, M.Marciniak, J.-L.Marzo, F.Solano, J.Moulierac, A.Somani, ...

A B F A B F

Evolution of Traffic Grooming in COST 293:

- 2003 Coudert, Muñoz et al. (ONDM'03):
 - Statement of the problem in unidirectional rings (all-to-all case).
- 2004 Shalom and Zaks (*BROADNETS'04*):
 - $(\frac{10}{7} + \epsilon)$ -approximation of grooming in rings for g = 1.
- 2005 Coudert, Muñoz et al. (SIAM JDM'05): Grooming in unidirectional rings for g = 6 (all-to-all case)
- 2005 Coudert et al. (*SIROCCO'05*): Grooming in unidirectional paths for g = 1, 2.
- 2005 Flammini, Moscadelli, Shalom and Zaks (ISAAC'05): *O*(log g)-approximation of grooming in rings.
- 2006 Flammini, Moscadelli, Shalom, Zaks et al. (WG'06):
 O(log g)-approximation of grooming in paths and stars.
- 2006 Coudert, Muñoz, Sau et al. (ICTON'06): Grooming in bidirectional rings (all-to-all case).
- 2007 Shalom, Unger and Zaks (FUN'07): Grooming in rings is NP-complete for fixed g.
- 2007 Amini, Pérennes and Sau (ISAAC'07):

Hardness and approximation of traffic grooming in rings and paths

Evolution of Traffic Grooming in COST 293:

- 2003 Coudert, Muñoz et al. (ONDM'03).
 - Statement of the problem in unidirectional rings (all-to-all case).
- 2004 Shalom and Zaks (*BROADNETS'04*):
 - $(\frac{10}{7} + \epsilon)$ -approximation of grooming in rings for g = 1.
- 2005 Coudert, Muñoz et al. (SIAM JDM'05): Grooming in unidirectional rings for g = 6 (all-to-all case
- 2005 Coudert et al. (*SIROCCO'05*): Grooming in unidirectional paths for g = 1, 2.
- 2005 Flammini, Moscadelli, Shalom and Zaks (*ISAAC'05*): $\mathcal{O}(\log g)$ -approximation of grooming in rings.
- Flammini, Moscadelli, Shalom, Zaks et al. (WG'06):
 O(log g)-approximation of grooming in paths and stars.
- 2006 Coudert, Muñoz, Sau et al. (ICTON'06): Grooming in bidirectional rings (all-to-all case).
- 2007 Shalom, Unger and Zaks (FUN'07): Grooming in rings is NP-complete for fixed g.
- 2007 Amini, Pérennes and Sau (ISAAC'07):

Hardness and approximation of traffic grooming in rings and paths

- 2003 Coudert, Muñoz et al. (ONDM'03): Statement of the problem in unidirectional rings (all-to-all case).
- 2004 Shalom and Zaks (BROADNETS'04):
 - $(\frac{10}{7} + \epsilon)$ -approximation of grooming in rings for g = 1.
- 2005 Coudert, Muñoz et al. (SIAM JDM'05): Grooming in unidirectional rings for g = 6 (all-to-all case).
- 2005 Coudert et al. (*SIROCCO'05*): Grooming in unidirectional paths for g = 1, 2.
- 2005 Flammini, Moscadelli, Shalom and Zaks (ISAAC'05): $\mathcal{O}(\log g)$ -approximation of grooming in rings.
- 2006 Flammini, Moscadelli, Shalom, Zaks et al. (WG'06): $O(\log g)$ -approximation of grooming in paths and stars.
- 2006 Coudert, Muñoz, Sau et al. (ICTON'06): Grooming in bidirectional rings (all-to-all case).
- 2007 Shalom, Unger and Zaks (FUN'07): Grooming in rings is NP-complete for fixed g.
- 2007 Amini, Pérennes and Sau (ISAAC'07):

- 2003 Coudert, Muñoz et al. (ONDM'03):
 - Statement of the problem in unidirectional rings (all-to-all case).
- 2004 Shalom and Zaks (BROADNETS'04):
 - $(\frac{10}{7} + \epsilon)$ -approximation of grooming in rings for g = 1.
- 2005 Coudert, Muñoz et al. (SIAM JDM'05): Grooming in unidirectional rings for g = 6 (all-to-all case).
- 2005 Coudert et al. (*SIROCCO'05*): Grooming in unidirectional paths for g = 1, 2.
- 2005 Flammini, Moscadelli, Shalom and Zaks (*ISAAC'05*): $\mathcal{O}(\log g)$ -approximation of grooming in rings.
- 2006 Flammini, Moscadelli, Shalom, Zaks et al. (*WG'06*): $\mathcal{O}(\log g)$ -approximation of grooming in paths and stars.
- 2006 Coudert, Muñoz, Sau et al. (ICTON'06): Grooming in bidirectional rings (all-to-all case).
- 2007 Shalom, Unger and Zaks (FUN'07): Grooming in rings is NP-complete for fixed g.
- 2007 Amini, Pérennes and Sau (ISAAC'07):

- 2003 Coudert, Muñoz et al. (ONDM'03):
 - Statement of the problem in unidirectional rings (all-to-all case).
- 2004 Shalom and Zaks (BROADNETS'04):
 - $(\frac{10}{7} + \epsilon)$ -approximation of grooming in rings for g = 1.
- 2005 Coudert, Muñoz et al. (SIAM JDM'05): Grooming in unidirectional rings for g = 6 (all-to-all case).
- 2005 Coudert et al. (SIROCCO'05): Grooming in unidirectional paths for g = 1, 2.
- 2005 Flammini, Moscadelli, Shalom and Zaks (ISAAC'05): *O*(log g)-approximation of grooming in rings.
- 2006 Flammini, Moscadelli, Shalom, Zaks et al. (WG'06): $O(\log g)$ -approximation of grooming in paths and stars.
- 2006 Coudert, Muñoz, Sau et al. (ICTON'06): Grooming in bidirectional rings (all-to-all case).
- 2007 Shalom, Unger and Zaks (FUN'07): Grooming in rings is NP-complete for fixed g.
- 2007 Amini, Pérennes and Sau (ISAAC'07):

- 2003 Coudert, Muñoz et al. (ONDM'03):
 - Statement of the problem in unidirectional rings (all-to-all case).
- 2004 Shalom and Zaks (BROADNETS'04):
 - $(\frac{10}{7} + \epsilon)$ -approximation of grooming in rings for g = 1.
- 2005 Coudert, Muñoz et al. (SIAM JDM'05): Grooming in unidirectional rings for g = 6 (all-to-all case).
- 2005 Coudert et al. (SIROCCO'05): Grooming in unidirectional paths for g = 1, 2.
- 2005 Flammini, Moscadelli, Shalom and Zaks (ISAAC'05): *O*(log g)-approximation of grooming in rings.
- 2006 Flammini, Moscadelli, Shalom, Zaks et al. (*WG'06*): $\mathcal{O}(\log g)$ -approximation of grooming in paths and stars.
- 2006 Coudert, Muñoz, Sau et al. *(ICTON'06)*: Grooming in bidirectional rings (all-to-all case).
- 2007 Shalom, Unger and Zaks (FUN'07): Grooming in rings is NP-complete for fixed g.
- 2007 Amini, Pérennes and Sau (ISAAC'07):

- 2003 Coudert, Muñoz et al. (ONDM'03)
 - Statement of the problem in unidirectional rings (all-to-all case).
- 2004 Shalom and Zaks (BROADNETS'04):
 - $(\frac{10}{7} + \epsilon)$ -approximation of grooming in rings for g = 1.
- 2005 Coudert, Muñoz et al. (SIAM JDM'05): Grooming in unidirectional rings for g = 6 (all-to-all case).
- 2005 Coudert et al. (SIROCCO'05): Grooming in unidirectional paths for g = 1, 2.
- 2005 Flammini, Moscadelli, Shalom and Zaks (*ISAAC'05*): $\mathcal{O}(\log g)$ -approximation of grooming in rings.
- 2006 Flammini, Moscadelli, Shalom, Zaks et al. (*WG'06*): $\mathcal{O}(\log g)$ -approximation of grooming in paths and stars.
- 2006 Coudert, Muñoz, Sau et al. (*ICTON'06*): Grooming in bidirectional rings (all-to-all case).
- 2007 Shalom, Unger and Zaks (*FUN'07*): Grooming in rings is NP-complete for fixed *g*.
- 2007 Amini, Pérennes and Sau (ISAAC'07):

- 2003 Coudert, Muñoz et al. (ONDM'03):
 - Statement of the problem in unidirectional rings (all-to-all case).
- 2004 Shalom and Zaks (BROADNETS'04):
 - $(\frac{10}{7} + \epsilon)$ -approximation of grooming in rings for g = 1.
- 2005 Coudert, Muñoz et al. (SIAM JDM'05): Grooming in unidirectional rings for g = 6 (all-to-all case).
- 2005 Coudert et al. (*SIROCCO'05*): Grooming in unidirectional paths for g = 1, 2.
- 2005 Flammini, Moscadelli, Shalom and Zaks (ISAAC'05): *O*(log g)-approximation of grooming in rings.
- 2006 Flammini, Moscadelli, Shalom, Zaks et al. (*WG'06*): $\mathcal{O}(\log g)$ -approximation of grooming in paths and stars.
- 2006 Coudert, Muñoz, Sau et al. (*ICTON'06*): Grooming in bidirectional rings (all-to-all case).
- 2007 Shalom, Unger and Zaks (*FUN'07*): Grooming in rings is NP-complete for fixed *g*.
- 2007 Amini, Pérennes and Sau (ISAAC'07):

- 2003 Coudert, Muñoz et al. (ONDM'03):
 - Statement of the problem in unidirectional rings (all-to-all case).
- 2004 Shalom and Zaks (BROADNETS'04):
 - $(\frac{10}{7} + \epsilon)$ -approximation of grooming in rings for g = 1.
- 2005 Coudert, Muñoz et al. (SIAM JDM'05): Grooming in unidirectional rings for g = 6 (all-to-all case).
- 2005 Coudert et al. (*SIROCCO'05*): Grooming in unidirectional paths for g = 1, 2.
- 2005 Flammini, Moscadelli, Shalom and Zaks (ISAAC'05): *O*(log g)-approximation of grooming in rings.
- 2006 Flammini, Moscadelli, Shalom, Zaks et al. (*WG'06*): $\mathcal{O}(\log g)$ -approximation of grooming in paths and stars.
- 2006 Coudert, Muñoz, Sau et al. *(ICTON'06)*: Grooming in bidirectional rings (all-to-all case).
- 2007 Shalom, Unger and Zaks (*FUN'07*): Grooming in rings is NP-complete for fixed *g*.
- 2007 Amini, Pérennes and Sau (ISAAC'07):

Summing up: open questions

(1) Inapproximability (hardness) of TRAFFIC GROOMING for fixed g.

(2) *Good* algorithm for approximating TRAFFIC GROOMING, running in polynomial time in both *g* and *n*, and with an approximation ratio not depending on *g*.

Hardness of grooming for fixed g

• Now we are going to answer to the first open question:

Theorem

Traffic grooming in the ring is APX-complete for fixed $g \ge 1$.

Theorem

Traffic grooming in the path is APX-complete for fixed $g \ge 2$.

• To prove these results, we reduce traffic grooming to the following problem:

Finding the maximum number of edge-disjoint triangles in a graph.

< ロ > < 同 > < 回 > < 回 >

Hardness of grooming for fixed g

Now we are going to answer to the first open question:

Theorem

Traffic grooming in the ring is APX-complete for fixed $g \ge 1$.

Theorem

Traffic grooming in the path is APX-complete for fixed $g \ge 2$.

 To prove these results, we reduce traffic grooming to the following problem:

Finding the maximum number of edge-disjoint triangles in a graph.

イロト 不得 トイヨト イヨト

Hardness of grooming for fixed g

• Now we are going to answer to the first open question:

Theorem

Traffic grooming in the ring is APX-complete for fixed $g \ge 1$.

Theorem

Traffic grooming in the path is APX-complete for fixed $g \ge 2$.

• To prove these results, we reduce traffic grooming to the following problem:

Finding the maximum number of edge-disjoint triangles in a graph.

MECT-B

- MAXIMUM BOUNDED EDGE COVERING BY TRIANGLES (MECT-B): Find the maximum number of edge-disjoint triangles in a graph of bounded degree *B*.
- The problem is NP-complete (*I.Holyer, SIAM J.Comput'81*)
- Finding **node-disjoint** triangles is APX-complete (*V.Kann, Inf. Proces. Let'91*)
- We have proved that MECT-B is also APX-complete

4 **A** N A **B** N A **B** N

MECT-B

- MAXIMUM BOUNDED EDGE COVERING BY TRIANGLES (MECT-B): Find the maximum number of edge-disjoint triangles in a graph of bounded degree *B*.
- The problem is NP-complete (I.Holyer, SIAM J.Comput'81)
- Finding **node-disjoint** triangles is APX-complete (V.Kann, Inf. Proces. Let'91)
- We have proved that MECT-B is also APX-complete

4 E N 4 E N

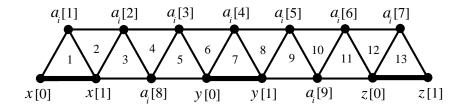
MECT-B

- MAXIMUM BOUNDED EDGE COVERING BY TRIANGLES (MECT-B): Find the maximum number of edge-disjoint triangles in a graph of bounded degree *B*.
- The problem is NP-complete (I.Holyer, SIAM J.Comput'81)
- Finding **node-disjoint** triangles is APX-complete (V.Kann, Inf. Proces. Let'91)
- We have proved that MECT-B is also APX-complete

B N A **B** N

Idea of the proof

- Reduction from MAXIMUM BOUNDED COVERING BY 3-SETS (MAX 3SC-B).
- For each subset $c_i = \{x_i, y_i, z_i\}$ we build the following graph:



We deduce that

 $OPT(MECT-B) \le (18B+1)OPT(MAX 3SC-B)$

Ignasi Sau (COST 293)

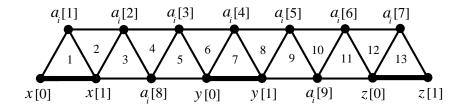
Hardness of Traffic Grooming

30th October 2007 26 / 37

A - A - A - A - A - A

Idea of the proof

- Reduction from MAXIMUM BOUNDED COVERING BY 3-SETS (MAX 3SC-B).
- For each subset $c_i = \{x_i, y_i, z_i\}$ we build the following graph:



We deduce that

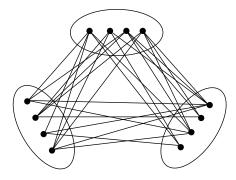
 $OPT(MECT-B) \le (18B+1)OPT(Max 3SC-B)$

The Sec. 74

< 6 b

APX-completeness of RING TRAFFIC GROOMING

• Idea of the proof for g = 1: we take a tripartite request graph:

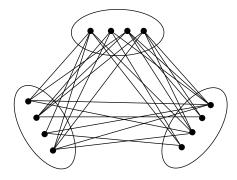


- The problem of traffic grooming is equivalent to finding the maximum number of edge-disjoint triangles
- Thus, traffic grooming is APX-complete

< ロ > < 同 > < 回 > < 回 >

APX-completeness of RING TRAFFIC GROOMING

• Idea of the proof for g = 1: we take a tripartite request graph:



- The problem of traffic grooming is equivalent to finding the maximum number of edge-disjoint triangles
- Thus, traffic grooming is APX-complete

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

APX-completeness of PATH TRAFFIC GROOMING

• The problem is in *P* for *g* = 1 (*J.-C.Bermond*, *L.Braud* and *D.Coudert*, *SIROCCO'05*)

 The complexity for fixed g ≥ 2 (even if P/NP?) has been an open problem for a while

• We have proved that the problem is APX-complete for fixed $g \ge 2$

EN 4 EN

APX-completeness of PATH TRAFFIC GROOMING

• The problem is in *P* for *g* = 1 (*J.-C.Bermond*, *L.Braud* and *D.Coudert*, *SIROCCO'05*)

 The complexity for fixed g ≥ 2 (even if P/NP?) has been an open problem for a while

• We have proved that the problem is APX-complete for fixed $g \ge 2$

B N A **B** N

Approximation algorithm for TRAFFIC GROOMING

• Now we are going to answer to the second open question:

approximation algorithm (for rings and paths) with running time polynomial in both n and g, with an approximation ratio depending only on n:

Theorem

There exists a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor $\mathcal{O}(n^{1/3}\log^2 n)$ for any $g \ge 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approximation algorithm for TRAFFIC GROOMING

• Now we are going to answer to the second open question:

approximation algorithm (for rings and paths) with running time polynomial in both n and g, with an approximation ratio depending only on n:

Theorem

There exists a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor $\mathcal{O}(n^{1/3} \log^2 n)$ for any $g \ge 1$.

Idea of the algorithm: first step

Divide the request set into log *n* classes C_i, i = 0, ..., log n − 1 s.t. in each class C_i the length of the requests is in [2ⁱ, 2ⁱ⁺¹):

$$C_0 \rightarrow$$
 length in the interval [1,2)

$$C_1 \rightarrow$$
 length in the interval [2,4)

$$C_2 \rightarrow$$
 length in the interval [4,8)

$$C_{\log n-1} \rightarrow \text{length in the interval } [\frac{n}{2}, n]$$

For each class C_i → the ring can be divided into intervals of length 2ⁱ s.t. the only requests are between consecutive intervals.

• we obtain $\frac{n}{2^{i}}$ subproblems for each class: each one consists in finding an optimal solution in a bipartite graph of size $2 \cdot 2^{i}$.

BIPARTITE TRAFFIC GROOMING

Input: A bipartite graph *R*, and a grooming factor *g*. **Output:** Partition of the edges of *R* into subgraphs R_{ω} with at most *g* edges, $1 \le \omega \le W$. **Objective:** Minimize $\sum_{\omega=1}^{W} |V(R_{\omega})|$.

• Solve all these BIPARTITE TRAFFIC GROOMING subproblems independently, and output the union of all solutions.

- For each class C_i → the ring can be divided into intervals of length 2ⁱ s.t. the only requests are between consecutive intervals.
- we obtain ⁿ/_{2ⁱ} subproblems for each class:
 each one consists in finding an optimal solution in a bipartite graph of size 2 · 2ⁱ.

BIPARTITE TRAFFIC GROOMING

Input: A bipartite graph *R*, and a grooming factor *g*. **Output:** Partition of the edges of *R* into subgraphs R_{ω} with at most *g* edges, $1 \le \omega \le W$. **Objective:** Minimize $\sum_{\omega=1}^{W} |V(R_{\omega})|$.

• Solve all these BIPARTITE TRAFFIC GROOMING subproblems independently, and output the union of all solutions.

- For each class C_i → the ring can be divided into intervals of length 2ⁱ s.t. the only requests are between consecutive intervals.
- we obtain ⁿ/_{2ⁱ} subproblems for each class:
 each one consists in finding an optimal solution in a bipartite graph of size 2 · 2ⁱ.

BIPARTITE TRAFFIC GROOMING

Input: A bipartite graph *R*, and a grooming factor *g*. **Output:** Partition of the edges of *R* into subgraphs R_{ω} with at most *g* edges, $1 \le \omega \le W$. **Objective:** Minimize $\sum_{\omega=1}^{W} |V(R_{\omega})|$.

• Solve all these BIPARTITE TRAFFIC GROOMING subproblems independently, and output the union of all solutions.

- For each class C_i → the ring can be divided into intervals of length 2ⁱ s.t. the only requests are between consecutive intervals.
- we obtain ⁿ/_{2ⁱ} subproblems for each class:
 each one consists in finding an optimal solution in a bipartite graph of size 2 · 2ⁱ.

BIPARTITE TRAFFIC GROOMING

Input: A bipartite graph *R*, and a grooming factor *g*. **Output:** Partition of the edges of *R* into subgraphs R_{ω} with at most *g* edges, $1 \le \omega \le W$. **Objective:** Minimize $\sum_{\omega=1}^{W} |V(R_{\omega})|$.

• Solve all these BIPARTITE TRAFFIC GROOMING subproblems independently, and output the union of all solutions.

Second step of the algorithm

The *density* ρ(G) of a graph G = (V, E): is its edges-to-vertices ratio, that is:

$$\rho(G) := \frac{|E(G)|}{|V(G)|}$$

- More generally, for any subset S ⊂ V, we call *density* of S, ρ_G(S) or simply ρ(S), to the density of the induced graph on S, i.e. ρ(S) := ρ(G[S]).
- We use the DENSE *k*-SUBGRAPH optimization problem:

DENSE *k*-SUBGRAPH (D*k*S): **Input**: a graph G = (V, E). **Output**: a subset $S \subseteq V$, with |S| = k, such that $\rho(S)$ is maximized.

(U.Feige, D.Peleg and G.Kortsarz, Algorithmica'01)

Second step of the algorithm

The *density* ρ(G) of a graph G = (V, E): is its edges-to-vertices ratio, that is:

$$\rho(G) := \frac{|E(G)|}{|V(G)|}$$

- More generally, for any subset S ⊂ V, we call *density* of S, ρ_G(S) or simply ρ(S), to the density of the induced graph on S, i.e. ρ(S) := ρ(G[S]).
- We use the DENSE *k*-SUBGRAPH optimization problem:

DENSE *k*-SUBGRAPH (D*k*S): **Input**: a graph G = (V, E). **Output**: a subset $S \subseteq V$, with |S| = k, such that $\rho(S)$ is maximized.

(U.Feige, D.Peleg and G.Kortsarz, Algorithmica'01)

Second step of the algorithm (II)

• To solve each BIPARTITE TRAFFIC GROOMING subproblem in a bipartite graph *R*:

proceed **greedily** (until all edges are covered), by finding at step *i* a **subgraph**

 $R_i \subseteq G \setminus (R_1 \cup \cdots \cup R_{i-1})$

with at most g edges in the following way:

For each $k = 2, \ldots, 2g$ find a subgraph

 $B_k \subseteq R \setminus (R_1 \cup \cdots \cup R_{i-1})$

using the best algorithm for the **DENSE** *k*-**SUBGRAPH** problem. (*U.Feige*, *D.Peleg and G.Kortsarz*, *Algorithmica*'01)

• Now we have to choose one of these B_k .

Second step of the algorithm (II)

• To solve each BIPARTITE TRAFFIC GROOMING subproblem in a bipartite graph *R*:

proceed **greedily** (until all edges are covered), by finding at step *i* a **subgraph**

$$R_i \subseteq G \setminus (R_1 \cup \cdots \cup R_{i-1})$$

with at most g edges in the following way:

For each k = 2, ..., 2g find a subgraph

 $B_k \subseteq R \setminus (R_1 \cup \cdots \cup R_{i-1})$

using the best algorithm for the **DENSE** *k*-**SUBGRAPH** problem. (*U.Feige*, *D.Peleg and G.Kortsarz*, *Algorithmica*'01)

• Now we have to choose one of these B_k .

Second step of the algorithm (II)

• To solve each BIPARTITE TRAFFIC GROOMING subproblem in a bipartite graph *R*:

proceed **greedily** (until all edges are covered), by finding at step *i* a **subgraph**

$$R_i \subseteq G \setminus (R_1 \cup \cdots \cup R_{i-1})$$

with at most g edges in the following way:

For each k = 2, ..., 2g find a subgraph

$$B_k \subseteq R \setminus (R_1 \cup \cdots \cup R_{i-1})$$

using the best algorithm for the **DENSE** *k***-SUBGRAPH** problem. (*U.Feige*, *D.Peleg* and *G.Kortsarz*, *Algorithmica*'01)

• Now we have to choose one of these B_k .

Ignasi Sau (COST 293)

Second step of the algorithm (III)

• If for some k^* ,

$|E(B_{k^*})| > g$, and $|E(B_i)| \le g$ for all $i < k^*$,

remove $|E(B_k^*)| - g$ **arbitrary edges** of B_{k^*} , and replace B_k^* with this new graph.

Stop the search at k^* , and **output the densest graph** among $B_2, \ldots, B_{k^*-1}, B_{k^*}$.

• If not, output the densest subgraph among B_2, \ldots, B_{2g} .

イロト イポト イラト イラト

Second step of the algorithm (III)

If for some k*,

 $|E(B_{k^*})| > g$, and $|E(B_i)| \le g$ for all $i < k^*$,

remove $|E(B_k^*)| - g$ **arbitrary edges** of B_{k^*} , and replace B_k^* with this new graph.

Stop the search at k^* , and **output the densest graph** among $B_2, \ldots, B_{k^*-1}, B_{k^*}$.

• If not, output the densest subgraph among B_2, \ldots, B_{2g} .

Second step of the algorithm (III)

If for some k*,

 $|E(B_{k^*})| > g$, and $|E(B_i)| \le g$ for all $i < k^*$,

remove $|E(B_k^*)| - g$ **arbitrary edges** of B_{k^*} , and replace B_k^* with this new graph.

Stop the search at k^* , and **output the densest graph** among $B_2, \ldots, B_{k^*-1}, B_{k^*}$.

• If not, output the densest subgraph among B_2, \ldots, B_{2g} .

イロト イポト イヨト イヨト 二日

- *Recall*: *n* is the number of nodes, and *g* is the grooming factor.
- **Step 1**: divide the request set into subsets (according to the length), and solve each problem independently.

We loose a factor 2 log n

- Step 2: proceed greedily by removing a subgraph found using the algorithm for DENSE k-SUBGRAPH (removing edges if necessary).
 - We loose a factor $2 \log n$ due to the *greedy* approach, and a factor $2n^{1/3}$ due to DENSE *k*-SUBGRAPH
- So, the approximation ratio of the algorithm is at most: $2 \log n \cdot 2 \log n \cdot 2n^{1/3} = 8n^{1/3} \log^2 n$
- Remark: if the request graph is *H*-minor free, then the approximation ratio becomes O(log² n).

Ignasi Sau (COST 293)

- *Recall*: *n* is the number of nodes, and *g* is the grooming factor.
- Step 1: divide the request set into subsets (according to the length), and solve each problem independently.

We loose a factor 2 log n

 Step 2: proceed greedily by removing a subgraph found using the algorithm for DENSE k-SUBGRAPH (removing edges if necessary).

We loose a factor $2 \log n$ due to the greedy approach, and a factor $2n^{1/3}$ due to DENSE k-SUBGRAPH

• So, the approximation ratio of the algorithm is at most: $2\log n + 2\log n + 2n^{1/3} - 8n^{1/3}\log^2 n$

• **Remark:** if the request graph is *H*-minor free, then the approximation ratio becomes $O(\log^2 n)$.

Ignasi Sau (COST 293)

- *Recall*: *n* is the number of nodes, and *g* is the grooming factor.
- Step 1: divide the request set into subsets (according to the length), and solve each problem independently.

We loose a factor 2 log n

 Step 2: proceed greedily by removing a subgraph found using the algorithm for DENSE k-SUBGRAPH (removing edges if necessary).

We loose a factor $2 \log n$ due to the *greedy* approach, and a factor $2n^{1/3}$ due to DENSE *k*-SUBGRAPH

• So, the approximation ratio of the algorithm is at most: $2 \log n \cdot 2 \log n \cdot 2n^{1/3} - 8n^{1/3} \log^2 n$

• **Remark:** if the request graph is *H*-minor free, then the approximation ratio becomes $O(\log^2 n)$.

Ignasi Sau (COST 293)

- *Recall*: *n* is the number of nodes, and *g* is the grooming factor.
- Step 1: divide the request set into subsets (according to the length), and solve each problem independently.

We loose a factor 2 log n

 Step 2: proceed greedily by removing a subgraph found using the algorithm for DENSE k-SUBGRAPH (removing edges if necessary).

We loose a factor $2 \log n$ due to the *greedy* approach, and a factor $2n^{1/3}$ due to DENSE *k*-SUBGRAPH

• So, the approximation ratio of the algorithm is at most: $2\log n \cdot 2\log n \cdot 2n^{1/3} - 8n^{1/3}\log^2 n$

• **Remark:** if the request graph is *H*-minor free, then the approximation ratio becomes $O(\log^2 n)$.

Ignasi Sau (COST 293)

- *Recall*: *n* is the number of nodes, and *g* is the grooming factor.
- Step 1: divide the request set into subsets (according to the length), and solve each problem independently.

We loose a factor 2 log n

• Step 2: proceed greedily by removing a subgraph found using the algorithm for DENSE *k*-SUBGRAPH (removing edges if necessary).

We loose a factor $2 \log n$ due to the *greedy* approach, and a factor $2n^{1/3}$ due to DENSE *k*-SUBGRAPH

• So, the approximation ratio of the algorithm is at most:

$$2\log n \cdot 2\log n \cdot 2n^{1/3} = 8n^{1/3}\log^2 n$$

• **Remark:** if the request graph is *H*-minor free, then the approximation ratio becomes $O(\log^2 n)$.

Ignasi Sau (COST 293)

- We have proved that TRAFFIC GROOMING for a fixed grooming factor *g* does not accept to be approximated within any constant factor.
- We have exhibited a polynomial-time approximation algorithm for TRAFFIC GROOMING when both the number of nodes and the grooming factor belong to the input.
- Further research (for both PATH and RING):
 - For fixed g: improve the best constant-factor approximation algorithm.
 So far is O(log g)
 - For g belonging to the input: improve the algorithm and/or the best existing hardness result.
 So far is not APX, we conjecture that it is n^e for some constant e >

- We have proved that TRAFFIC GROOMING for a fixed grooming factor *g* does not accept to be approximated within any constant factor.
- We have exhibited a polynomial-time approximation algorithm for TRAFFIC GROOMING when both the number of nodes and the grooming factor belong to the input.
- Further research (for both PATH and RING):
 - For fixed g: improve the best constant-factor approximation algorithm.
 So far is O(log g)
 - For g belonging to the input: improve the algorithm and/or the best existing hardness result.
 So far is not APX, we conjecture that it is n^ε for some constant ε >

- We have proved that TRAFFIC GROOMING for a fixed grooming factor *g* does not accept to be approximated within any constant factor.
- We have exhibited a polynomial-time approximation algorithm for TRAFFIC GROOMING when both the number of nodes and the grooming factor belong to the input.
- Further research (for both PATH and RING):
 - For fixed g: improve the best constant-factor approximation algorithm.
 So far is O(log g)
 - For g belonging to the input: improve the algorithm and/or the best existing hardness result.
 So far is not APX, we conjecture that it is n^ε for some constant ε >

- We have proved that TRAFFIC GROOMING for a fixed grooming factor *g* does not accept to be approximated within any constant factor.
- We have exhibited a polynomial-time approximation algorithm for TRAFFIC GROOMING when both the number of nodes and the grooming factor belong to the input.
- Further research (for both PATH and RING):
 - For fixed g: improve the best constant-factor approximation algorithm.
 So far is O(log g)
 - For g belonging to the input: improve the algorithm and/or the best existing hardness result.
 So far is not APX, we conjecture that it is n^ε for some constant ε >

- We have proved that TRAFFIC GROOMING for a fixed grooming factor *g* does not accept to be approximated within any constant factor.
- We have exhibited a polynomial-time approximation algorithm for TRAFFIC GROOMING when both the number of nodes and the grooming factor belong to the input.
- Further research (for both PATH and RING):
 - For fixed g: improve the best constant-factor approximation algorithm.
 So far is O(log g)
 - For g belonging to the input: improve the algorithm and/or the best existing hardness result.
 So far is not APX, we conjecture that it is n^ε for some constant ε > 0

3

Thanks!

Ignasi Sau (COST 293)

Hardness of Traffic Grooming

30th October 2007 37 / 37

2