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Packing and covering

König’s min-max theorem in bipartite graphs:

Min Vertex Cover = Max Matching

.

.

4/25



Packing and covering

König’s min-max theorem in bipartite graphs:

Min Vertex Cover = Max Matching

min # vertices covering all edges > max # of disjoint edges

.

4/25



Packing and covering

König’s min-max theorem in bipartite graphs:

Min Vertex Cover = Max Matching

min # vertices covering all edges > max # of disjoint edges

min # vertices covering all edges 6 max # of disjoint edges

4/25



Packing and covering

König’s min-max theorem in bipartite graphs:

Min Vertex Cover = Max Matching

min # vertices covering all edges > max # of disjoint edges

.

4/25



Packing and covering

König’s min-max theorem in bipartite graphs:

Min Vertex Cover = Max Matching

min # vertices covering all H ∈ H > max # of disjoint H ∈ H

.

4/25



Packing and covering

König’s min-max theorem in bipartite graphs:

Min Vertex Cover = Max Matching

min # vertices covering all H ∈ H > max # of disjoint H ∈ H

min # vertices covering all H ∈ H 6 max # of disjoint H ∈ H ?

4/25



Packing and covering

König’s min-max theorem in bipartite graphs:

Min Vertex Cover = Max Matching

min # vertices covering all H ∈ H > max # of disjoint H ∈ H

min # vertices covering all H ∈ H 6 f (max # of disjoint H ∈ H ) ?

4/25



Packing and covering

König’s min-max theorem in bipartite graphs:

Min Vertex Cover = Max Matching

If there exists such f for all G , then H satisfies the Erdős-Pósa property.

min # vertices covering all H ∈ H 6 f (max # of disjoint H ∈ H ) ?
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Minors and models in graphs

G H

H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges.

H-model in G : collection {Su : u ∈ V (H)} s.t.

the Su’s are vertex-disjoint connected subgraphs of G , and
there is an edge between Su and Sv in G for every edge uv ∈ E (H).

A K5-model

The Su’s are called vertex images.
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Packing and covering H-models

Let H be a fixed graph. For a graph G , we define:

νH(G ) := packing number
= max. number of vertex-disjoint H-models in G .

τH(G ) := covering (or transversal) number
= min. number of vertices hitting all H-models in G .

Clearly, τH(G ) > νH(G ) ∀G .

For which H τH(G ) 6 f (νH(G )) ∀G , for some function f ?

This is called the Erdős-Pósa property of H-minors.
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Erdős-Pósa property of H-minors

Fundamental result:

τH(G ) 6 f (νH(G )) ∀G ⇔ H is planar [Robertson, Seymour ’ 86]

Is it the end of the story? NO!

The derived upper bounds τH 6 f (νH) are huge: f (νH) = Ω(2νH
2
).

This is because Robertson and Seymour’s proof uses the excluded grid

theorem from Graph Minors.

Natural objective: optimize f (νH).
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The property does NOT hold if H is not planar

H = K5
Take a

√
n ×
√

n triangulated toroidal grid G :

a

b
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d

e

f

a

a
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d

e

f

a

1 2 3 4 5

1 2 3 4 5
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The property does NOT hold if H is not planar

H = K5 H not planar

a

b

c

d

e
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Therefore, the result of Robertson and Seymour is best possible.
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Brief state of the art of Erdős-Pósa property for minors

τH(G ) 6 f (νH(G )) ∀G ⇔ H is planar [Robertson, Seymour ’ 86]

Erdős and Pósa seminal result for H = triangle (optimal):
f (k) = O(k log k). [Erdős, Pósa ’ 65]

f (k) = O(k) when H is a forest (optimal). [Fiorini, Joret, Wood ’12]

f (k) = O(k) when H is planar and G belongs to a minor-closed
graph class (optimal). [Fomin, Saurabh, Thilikos ’10]

F f (k) = O(k poly log(k)) for any planar graph H. [Chekuri, Chuzhoy ’13]
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Lower bound for any planar graph H with a cycle

Theorem: ∃fH(k) s.t. ∀G , k , either νH(G ) > k or τH(G ) 6 fH(k).

We have fH(k) = Ω(k log k) for any planar graph H containing a cycle:

Let G be an n-vertex cubic graph with tw(G ) = Ω(n) and
girth(G ) = Ω(log n). (such graphs are well-known to exist)

Any H-minor-free graph F satisfies tw(F ) 6 d for some constant d ,
as H is planar. [Robertson, Seymour ’86]

Thus tw(G − X ) 6 d for any H-hitting set X , and therefore
τH(G ) = Ω(n).

On the other hand, every subgraph S of G containing an H-model has
a cycle, so |V (S)| = O(log n), and therefore νc(G ) = O(n/ log n).

This implies that (easy to check) ∃ constant b > 0 such that
fH(k) > b · k log k (i.e., fH(k) = Ω(k log k)).
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Summarizing...

For any planar graph H with a cycle and a general graph G :

Lower bound: fH(k) = Ω(k log k).

Upper bound: fH(k) = O(k poly log(k)). [Chekuri, Chuzhoy ’13]

Only graph H for which the lower bound is attained is the triangle:

f4(k) = O(k log k). [Erdős, Pósa ’ 65]
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Pumpkins

c-pumpkin:

c

Can be seen as a natural generalization of a cycle.

(N.B: “graph” = multigraph)
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Graphs with no c-pumpkin minor

c = 1: empty graphs

c = 2: forests

c = 3: no two cycles share an edge

etc.
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Covering (or hitting) pumpkins

c-pumpkin hitting set:
vertex subset X ⊆ V (G ) s.t. G − X has no c-pumpkin minor

X
c = 3

Hitting set number τc(G ): min. size of a c-pumpkin hitting set
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Packing pumpkins

c-pumpkin packing:
collection of vertex-disjoint subgraphs of G , each containing a c-pumpkin
minor

c = 2

Packing number νc(G ): max. cardinality of a c-pumpkin packing
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A recent result and our main theorem

• A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh ’12)

For any fixed integer c > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin

hitting set of size at most f (k) = O(k2).

That is, τc 6 νc
2

.

• Our result:

Theorem (Fiorini, Joret, S. ’13)

For any fixed integer c > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin
hitting set of size at most f (k) = O(k log k). That is, τc 6 νc log νc

.
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Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh ’12)

For any fixed integer c > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin

hitting set of size at most f (k) = O(k2). That is, τc 6 νc
2

.

• Our result:

Theorem (Fiorini, Joret, S. ’13)

For any fixed integer c > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin
hitting set of size at most f (k) = O(k log k). That is, τc 6 νc log νc

.
17/25



A recent result and our main theorem
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2
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• Our result:

Theorem (Fiorini, Joret, S. ’13)

For any fixed integer c > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin
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Useful reduction rules

We first need two reduction rules R1 and R2 dealing with 1-connected
and 2-connected components without c-pumpkin minors, respectively, that
preserve both νc(G ) and τc(G ):

u v

u v

For c = 2: R1 = deleting degree-1 vertices

For c = 2: R2 = suppressing degree-2 vertices

Lemma

Let c > 2 be a fixed integer. Suppose that G ∗ results from the application
of R1 or R2 on a graph G . Then τc(G ) = τc(G ∗) and νc(G ) = νc(G ∗).
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We look at a subgraph H with nice properties

A graph is c-reduced if rules R1 or R2 cannot be applied anymore.

For a graph G , we denote by G a c-reduced graph obtained from G
by applying reduction rules R1 and R2.

Given G , let H be a maximal subgraph of G
(w.r.t. # vertices and # edges) such that

∆(H) 6 3,

where ∆ denotes the maximum degree.

Main Lemma

If |V (H)| > d · k log k for some constant d (depending only on c),
then H contains k vertex-disjoint c-pumpkin-models.
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Ingredients in the proof of the Main Lemma

We prove it by induction on k , using that:

Lemma

Every n-vertex c-reduced graph G contains a c-pumpkin-model of size O(log n).

(Generalization of: If δ(G ) > 3, then girth(G ) < 2 log n)

We choose a smallest c-pumpkin-model C , and to apply induction we
need to prove that H − C contains a subgraph F such that

|V (F )| > d · (k − 1) log(k − 1).

Crucial: ∀ p > 0, ∃ f (p) s.t. every 3-connected graph with > f (p)
vertices has a minor isomorphic to: [Oporowski, Oxley, Thomas ’93]

Wp K3,p

(Note that for p > c , both Wp and K3,p contain the c-pumpkin as a minor)
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Outline of the overall proof

Given G ,

G

We can prove that ∃ a set X ∪ U ⊆ V (H), with |X | = O(k),
meeting every c-pumpkin-model in G .

As |X | = O(k), it suffices to show that |U| = O(k log k),
unless H contains k disjoint c-pumpkin-models.

This follows from the Main Lemma applied to the graph H.
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Further research

Main open problem: H non-acyclic planar, fH(k) = O(k poly log(k))

Conjecture

For all non-acyclic planar H, we have fH(k) = O(k log k). (optimal)

Approximation algorithms

Goal: Given a graph G , finding

a c-pumpkin packing M and

a c-pumpkin hitting set X

s.t. |X | 6 f (c , n) · |M| for some approximation ratio f (c , n)

(these problems generalize Vertex Cover, Feedback Vertex Set, . . .)

F we provided an Oc(log n)-approximation algorithm for c-Pumpkin
Hitting Set and c-Pumpkin Packing. [Joret, Paul, S., Saurabh, Thomassé ’11]

F constant-factor (deterministic) approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3) [Fiorini, Joret, Pietropaoli ’10]
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F constant-factor (deterministic) approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3) [Fiorini, Joret, Pietropaoli ’10]

24/25



Further research

Main open problem: H non-acyclic planar, fH(k) = Ω(k log k)

Conjecture

For all non-acyclic planar H, we have fH(k) = O(k log k). (optimal)

Approximation algorithms

Goal: Given a graph G , finding

a c-pumpkin packing M and

a c-pumpkin hitting set X

s.t. |X | 6 f (c , n) · |M| for some approximation ratio f (c , n)

(these problems generalize Vertex Cover, Feedback Vertex Set, . . .)

F we provided an Oc(log n)-approximation algorithm for c-Pumpkin
Hitting Set and c-Pumpkin Packing. [Joret, Paul, S., Saurabh, Thomassé ’11]
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