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Packing and covering

Konig's min-max theorem in bipartite graphs:
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Packing and covering

Konig's min-max theorem in bipartite graphs:

MIN VERTEX COVER = MAX MATCHING

If there exists such f for all G, then H satisfies the Erdos-Pdsa property.

min # vertices covering all < f(max # of disjoint ) ?
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Minors and models in graphs

H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges.
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Minors and models in graphs

H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges.

H-model in G: collection {S, : u € V(H)} s.t.
@ the S,'s are vertex-disjoint connected subgraphs of G, and
o there is an edge between S, and S, in G for every edge uv € E(H).

A Ks-model

The S,'s are called vertex images.
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Packing and covering H-models

Let H be a fixed graph. For a graph G, we define:

vi(G) := packing number
= max. number of vertex-disjoint H-models in G.

TH(G) := covering (or transversal) number
= min. number of vertices hitting all H-models in G.

Clearly, TH(G) = vu(G) VG.
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Let H be a fixed graph. For a graph G, we define:

vi(G) := packing number
= max. number of vertex-disjoint H-models in G.

TH(G) := covering (or transversal) number
= min. number of vertices hitting all H-models in G.

Clearly, TH(G) = vu(G) VG.

For which H ‘TH(G) < f(yH(G))‘ VG, for some function f 7

This is called the Erdos-Pésa property of H-minors.
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ErdGs-Pdsa property of H-minors

Fundamental result:

‘ TH(G) g f(VH(G)) \V/G <~ H |S planar ‘ [Robertson, Seymour ' 86]

Is it the end of the story?  NO!

o The derived upper bounds 74 < f(vy) are huge: f(vy) = Q(274°).

This is because Robertson and Seymour’s proof uses the excluded grid
theorem from Graph Minors.

e Natural objective: optimize f(vy).
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The property does NOT hold if H is not planar

Heks X Take a /n x \/n triangulated toroidal grid G:
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The property does NOT hold if H is not planar

H = Ks X Take a \/n x /n triangulated toroidal grid G:
o 5 o o o oF
bo—0—0—0—0—0—0b
co—0 i)/)—I o oc
d O—0 o O—0 d
eg—0 1—<A o 0e
fo—o0—0o0—0—0—0—0f

v(G) =1 but 74(G)=0(/n)
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The property does NOT hold if H is not planar

H=Ks X H not planar X

Therefore, the result of Robertson and Seymour is best possible.
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Lower bound for any planar graph H with a cycle

| Theorem: 3fy(K) s.t. VG, k, either v,(G) > k or 7y(G) < fi(K). |

We have fy(k) = Q(klog k) for any planar graph H containing a cycle:

@ Let G be an n-vertex cubic graph with tw(G) = Q(n) and

girth(G) = Q(log n). (such graphs are well-known to exist)
@ Any H-minor-free graph F satisfies tw(F) < d for some constant d,

as H is planar. [Robertson, Seymour '86]
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H(G) = Q(n).
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Lower bound for any planar graph H with a cycle

| Theorem: 3fy(K) s.t. VG, k, either v,(G) > k or 7y(G) < fi(K). |

We have fy(k) = Q(klog k) for any planar graph H containing a cycle:

@ Let G be an n-vertex cubic graph with tw(G) = Q(n) and
girth(G) = Q(log n). (such graphs are well-known to exist)
@ Any H-minor-free graph F satisfies tw(F) < d for some constant d,
as H is planar. [Robertson, Seymour '86]
@ Thus tw(G — X) < d for any H-hitting set X, and therefore
H(G) = Q(n).
@ On the other hand, every subgraph S of G containing an H-model has
a cycle, so |V(S)| = O(log n), and therefore v.(G) = O(n/ log n).
@ This implies that (easy to check) 3 constant b > 0 such that
fu(k) > b-klogk  (i.e., fu(k) = Q(klogk)).
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Summarizing...

For any planar graph H with a cycle and a general graph G:

e Lower bound:  fy(k) = Q(klog k).
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Summarizing...

For any planar graph H with a cycle and a general graph G:

e Lower bound:  fy(k) = Q(klog k).
o Upper bound:  fiy(k) = O(klog®® k). [Chekuri, Chuzhoy '13]

@ Only graph H for which the lower bound is attained is the triangle:

fA(k) = O(k log k)_ [Erdés, Pésa ’ 65]
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© Our result
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Pumpkins
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Pumpkins @

c-pumpkin:

Can be seen as a natural generalization of a cycle.

(N.B: “graph” = multigraph)
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Graphs with no c-pumpkin minor
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@ c = 1: empty graphs
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Graphs with no c-pumpkin minor

@ c = 1: empty graphs

o
% o
o

S DAY

@ ¢ = 2: forests
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Graphs with no c-pumpkin minor

@ c = 1: empty graphs

(o]
o
;{ (o]
@ ¢ = 2: forests

S DAY

@ ¢ = 3: no two cycles share an edge

% >

@ etc.
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Covering (or hitting) pumpkins

c-pumpkin hitting set:
vertex subset X C V(G) s.t. G — X has no c-pumpkin minor
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Covering (or hitting) pumpkins

c-pumpkin hitting set:
vertex subset X C V(G) s.t. G — X has no c-pumpkin minor

Hitting set number 7.(G): min. size of a c-pumpkin hitting set
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Packing pumpkins

c-pumpkin packing:

collection of vertex-disjoint subgraphs of G, each containing a c-pumpkin
minor
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Packing pumpkins

c-pumpkin packing:

collection of vertex-disjoint subgraphs of G, each containing a c-pumpkin
minor

Packing number v.(G): max. cardinality of a c-pumpkin packing
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A recent result and our main theorem

e A recent result on Erdés-Pésa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh '12)

For any fixed integer ¢ > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin

hitting set of size at most f (k) = O(k?).
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e A recent result on Erdés-Pésa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh '12)

For any fixed integer ¢ > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin

hitting set of size at most f (k) = O(k?). ‘ That is, 7o < vc2

* Their proof uses tree decompositions and brambles.

e Our result:

Theorem (Fiorini, Joret, S. '13)

For any fixed integer ¢ > 1 and given an integer k > 1, every graph G
either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin
hitting set of size at most f(k) = O(klogk). | That is, 7c < vclog vc

* QOur proof follows and generalizes Erd6és-Pésa’s proof for the case c.= 2.
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© Sketch of proof
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Useful reduction rules

We first need two reduction rules R1 and R2 dealing with 1-connected

and 2-connected components without c-pumpkin minors, respectively, that
preserve both v(G) and 7.(G):

A\~
PO
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Useful reduction rules

We first need two reduction rules R1 and R2 dealing with 1-connected

and 2-connected components without c-pumpkin minors, respectively, that
preserve both v(G) and 7.(G):

A\~
PO

R1 = deleting degree-1 vertices
R2 = suppressing degree-2 vertices

@ For c =2:
@ For c =2:

Let c >

2 be a fixed integer. Suppose that G* results from the application
of R1 or R2 on a graph G. Then 7.(G) = 7(G*) and v.(G) = v(G*).
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We look at a subgraph H with nice properties

@ A graph is c-reduced if rules R1 or R2 cannot be applied anymore.
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We look at a subgraph H with nice properties

@ A graph is c-reduced if rules R1 or R2 cannot be applied anymore.

e For a graph G, we denote by G a c-reduced graph obtained from G
by applying reduction rules R1 and R2.

@ Given G, let H be a maximal subgraph of G
(w.r.t. # vertices and # edges) such that

A(H) < 3,

where A denotes the maximum degree.

If|V(H)| = d - klog k for some constant d (depending only on c),
then H contains k vertex-disjoint c-pumpkin-models.
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Ingredients in the proof of the Main Lemma

@ We prove it by induction on k, using that:

Every n-vertex c-reduced graph G contains a c-pumpkin-model of size O(log n).

(Generalization of: If 6(G) > 3, then girth(G) < 2logn)
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Ingredients in the proof of the Main Lemma

@ We prove it by induction on k, using that:

Every n-vertex c-reduced graph G contains a c-pumpkin-model of size O(log n).

(Generalization of: If 6(G) > 3, then girth(G) < 2logn)
@ We choose a smallest c-pumpkin-model C, and to apply induction we
need to prove that H — C contains a subgraph F such that

|V(F)| > d - (k—1)log(k — 1).
e Crucial: V¥ p >0, 3 f(p) s.t. every 3-connected graph with > f(p)
vertices has a minor isomorphic to: [Oporowski, Oxley, Thomas '93]

" % Y

(Note that for p > ¢, both W, and K3, contain the c-pumpkin as a minor)
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Outline of the overall proof

@ Given G, we consider the subgraph H defined before:

G

@ We can prove that 3 a set X U U C V(H), with |[X| = O(k),
meeting every c-pumpkin-model in G.

e As |X| = O(k), it suffices to show that |U| = O(k log k),
unless H contains k disjoint c-pumpkin-models.

@ This follows from the Main Lemma applied to the graph H.
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@ Further research
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Main open problem: H non-acyclic planar, fy(k) = O(k polylog(k))
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For all non-acyclic planar H, we have fy(k) = O(klogk).  (optimal)

‘ Approximation algorithms ‘

Goal: Given a graph G, finding
@ a c-pumpkin packing M and
@ a c-pumpkin hitting set X
s.t. |X| < f(e,n) - |M| for some approximation ratio (c, n)

(these problems generalize VERTEX COVER, FEEDBACK VERTEX SET, ...)

% we provided an O,(log n)-approximation algorithm for c-PUMPKIN
HITTING SET and c-PUMPKIN PACKING.  [oret, Paul, S., Saurabh, Thomassé '11]

% constant-factor (deterministic) approximation for the hitting version?
(so far, such an algorithm is only known for ¢ < 3) [Fiorini, Joret, Pietropaoli '10]
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