Optimal Erdős-Pósa property for pumpkins

Samuel Fiorini1 Gwenaël Joret1 Ignasi Sau2

1Université Libre de Bruxelles (Belgique)
2CNRS, LIRMM, Montpellier (France)

CSASC 2013. \textit{Koper, Slovenia}
Outline of the talk

1. Motivation
2. Our result
3. Sketch of proof
4. Further research
1. Motivation

2. Our result

3. Sketch of proof

4. Further research
König’s min-max theorem in bipartite graphs:

\[\text{Min Vertex Cover} = \text{Max Matching} \]
König’s min-max theorem in bipartite graphs:

\[
\text{Min Vertex Cover} = \text{Max Matching}
\]

\[
\min \text{ # vertices covering all edges} \geq \max \text{ # of disjoint edges}
\]
Packing and covering

König’s min-max theorem in bipartite graphs:

\[
\text{Min Vertex Cover} = \text{Max Matching}
\]

\[
\begin{align*}
\text{min} \ # \ \text{vertices covering all edges} & \geq \ \text{max} \ # \ \text{of disjoint edges} \\
\text{min} \ # \ \text{vertices covering all edges} & \leq \ \text{max} \ # \ \text{of disjoint edges}
\end{align*}
\]
Packing and covering

König’s min-max theorem in bipartite graphs:

\[
\text{Min Vertex Cover} = \text{Max Matching}
\]

\[
\text{min } \# \text{ vertices covering all edges} \geq \text{max } \# \text{ of disjoint edges}
\]
König's min-max theorem in bipartite graphs:

\[
\text{Min Vertex Cover} = \text{Max Matching}
\]

min \# vertices covering all \(H \in \mathcal{H} \) \(\geq \) max \# of disjoint \(H \in \mathcal{H} \)
König’s min-max theorem in bipartite graphs:

\[
\text{Min Vertex Cover} = \text{Max Matching}
\]

\[
\text{min } \text{# vertices covering all } H \in \mathcal{H} \geq \text{max } \text{# of disjoint } H \in \mathcal{H}
\]

\[
\text{min } \text{# vertices covering all } H \in \mathcal{H} \leq \text{max } \text{# of disjoint } H \in \mathcal{H}
\]
Packing and covering

König’s min-max theorem in bipartite graphs:

\[
\text{Min Vertex Cover} = \text{Max Matching}
\]

\[
\min \# \text{ vertices covering all } H \in \mathcal{H} \geq \max \# \text{ of disjoint } H \in \mathcal{H}
\]

\[
\min \# \text{ vertices covering all } H \in \mathcal{H} \leq f(\max \# \text{ of disjoint } H \in \mathcal{H})
\]
König’s min-max theorem in bipartite graphs:

\[\text{Min Vertex Cover} = \text{Max Matching} \]

If there exists such \(f \) for all \(G \), then \(\mathcal{H} \) satisfies the Erdős-Pósa property.

\[\min \# \text{ vertices covering all } H \in \mathcal{H} \leq f(\max \# \text{ of disjoint } H \in \mathcal{H}) \]
Minors and models in graphs

H is a **minor** of a graph G if H can be obtained from a subgraph of G by contracting edges.

The S_u's are called vertex images.
Minors and models in graphs

H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.

H-model in G: collection $\{S_u : u \in V(H)\}$ s.t.
- the S_u’s are vertex-disjoint connected subgraphs of G, and
- there is an edge between S_u and S_v in G for every edge $uv \in E(H)$.

A K_5-model

The S_u’s are called vertex images.
Let H be a **fixed** graph. For a graph G, we define:

\[\nu_H(G) := \text{packing number} \]
\[= \text{max. number of vertex-disjoint } H\text{-models in } G. \]

\[\tau_H(G) := \text{covering (or transversal) number} \]
\[= \text{min. number of vertices hitting all } H\text{-models in } G. \]

Clearly, \[\tau_H(G) \geq \nu_H(G) \quad \forall G. \]
Let H be a fixed graph. For a graph G, we define:

$\nu_H(G) := \text{packing number}$

$= \max.$ number of vertex-disjoint H-models in G.

$\tau_H(G) := \text{covering (or transversal) number}$

$= \min.$ number of vertices hitting all H-models in G.

Clearly, $\tau_H(G) \geq \nu_H(G) \ \forall G$.

For which $H \quad \boxed{\tau_H(G) \leq f(\nu_H(G))} \quad \forall G$, for some function f ?
Packing and covering H-models

Let H be a fixed graph. For a graph G, we define:

$\nu_H(G) :=$ packing number
= max. number of vertex-disjoint H-models in G.

$\tau_H(G) :=$ covering (or transversal) number
= min. number of vertices hitting all H-models in G.

Clearly, $\tau_H(G) \geq \nu_H(G) \ \forall G$.

For which H $\tau_H(G) \leq f(\nu_H(G)) \ \forall G$, for some function f?

This is called the Erdős-Pósa property of H-minors.
Fundamental result:

\[\tau_H(G) \leq f(\nu_H(G)) \quad \forall G \iff H \text{ is planar} \]

[Robertson, Seymour '86]

Is it the end of the story?

NO!

The derived upper bounds \(\tau_H(G) \leq f(\nu_H(G)) \) are huge:

\[f(\nu_H(G)) = \Omega(2^{\nu_H(G)^2}) \]

This is because Robertson and Seymour's proof uses the excluded grid theorem from Graph Minors.

Natural objective: optimize \(f(\nu_H(G)) \).
Fundamental result:

\[\tau_H(G) \leq f(\nu_H(G)) \quad \forall G \quad \iff \quad H \text{ is planar} \]

[Robertson, Seymour '86]

Is it the end of the story?
Fundamental result:

\[\tau_H(G) \leq f(\nu_H(G)) \quad \forall G \iff H \text{ is planar} \]

[Robertson, Seymour '86]

Is it the end of the story? NO!

- The derived upper bounds \(\tau_H \leq f(\nu_H) \) are huge: \(f(\nu_H) = \Omega(2^{\nu_H^2}) \).

 This is because Robertson and Seymour’s proof uses the excluded grid theorem from Graph Minors.
Erdős-Pósa property of H-minors

Fundamental result:

\[\tau_H(G) \leq f(\nu_H(G)) \quad \forall G \iff H \text{ is planar} \]

[Robertson, Seymour ’86]

Is it the end of the story? \textbf{NO!}

- The derived upper bounds $\tau_H \leq f(\nu_H)$ are \textbf{huge}: $f(\nu_H) = \Omega(2^{\nu_H^2})$.

 This is because Robertson and Seymour’s proof uses the \textit{excluded grid theorem} from Graph Minors.

- \textbf{Natural objective:} optimize $f(\nu_H)$.
The property does NOT hold if H is not planar

$H = K_5 \times$

Take a $\sqrt{n} \times \sqrt{n}$ triangulated toroidal grid G:

![Diagram of a triangulated toroidal grid](image-url)
The property does NOT hold if H is not planar

$H = K_5 \times 1$

Take a $\sqrt{n} \times \sqrt{n}$ triangulated toroidal grid G:

\[\nu_H(G) = 1 \] but \[\tau_H(G) = \Theta(\sqrt{n}) \]
The property does NOT hold if H is not planar

$H = K_5 \times \not\!

H$ not planar \not\!

Therefore, the result of Robertson and Seymour is best possible.
Brief state of the art of Erdős-Pósa property for minors

\[\tau_H(G) \leq f(\nu_H(G)) \quad \forall G \quad \iff \quad H \text{ is planar} \]

[Robertson, Seymour '86]
Brief state of the art of Erdős-Pósa property for minors

- \(\tau_H(G) \leq f(\nu_H(G)) \) \(\forall G \) \(\iff \) \(H \) is planar \[\text{[Robertson, Seymour '86]}\]

- Erdős and Pósa seminal result for \(H = \text{triangle} \) (optimal):
 \(f(k) = O(k \log k) \).
 \[\text{[Erdős, Pósa '65]}\]
Brief state of the art of Erdős-Pósa property for minors

- $\tau_H(G) \leq f(\nu_H(G)) \quad \forall G \iff H$ is planar \hfill [Robertson, Seymour '86]

- Erdős and Pósa seminal result for $H = \text{triangle}$ (optimal):

 $f(k) = O(k \log k)$.
 \hfill [Erdős, Pósa '65]

- $f(k) = O(k)$ when H is a forest (optimal).
 \hfill [Fiorini, Joret, Wood '12]
Brief state of the art of Erdős-Pósa property for minors

- \(T_H(G) \leq f(\nu_H(G)) \ \forall G \iff H \text{ is planar} \)
 [Robertson, Seymour '86]

- Erdős and Pósa seminal result for \(H = \text{triangle} \) (optimal): \(f(k) = O(k \log k) \).
 [Erdős, Pósa '65]

- \(f(k) = O(k) \) when \(H \) is a forest (optimal).
 [Fiorini, Joret, Wood '12]

- \(f(k) = O(k) \) when \(H \) is planar and \(G \) belongs to a minor-closed graph class (optimal).
 [Fomin, Saurabh, Thilikos '10]
Brief state of the art of Erdős-Pósa property for minors

- \(\tau_H(G) \leq f(\nu_H(G)) \quad \forall G \iff H \text{ is planar} \) \[\text{[Robertson, Seymour '86]}\]

- Erdős and Pósa seminal result for \(H = \text{triangle (optimal):} \)
 \(f(k) = O(k \log k). \) \[\text{[Erdős, Pósa '65]}\]

- \(f(k) = O(k) \) when \(H \) is a forest (optimal). \[\text{[Fiorini, Joret, Wood '12]}\]

- \(f(k) = O(k) \) when \(H \) is planar and \(G \) belongs to a minor-closed graph class (optimal). \[\text{[Fomin, Saurabh, Thilikos '10]}\]

- ★ \(f(k) = O(k \text{ poly log}(k)) \) for any planar graph \(H \). \[\text{[Chekuri, Chuzhoy '13]}\]
Lower bound for any planar graph H with a cycle

Theorem: $\exists f_H(k)$ s.t. $\forall G, k$, either $\nu_H(G) \geq k$ or $\tau_H(G) \leq f_H(k)$.
Lower bound for any planar graph H with a cycle

Theorem: $\exists f_H(k)$ s.t. $\forall G, k$, either $\nu_H(G) \geq k$ or $\tau_H(G) \leq f_H(k)$.

We have $f_H(k) = \Omega(k \log k)$ for any planar graph H containing a cycle:
Lower bound for any planar graph H with a cycle

Theorem: $\exists f_H(k) \text{ s.t. } \forall G, k, \text{ either } \nu_H(G) \geq k \text{ or } \tau_H(G) \leq f_H(k).$

We have $f_H(k) = \Omega(k \log k)$ for any planar graph H containing a cycle:

- Let G be an n-vertex cubic graph with $\text{tw}(G) = \Omega(n)$ and $\text{girth}(G) = \Omega(\log n)$. (such graphs are well-known to exist)
Theorem: \(\exists f_H(k) \) s.t. \(\forall G, k \), either \(\nu_H(G) \geq k \) or \(\tau_H(G) \leq f_H(k) \).

We have \(f_H(k) = \Omega(k \log k) \) for any planar graph \(H \) containing a cycle:

- Let \(G \) be an \(n \)-vertex cubic graph with \(\text{tw}(G) = \Omega(n) \) and \(\text{girth}(G) = \Omega(\log n) \).

- Any \(H \)-minor-free graph \(F \) satisfies \(\text{tw}(F) \leq d \) for some constant \(d \), as \(H \) is planar.

- Thus \(\text{tw}(G - X) \leq d \) for any \(H \)-hitting set \(X \), and therefore \(\tau_H(G) = \Omega(n) \).

(such graphs are well-known to exist)

[Robertson, Seymour ’86]
Lower bound for any planar graph H with a cycle

Theorem: $\exists f_H(k)$ s.t. $\forall G, k$, either $\nu_H(G) \geq k$ or $\tau_H(G) \leq f_H(k)$.

We have $f_H(k) = \Omega(k \log k)$ for any planar graph H containing a cycle:

- Let G be an n-vertex cubic graph with $\text{tw}(G) = \Omega(n)$ and $\text{girth}(G) = \Omega(\log n)$.
 (such graphs are well-known to exist)
- Any H-minor-free graph F satisfies $\text{tw}(F) \leq d$ for some constant d, as H is planar.
- Thus $\text{tw}(G - X) \leq d$ for any H-hitting set X, and therefore $\tau_H(G) = \Omega(n)$.
- [Robertson, Seymour '86]
- On the other hand, every subgraph S of G containing an H-model has a cycle, so $|V(S)| = O(\log n)$, and therefore $\nu_c(G) = O(n/\log n)$.
Lower bound for any planar graph H with a cycle

Theorem: $\exists f_H(k)$ s.t. $\forall G, k$, either $\nu_H(G) \geq k$ or $\tau_H(G) \leq f_H(k)$.

We have $f_H(k) = \Omega(k \log k)$ for any planar graph H containing a cycle:

- Let G be an n-vertex cubic graph with $\text{tw}(G) = \Omega(n)$ and $\text{girth}(G) = \Omega(\log n)$. (such graphs are well-known to exist)

- Any H-minor-free graph F satisfies $\text{tw}(F) \leq d$ for some constant d, as H is planar.

- Thus $\text{tw}(G - X) \leq d$ for any H-hitting set X, and therefore $\tau_H(G) = \Omega(n)$.

- On the other hand, every subgraph S of G containing an H-model has a cycle, so $|V(S)| = O(\log n)$, and therefore $\nu_c(G) = O(n/\log n)$.

- This implies that (easy to check) \exists constant $b > 0$ such that $f_H(k) > b \cdot k \log k$ (i.e., $f_H(k) = \Omega(k \log k)$).
For any planar graph H with a cycle and a general graph G:

- **Lower bound:** $f_H(k) = \Omega(k \log k)$.

[Chekuri, Chuzhoy '13]

Only graph H for which the lower bound is attained is the triangle: $f_\triangle(k) = O(k \log k)$. [Erd˝os, P´osa '65]
For any planar graph H with a cycle and a general graph G:

- **Lower bound**: $f_H(k) = \Omega(k \log k)$.
- **Upper bound**: $f_H(k) = O(k \text{ poly log}(k))$. [Chekuri, Chuzhoy '13]
For any planar graph H with a cycle and a general graph G:

- **Lower bound**: $f_H(k) = \Omega(k \log k)$.
- **Upper bound**: $f_H(k) = O(k \log^{35} k)$.

[Chekuri, Chuzhoy '13]
For any planar graph H with a cycle and a general graph G:

- **Lower bound:** $f_H(k) = \Omega(k \log k)$.
- **Upper bound:** $f_H(k) = O(k \log^{35} k)$. \[\text{[Chekuri, Chuzhoy '13]}\]

Only graph H for which the lower bound is attained is the triangle:

$$f_\Delta(k) = O(k \log k).$$ \[\text{[Erdős, Pósa '65]}\]
1 Motivation

2 Our result

3 Sketch of proof

4 Further research
Pumpkins
A c-pumpkin:

Can be seen as a natural generalization of a cycle.

(N.B: “graph” = multigraph)
Graphs with no c-pumpkin minor

- $c = 1$: empty graphs
- $c = 2$: forests
- $c = 3$: no two cycles share an edge

etc.
Graphs with no c-pumpkin minor

- $c = 1$: empty graphs
Graphs with no c-pumpkin minor

- $c = 1$: empty graphs

- $c = 2$: forests
Graphs with no c-pumpkin minor

- $c = 1$: empty graphs

- $c = 2$: forests

- $c = 3$: no two cycles share an edge

- etc.
c-pumpkin hitting set:
vertex subset $X \subseteq V(G)$ s.t. $G - X$ has no c-pumpkin minor
Covering (or hitting) pumpkins

c-pumpkin hitting set:
vertex subset $X \subseteq V(G)$ s.t. $G - X$ has no c-pumpkin minor

Hitting set number $\tau_c(G)$: min. size of a c-pumpkin hitting set
c-pumpkin packing:
collection of vertex-disjoint subgraphs of G, each containing a c-pumpkin minor

$c = 2$

$\nu_c(G)$: max. cardinality of a c-pumpkin packing
c-pumpkin packing:
collection of vertex-disjoint subgraphs of G, each containing a c-pumpkin minor

Packing number $\nu_c(G)$: max. cardinality of a c-pumpkin packing
A recent result and our main theorem

- A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh ’12)

For any fixed integer $c \geq 1$ and given an integer $k \geq 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k^2)$.

- Our result:

Theorem (Fiorini, Joret, S. ’13)

For any fixed integer $c \geq 1$ and given an integer $k \geq 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k \log k)$.
A recent result and our main theorem

- A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh ’12)

For any fixed integer \(c \geq 1 \) and given an integer \(k \geq 1 \), every graph \(G \) either contains \(k \) vertex-disjoint \(c \)-pumpkins-models, or has a \(c \)-pumpkin hitting set of size at most \(f(k) = O(k^2) \).

That is, \(\tau_c \leq \nu_c^2 \).
A recent result and our main theorem

- A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh ’12)

For any fixed integer $c \geq 1$ and given an integer $k \geq 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k^2)$.

That is, $\tau_c \leq \nu_c^2$.

- Our result:

Theorem (Fiorini, Joret, S. ’13)

For any fixed integer $c \geq 1$ and given an integer $k \geq 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k \log k)$.

That is, $\tau_c \leq \nu_c \log \nu_c$.
A recent result and our main theorem

- A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh ’12)

For any fixed integer $c \geq 1$ and given an integer $k \geq 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k^2)$. That is, $\tau_c \leq \nu_c^2$

- Their proof uses tree decompositions and brambles.

- Our result:

Theorem (Fiorini, Joret, S. ’13)

For any fixed integer $c \geq 1$ and given an integer $k \geq 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k \log k)$. That is, $\tau_c \leq \nu_c \log \nu_c$

- Our proof follows and generalizes Erdős-Pósa’s proof for the case $c = 2$.
Next section is...

1 Motivation

2 Our result

3 Sketch of proof

4 Further research
Useful reduction rules

We first need two reduction rules $\textbf{R1}$ and $\textbf{R2}$ dealing with 1-connected and 2-connected components without c-pumpkin minors, respectively, that preserve both $\nu_c(G)$ and $\tau_c(G)$:

For $c = 2$:
- $\textbf{R1}$: deleting degree-1 vertices
- $\textbf{R2}$: suppressing degree-2 vertices

Lemma

Let $c \geq 2$ be a fixed integer. Suppose that G^* results from the application of $\textbf{R1}$ or $\textbf{R2}$ on a graph G. Then $\tau_c(G) = \tau_c(G^*)$ and $\nu_c(G) = \nu_c(G^*)$.

Useful reduction rules

We first need two reduction rules \(R1 \) and \(R2 \) dealing with 1-connected and 2-connected components without \(c \)-pumpkin minors, respectively, that preserve both \(\nu_c(G) \) and \(\tau_c(G) \):

- **For** \(c = 2 \): \(R1 \) = deleting degree-1 vertices
- **For** \(c = 2 \): \(R2 \) = suppressing degree-2 vertices
Useful reduction rules

We first need two reduction rules \(\textbf{R1} \) and \(\textbf{R2} \) dealing with 1-connected and 2-connected components without c-pumpkin minors, respectively, that preserve both \(\nu_c(G) \) and \(\tau_c(G) \):

For \(c = 2 \):
- \(\textbf{R1} \) = deleting degree-1 vertices
- \(\textbf{R2} \) = suppressing degree-2 vertices

Lemma

Let \(c \geq 2 \) be a fixed integer. Suppose that \(G^* \) results from the application of \(\textbf{R1} \) or \(\textbf{R2} \) on a graph \(G \). Then \(\tau_c(G) = \tau_c(G^*) \) and \(\nu_c(G) = \nu_c(G^*) \).
We look at a subgraph H with nice properties

- A graph is c-reduced if rules $R1$ or $R2$ cannot be applied anymore.
We look at a subgraph H with nice properties

- A graph is c-reduced if rules $R1$ or $R2$ cannot be applied anymore.
- For a graph G, we denote by \overline{G} a c-reduced graph obtained from G by applying reduction rules $R1$ and $R2$.

Main Lemma

If $|V(H)| \geq d \cdot k \log k$ for some constant d (depending only on c), then H contains k vertex-disjoint c-pumpkin-models.
We look at a subgraph H with nice properties

- A graph is \textit{c-reduced} if rules \textbf{R1} or \textbf{R2} cannot be applied anymore.

- For a graph G, we denote by \overline{G} a \textit{c-reduced} graph obtained from G by applying reduction rules \textbf{R1} and \textbf{R2}.

- Given G, let H be a \textbf{maximal subgraph} of G (w.r.t. \# vertices and \# edges) such that

\[
\Delta(\overline{H}) \leq 3,
\]

where Δ denotes the \textbf{maximum degree}.
We look at a subgraph H with nice properties

- A graph is c-reduced if rules $R1$ or $R2$ cannot be applied anymore.
- For a graph G, we denote by \overline{G} a c-reduced graph obtained from G by applying reduction rules $R1$ and $R2$.
- Given G, let H be a maximal subgraph of G (w.r.t. # vertices and # edges) such that

$$\Delta(\overline{H}) \leq 3,$$

where Δ denotes the maximum degree.

Main Lemma

If $|V(\overline{H})| \geq d \cdot k \log k$ for some constant d (depending only on c), then H contains k vertex-disjoint c-pumpkin-models.
We prove it by induction on k, using that:

Lemma

*Every n-vertex c-reduced graph G contains a c-pumpkin-model of size $O(\log n)$.***

(Generalization of: If $\delta(G) \geq 3$, then $\text{girth}(G) < 2\log n$)
Ingredients in the proof of the Main Lemma

- We prove it by **induction on** \(k \), using that:

Lemma

Every n-vertex c-reduced graph \(G \) *contains a c-pumpkin-model of size* \(O(\log n) \).

(Generalization of: If \(\delta(G) \geq 3 \), then \(\text{girth}(G) < 2 \log n \))

- We choose a **smallest c-pumpkin-model** \(C \), and to apply induction we need to prove that \(H - C \) contains a **subgraph** \(F \) such that
 \[
 |V(F)| \geq d \cdot (k - 1) \log(k - 1).
 \]
Ingredients in the proof of the Main Lemma

- We prove it by induction on k, using that:

Lemma

Every n*-vertex* c*-reduced* graph G contains a c*-pumpkin-model* of size $O(\log n)$.

(Generalization of: If $\delta(G) \geq 3$, then $\text{girth}(G) < 2\log n$)

- We choose a smallest c*-pumpkin-model* C, and to apply induction we need to prove that $\overline{H} - C$ contains a subgraph F such that
 \[|V(F)| \geq d \cdot (k - 1) \log(k - 1). \]

- **Crucial:** $\forall \ p \geq 0$, $\exists f(p)$ s.t. every 3-connected graph with $\geq f(p)$ vertices has a minor isomorphic to:

 [Oporowski, Oxley, Thomas '93]

\[W_p \quad K_{3,p} \]

(Note that for $p \geq c$, both W_p and $K_{3,p}$ contain the c*-pumpkin* as a minor)
Outline of the overall proof

- Given G,

\[
\exists \text{ set } X \cup U \subseteq V(H), \ \text{with } |X| = O(k),
\]

meeting every c-pumpkin-model in G.

As $|X| = O(k)$, it suffices to show that $|U| = O(k \log k)$, unless H contains k disjoint c-pumpkin-models. This follows from the Main Lemma applied to the graph H.

\[22/25\]
Outline of the overall proof

- Given G, we consider the subgraph H defined before:

\[H \subseteq G \]

We can prove that \exists a set $X \cup U \subseteq V(H)$, with $|X| = O(k)$, meeting every c-pumpkin-model in G.

As $|X| = O(k)$, it suffices to show that $|U| = O(k \log k)$, unless H contains k disjoint c-pumpkin-models.

This follows from the Main Lemma applied to the graph H.

Outline of the overall proof

- Given G, we consider the subgraph H defined before:

- We can prove that \exists a set $X \cup U \subseteq V(H)$, with $|X| = O(k)$, meeting every c-pumpkin-model in G.

![Diagram showing the subgraph H as a subset of the graph G, with a set $X \cup U$ highlighted within H.](image)
Outline of the overall proof

- Given G, we consider the subgraph H defined before:

 We can prove that \exists a set $X \cup U \subseteq V(H)$, with $|X| = O(k)$, meeting every c-pumpkin-model in G.

- As $|X| = O(k)$, it suffices to show that $|U| = O(k \log k)$.
Outline of the overall proof

- Given G, we consider the subgraph H defined before:

- We can prove that \exists a set $X \cup U \subseteq V(H)$, with $|X| = O(k)$, meeting every c-pumpkin-model in G.

- As $|X| = O(k)$, it suffices to show that $|U| = O(k \log k)$, unless H contains k disjoint c-pumpkin-models.
Outline of the overall proof

- Given G, we consider the subgraph H defined before:

We can prove that \exists a set $X \cup U \subseteq V(H)$, with $|X| = O(k)$, meeting every c-pumpkin-model in G.

As $|X| = O(k)$, it suffices to show that $|U| = O(k \log k)$, unless H contains k disjoint c-pumpkin-models.

This follows from the Main Lemma applied to the graph \overline{H}.
Next section is...

1. Motivation

2. Our result

3. Sketch of proof

4. Further research
Further research

Main open problem: H non-acyclic planar, $f_H(k) = O(k \text{ poly log}(k))$
Further research

Main open problem: H non-acyclic planar, $f_H(k) = \Omega(k \log k)$
Further research

Main open problem: H non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Conjecture

For all non-acyclic planar H, we have $f_H(k) = O(k \log k)$. (optimal)
Further research

Main open problem: H non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Conjecture

For all non-acyclic planar H, we have $f_H(k) = O(k \log k)$. \hspace{1cm} (optimal)

Approximation algorithms

Goal: Given a graph G, finding

- a c-pumpkin packing \mathcal{M} and
- a c-pumpkin hitting set X

s.t. $|X| \leq f(c, n) \cdot |\mathcal{M}|$ \hspace{1cm} for some approximation ratio $f(c, n)$

(these problems generalize VERTEX COVER, FEEDBACK VERTEX SET, \ldots)
Further research

Main open problem: H non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Conjecture

For all non-acyclic planar H, we have $f_H(k) = O(k \log k)$. (optimal)

Approximation algorithms

Goal: Given a graph G, finding
- a c-pumpkin packing \mathcal{M} and
- a c-pumpkin hitting set X

s.t. $|X| \leq f(c, n) \cdot |\mathcal{M}|$ for some approximation ratio $f(c, n)$

(These problems generalize Vertex Cover, Feedback Vertex Set, …)

★ we provided an $O_c(\log n)$-approximation algorithm for c-Pumpkin Hitting Set and c-Pumpkin Packing. [Joret, Paul, S., Saurabh, Thomassé '11]
Further research

Main open problem: \(H \) non-acyclic planar, \(f_H(k) = \Omega(k \log k) \)

Conjecture

For all non-acyclic planar \(H \), we have \(f_H(k) = O(k \log k) \). (optimal)

Approximation algorithms

Goal: Given a graph \(G \), finding
- a \(c \)-pumpkin packing \(M \) and
- a \(c \)-pumpkin hitting set \(X \)

 \[
 |X| \leq f(c, n) \cdot |M|
 \]

 for some approximation ratio \(f(c, n) \)

(These problems generalize Vertex Cover, Feedback Vertex Set, . . .)

★ we provided an \(O_c(\log n) \)-approximation algorithm for \(c \)-Pumpkin Hitting Set and \(c \)-Pumpkin Packing. [Joret, Paul, S., Saurabh, Thomassé '11]

★ constant-factor (deterministic) approximation for the hitting version? (so far, such an algorithm is only known for \(c \leq 3 \)) [Fiorini, Joret, Pietropaoli '10]
Gràcies!