Optimal Erdős-Pósa property for pumpkins

Samuel Fiorini¹ Gwenaël Joret¹ Ignasi Sau²

¹Université Libre de Bruxelles (Belgique) ²CNRS, LIRMM, Montpellier (France)

CSASC 2013. Koper, Slovenia

Outline of the talk

- Motivation
- Our result
- 3 Sketch of proof
- 4 Further research

Next section is...

- Motivation
- Our result
- Sketch of proof
- Further research

König's min-max theorem in bipartite graphs:

MIN VERTEX COVER = MAX MATCHING

König's min-max theorem in bipartite graphs:

MIN VERTEX COVER = MAX MATCHING

min # vertices covering all edges ≥ max # of disjoint edges

König's min-max theorem in bipartite graphs:

MIN VERTEX COVER = MAX MATCHING

min # vertices covering all edges \geqslant max # of disjoint edges min # vertices covering all edges \leqslant max # of disjoint edges

König's min-max theorem in bipartite graphs:

MIN VERTEX COVER = MAX MATCHING

min # vertices covering all edges \geqslant max # of disjoint edges

König's min-max theorem in bipartite graphs:

MIN VERTEX COVER = MAX MATCHING

min # vertices covering all $H \in \mathcal{H}$ \geqslant max # of disjoint $H \in \mathcal{H}$

König's min-max theorem in bipartite graphs:

MIN VERTEX COVER = MAX MATCHING


```
min # vertices covering all H \in \mathcal{H} \geqslant max # of disjoint H \in \mathcal{H} min # vertices covering all H \in \mathcal{H} \leqslant max # of disjoint H \in \mathcal{H}?
```

König's min-max theorem in bipartite graphs:

MIN VERTEX COVER = MAX MATCHING


```
min # vertices covering all H \in \mathcal{H} \geqslant max # of disjoint H \in \mathcal{H} min # vertices covering all H \in \mathcal{H} \leqslant f(\max \# \text{ of disjoint } H \in \mathcal{H})?
```

König's min-max theorem in bipartite graphs:

MIN VERTEX COVER = MAX MATCHING

If there exists such f for all G, then $\mathcal H$ satisfies the $\operatorname{Erd\"os-P\'osa}$ property.

min # vertices covering all $H \in \mathcal{H}$ $\leq f(\max \# \text{ of disjoint } H \in \mathcal{H})$?

Minors and models in graphs

H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.

Minors and models in graphs

H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.

H-model in *G*: collection $\{S_u : u \in V(H)\}$ s.t.

- the S_u 's are vertex-disjoint connected subgraphs of G, and
- there is an edge between S_u and S_v in G for every edge $uv \in E(H)$.

A K5-model

The S_u 's are called vertex images.

Packing and covering H-models

Let H be a **fixed** graph. For a graph G, we define:

```
\nu_H(G) := \text{packing number}
= max. number of vertex-disjoint H-models in G.
```

$$\tau_H(G) := \text{covering (or transversal) number}$$

= min. number of vertices hitting all H -models in G .

Clearly,
$$\tau_H(G) \geqslant \nu_H(G) \quad \forall G.$$

Packing and covering H-models

Let H be a **fixed** graph. For a graph G, we define:

```
\nu_H(G) := \text{packing number}
= max. number of vertex-disjoint H-models in G.
```

$$\tau_H(G) := \text{covering (or transversal) number}$$

= min. number of vertices hitting all H -models in G .

Clearly,
$$\tau_H(G) \geqslant \nu_H(G) \quad \forall G.$$

For which
$$H \left[\frac{\tau_H(G)}{\leqslant f(\nu_H(G))} \right] \forall G$$
, for some function f ?

Packing and covering H-models

Let H be a **fixed** graph. For a graph G, we define:

```
\nu_H(G) := \text{packing number}
= max. number of vertex-disjoint H-models in G.
```

$$\tau_H(G) := \text{covering (or transversal) number}$$

= min. number of vertices hitting all H -models in G .

Clearly,
$$\tau_H(G) \geqslant \nu_H(G) \quad \forall G.$$

For which
$$H \left[\frac{\tau_H(G)}{\leqslant f(\nu_H(G))} \right] \quad \forall G$$
, for some function f ?

This is called the **Erdős-Pósa property of** *H***-minors**.

Fundamental result:

$$au_H(G) \leqslant f(\nu_H(G)) \quad \forall G \quad \Leftrightarrow \quad H \text{ is planar}$$

[Robertson, Seymour ' 86]

Fundamental result:

$$\tau_H(G) \leqslant f(\nu_H(G)) \quad \forall G \quad \Leftrightarrow \quad H \text{ is planar}$$

[Robertson, Seymour ' 86]

Is it the end of the story?

Fundamental result:

$$|\tau_H(G)| \leqslant f(\nu_H(G)) \quad \forall G \quad \Leftrightarrow \quad H \text{ is planar}$$

[Robertson, Seymour ' 86]

Is it the end of the story? NO!

• The derived upper bounds $\tau_H \leqslant f(\nu_H)$ are **huge**: $f(\nu_H) = \Omega(2^{\nu_H^2})$. This is because Robertson and Seymour's proof uses the excluded grid theorem from Graph Minors.

Fundamental result:

$$\tau_H(G) \leqslant f(\nu_H(G)) \quad \forall G \quad \Leftrightarrow \quad H \text{ is planar}$$

[Robertson, Seymour ' 86]

Is it the end of the story? NO!

- The derived upper bounds $\tau_H \leqslant f(\nu_H)$ are **huge**: $f(\nu_H) = \Omega(2^{\nu_H^2})$. This is because Robertson and Seymour's proof uses the excluded grid theorem from Graph Minors.
- Natural objective: optimize $f(\nu_H)$.

The property does NOT hold if *H* is not planar

$$H=K_5$$
 X

Take a $\sqrt{n} \times \sqrt{n}$ triangulated toroidal grid G:

The property does NOT hold if H is not planar

$$H=K_5$$
 X

Take a $\sqrt{n} \times \sqrt{n}$ triangulated toroidal grid G:

$$u_{H}(G) = 1 \quad \text{but} \quad au_{H}(G) = \Theta(\sqrt{n})$$

The property does NOT hold if H is not planar

$$H=K_5$$
 \mathbf{X}

H not planar X

Therefore, the result of Robertson and Seymour is best possible.

•
$$au_H(G) \leqslant f(
u_H(G)) \ \ orall G \ \Leftrightarrow \ \ H \ ext{is planar}$$
 [Robertson, Seymour '86]

•
$$\tau_H(G) \leqslant f(\nu_H(G)) \ \ \forall G \ \Leftrightarrow \ \ H \ ext{is planar}$$
 [Robertson, Seymour '86]

• Erdős and Pósa seminal result for H = triangle (optimal): $f(k) = O(k \log k).$ [Erdős, Pósa ' 65]

•
$$au_H(G) \leqslant f(
u_H(G)) \ \ orall G \ \Leftrightarrow \ \ H \ ext{is planar}$$
 [Robertson, Seymour '86]

• Erdős and Pósa seminal result for H = triangle (optimal): $f(k) = O(k \log k).$ [Erdős, Pósa ' 65]

•
$$f(k) = O(k)$$
 when H is a forest (optimal). [Fiorini, Joret, Wood '12]

- ullet $au_H(G) \leqslant f(
 u_H(G)) \ \ orall G \ \Leftrightarrow \ \ H ext{ is planar}$ [Robertson, Seymour ' 86]
- Erdős and Pósa seminal result for H = triangle (optimal): $f(k) = O(k \log k).$ [Erdős, Pósa ' 65]
- f(k) = O(k) when H is a forest (optimal). [Fiorini, Joret, Wood '12]
- f(k) = O(k) when H is planar and G belongs to a minor-closed graph class (optimal). [Fomin, Saurabh, Thilikos '10]

• $\tau_H(G) \leqslant f(\nu_H(G)) \quad \forall G \iff H \text{ is planar}$

- [Robertson, Seymour ' 86]
- Erdős and Pósa seminal result for H = triangle (optimal): $f(k) = O(k \log k).$ [Erdős, Pósa ' 65]
- f(k) = O(k) when H is a forest (optimal). [Fiorini, Joret, Wood '12]
- f(k) = O(k) when H is planar and G belongs to a minor-closed graph class (optimal). [Fomin, Saurabh, Thilikos '10]
- \star f(k) = O(k poly log(k)) for any planar graph H. [Chekuri, Chuzhoy '13]

Theorem: $\exists f_H(k) \text{ s.t. } \forall G, k, \text{ either } \nu_H(G) \geqslant k \text{ or } \tau_H(G) \leqslant f_H(k).$

Theorem: $\exists f_H(k) \text{ s.t. } \forall G, k, \text{ either } \nu_H(G) \geqslant k \text{ or } \tau_H(G) \leqslant f_H(k).$

Theorem:
$$\exists f_H(k) \text{ s.t. } \forall G, k, \text{ either } \nu_H(G) \geqslant k \text{ or } \tau_H(G) \leqslant f_H(k).$$

We have $f_H(k) = \Omega(k \log k)$ for any planar graph H containing a cycle:

• Let G be an n-vertex cubic graph with $\operatorname{tw}(G) = \Omega(n)$ and $\operatorname{girth}(G) = \Omega(\log n)$. (such graphs are well-known to exist)

Theorem:
$$\exists f_H(k) \text{ s.t. } \forall G, k, \text{ either } \nu_H(G) \geqslant k \text{ or } \tau_H(G) \leqslant f_H(k).$$

- Let G be an n-vertex cubic graph with $\operatorname{tw}(G) = \Omega(n)$ and $\operatorname{girth}(G) = \Omega(\log n)$. (such graphs are well-known to exist)
- Any H-minor-free graph F satisfies $\operatorname{tw}(F) \leqslant d$ for some constant d, as H is planar. [Robertson, Seymour '86]
- Thus $\operatorname{tw}(G X) \leq d$ for any H-hitting set X, and therefore $\tau_H(G) = \Omega(n)$.

Theorem:
$$\exists f_H(k) \text{ s.t. } \forall G, k, \text{ either } \nu_H(G) \geqslant k \text{ or } \tau_H(G) \leqslant f_H(k).$$

- Let G be an n-vertex cubic graph with $\operatorname{tw}(G) = \Omega(n)$ and $\operatorname{girth}(G) = \Omega(\log n)$. (such graphs are well-known to exist)
- Any H-minor-free graph F satisfies $\operatorname{tw}(F) \leqslant d$ for some constant d, as H is planar. [Robertson, Seymour '86]
- Thus $\operatorname{tw}(G X) \leq d$ for any H-hitting set X, and therefore $\tau_H(G) = \Omega(n)$.
- On the other hand, every subgraph S of G containing an H-model has a cycle, so $|V(S)| = O(\log n)$, and therefore $\nu_c(G) = O(n/\log n)$.

Theorem:
$$\exists f_H(k) \text{ s.t. } \forall G, k, \text{ either } \nu_H(G) \geqslant k \text{ or } \tau_H(G) \leqslant f_H(k).$$

- Let G be an n-vertex cubic graph with $\mathrm{tw}(G) = \Omega(n)$ and $\mathrm{girth}(G) = \Omega(\log n)$. (such graphs are well-known to exist)
- Any H-minor-free graph F satisfies $\operatorname{tw}(F) \leqslant d$ for some constant d, as H is planar. [Robertson, Seymour '86]
- Thus $\operatorname{tw}(G X) \leq d$ for any H-hitting set X, and therefore $\tau_H(G) = \Omega(n)$.
- On the other hand, every subgraph S of G containing an H-model has a cycle, so $|V(S)| = O(\log n)$, and therefore $\nu_c(G) = O(n/\log n)$.
- This implies that (easy to check) \exists constant b > 0 such that $f_H(k) > b \cdot k \log k$ (i.e., $f_H(k) = \Omega(k \log k)$).

Summarizing...

For any planar graph H with a cycle and a general graph G:

• Lower bound: $f_H(k) = \Omega(k \log k)$.

Summarizing...

For any planar graph H with a cycle and a general graph G:

- Lower bound: $f_H(k) = \Omega(k \log k)$.
- Upper bound: $f_H(k) = O(k \text{ poly log}(k))$. [Chekuri, Chuzhoy '13]

Summarizing...

For any planar graph H with a cycle and a general graph G:

• Lower bound:
$$f_H(k) = \Omega(k \log k)$$
.

• Upper bound:
$$f_H(k) = O(k \log^{35} k)$$
. [Chekuri, Chuzhoy '13]

Summarizing...

For any planar graph H with a cycle and a general graph G:

- Lower bound: $f_H(k) = \Omega(k \log k)$.
- Upper bound: $f_H(k) = O(k \log^{35} k)$. [Chekuri, Chuzhoy '13]
- Only graph *H* for which the lower bound is attained is the triangle:

$$f_{\wedge}(k) = O(k \log k).$$
 [Erdős, Pósa ' 65]

Next section is...

- Motivation
- 2 Our result
- Sketch of proof
- Further research

Pumpkins

Pumpkins Pumpkins

c-pumpkin:

Can be seen as a natural generalization of a cycle.

(N.B: "graph" =
$$multigraph$$
)

• c = 1: empty graphs

• c = 1: empty graphs

• c = 2: forests

• c = 1: empty graphs

• c = 2: forests

• c = 3: no two cycles share an edge

etc.

Covering (or hitting) pumpkins

c-pumpkin hitting set:

vertex subset $X \subseteq V(G)$ s.t. G - X has no c-pumpkin minor

Covering (or hitting) pumpkins

c-pumpkin hitting set:

vertex subset $X \subseteq V(G)$ s.t. G - X has no c-pumpkin minor

Hitting set number $\tau_c(G)$: min. size of a c-pumpkin hitting set

Packing pumpkins

c-pumpkin packing:

collection of vertex-disjoint subgraphs of G, each containing a c-pumpkin minor

Packing pumpkins

c-pumpkin packing:

collection of vertex-disjoint subgraphs of G, each containing a c-pumpkin minor

Packing number $\nu_c(G)$: max. cardinality of a c-pumpkin packing

• A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh '12)

For any fixed integer $c \ge 1$ and given an integer $k \ge 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k^2)$.

• A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh '12)

For any fixed integer $c \ge 1$ and given an integer $k \ge 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k^2)$. That is, $\tau_c \le \nu_c^2$

• A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh '12)

For any fixed integer $c \geqslant 1$ and given an integer $k \geqslant 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k^2)$. That is, $\tau_c \leqslant \nu_c^2$

Our result:

Theorem (Fiorini, Joret, S. '13)

For any fixed integer $c \ge 1$ and given an integer $k \ge 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k \log k)$. That is, $\tau_c \le \nu_c \log \nu_c$

• A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh '12)

For any fixed integer $c \ge 1$ and given an integer $k \ge 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k^2)$. That is, $\tau_c \le \nu_c^2$

- ★ Their proof uses tree decompositions and brambles.
- Our result:

Theorem (Fiorini, Joret, S. '13)

For any fixed integer $c \geqslant 1$ and given an integer $k \geqslant 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k \log k)$. That is, $\tau_c \leqslant \nu_c \log \nu_c$

* Our proof follows and generalizes Erdős-Pósa's proof for the case c = 2

Next section is...

- Motivation
- Our result
- 3 Sketch of proof
- Further research

Useful reduction rules

We first need two reduction rules R1 and R2 dealing with 1-connected and 2-connected components without c-pumpkin minors, respectively, that preserve both $\nu_c(G)$ and $\tau_c(G)$:

Useful reduction rules

We first need two reduction rules R1 and R2 dealing with 1-connected and 2-connected components without c-pumpkin minors, respectively, that preserve both $\nu_c(G)$ and $\tau_c(G)$:

- For c = 2:
- **R1** = deleting degree-1 vertices
- For c = 2:
- **R2** = suppressing degree-2 vertices

Useful reduction rules

We first need two reduction rules R1 and R2 dealing with 1-connected and 2-connected components without c-pumpkin minors, respectively, that preserve both $\nu_c(G)$ and $\tau_c(G)$:

- For c = 2: R1 = deleting degree-1 vertices
- For c = 2: **R2** = suppressing degree-2 vertices

Lemma

Let $c\geqslant 2$ be a fixed integer. Suppose that G^* results from the application of **R1** or **R2** on a graph G. Then ${\color{blue} \tau_c(G) = \color{blue} \tau_c(G^*)}$ and ${\color{blue} \nu_c(G) = \color{blue} \nu_c(G^*)}$.

We look at a subgraph H with nice properties

• A graph is *c*-reduced if rules **R1** or **R2** cannot be applied anymore.

We look at a subgraph H with nice properties

- A graph is *c*-reduced if rules **R1** or **R2** cannot be applied anymore.
- For a graph G, we denote by \overline{G} a c-reduced graph obtained from G by applying reduction rules R1 and R2.

We look at a subgraph \overline{H} with nice properties

- A graph is c-reduced if rules R1 or R2 cannot be applied anymore.
- For a graph G, we denote by \overline{G} a c-reduced graph obtained from G by applying reduction rules R1 and R2.
- Given G, let H be a maximal subgraph of G
 (w.r.t. # vertices and # edges) such that

$$\Delta(\overline{H}) \leq 3$$

where Δ denotes the maximum degree.

We look at a subgraph H with nice properties

- A graph is c-reduced if rules R1 or R2 cannot be applied anymore.
- For a graph G, we denote by \overline{G} a c-reduced graph obtained from G by applying reduction rules R1 and R2.
- Given G, let H be a maximal subgraph of G
 (w.r.t. # vertices and # edges) such that

$$\Delta(\overline{H}) \leq 3$$

where Δ denotes the maximum degree.

Main Lemma

If $|V(\overline{H})| \ge d \cdot k \log k$ for some constant d (depending only on c), then H contains k vertex-disjoint c-pumpkin-models.

Ingredients in the proof of the Main Lemma

• We prove it by induction on *k*, using that:

Lemma

Every n-vertex c-reduced graph G contains a c-pumpkin-model of size $O(\log n)$.

(Generalization of: If $\delta(G) \ge 3$, then $girth(G) < 2 \log n$)

Ingredients in the proof of the Main Lemma

• We prove it by induction on k, using that:

Lemma

Every n-vertex c-reduced graph G contains a c-pumpkin-model of size $O(\log n)$.

```
(Generalization of: If \delta(G) \ge 3, then girth(G) < 2 \log n)
```

• We choose a smallest c-pumpkin-model C, and to apply induction we need to prove that $\overline{H}-C$ contains a subgraph F such that

$$|V(\overline{F})| \geqslant d \cdot (k-1) \log(k-1).$$

Ingredients in the proof of the Main Lemma

• We prove it by induction on *k*, using that:

Lemma

Every n-vertex c-reduced graph G contains a c-pumpkin-model of size $O(\log n)$.

(Generalization of: If $\delta(G) \ge 3$, then $girth(G) < 2 \log n$)

• We choose a smallest c-pumpkin-model C, and to apply induction we need to prove that $\overline{H} - C$ contains a subgraph F such that

$$|V(\overline{F})| \geqslant d \cdot (k-1) \log(k-1).$$

• Crucial: $\forall p \ge 0$, $\exists f(p)$ s.t. every 3-connected graph with $\ge f(p)$ vertices has a minor isomorphic to: [Oporowski, Oxley, Thomas '93]

(Note that for $p \ge c$, both W_p and $K_{3,p}$ contain the c-pumpkin as a minor)

• Given G,

• Given G, we consider the subgraph H defined before:

• We can prove that \exists a set $X \cup U \subseteq V(H)$, with |X| = O(k), meeting every c-pumpkin-model in G.

- We can prove that \exists a set $X \cup U \subseteq V(H)$, with |X| = O(k), meeting every c-pumpkin-model in G.
- As |X| = O(k), it suffices to show that $|U| = O(k \log k)$,

- We can prove that \exists a set $X \cup U \subseteq V(H)$, with |X| = O(k), meeting every c-pumpkin-model in G.
- As |X| = O(k), it suffices to show that $|U| = O(k \log k)$, unless H contains k disjoint c-pumpkin-models.

- We can prove that \exists a set $X \cup U \subseteq V(H)$, with |X| = O(k), meeting every c-pumpkin-model in G.
- As |X| = O(k), it suffices to show that $|U| = O(k \log k)$, unless H contains k disjoint c-pumpkin-models.
- This follows from the Main Lemma applied to the graph \overline{H} .

Next section is...

- Motivation
- Our result
- Sketch of proof
- Further research

Main open problem: H non-acyclic planar, $f_H(k) = O(k \text{ poly log}(k))$

Main open problem: H non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Main open problem: H non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Conjecture

For all non-acyclic planar H, we have $f_H(k) = O(k \log k)$. (optimal)

Main open problem: H non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Conjecture

For all non-acyclic planar H, we have $f_H(k) = O(k \log k)$. (optimal)

Approximation algorithms

Goal: Given a graph G, finding

- ullet a c-pumpkin packing ${\mathcal M}$ and
- ullet a c-pumpkin hitting set X

s.t.
$$|X| \leq f(c, n) \cdot |\mathcal{M}|$$
 for some approximation ratio $f(c, n)$

(these problems generalize VERTEX COVER, FEEDBACK VERTEX SET, ...)

Main open problem: H non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Conjecture

For all non-acyclic planar H, we have $f_H(k) = O(k \log k)$. (optimal)

Approximation algorithms

Goal: Given a graph G, finding

- ullet a c-pumpkin packing ${\cal M}$ and
- ullet a c-pumpkin hitting set X

s.t.
$$|X| \le f(c, n) \cdot |\mathcal{M}|$$
 for some approximation ratio $f(c, n)$

(these problems generalize Vertex Cover, Feedback Vertex Set, ...)

★ we provided an $O_c(\log n)$ -approximation algorithm for c-PUMPKIN HITTING SET and c-PUMPKIN PACKING. [Joret, Paul, S., Saurabh, Thomassé '11]

Main open problem: H non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Conjecture

For all non-acyclic planar H, we have $f_H(k) = O(k \log k)$. (optimal)

Approximation algorithms

Goal: Given a graph G, finding

- ullet a c-pumpkin packing ${\mathcal M}$ and
- ullet a c-pumpkin hitting set X

```
s.t. |X| \le f(c, n) \cdot |\mathcal{M}| for some approximation ratio f(c, n)
```

(these problems generalize VERTEX COVER, FEEDBACK VERTEX SET, ...)

- \star we provided an $O_c(\log n)$ -approximation algorithm for c-Pumpkin HITTING SET and c-Pumpkin Packing. [Joret, Paul, S., Saurabh, Thomassé '11]
- ★ constant-factor (deterministic) approximation for the hitting version? (so far, such an algorithm is only known for $c \le 3$) [Fiorini, Joret, Pietropaoli 10]

Gràcies!

