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Surfaces

@ Surface: connected compact 2-manifold without
boundaries.

4/26



Preliminaries Graphs on surfaces

Handles

5/26



Minors  Clique-sums

<
°
=
£
[$]
©
i3]
17
@
o
(]
©
>
)
c
)
»
<
=%
©
e
(G}

Preliminaries

Cross-caps

B e

S

T,

6/26



Preliminaries Graphs on surfaces Branchwidth Minors Clique-sums

Genus of a surface

@ The surface classification Theorem: any compact,
connected and without boundary surface can be obtained
from the sphere S? by adding handles and cross-caps.
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Genus of a surface

@ The surface classification Theorem: any compact,
connected and without boundary surface can be obtained
from the sphere S? by adding handles and cross-caps.

@ Orientable surfaces: obtained by adding g > 0 handles to
the sphere S?, obtaining the g-torus T4 with Euler genus
eg(Ty) = 29.

@ Non-orientable surfaces: obtained by adding h > 0

cross-caps to the sphere S?, obtaining a non-orientable
surface P, with Euler genus eg(P) = h.
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Graphs on Surfaces

@ An embedding of a graph G on a surface ¥ is a drawing of
G on X without edge crossings.

@ An embedding defines vertices, edges, and faces.
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Preliminaries Graphs on surfaces Branchwidth Minors Clique-sums

Graphs on Surfaces

@ An embedding of a graph G on a surface ¥ is a drawing of
G on X without edge crossings.

@ An embedding defines vertices, edges, and faces.

@ The Euler genus of a graph G, eg(G), is the least Euler
genus of the surfaces in which G can be embedded
(NP-hard problem).
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Example: Ks and Kz 3

Theorem (Kuratowski, 1930)

A graph G is planar if and only if contains neither Ks nor Kz 3 as
a topological minor.

But K5 and K3 3 can be embedded in the torus Tj:

D &P
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Example: Ks and Kz 3

Theorem (Kuratowski, 1930)

A graph G is planar if and only if contains neither Ks nor Kz 3 as
a topological minor.

But K5 and K3 3 can be embedded in the torus Tj:

> (v

Therefore, eg(Ks) = eg(Ks3) =
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Polyhedral embeddings

@ A subset of ¥ meeting the drawing only at vertices of G is
called G-normal. An O-arc is a subset of ¥ homeomorphic
to S'.
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Polyhedral embeddings

@ A subset of ¥ meeting the drawing only at vertices of G is
called G-normal. An O-arc is a subset of ¥ homeomorphic
to S'.

@ If an O-arc is G-normal, then we call it a noose. The
length of a noose is the number of its vertices.

@ A noose is contractible if it is homotopically equivalent to a
point.

@ A noose is surface separating it its removal disconnects .

@ The representativity rep(G, X) of a graph embedding
(G, ¥) is the smallest length of a non-contractible noose in
>.

@ An embedding (G, X) is polyhedral if G is 3-connected and
rep(G,X) > 3.
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Dual embedding

@ A 2-cell embedding is an embedding in which every face is
homeomorphic to an open disk.
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Dual embedding

@ A 2-cell embedding is an embedding in which every face is
homeomorphic to an open disk.

@ For 2-cell embeddings, the Euler’s formula applies:

[VI=|El +[F| = eg(%).

@ For a given embedding (G, ), we denote by (G*,Y) its
dual embedding (it is the geometric dual).

Each vertex v (resp. face r) in (G, ) corresponds to some
face v* (resp. vertex r*) in (G*, X).
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Branchwidth

@ A branch decomposition of a graph G = (V, E) is a tuple
(T, u), where:

e T is atree where all the internal nodes have degree 3.
e . is a bijection between the leaves of T and E(G).
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Branchwidth

@ A branch decomposition of a graph G = (V, E) is a tuple
(T, u), where:

e T is atree where all the internal nodes have degree 3.
e . is a bijection between the leaves of T and E(G).

@ Each edge e € T partitions E(G) into two sets Ae and Be.
@ Foreach e € E(T), we define mid(e) = V(Aeg) N V(Be).

@ The width of a branch decomposition is maxcg(r) mid(e)|.

@ The branchwidth of a graph G (denoted bw(G)) is the
minimum width over all branch decompositions of G:

bw(G) = min max |mid(e)|
(T,n) eeE(T)
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Graph minors

@ His a contraction of G (H =¢ G) if H occurs from G after
applying a series of edge contractions.

@ His a minor of G (H <, G) if H is the contraction of some
subgraph of G.
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Graph minors

@ His a contraction of G (H =¢ G) if H occurs from G after
applying a series of edge contractions.

@ His a minor of G (H <, G) if H is the contraction of some
subgraph of G.

@ A parameter p is any function mapping graphs to
non-negative integers:

p:G— Nt

@ We say that a parameter p is minor closed if for every
graph H,
H=n G = p(H)<p(G)

@ For instance, bw is minor closed.
13/26
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Cligue-sums

@ Suppose Gy and G, are graphs with disjoint vertex-sets
and k > 0 is an integer.

e Fori=1,2,let W; C V(G;j) form a clique of size k.

@ Aclique-sum Gy @ Go of Gy and G is the graph obtained
by gluing Gy and G, at the cliques, and possibly deleting

some edges.
o+ S+
‘ C/D oo_o/,,o
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Motivation

@ Let G be a class of graphs embeddable in a surface %.

@ A graph parameter p is (c, d)-self-dual on G if for every
graph G € G and for its geometric dual G*,

P(G*) <c-p(G)+d.

16/26



Motivation Motivation

Motivation

@ Let G be a class of graphs embeddable in a surface %.

@ A graph parameter p is (c, d)-self-dual on G if for every
graph G € G and for its geometric dual G*,

P(G*) <c-p(G)+d.

@ Main motivation: Graph Minors project
[Robertson and Seymour, 1982—].

16/26



Motivation Motivation

Motivation

@ Let G be a class of graphs embeddable in a surface %.

@ A graph parameter p is (c, d)-self-dual on G if for every
graph G € G and for its geometric dual G*,

P(G) <c-p(G)+d.
@ Main motivation: Graph Minors project
[Robertson and Seymour, 1982—].

@ Branchwidth is (1, 0)-self-dual in planar graphs that are not
forests.
[Seymour and Thomas, Combinatorica 1994].

16/26



Motivation Motivation

Motivation

@ Let G be a class of graphs embeddable in a surface %.

@ A graph parameter p is (c, d)-self-dual on G if for every
graph G € G and for its geometric dual G*,

P(G*) <c-p(G)+d.

@ Main motivation: Graph Minors project
[Robertson and Seymour, 1982—].

@ Branchwidth is (1, 0)-self-dual in planar graphs that are not
forests.
[Seymour and Thomas, Combinatorica 1994].

@ We prove that branchwidth is (6,2g — 4)-self-dual in
graphs of Euler genus at most g.
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3. The result:

Let (G,X) be an embedding with g = eg(X). Then

bw(G*) < 6-bw(G) +2g — 4.
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Main idea

The result holds for polyhedral embeddings:

Proposition (With the idea of Fomin and Thilikos, Journal of

Graph Theory 2007)

Let (G,X) and (G*,x) be dual polyhedral embeddings in a
surface of Euler genus g. Then

bw(G*) < 6-bw(G) + 29 — 4.
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Main idea

The result holds for polyhedral embeddings:

Proposition (With the idea of Fomin and Thilikos, Journal of

Graph Theory 2007)

Let (G,X) and (G*,x) be dual polyhedral embeddings in a
surface of Euler genus g. Then

bw(G*) < 6-bw(G) + 29 — 4.

If (G, %) is not polyhedral, we decompose G into polyhedral
pieces plus a set of vertices whose size is linearly bounded by
eg(X): polyhedral decomposition.
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The algorithm

1. Set B ={G}, and B* = {G*}
(we call the members of 5 and B* blocks).
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2. If (G, X) has a minimal separator S with |S| < 2:

e Let Cy,..., C, be the connected components of
G[V(G)\ S]and, fori=1,...,p, let G; be the graph
obtained by G[V(C;) U S] by adding an edge with both
endpoints in S in the case where |S| = 2 and such an edge
does not already exist.
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The algorithm

1. Set B ={G}, and B* = {G*}
(we call the members of 5 and B* blocks).

2. If (G, X) has a minimal separator S with |S| < 2:

e Let Cy,..., C, be the connected components of
G[V(G)\ S]and, fori=1,...,p, let G; be the graph
obtained by G[V(C;) U S] by adding an edge with both
endpoints in S in the case where |S| = 2 and such an edge
does not already exist.

e Notice that a (non-empty) separator S of size at most 2
corresponds to a non-empty separator S* of G*.

o Let Gf,i=1,...,p, be the graphs obtained by cutting G*
along S*.

e We say that each G; (resp G;) is a block of G (resp. G*).
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The algorithm (II)

@ Notice that each G and G* is the clique-sum of its blocks.
@ Using the following lemma:

Lemma (Fomin and Thilikos, SIAM J. Comp. 2006)

Let Gy and G, be graphs with one edge or one vertex in
common. Then bw(G; U Gz) < max{bw(Gj),bw(G),2}.
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The algorithm (II)

@ Notice that each G and G* is the clique-sum of its blocks.
@ Using the following lemma:

Lemma (Fomin and Thilikos, SIAM J. Comp. 2006)

Let Gy and G, be graphs with one edge or one vertex in
common. Then bw(G; U Gz) < max{bw(Gj),bw(G),2}.

Yields bw(G*) < max{2,max{bw(G}) |i=1,...,p}}.

@ Observe that we may assume that foreachi=1,...,p, G;
and G; are embedded in a surface ¥; such that G; is the
dual of G; andeg(X) =>4, eg(%)).

ERREE)
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The algorithm (II)

@ Notice that each G and G* is the clique-sum of its blocks.
@ Using the following lemma:

Lemma (Fomin and Thilikos, SIAM J. Comp. 2006)

Let Gy and G, be graphs with one edge or one vertex in
common. Then bw(G; U Gz) < max{bw(Gj),bw(G),2}.

Yields bw(G*) < max{2,max{bw(G}) |i=1,...,p}}.

@ Observe that we may assume that foreachi=1,...,p, G;
and G; are embedded in a surface Y ; such that G; is the
dualof Gf andeg(X) = > ;4  edg(¥)).

.....

@ Notice that bw(G)) < bw(G),i = 1,...,p, as the possible
edge addition does not increase the branchwidth, since
each block of G is a minor of G.

@ Weset B—B\{G}U{Gy,...,G,} and
B* B \{G"}u{G],....G}.
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The algorithm (lII)

3. If (G, ¥) has a non-contractible and non-surface-separating
noose meeting a set S C V(G) with |S| < 2:

o Let G = G[V(G)\ S] and let F be the set of of faces in G*
corresponding to the vertices in S.

o Observe that the obtained graph G’ has an embedding to
some surface ¥’ of Euler genus strictly smaller than X that,
in turn, has some dual G™* in ¥’. Therefore eg(X’) < eg(X).

e G is the result of the contraction in G* of the |S| faces in
F.
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corresponding to the vertices in S.

o Observe that the obtained graph G’ has an embedding to
some surface ¥’ of Euler genus strictly smaller than X that,
in turn, has some dual G™* in ¥’. Therefore eg(X’) < eg(X).

e G is the result of the contraction in G* of the |S| faces in
F.

e Using the following lemma:

The removal of a vertex or the contraction of a face from an
embedded graph decreases its branchwidth by at most 1.

yields bw(G*) < bw(G™*) + |S|.
e Set B+~ B\ {G}U{G'} and B* — B*\ {G*} U{G"*}.
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The algorithm (lII)

3. If (G, ¥) has a non-contractible and non-surface-separating
noose meeting a set S C V(G) with |S| < 2:

o Let G = G[V(G)\ S] and let F be the set of of faces in G*
corresponding to the vertices in S.

o Observe that the obtained graph G’ has an embedding to
some surface ¥’ of Euler genus strictly smaller than X that,
in turn, has some dual G™* in ¥’. Therefore eg(X’) < eg(X).

e G is the result of the contraction in G* of the |S| faces in
F.

e Using the following lemma:

The removal of a vertex or the contraction of a face from an
embedded graph decreases its branchwidth by at most 1.

yields bw(G*) < bw(G™*) + |S|.
o SetB— B\ {G}U{G'}and B* — B*\ {G*} U{G"}.
4. Apply Steps 2—4 for each block G € B and its dual.
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Sketch of proof

@ |dea: induction on the distance from the root of the
recursion tree of the algorithm.
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Sketch of proof

@ |dea: induction on the distance from the root of the
recursion tree of the algorithm.

@ Base case of the induction: All embeddings of graphs in
the collections B and B* constructed by the algorithm are
polyhedral (except from the trivial case that they are just
cliques of size 2). Therefore, the result holds.

@ Induction step (case 1): Suppose that G (resp. G*) is the
clique-sum of its blocks Gi, ..., G, (resp. Gj, ..., G})
embedded in the surfaces x4, ..., %, (Step 2).

e By induction, we have that
bw(G) <6-bw(G) +2eg(X) —4,i=1,...,p.
@ Then, the claim follows from
o bw(G") < max{2, max{bw(G/) |i=1,...,p}}.
e bw(G) <bw(G),i=1,...,p.
°eg(X)=>_, ,ed(x).
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Sketch of proof (II)

@ Induction step (case 2): Suppose now (Step 3) that G
(resp. G*) occurs from some graph G’ (resp. G'*)
embedded in a surface ¥’ where eg(X’) < eg(X) after
adding the vertices in S (resp. S*).
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@ Induction step (case 2): Suppose now (Step 3) that G
(resp. G*) occurs from some graph G’ (resp. G'*)
embedded in a surface ¥’ where eg(X’) < eg(X) after
adding the vertices in S (resp. S*).

@ From the induction hypothesis, bw(G™) <
6-bw(G) +2eg(X’) — 4
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Sketch of proof (II)

@ Induction step (case 2): Suppose now (Step 3) that G
(resp. G*) occurs from some graph G’ (resp. G'*)
embedded in a surface ¥’ where eg(X’) < eg(X) after
adding the vertices in S (resp. S*).

@ From the induction hypothesis, bw(G™) <
6-bw(G')+2eg(X) -4 <6 -bw(G)+2eg(X)—2-4.
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Sketch of proof (II)

@ Induction step (case 2): Suppose now (Step 3) that G
(resp. G*) occurs from some graph G’ (resp. G'*)
embedded in a surface ¥’ where eg(X’) < eg(X) after
adding the vertices in S (resp. S*).

@ From the induction hypothesis, bw(G™) <
6-bw(G')+2eg(X) -4 <6 -bw(G)+2eg(X)—2-4.

@ And the claim follows from
o bw(G*) < bw(G"*) +|S|.
° |S| <2
e bw(G') < bw(G).
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@ We proved that branchwidth is (6,29 — 4)-self-dual in
graphs of Euler genus at most g.
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Conclusions

@ We proved that branchwidth is (6,29 — 4)-self-dual in
graphs of Euler genus at most g.

@ Very recently: treewidth is a (1, g + 1)-self-dual parameter
in graphs embeddable in surfaces of Euler genus g.
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which improves the constants of our result.

@ We believe that

If G is a graph embedded in some surface ¥, then
bw(G*) < bw(G) + eg(X).
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