On Self-Duality of Branchwidth in Graphs of Bounded Genus

Ignasi Sau

Mascotte Project - CNRS/INRIA/UNSA (France) +

Applied Mathematics IV Department of UPC (Spain)

Dimitrios M. Thilikos

Department of Mathematics of National Kapodistrian University of Athens (Greece)

Cologne Twente Workshop (CTW)
Paris - June 2nd. 2009

Outline of the talk

- 1. Preliminaries
 - Surfaces
 - Graphs on surfaces
 - Branchwidth
 - Minors
 - Clique-sums
- 2. Motivation
- 3. The result
 - Main idea
 - The algorithm
- 4. Conclusions

1. Preliminaries

Surfaces

 Surface: connected compact 2-manifold without boundaries.

Handles

Cross-caps

Genus of a surface

- The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere S² by adding handles and cross-caps.
- Orientable surfaces: obtained by adding $g \ge 0$ handles to the sphere \mathbb{S}^2 , obtaining the g-torus \mathbb{T}_g with Euler genus $\operatorname{eg}(\mathbb{T}_g) = 2g$.
- Non-orientable surfaces: obtained by adding h > 0 cross-caps to the sphere \mathbb{S}^2 , obtaining a non-orientable surface \mathbb{P}_h with Euler genus $\mathbf{eq}(\mathbb{P}_h) = h$.

Genus of a surface

- The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere S² by adding handles and cross-caps.
- Orientable surfaces: obtained by adding $g \ge 0$ handles to the sphere \mathbb{S}^2 , obtaining the g-torus \mathbb{T}_g with Euler genus $eg(\mathbb{T}_g) = 2g$.
- Non-orientable surfaces: obtained by adding h > 0 cross-caps to the sphere \mathbb{S}^2 , obtaining a non-orientable surface \mathbb{P}_h with Euler genus $\mathbf{eq}(\mathbb{P}_h) = h$.

Genus of a surface

- The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere S² by adding handles and cross-caps.
- Orientable surfaces: obtained by adding $g \ge 0$ handles to the sphere \mathbb{S}^2 , obtaining the g-torus \mathbb{T}_g with Euler genus $eg(\mathbb{T}_g) = 2g$.
- Non-orientable surfaces: obtained by adding h > 0 cross-caps to the sphere \mathbb{S}^2 , obtaining a non-orientable surface \mathbb{P}_h with Euler genus $\mathbf{eg}(\mathbb{P}_h) = h$.

Graphs on Surfaces

- An embedding of a graph G on a surface Σ is a drawing of G on Σ without edge crossings.
- An embedding defines vertices, edges, and faces.
- The Euler genus of a graph G, eg(G), is the least Euler genus of the surfaces in which G can be embedded (NP-hard problem).

Graphs on Surfaces

- An embedding of a graph G on a surface Σ is a drawing of G on Σ without edge crossings.
- An embedding defines vertices, edges, and faces.
- The Euler genus of a graph G, eg(G), is the least Euler genus of the surfaces in which G can be embedded (NP-hard problem).

Example: K_5 and $K_{3,3}$

Theorem (Kuratowski, 1930)

A graph G is planar if and only if contains neither K_5 nor $K_{3,3}$ as a topological minor.

But K_5 and $K_{3,3}$ can be embedded in the torus \mathbb{T}_1 :

Therefore, $eg(K_5) = eg(K_{3,3}) = 2$.

Example: K_5 and $K_{3,3}$

Theorem (Kuratowski, 1930)

A graph G is planar if and only if contains neither K_5 nor $K_{3,3}$ as a topological minor.

But K_5 and $K_{3,3}$ can be embedded in the torus \mathbb{T}_1 :

Therefore, $eg(K_5) = eg(K_{3,3}) = 2$.

Polyhedral embeddings

- A subset of Σ meeting the drawing only at vertices of G is called G-normal. An O-arc is a subset of Σ homeomorphic to S¹.
- If an O-arc is G-normal, then we call it a noose. The length of a noose is the number of its vertices.
- A noose is contractible if it is homotopically equivalent to a point.
- A noose is surface separating it its removal disconnects Σ.
- The representativity $\operatorname{rep}(G, \Sigma)$ of a graph embedding (G, Σ) is the smallest length of a non-contractible noose in Σ .
- An embedding (G, Σ) is polyhedral if G is 3-connected and rep(G, Σ) > 3.

Polyhedral embeddings

- A subset of Σ meeting the drawing only at vertices of G is called G-normal. An O-arc is a subset of Σ homeomorphic to S¹.
- If an O-arc is G-normal, then we call it a noose. The length of a noose is the number of its vertices.
- A noose is contractible if it is homotopically equivalent to a point.
- A noose is surface separating it its removal disconnects Σ .
- The representativity $\operatorname{rep}(G, \Sigma)$ of a graph embedding (G, Σ) is the smallest length of a non-contractible noose in Σ .
- An embedding (G, Σ) is polyhedral if G is 3-connected and rep(G, Σ) ≥ 3.

Polyhedral embeddings

- A subset of Σ meeting the drawing only at vertices of G is called G-normal. An O-arc is a subset of Σ homeomorphic to S¹.
- If an O-arc is G-normal, then we call it a noose. The length of a noose is the number of its vertices.
- A noose is contractible if it is homotopically equivalent to a point.
- A noose is surface separating it its removal disconnects Σ .
- The representativity rep(G, Σ) of a graph embedding (G, Σ) is the smallest length of a non-contractible noose in Σ.
- An embedding (G, Σ) is polyhedral if G is 3-connected and $rep(G, \Sigma) \geq 3$.

< □ > → □ > → □ > → □ ≥ → □ ≥

Polyhedral embeddings

- A subset of Σ meeting the drawing only at vertices of G is called G-normal. An O-arc is a subset of Σ homeomorphic to S¹.
- If an O-arc is G-normal, then we call it a noose. The length of a noose is the number of its vertices.
- A noose is contractible if it is homotopically equivalent to a point.
- A noose is surface separating it its removal disconnects Σ .
- The representativity rep(G, Σ) of a graph embedding (G, Σ) is the smallest length of a non-contractible noose in Σ.
- An embedding (G, Σ) is polyhedral if G is 3-connected and $rep(G, \Sigma) > 3$.

Polyhedral embeddings

- A subset of Σ meeting the drawing only at vertices of G is called G-normal. An O-arc is a subset of Σ homeomorphic to S¹.
- If an O-arc is G-normal, then we call it a noose. The length of a noose is the number of its vertices.
- A noose is contractible if it is homotopically equivalent to a point.
- A noose is surface separating it its removal disconnects Σ .
- The representativity rep(G, Σ) of a graph embedding (G, Σ) is the smallest length of a non-contractible noose in Σ.
- An embedding (G, Σ) is polyhedral if G is 3-connected and $\operatorname{rep}(G, \Sigma) \geq 3$.

Dual embedding

- A 2-cell embedding is an embedding in which every face is homeomorphic to an open disk.
- For 2-cell embeddings, the Euler's formula applies:

$$|V|-|E|+|F|=\operatorname{eg}(\Sigma).$$

• For a given embedding (G, Σ) , we denote by (G^*, Σ) its dual embedding (it is the *geometric dual*).

Each vertex v (resp. face r) in (G, Σ) corresponds to some face v^* (resp. vertex r^*) in (G^*, Σ) .

Dual embedding

- A 2-cell embedding is an embedding in which every face is homeomorphic to an open disk.
- For 2-cell embeddings, the Euler's formula applies:

$$|V|-|E|+|F|=\operatorname{eg}(\Sigma).$$

• For a given embedding (G, Σ) , we denote by (G^*, Σ) its dual embedding (it is the *geometric dual*).

Each vertex v (resp. face r) in (G, Σ) corresponds to some face v^* (resp. vertex r^*) in (G^*, Σ) .

- A 2-cell embedding is an embedding in which every face is homeomorphic to an open disk.
- For 2-cell embeddings, the Euler's formula applies:

$$|V|-|E|+|F|=\operatorname{eg}(\Sigma).$$

• For a given embedding (G, Σ) , we denote by (G^*, Σ) its dual embedding (it is the *geometric dual*).

Each vertex v (resp. face r) in (G, Σ) corresponds to some face v^* (resp. vertex r^*) in (G^*, Σ) .

Dual embedding

- A 2-cell embedding is an embedding in which every face is homeomorphic to an open disk.
- For 2-cell embeddings, the Euler's formula applies:

$$|V|-|E|+|F|=\operatorname{eg}(\Sigma).$$

• For a given embedding (G, Σ) , we denote by (G^*, Σ) its dual embedding (it is the geometric dual).

Each vertex ν (resp. face r) in (G, Σ) corresponds to some face v^* (resp. vertex r^*) in (G^*, Σ) .

- A branch decomposition of a graph G = (V, E) is a tuple (T, μ) , where:
 - T is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of T and E(G).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} |\text{mid}(e)|$
- The branchwidth of a graph G (denoted bw(G)) is the minimum width over all branch decompositions of G:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$

Branchwidth

- A branch decomposition of a graph G = (V, E) is a tuple (T, μ) , where:
 - T is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of T and E(G).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in F(T)} | \operatorname{mid}(e) |$.
- The branchwidth of a graph G (denoted bw(G)) is the

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$

- A branch decomposition of a graph G = (V, E) is a tuple (T, μ) , where:
 - T is a tree where all the internal nodes have degree 3.
 - μ is a bijection between the leaves of T and E(G).
- Each edge $e \in T$ partitions E(G) into two sets A_e and B_e .
- For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$.
- The width of a branch decomposition is $\max_{e \in E(T)} | \operatorname{mid}(e) |$.
- The branchwidth of a graph G (denoted **bw**(G)) is the minimum width over all branch decompositions of G:

$$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$

- H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions.
- H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G.
- A parameter p is any function mapping graphs to non-negative integers:

$$p:\mathcal{G}\to\mathbb{N}^+$$

 We say that a parameter p is minor closed if for every graph H,

$$H \leq_m G \Rightarrow \mathbf{p}(H) \leq \mathbf{p}(G).$$

- H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions.
- H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G.
- A parameter **p** is any function mapping graphs to non-negative integers:

$$\textbf{p}:\mathcal{G}\to {\rm I\!N}^+$$

 We say that a parameter p is minor closed if for every graph H,

$$H \leq_m G \Rightarrow \mathbf{p}(H) \leq \mathbf{p}(G).$$

- H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions.
- H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G.
- A parameter **p** is any function mapping graphs to non-negative integers:

$$\mathbf{p}:\mathcal{G}\to\mathbb{N}^+$$

 We say that a parameter p is minor closed if for every graph H,

$$H \leq_m G \Rightarrow \mathbf{p}(H) \leq \mathbf{p}(G)$$
.

- H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions.
- H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G.
- A parameter **p** is any function mapping graphs to non-negative integers:

$$\mathbf{p}:\mathcal{G} \to \mathbb{N}^+$$

 We say that a parameter p is minor closed if for every graph H,

$$H \leq_m G \Rightarrow \mathbf{p}(H) \leq \mathbf{p}(G).$$

Clique-sums

- Suppose G₁ and G₂ are graphs with disjoint vertex-sets and k≥ 0 is an integer.
- For i = 1, 2, let $W_i \subseteq V(G_i)$ form a clique of size k.
- A clique-sum $G_1 \oplus G_2$ of G_1 and G_2 is the graph obtained by gluing G_1 and G_2 at the cliques, and possibly deleting some edges.

- Let \mathcal{G} be a class of graphs embeddable in a surface Σ .
- A graph parameter **p** is (c, d)-self-dual on \mathcal{G} if for every graph $G \in \mathcal{G}$ and for its geometric dual G^* ,

$$\mathbf{p}(G^*) \leq c \cdot \mathbf{p}(G) + d.$$

- Main motivation: Graph Minors project [Robertson and Seymour, 1982–].
- Branchwidth is (1,0)-self-dual in planar graphs that are not forests.
 ISevmour and Thomas. Combinatorica 1994l.
- We prove that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g.

- Let \mathcal{G} be a class of graphs embeddable in a surface Σ .
- A graph parameter **p** is (c, d)-self-dual on \mathcal{G} if for every graph $G \in \mathcal{G}$ and for its geometric dual G^* ,

$$\mathbf{p}(G^*) \leq c \cdot \mathbf{p}(G) + d.$$

- Main motivation: Graph Minors project [Robertson and Seymour, 1982–].
- Branchwidth is (1,0)-self-dual in planar graphs that are not forests.
 [Seymour and Thomas, Combinatorica 1994].
- We prove that branchwidth is (6,2g 4)-self-dual in graphs of Euler genus at most g.

- Let \mathcal{G} be a class of graphs embeddable in a surface Σ .
- A graph parameter **p** is (c, d)-self-dual on G if for every graph G∈ G and for its geometric dual G*,

$$\mathbf{p}(G^*) \leq c \cdot \mathbf{p}(G) + d.$$

- Main motivation: Graph Minors project [Robertson and Seymour, 1982–].
- Branchwidth is (1,0)-self-dual in planar graphs that are not forests.
 [Seymour and Thomas, Combinatorica 1994].
- We prove that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g.

- Let \mathcal{G} be a class of graphs embeddable in a surface Σ .
- A graph parameter **p** is (c, d)-self-dual on G if for every graph G∈ G and for its geometric dual G*,

$$\mathbf{p}(G^*) \leq c \cdot \mathbf{p}(G) + d.$$

- Main motivation: Graph Minors project [Robertson and Seymour, 1982–].
- Branchwidth is (1,0)-self-dual in planar graphs that are not forests.
 [Seymour and Thomas, Combinatorica 1994].
- We prove that branchwidth is (6,2g 4)-self-dual in graphs of Euler genus at most g.

3. The result:

Theorem

Let (G, Σ) be an embedding with $g = \mathbf{eg}(\Sigma)$. Then

$$bw(G^*) \le 6 \cdot bw(G) + 2g - 4$$
.

Main idea

The result holds for polyhedral embeddings:

Proposition (With the idea of Fomin and Thilikos, Journal of Graph Theory 2007)

Let (G, Σ) and (G^*, Σ) be dual polyhedral embeddings in a surface of Euler genus g. Then

$$\mathbf{bw}(G^*) \leq 6 \cdot \mathbf{bw}(G) + 2g - 4.$$

The result holds for polyhedral embeddings:

Proposition (With the idea of Fomin and Thilikos, Journal of Graph Theory 2007)

Let (G, Σ) and (G^*, Σ) be dual polyhedral embeddings in a surface of Euler genus g. Then

$$\mathbf{bw}(G^*) \leq 6 \cdot \mathbf{bw}(G) + 2g - 4.$$

If (G, Σ) is not polyhedral, we decompose G into polyhedral pieces plus a set of vertices whose size is linearly bounded by $eg(\Sigma)$: polyhedral decomposition.

- 1. Set $\mathcal{B} = \{G\}$, and $\mathcal{B}^* = \{G^*\}$ (we call the members of \mathcal{B} and \mathcal{B}^* blocks).
- - Let C_1, \ldots, C_o be the connected components of

The algorithm

- 1. Set $\mathcal{B} = \{G\}$, and $\mathcal{B}^* = \{G^*\}$ (we call the members of \mathcal{B} and \mathcal{B}^* blocks).
- 2. If (G, Σ) has a minimal separator S with |S| < 2:
 - Let C_1, \ldots, C_{ρ} be the connected components of $G[V(G) \setminus S]$ and, for $i = 1, ..., \rho$, let G_i be the graph obtained by $G[V(C_i) \cup S]$ by adding an edge with both endpoints in S in the case where |S| = 2 and such an edge does not already exist.
 - Notice that a (non-empty) separator S of size at most 2
 - Let $G_i^*, i = 1, \dots, \rho$, be the graphs obtained by cutting G^*
 - We say that each G_i (resp. G_i^*) is a block of G (resp. G^*).

The algorithm

- 1. Set $\mathcal{B} = \{G\}$, and $\mathcal{B}^* = \{G^*\}$ (we call the members of \mathcal{B} and \mathcal{B}^* blocks).
- 2. If (G, Σ) has a minimal separator S with |S| < 2:
 - Let C_1, \ldots, C_{ρ} be the connected components of $G[V(G) \setminus S]$ and, for $i = 1, ..., \rho$, let G_i be the graph obtained by $G[V(C_i) \cup S]$ by adding an edge with both endpoints in S in the case where |S| = 2 and such an edge does not already exist.
 - Notice that a (non-empty) separator S of size at most 2 corresponds to a non-empty separator S^* of G^* .
 - Let $G_i^*, i = 1, \dots, \rho$, be the graphs obtained by cutting G^* along S^* .
 - We say that each G_i (resp G_i^*) is a block of G (resp. G^*).

The algorithm (II)

- Notice that each G and G* is the clique-sum of its blocks.
- Using the following lemma:

Lemma (Fomin and Thilikos, SIAM J. Comp. 2006)

Let G_1 and G_2 be graphs with one edge or one vertex in common. Then $\mathbf{bw}(G_1 \cup G_2) \leq \max\{\mathbf{bw}(G_1), \mathbf{bw}(G_2), 2\}$.

```
Yields bw(G^*) \leq \max\{2, \max\{bw(G_i^*) | i = 1, ..., \rho\}\}.
```

The algorithm (II)

- Notice that each G and G* is the clique-sum of its blocks.
- Using the following lemma:

Lemma (Fomin and Thilikos, SIAM J. Comp. 2006)

Let G_1 and G_2 be graphs with one edge or one vertex in common. Then $\mathbf{bw}(G_1 \cup G_2) \leq \max\{\mathbf{bw}(G_1), \mathbf{bw}(G_2), 2\}$.

Yields
$$bw(G^*) \le max\{2, max\{bw(G_i^*) \mid i = 1, ..., \rho\}\}.$$

- Observe that we may assume that for each $i = 1, \ldots, \rho, G_i$

- Notice that each G and G* is the clique-sum of its blocks.
- Using the following lemma:

Lemma (Fomin and Thilikos, SIAM J. Comp. 2006)

Let G_1 and G_2 be graphs with one edge or one vertex in common. Then $\mathbf{bw}(G_1 \cup G_2) \leq \max\{\mathbf{bw}(G_1), \mathbf{bw}(G_2), 2\}$.

Yields **bw**(G^*) $\leq \max\{2, \max\{\mathbf{bw}(G_i^*) \mid i = 1, ..., \rho\}\}.$

- Observe that we may assume that for each $i = 1, ..., \rho, G_i$ and G_i^* are embedded in a surface Σ_i such that G_i is the dual of G_i^* and $eg(\Sigma) = \sum_{i=1}^{\infty} eg(\Sigma_i)$.
- Notice that $\mathbf{bw}(G_i) < \mathbf{bw}(G), i = 1, \dots, \rho$, as the possible

- Notice that each G and G* is the clique-sum of its blocks.
- Using the following lemma:

Lemma (Fomin and Thilikos, SIAM J. Comp. 2006)

Let G_1 and G_2 be graphs with one edge or one vertex in common. Then $\mathbf{bw}(G_1 \cup G_2) \leq \max\{\mathbf{bw}(G_1), \mathbf{bw}(G_2), 2\}$.

Yields **bw**(G^*) $\leq \max\{2, \max\{\mathbf{bw}(G_i^*) \mid i = 1, ..., \rho\}\}.$

- Observe that we may assume that for each $i = 1, ..., \rho, G_i$ and G_i^* are embedded in a surface Σ_i such that G_i is the dual of G_i^* and $eg(\Sigma) = \sum_{i=1}^{\infty} eg(\Sigma_i)$.
- Notice that $\mathbf{bw}(G_i) \leq \mathbf{bw}(G), i = 1, \dots, \rho$, as the possible edge addition does not increase the branchwidth, since each block of G is a minor of G.
- We set $\mathcal{B} \leftarrow \mathcal{B} \setminus \{G\} \cup \{G_1, \dots, G_o\}$ and

The algorithm (II)

- Notice that each G and G* is the clique-sum of its blocks.
- Using the following lemma:

Lemma (Fomin and Thilikos, SIAM J. Comp. 2006)

Let G_1 and G_2 be graphs with one edge or one vertex in common. Then $\mathbf{bw}(G_1 \cup G_2) \leq \max\{\mathbf{bw}(G_1), \mathbf{bw}(G_2), 2\}$.

Yields
$$bw(G^*) \le max\{2, max\{bw(G_i^*) \mid i = 1, ..., \rho\}\}.$$

- Observe that we may assume that for each $i = 1, ..., \rho, G_i$ and G_i^* are embedded in a surface Σ_i such that G_i is the dual of G_i^* and $eg(\Sigma) = \sum_{i=1}^{\infty} eg(\Sigma_i)$.
- Notice that $\mathbf{bw}(G_i) \leq \mathbf{bw}(G), i = 1, \dots, \rho$, as the possible edge addition does not increase the branchwidth, since each block of G is a minor of G.
- We set $\mathcal{B} \leftarrow \mathcal{B} \setminus \{G\} \cup \{G_1, \dots, G_a\}$ and $\mathcal{B}^* \leftarrow \mathcal{B}^* \setminus \{G^*\} \cup \{G_1^*, \ldots, G_n^*\}.$

Preliminaries Motivation The result Conclusions

The algorithm (III)

- 3. If (G, Σ) has a non-contractible and non-surface-separating noose meeting a set $S \subseteq V(G)$ with $|S| \le 2$:
 - Let $G' = G[V(G) \setminus S]$ and let F be the set of of faces in G^* corresponding to the vertices in S.
 - Observe that the obtained graph G' has an embedding to some surface Σ' of Euler genus *strictly* smaller than Σ that, in turn, has some dual $G^{\prime*}$ in Σ' . Therefore $eq(\Sigma') < eq(\Sigma)$.
 - G'* is the result of the contraction in G* of the |S| faces in F.
 - Using the following lemma:

- 4. Apply Steps 2–4 for each block $G \in \mathcal{B}$ and its dual, $\bullet \bullet$

The algorithm (III)

- 3. If (G, Σ) has a non-contractible and non-surface-separating noose meeting a set $S \subseteq V(G)$ with $|S| \le 2$:
 - Let $G' = G[V(G) \setminus S]$ and let F be the set of of faces in G^* corresponding to the vertices in S.
 - Observe that the obtained graph G' has an embedding to some surface Σ' of Euler genus *strictly* smaller than Σ that, in turn, has some dual $G^{\prime*}$ in Σ' . Therefore $eq(\Sigma') < eq(\Sigma)$.
 - G'* is the result of the contraction in G* of the |S| faces in F.
 - Using the following lemma:

Lemma

The removal of a vertex or the contraction of a face from an embedded graph decreases its branchwidth by at most 1.

yields
$$\mathbf{bw}(G^*) \leq \mathbf{bw}(G'^*) + |S|$$
.

- Set $\mathcal{B} \leftarrow \mathcal{B} \setminus \{G\} \cup \{G'\}$ and $\mathcal{B}^* \leftarrow \mathcal{B}^* \setminus \{G^*\} \cup \{G'^*\}$.
- 4. Apply Steps 2–4 for each block $G \in \mathcal{B}$ and its dual,

3. If (G, Σ) has a non-contractible and non-surface-separating noose meeting a set $S \subseteq V(G)$ with $|S| \le 2$:

- Let $G' = G[V(G) \setminus S]$ and let F be the set of affaces in G^* corresponding to the vertices in S.
- Observe that the obtained graph G' has an embedding to some surface Σ' of Euler genus *strictly* smaller than Σ that, in turn, has some dual $G^{\prime*}$ in Σ' . Therefore $eq(\Sigma') < eq(\Sigma)$.
- G'* is the result of the contraction in G* of the |S| faces in F.
- Using the following lemma:

Lemma

The removal of a vertex or the contraction of a face from an embedded graph decreases its branchwidth by at most 1.

yields
$$\mathbf{bw}(G^*) \leq \mathbf{bw}(G'^*) + |S|$$
.

- Set $\mathcal{B} \leftarrow \mathcal{B} \setminus \{G\} \cup \{G'\}$ and $\mathcal{B}^* \leftarrow \mathcal{B}^* \setminus \{G^*\} \cup \{G'^*\}$.
- 4. Apply Steps 2–4 for each block $G \in \mathcal{B}$ and its dual,

The algorithm (III)

- 3. If (G, Σ) has a non-contractible and non-surface-separating noose meeting a set $S \subseteq V(G)$ with $|S| \le 2$:
 - Let $G' = G[V(G) \setminus S]$ and let F be the set of affaces in G^* corresponding to the vertices in S.
 - Observe that the obtained graph G' has an embedding to some surface Σ' of Euler genus *strictly* smaller than Σ that, in turn, has some dual $G^{\prime*}$ in Σ' . Therefore $eq(\Sigma') < eq(\Sigma)$.
 - G'* is the result of the contraction in G* of the |S| faces in F.
 - Using the following lemma:

Lemma

The removal of a vertex or the contraction of a face from an embedded graph decreases its branchwidth by at most 1.

yields
$$\mathbf{bw}(G^*) \leq \mathbf{bw}(G'^*) + |S|$$
.

- Set $\mathcal{B} \leftarrow \mathcal{B} \setminus \{G\} \cup \{G'\}$ and $\mathcal{B}^* \leftarrow \mathcal{B}^* \setminus \{G^*\} \cup \{G'^*\}$.
- 4. Apply Steps 2–4 for each block $G \in \mathcal{B}$ and its dual.

- Idea: induction on the distance from the root of the recursion tree of the algorithm.
- Base case of the induction: All embeddings of graphs in

- Idea: induction on the distance from the root of the recursion tree of the algorithm.
- Base case of the induction: All embeddings of graphs in the collections \mathcal{B} and \mathcal{B}^* constructed by the algorithm are polyhedral (except from the trivial case that they are just cliques of size 2). Therefore, the result holds.

- Idea: induction on the distance from the root of the recursion tree of the algorithm.
- Base case of the induction: All embeddings of graphs in the collections \mathcal{B} and \mathcal{B}^* constructed by the algorithm are polyhedral (except from the trivial case that they are just cliques of size 2). Therefore, the result holds.
- Induction step (case 1): Suppose that G (resp. G^*) is the

- Idea: induction on the distance from the root of the recursion tree of the algorithm.
- Base case of the induction: All embeddings of graphs in the collections \mathcal{B} and \mathcal{B}^* constructed by the algorithm are polyhedral (except from the trivial case that they are just cliques of size 2). Therefore, the result holds.
- Induction step (case 1): Suppose that G (resp. G^*) is the clique-sum of its blocks G_1, \ldots, G_{ρ} (resp. $G_1^*, \ldots, G_{\rho}^*$) embedded in the surfaces $\Sigma_1, \ldots, \Sigma_n$ (Step 2).
 - By induction, we have that

- Idea: induction on the distance from the root of the recursion tree of the algorithm.
- Base case of the induction: All embeddings of graphs in the collections \mathcal{B} and \mathcal{B}^* constructed by the algorithm are polyhedral (except from the trivial case that they are just cliques of size 2). Therefore, the result holds.
- Induction step (case 1): Suppose that G (resp. G^*) is the clique-sum of its blocks G_1, \ldots, G_ρ (resp. G_1^*, \ldots, G_ρ^*) embedded in the surfaces $\Sigma_1, \ldots, \Sigma_n$ (Step 2).
 - By induction, we have that $\mathsf{bw}(G_i^*) \leq 6 \cdot \mathsf{bw}(G_i) + 2\mathsf{eg}(\Sigma_i) - 4, i = 1, \dots, \rho.$
 - Then, the claim follows from
 - $bw(G^*) < max\{2, max\{bw(G_i^*) \mid i = 1, ..., \rho\}\}.$
 - $bw(G_i) \leq bw(G), i = 1, ..., \rho$.
 - $\operatorname{eg}(\Sigma) = \sum_{i=1}^{n} \operatorname{eg}(\Sigma_i)$.

- Idea: induction on the distance from the root of the recursion tree of the algorithm.
- Base case of the induction: All embeddings of graphs in the collections \mathcal{B} and \mathcal{B}^* constructed by the algorithm are polyhedral (except from the trivial case that they are just cliques of size 2). Therefore, the result holds.
- **Induction step (case 1)**: Suppose that G (resp. G^*) is the clique-sum of its blocks G_1, \ldots, G_ρ (resp. G_1^*, \ldots, G_ρ^*) embedded in the surfaces $\Sigma_1, \ldots, \Sigma_\rho$ (Step 2).
 - By induction, we have that $\mathbf{bw}(G_i^*) \leq 6 \cdot \mathbf{bw}(G_i) + 2\mathbf{eg}(\Sigma_i) 4, i = 1, \dots, \rho.$
 - Then, the claim follows from
 - $\mathbf{bw}(G^*) \leq \max\{2, \max\{\mathbf{bw}(G_i^*) \mid i = 1, \dots, \rho\}\}.$
 - $bw(G_i) \le bw(G), i = 1, ..., \rho.$
 - $\operatorname{eg}(\Sigma) = \sum_{i=1,\ldots,\rho} \operatorname{eg}(\Sigma_i)$.

- Induction step (case 2): Suppose now (Step 3) that G (resp. G^*) occurs from some graph G' (resp. G'^*) embedded in a surface Σ' where $eq(\Sigma') < eq(\Sigma)$ after adding the vertices in S (resp. S^*).
- From the induction hypothesis, **bw**(G^{*}) < $6 \cdot bw(G') + 2eq(\Sigma') - 4 < 6 \cdot bw(G') + 2eq(\Sigma) - 2 - 4$.

- Induction step (case 2): Suppose now (Step 3) that G (resp. G^*) occurs from some graph G' (resp. G'^*) embedded in a surface Σ' where $eq(\Sigma') < eq(\Sigma)$ after adding the vertices in S (resp. S^*).
- From the induction hypothesis, **bw** $(G'^*) \leq$ $6 \cdot bw(G') + 2eg(\Sigma') - 4 \le 6 \cdot bw(G') + 2eg(\Sigma) - 2 - 4$.

Sketch of proof (II)

- Induction step (case 2): Suppose now (Step 3) that G (resp. G^*) occurs from some graph G' (resp. G'^*) embedded in a surface Σ' where $eq(\Sigma') < eq(\Sigma)$ after adding the vertices in S (resp. S^*).
- From the induction hypothesis, bw(G'*) ≤ $6 \cdot \mathbf{bw}(G') + 2\mathbf{eq}(\Sigma') - 4 < 6 \cdot \mathbf{bw}(G') + 2\mathbf{eq}(\Sigma) - 2 - 4$.
- And the claim follows from
 - $bw(G^*) < bw(G'^*) + |S|$.
 - |S| < 2.
 - bw(G') < bw(G).

Sketch of proof (II)

- Induction step (case 2): Suppose now (Step 3) that G (resp. G^*) occurs from some graph G' (resp. G'^*) embedded in a surface Σ' where $eq(\Sigma') < eq(\Sigma)$ after adding the vertices in S (resp. S^*).
- From the induction hypothesis, **bw** $(G'^*) \leq$ $6 \cdot \mathbf{bw}(G') + 2\mathbf{eg}(\Sigma') - 4 \le 6 \cdot \mathbf{bw}(G') + 2\mathbf{eq}(\Sigma) - 2 - 4.$
- And the claim follows from
 - $bw(G^*) < bw(G'^*) + |S|$.
 - |S| ≤ 2.
 - $bw(G') \leq bw(G)$.

- We proved that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g.
- Very recently: treewidth is a (1,g+1)-self-dual parameter in graphs embeddable in surfaces of Euler genus g. [Frédéric Mazoit, DIMAP workshop on Algorithmic Graph Theory, Warwick (U.K.), March 2009] Using that, if $|E(G)| \geq 3$, $\mathbf{bw}(G) \leq \mathbf{tw}(G) + 1 \leq \frac{3}{2}\mathbf{bw}(G)$. [Robertson and Seymour, J. Comb. Theory Series B, 1991] we get $\mathbf{bw}(G^*) \leq \frac{3}{2}\mathbf{bw}(G) + g + 2$, which improves the constants of our result.
- We believe that

If G is a graph embedded in some surface Σ , then $bw(G^*) \leq bw(G) + eq(\Sigma)$.

- We proved that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g.
- Very recently: treewidth is a (1, g+1)-self-dual parameter in graphs embeddable in surfaces of Euler genus g. [Frédéric Mazoit, DIMAP workshop on Algorithmic Graph Theory, Warwick (U.K.), March 2009] Using that, if $|E(G)| \ge 3$, $\mathbf{bw}(G) \le \mathbf{tw}(G) + 1 \le \frac{3}{2}\mathbf{bw}(G)$. [Robertson and Seymour, J. Comb. Theory Series B, 1991] we get $\mathbf{bw}(G^*) \le \frac{3}{2}\mathbf{bw}(G) + g + 2$, which improves the constants of our result.
- We believe that

Conjecture

If G is a graph embedded in some surface Σ , then $\mathbf{bw}(G^*) \leq \mathbf{bw}(G) + \mathbf{eq}(\Sigma)$.

- We proved that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g.
- Very recently: treewidth is a (1, g+1)-self-dual parameter in graphs embeddable in surfaces of Euler genus g. [Frédéric Mazoit, DIMAP workshop on Algorithmic Graph Theory, Warwick (U.K.), March 2009] Using that, if $|E(G)| \ge 3$, $\mathbf{bw}(G) \le \mathbf{tw}(G) + 1 \le \frac{3}{2}\mathbf{bw}(G)$. [Robertson and Seymour, J. Comb. Theory Series B, 1991] we get $\mathbf{bw}(G^*) \le \frac{3}{2}\mathbf{bw}(G) + g + 2$, which improves the constants of our result.
- We believe that

Conjecture

If G is a graph embedded in some surface Σ , then $\mathbf{bw}(G^*) \leq \mathbf{bw}(G) + \mathbf{eq}(\Sigma)$.

- We proved that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g.
- Very recently: treewidth is a (1, g+1)-self-dual parameter in graphs embeddable in surfaces of Euler genus g. [Frédéric Mazoit, DIMAP workshop on Algorithmic Graph Theory, Warwick (U.K.), March 2009] Using that, if $|E(G)| \geq 3$, $\mathbf{bw}(G) \leq \mathbf{tw}(G) + 1 \leq \frac{3}{2}\mathbf{bw}(G)$. [Robertson and Seymour, J. Comb. Theory Series B, 1991] we get $\mathbf{bw}(G^*) \leq \frac{3}{2}\mathbf{bw}(G) + g + 2$, which improves the constants of our result.
- We believe that

Conjecture

If G is a graph embedded in some surface Σ , then $\mathbf{bw}(G^*) \leq \mathbf{bw}(G) + \mathbf{eq}(\Sigma)$.

- We proved that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g.
- Very recently: treewidth is a (1, g+1)-self-dual parameter in graphs embeddable in surfaces of Euler genus g. [Frédéric Mazoit, DIMAP workshop on Algorithmic Graph Theory, Warwick (U.K.), March 2009] Using that, if $|E(G)| \ge 3$, $\mathbf{bw}(G) \le \mathbf{tw}(G) + 1 \le \frac{3}{2}\mathbf{bw}(G)$. [Robertson and Seymour, J. Comb. Theory Series B, 1991] we get $\mathbf{bw}(G^*) \le \frac{3}{2}\mathbf{bw}(G) + g + 2$, which improves the constants of our result.
- We believe that

Conjecture

If G is a graph embedded in some surface Σ , then $\mathbf{bw}(G^*) \leq \mathbf{bw}(G) + \mathbf{eg}(\Sigma)$.

Gràcies!