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Surfaces

Surface: connected compact 2-manifold without
boundaries.
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Handles
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Cross-caps

6/26



Preliminaries Motivation The result Conclusions Graphs on surfaces Branchwidth Minors Clique-sums

Genus of a surface

The surface classification Theorem: any compact,
connected and without boundary surface can be obtained
from the sphere S2 by adding handles and cross-caps.

Orientable surfaces: obtained by adding g ≥ 0 handles to
the sphere S2, obtaining the g-torus Tg with Euler genus
eg(Tg) = 2g.

Non-orientable surfaces: obtained by adding h > 0
cross-caps to the sphere S2, obtaining a non-orientable
surface Ph with Euler genus eg(Ph) = h.
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Graphs on Surfaces

An embedding of a graph G on a surface Σ is a drawing of
G on Σ without edge crossings.

An embedding defines vertices, edges, and faces.

The Euler genus of a graph G, eg(G), is the least Euler
genus of the surfaces in which G can be embedded
(NP-hard problem).
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Example: K5 and K3,3

Theorem (Kuratowski, 1930)
A graph G is planar if and only if contains neither K5 nor K3,3 as
a topological minor.

But K5 and K3,3 can be embedded in the torus T1:

Therefore, eg(K5) = eg(K3,3) = 2.
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Polyhedral embeddings

A subset of Σ meeting the drawing only at vertices of G is
called G-normal. An O-arc is a subset of Σ homeomorphic
to S1.

If an O-arc is G-normal, then we call it a noose. The
length of a noose is the number of its vertices.

A noose is contractible if it is homotopically equivalent to a
point.

A noose is surface separating it its removal disconnects Σ.

The representativity rep(G,Σ) of a graph embedding
(G,Σ) is the smallest length of a non-contractible noose in
Σ.

An embedding (G,Σ) is polyhedral if G is 3-connected and
rep(G,Σ) ≥ 3.
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Dual embedding

A 2-cell embedding is an embedding in which every face is
homeomorphic to an open disk.

For 2-cell embeddings, the Euler’s formula applies:

|V | − |E |+ |F | = eg(Σ).

For a given embedding (G,Σ), we denote by (G∗,Σ) its
dual embedding (it is the geometric dual).

Each vertex v (resp. face r ) in (G,Σ) corresponds to some
face v∗ (resp. vertex r∗) in (G∗,Σ).
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Branchwidth

A branch decomposition of a graph G = (V ,E) is a tuple
(T , µ), where:

T is a tree where all the internal nodes have degree 3.
µ is a bijection between the leaves of T and E(G).

Each edge e ∈ T partitions E(G) into two sets Ae and Be.

For each e ∈ E(T ), we define mid(e) = V (Ae) ∩ V (Be).

The width of a branch decomposition is maxe∈E(T ) |mid(e)|.

The branchwidth of a graph G (denoted bw(G)) is the
minimum width over all branch decompositions of G:

bw(G) = min
(T ,µ)

max
e∈E(T )

|mid(e)|
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Graph minors

H is a contraction of G (H �c G) if H occurs from G after
applying a series of edge contractions.

H is a minor of G (H �m G) if H is the contraction of some
subgraph of G.

A parameter p is any function mapping graphs to
non-negative integers:

p : G → N+

We say that a parameter p is minor closed if for every
graph H,

H �m G ⇒ p(H) ≤ p(G).

For instance, bw is minor closed.
13/26



Preliminaries Motivation The result Conclusions Graphs on surfaces Branchwidth Minors Clique-sums

Graph minors

H is a contraction of G (H �c G) if H occurs from G after
applying a series of edge contractions.

H is a minor of G (H �m G) if H is the contraction of some
subgraph of G.

A parameter p is any function mapping graphs to
non-negative integers:

p : G → N+

We say that a parameter p is minor closed if for every
graph H,

H �m G ⇒ p(H) ≤ p(G).

For instance, bw is minor closed.
13/26



Preliminaries Motivation The result Conclusions Graphs on surfaces Branchwidth Minors Clique-sums

Graph minors

H is a contraction of G (H �c G) if H occurs from G after
applying a series of edge contractions.

H is a minor of G (H �m G) if H is the contraction of some
subgraph of G.

A parameter p is any function mapping graphs to
non-negative integers:

p : G → N+

We say that a parameter p is minor closed if for every
graph H,

H �m G ⇒ p(H) ≤ p(G).

For instance, bw is minor closed.
13/26



Preliminaries Motivation The result Conclusions Graphs on surfaces Branchwidth Minors Clique-sums

Graph minors

H is a contraction of G (H �c G) if H occurs from G after
applying a series of edge contractions.

H is a minor of G (H �m G) if H is the contraction of some
subgraph of G.

A parameter p is any function mapping graphs to
non-negative integers:

p : G → N+

We say that a parameter p is minor closed if for every
graph H,

H �m G ⇒ p(H) ≤ p(G).

For instance, bw is minor closed.
13/26



Preliminaries Motivation The result Conclusions Graphs on surfaces Branchwidth Minors Clique-sums

Clique-sums

Suppose G1 and G2 are graphs with disjoint vertex-sets
and k ≥ 0 is an integer.

For i = 1,2, let Wi ⊆ V (Gi) form a clique of size k .

A clique-sum G1 ⊕G2 of G1 and G2 is the graph obtained
by gluing G1 and G2 at the cliques, and possibly deleting
some edges.
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2. Motivation
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Motivation

Let G be a class of graphs embeddable in a surface Σ.

A graph parameter p is (c,d)-self-dual on G if for every
graph G ∈ G and for its geometric dual G∗,

p(G∗) ≤ c · p(G) + d .

Main motivation: Graph Minors project
[Robertson and Seymour, 1982–].

Branchwidth is (1,0)-self-dual in planar graphs that are not
forests.
[Seymour and Thomas, Combinatorica 1994].

We prove that branchwidth is (6,2g − 4)-self-dual in
graphs of Euler genus at most g.
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3. The result:

Theorem

Let (G,Σ) be an embedding with g = eg(Σ). Then

bw(G∗) ≤ 6 · bw(G) + 2g − 4.
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Main idea

The result holds for polyhedral embeddings:

Proposition (With the idea of Fomin and Thilikos, Journal of
Graph Theory 2007)

Let (G,Σ) and (G∗,Σ) be dual polyhedral embeddings in a
surface of Euler genus g. Then

bw(G∗) ≤ 6 · bw(G) + 2g − 4.

If (G,Σ) is not polyhedral, we decompose G into polyhedral
pieces plus a set of vertices whose size is linearly bounded by
eg(Σ): polyhedral decomposition.
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The algorithm

1. Set B = {G}, and B∗ = {G∗}
(we call the members of B and B∗ blocks).

2. If (G,Σ) has a minimal separator S with |S| ≤ 2:

Let C1, . . . ,Cρ be the connected components of
G[V (G) \ S] and, for i = 1, . . . , ρ, let Gi be the graph
obtained by G[V (Ci ) ∪ S] by adding an edge with both
endpoints in S in the case where |S| = 2 and such an edge
does not already exist.
Notice that a (non-empty) separator S of size at most 2
corresponds to a non-empty separator S∗ of G∗.
Let G∗i , i = 1, . . . , ρ, be the graphs obtained by cutting G∗

along S∗.
We say that each Gi (resp G∗i ) is a block of G (resp. G∗).
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The algorithm (II)

Notice that each G and G∗ is the clique-sum of its blocks.
Using the following lemma:

Lemma (Fomin and Thilikos, SIAM J. Comp. 2006)

Let G1 and G2 be graphs with one edge or one vertex in
common. Then bw(G1 ∪G2) ≤ max{bw(G1),bw(G2),2}.

Yields bw(G∗) ≤ max{2,max{bw(G∗i ) | i = 1, . . . , ρ}}.
Observe that we may assume that for each i = 1, . . . , ρ, Gi
and G∗i are embedded in a surface Σi such that Gi is the
dual of G∗i and eg(Σ) =

∑
i=1,...,ρ eg(Σi).

Notice that bw(Gi) ≤ bw(G), i = 1, . . . , ρ, as the possible
edge addition does not increase the branchwidth, since
each block of G is a minor of G.
We set B ← B \ {G} ∪ {G1, . . . ,Gρ} and
B∗ ← B∗ \ {G∗} ∪ {G∗1, . . . ,G∗ρ}.
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The algorithm (III)

3. If (G,Σ) has a non-contractible and non-surface-separating
noose meeting a set S ⊆ V (G) with |S| ≤ 2:

Let G′ = G[V (G) \ S] and let F be the set of of faces in G∗

corresponding to the vertices in S.
Observe that the obtained graph G′ has an embedding to
some surface Σ′ of Euler genus strictly smaller than Σ that,
in turn, has some dual G′∗ in Σ′. Therefore eg(Σ′) < eg(Σ).
G′∗ is the result of the contraction in G∗ of the |S| faces in
F .
Using the following lemma:

Lemma

The removal of a vertex or the contraction of a face from an
embedded graph decreases its branchwidth by at most 1.

yields bw(G∗) ≤ bw(G′∗) + |S|.
Set B ← B \ {G} ∪ {G′} and B∗ ← B∗ \ {G∗} ∪ {G′∗}.

4. Apply Steps 2–4 for each block G ∈ B and its dual.
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Sketch of proof

Idea: induction on the distance from the root of the
recursion tree of the algorithm.

Base case of the induction: All embeddings of graphs in
the collections B and B∗ constructed by the algorithm are
polyhedral (except from the trivial case that they are just
cliques of size 2). Therefore, the result holds.

Induction step (case 1): Suppose that G (resp. G∗) is the
clique-sum of its blocks G1, . . . ,Gρ (resp. G∗1, . . . ,G

∗
ρ)

embedded in the surfaces Σ1, . . . ,Σρ (Step 2).
By induction, we have that
bw(G∗i ) ≤ 6 · bw(Gi ) + 2eg(Σi )− 4, i = 1, . . . , ρ.
Then, the claim follows from

bw(G∗) ≤ max{2,max{bw(G∗
i ) | i = 1, . . . , ρ}}.

bw(Gi ) ≤ bw(G), i = 1, . . . , ρ.
eg(Σ) =

∑
i=1,...,ρ eg(Σi ).
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Sketch of proof (II)

Induction step (case 2): Suppose now (Step 3) that G
(resp. G∗) occurs from some graph G′ (resp. G′∗)
embedded in a surface Σ′ where eg(Σ′) < eg(Σ) after
adding the vertices in S (resp. S∗).

From the induction hypothesis, bw(G′∗) ≤
6 · bw(G′) + 2eg(Σ′)− 4 ≤ 6 · bw(G′) + 2eg(Σ)− 2− 4.

And the claim follows from
bw(G∗) ≤ bw(G′∗) + |S|.
|S| ≤ 2.
bw(G′) ≤ bw(G).
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4. Conclusions
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Conclusions

We proved that branchwidth is (6,2g − 4)-self-dual in
graphs of Euler genus at most g.

Very recently: treewidth is a (1,g + 1)-self-dual parameter
in graphs embeddable in surfaces of Euler genus g.
[Frédéric Mazoit, DIMAP workshop on Algorithmic Graph
Theory, Warwick (U.K.), March 2009]
Using that, if |E(G)| ≥ 3, bw(G) ≤ tw(G) + 1 ≤ 3

2bw(G).
[Robertson and Seymour, J. Comb. Theory Series B, 1991]
we get bw(G∗) ≤ 3

2bw(G) + g + 2,
which improves the constants of our result.

We believe that

Conjecture
If G is a graph embedded in some surface Σ, then
bw(G∗) ≤ bw(G) + eg(Σ).
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Gràcies!

26/26


	Preliminaries
	Graphs on surfaces
	Branchwidth
	Minors
	Clique-sums

	Motivation
	Motivation

	The result
	Main idea
	The algorithm

	Conclusions
	Conclusions


