On Self-Duality of Branchwidth in Graphs of Bounded Genus #### Ignasi Sau Mascotte Project - CNRS/INRIA/UNSA (France) + Applied Mathematics IV Department of UPC (Spain) Dimitrios M. Thilikos Department of Mathematics of National Kapodistrian University of Athens (Greece) Cologne Twente Workshop (CTW) Paris - June 2nd. 2009 #### Outline of the talk - 1. Preliminaries - Surfaces - Graphs on surfaces - Branchwidth - Minors - Clique-sums - 2. Motivation - 3. The result - Main idea - The algorithm - 4. Conclusions # 1. Preliminaries #### Surfaces Surface: connected compact 2-manifold without boundaries. #### Handles ### Cross-caps #### Genus of a surface - The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere S² by adding handles and cross-caps. - Orientable surfaces: obtained by adding $g \ge 0$ handles to the sphere \mathbb{S}^2 , obtaining the g-torus \mathbb{T}_g with Euler genus $\operatorname{eg}(\mathbb{T}_g) = 2g$. - Non-orientable surfaces: obtained by adding h > 0 cross-caps to the sphere \mathbb{S}^2 , obtaining a non-orientable surface \mathbb{P}_h with Euler genus $\mathbf{eq}(\mathbb{P}_h) = h$. #### Genus of a surface - The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere S² by adding handles and cross-caps. - Orientable surfaces: obtained by adding $g \ge 0$ handles to the sphere \mathbb{S}^2 , obtaining the g-torus \mathbb{T}_g with Euler genus $eg(\mathbb{T}_g) = 2g$. - Non-orientable surfaces: obtained by adding h > 0 cross-caps to the sphere \mathbb{S}^2 , obtaining a non-orientable surface \mathbb{P}_h with Euler genus $\mathbf{eq}(\mathbb{P}_h) = h$. #### Genus of a surface - The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere S² by adding handles and cross-caps. - Orientable surfaces: obtained by adding $g \ge 0$ handles to the sphere \mathbb{S}^2 , obtaining the g-torus \mathbb{T}_g with Euler genus $eg(\mathbb{T}_g) = 2g$. - Non-orientable surfaces: obtained by adding h > 0 cross-caps to the sphere \mathbb{S}^2 , obtaining a non-orientable surface \mathbb{P}_h with Euler genus $\mathbf{eg}(\mathbb{P}_h) = h$. ### Graphs on Surfaces - An embedding of a graph G on a surface Σ is a drawing of G on Σ without edge crossings. - An embedding defines vertices, edges, and faces. - The Euler genus of a graph G, eg(G), is the least Euler genus of the surfaces in which G can be embedded (NP-hard problem). ### Graphs on Surfaces - An embedding of a graph G on a surface Σ is a drawing of G on Σ without edge crossings. - An embedding defines vertices, edges, and faces. - The Euler genus of a graph G, eg(G), is the least Euler genus of the surfaces in which G can be embedded (NP-hard problem). #### Example: K_5 and $K_{3,3}$ #### Theorem (Kuratowski, 1930) A graph G is planar if and only if contains neither K_5 nor $K_{3,3}$ as a topological minor. But K_5 and $K_{3,3}$ can be embedded in the torus \mathbb{T}_1 : Therefore, $eg(K_5) = eg(K_{3,3}) = 2$. #### Example: K_5 and $K_{3,3}$ #### Theorem (Kuratowski, 1930) A graph G is planar if and only if contains neither K_5 nor $K_{3,3}$ as a topological minor. But K_5 and $K_{3,3}$ can be embedded in the torus \mathbb{T}_1 : Therefore, $eg(K_5) = eg(K_{3,3}) = 2$. ### Polyhedral embeddings - A subset of Σ meeting the drawing only at vertices of G is called G-normal. An O-arc is a subset of Σ homeomorphic to S¹. - If an O-arc is G-normal, then we call it a noose. The length of a noose is the number of its vertices. - A noose is contractible if it is homotopically equivalent to a point. - A noose is surface separating it its removal disconnects Σ. - The representativity $\operatorname{rep}(G, \Sigma)$ of a graph embedding (G, Σ) is the smallest length of a non-contractible noose in Σ . - An embedding (G, Σ) is polyhedral if G is 3-connected and rep(G, Σ) > 3. #### Polyhedral embeddings - A subset of Σ meeting the drawing only at vertices of G is called G-normal. An O-arc is a subset of Σ homeomorphic to S¹. - If an O-arc is G-normal, then we call it a noose. The length of a noose is the number of its vertices. - A noose is contractible if it is homotopically equivalent to a point. - A noose is surface separating it its removal disconnects Σ . - The representativity $\operatorname{rep}(G, \Sigma)$ of a graph embedding (G, Σ) is the smallest length of a non-contractible noose in Σ . - An embedding (G, Σ) is polyhedral if G is 3-connected and rep(G, Σ) ≥ 3. #### Polyhedral embeddings - A subset of Σ meeting the drawing only at vertices of G is called G-normal. An O-arc is a subset of Σ homeomorphic to S¹. - If an O-arc is G-normal, then we call it a noose. The length of a noose is the number of its vertices. - A noose is contractible if it is homotopically equivalent to a point. - A noose is surface separating it its removal disconnects Σ . - The representativity rep(G, Σ) of a graph embedding (G, Σ) is the smallest length of a non-contractible noose in Σ. - An embedding (G, Σ) is polyhedral if G is 3-connected and $rep(G, \Sigma) \geq 3$. < □ > → □ > → □ > → □ ≥ → □ ≥ ### Polyhedral embeddings - A subset of Σ meeting the drawing only at vertices of G is called G-normal. An O-arc is a subset of Σ homeomorphic to S¹. - If an O-arc is G-normal, then we call it a noose. The length of a noose is the number of its vertices. - A noose is contractible if it is homotopically equivalent to a point. - A noose is surface separating it its removal disconnects Σ . - The representativity rep(G, Σ) of a graph embedding (G, Σ) is the smallest length of a non-contractible noose in Σ. - An embedding (G, Σ) is polyhedral if G is 3-connected and $rep(G, \Sigma) > 3$. ### Polyhedral embeddings - A subset of Σ meeting the drawing only at vertices of G is called G-normal. An O-arc is a subset of Σ homeomorphic to S¹. - If an O-arc is G-normal, then we call it a noose. The length of a noose is the number of its vertices. - A noose is contractible if it is homotopically equivalent to a point. - A noose is surface separating it its removal disconnects Σ . - The representativity rep(G, Σ) of a graph embedding (G, Σ) is the smallest length of a non-contractible noose in Σ. - An embedding (G, Σ) is polyhedral if G is 3-connected and $\operatorname{rep}(G, \Sigma) \geq 3$. #### **Dual embedding** - A 2-cell embedding is an embedding in which every face is homeomorphic to an open disk. - For 2-cell embeddings, the Euler's formula applies: $$|V|-|E|+|F|=\operatorname{eg}(\Sigma).$$ • For a given embedding (G, Σ) , we denote by (G^*, Σ) its dual embedding (it is the *geometric dual*). Each vertex v (resp. face r) in (G, Σ) corresponds to some face v^* (resp. vertex r^*) in (G^*, Σ) . ### **Dual embedding** - A 2-cell embedding is an embedding in which every face is homeomorphic to an open disk. - For 2-cell embeddings, the Euler's formula applies: $$|V|-|E|+|F|=\operatorname{eg}(\Sigma).$$ • For a given embedding (G, Σ) , we denote by (G^*, Σ) its dual embedding (it is the *geometric dual*). Each vertex v (resp. face r) in (G, Σ) corresponds to some face v^* (resp. vertex r^*) in (G^*, Σ) . - A 2-cell embedding is an embedding in which every face is homeomorphic to an open disk. - For 2-cell embeddings, the Euler's formula applies: $$|V|-|E|+|F|=\operatorname{eg}(\Sigma).$$ • For a given embedding (G, Σ) , we denote by (G^*, Σ) its dual embedding (it is the *geometric dual*). Each vertex v (resp. face r) in (G, Σ) corresponds to some face v^* (resp. vertex r^*) in (G^*, Σ) . #### Dual embedding - A 2-cell embedding is an embedding in which every face is homeomorphic to an open disk. - For 2-cell embeddings, the Euler's formula applies: $$|V|-|E|+|F|=\operatorname{eg}(\Sigma).$$ • For a given embedding (G, Σ) , we denote by (G^*, Σ) its dual embedding (it is the geometric dual). Each vertex ν (resp. face r) in (G, Σ) corresponds to some face v^* (resp. vertex r^*) in (G^*, Σ) . - A branch decomposition of a graph G = (V, E) is a tuple (T, μ) , where: - T is a tree where all the internal nodes have degree 3. - μ is a bijection between the leaves of T and E(G). - Each edge $e \in T$ partitions E(G) into two sets A_e and B_e . - For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$. - The width of a branch decomposition is $\max_{e \in E(T)} |\text{mid}(e)|$ - The branchwidth of a graph G (denoted bw(G)) is the minimum width over all branch decompositions of G: $$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$ #### Branchwidth - A branch decomposition of a graph G = (V, E) is a tuple (T, μ) , where: - T is a tree where all the internal nodes have degree 3. - μ is a bijection between the leaves of T and E(G). - Each edge $e \in T$ partitions E(G) into two sets A_e and B_e . - For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$. - The width of a branch decomposition is $\max_{e \in F(T)} | \operatorname{mid}(e) |$. - The branchwidth of a graph G (denoted bw(G)) is the $$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$ - A branch decomposition of a graph G = (V, E) is a tuple (T, μ) , where: - T is a tree where all the internal nodes have degree 3. - μ is a bijection between the leaves of T and E(G). - Each edge $e \in T$ partitions E(G) into two sets A_e and B_e . - For each $e \in E(T)$, we define $mid(e) = V(A_e) \cap V(B_e)$. - The width of a branch decomposition is $\max_{e \in E(T)} | \operatorname{mid}(e) |$. - The branchwidth of a graph G (denoted **bw**(G)) is the minimum width over all branch decompositions of G: $$\mathbf{bw}(G) = \min_{(T,\mu)} \max_{e \in E(T)} |\operatorname{mid}(e)|$$ - H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions. - H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G. - A parameter p is any function mapping graphs to non-negative integers: $$p:\mathcal{G}\to\mathbb{N}^+$$ We say that a parameter p is minor closed if for every graph H, $$H \leq_m G \Rightarrow \mathbf{p}(H) \leq \mathbf{p}(G).$$ - H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions. - H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G. - A parameter **p** is any function mapping graphs to non-negative integers: $$\textbf{p}:\mathcal{G}\to {\rm I\!N}^+$$ We say that a parameter p is minor closed if for every graph H, $$H \leq_m G \Rightarrow \mathbf{p}(H) \leq \mathbf{p}(G).$$ - H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions. - H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G. - A parameter **p** is any function mapping graphs to non-negative integers: $$\mathbf{p}:\mathcal{G}\to\mathbb{N}^+$$ We say that a parameter p is minor closed if for every graph H, $$H \leq_m G \Rightarrow \mathbf{p}(H) \leq \mathbf{p}(G)$$. - H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions. - H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G. - A parameter **p** is any function mapping graphs to non-negative integers: $$\mathbf{p}:\mathcal{G} \to \mathbb{N}^+$$ We say that a parameter p is minor closed if for every graph H, $$H \leq_m G \Rightarrow \mathbf{p}(H) \leq \mathbf{p}(G).$$ ### Clique-sums - Suppose G₁ and G₂ are graphs with disjoint vertex-sets and k≥ 0 is an integer. - For i = 1, 2, let $W_i \subseteq V(G_i)$ form a clique of size k. - A clique-sum $G_1 \oplus G_2$ of G_1 and G_2 is the graph obtained by gluing G_1 and G_2 at the cliques, and possibly deleting some edges. - Let \mathcal{G} be a class of graphs embeddable in a surface Σ . - A graph parameter **p** is (c, d)-self-dual on \mathcal{G} if for every graph $G \in \mathcal{G}$ and for its geometric dual G^* , $$\mathbf{p}(G^*) \leq c \cdot \mathbf{p}(G) + d.$$ - Main motivation: Graph Minors project [Robertson and Seymour, 1982–]. - Branchwidth is (1,0)-self-dual in planar graphs that are not forests. ISevmour and Thomas. Combinatorica 1994l. - We prove that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g. - Let \mathcal{G} be a class of graphs embeddable in a surface Σ . - A graph parameter **p** is (c, d)-self-dual on \mathcal{G} if for every graph $G \in \mathcal{G}$ and for its geometric dual G^* , $$\mathbf{p}(G^*) \leq c \cdot \mathbf{p}(G) + d.$$ - Main motivation: Graph Minors project [Robertson and Seymour, 1982–]. - Branchwidth is (1,0)-self-dual in planar graphs that are not forests. [Seymour and Thomas, Combinatorica 1994]. - We prove that branchwidth is (6,2g 4)-self-dual in graphs of Euler genus at most g. - Let \mathcal{G} be a class of graphs embeddable in a surface Σ . - A graph parameter **p** is (c, d)-self-dual on G if for every graph G∈ G and for its geometric dual G*, $$\mathbf{p}(G^*) \leq c \cdot \mathbf{p}(G) + d.$$ - Main motivation: Graph Minors project [Robertson and Seymour, 1982–]. - Branchwidth is (1,0)-self-dual in planar graphs that are not forests. [Seymour and Thomas, Combinatorica 1994]. - We prove that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g. - Let \mathcal{G} be a class of graphs embeddable in a surface Σ . - A graph parameter **p** is (c, d)-self-dual on G if for every graph G∈ G and for its geometric dual G*, $$\mathbf{p}(G^*) \leq c \cdot \mathbf{p}(G) + d.$$ - Main motivation: Graph Minors project [Robertson and Seymour, 1982–]. - Branchwidth is (1,0)-self-dual in planar graphs that are not forests. [Seymour and Thomas, Combinatorica 1994]. - We prove that branchwidth is (6,2g 4)-self-dual in graphs of Euler genus at most g. # 3. The result: #### Theorem Let (G, Σ) be an embedding with $g = \mathbf{eg}(\Sigma)$. Then $$bw(G^*) \le 6 \cdot bw(G) + 2g - 4$$. #### Main idea The result holds for polyhedral embeddings: Proposition (With the idea of Fomin and Thilikos, Journal of Graph Theory 2007) Let (G, Σ) and (G^*, Σ) be dual polyhedral embeddings in a surface of Euler genus g. Then $$\mathbf{bw}(G^*) \leq 6 \cdot \mathbf{bw}(G) + 2g - 4.$$ The result holds for polyhedral embeddings: Proposition (With the idea of Fomin and Thilikos, Journal of Graph Theory 2007) Let (G, Σ) and (G^*, Σ) be dual polyhedral embeddings in a surface of Euler genus g. Then $$\mathbf{bw}(G^*) \leq 6 \cdot \mathbf{bw}(G) + 2g - 4.$$ If (G, Σ) is not polyhedral, we decompose G into polyhedral pieces plus a set of vertices whose size is linearly bounded by $eg(\Sigma)$: polyhedral decomposition. - 1. Set $\mathcal{B} = \{G\}$, and $\mathcal{B}^* = \{G^*\}$ (we call the members of \mathcal{B} and \mathcal{B}^* blocks). - - Let C_1, \ldots, C_o be the connected components of ## The algorithm - 1. Set $\mathcal{B} = \{G\}$, and $\mathcal{B}^* = \{G^*\}$ (we call the members of \mathcal{B} and \mathcal{B}^* blocks). - 2. If (G, Σ) has a minimal separator S with |S| < 2: - Let C_1, \ldots, C_{ρ} be the connected components of $G[V(G) \setminus S]$ and, for $i = 1, ..., \rho$, let G_i be the graph obtained by $G[V(C_i) \cup S]$ by adding an edge with both endpoints in S in the case where |S| = 2 and such an edge does not already exist. - Notice that a (non-empty) separator S of size at most 2 - Let $G_i^*, i = 1, \dots, \rho$, be the graphs obtained by cutting G^* - We say that each G_i (resp. G_i^*) is a block of G (resp. G^*). ## The algorithm - 1. Set $\mathcal{B} = \{G\}$, and $\mathcal{B}^* = \{G^*\}$ (we call the members of \mathcal{B} and \mathcal{B}^* blocks). - 2. If (G, Σ) has a minimal separator S with |S| < 2: - Let C_1, \ldots, C_{ρ} be the connected components of $G[V(G) \setminus S]$ and, for $i = 1, ..., \rho$, let G_i be the graph obtained by $G[V(C_i) \cup S]$ by adding an edge with both endpoints in S in the case where |S| = 2 and such an edge does not already exist. - Notice that a (non-empty) separator S of size at most 2 corresponds to a non-empty separator S^* of G^* . - Let $G_i^*, i = 1, \dots, \rho$, be the graphs obtained by cutting G^* along S^* . - We say that each G_i (resp G_i^*) is a block of G (resp. G^*). ## The algorithm (II) - Notice that each G and G* is the clique-sum of its blocks. - Using the following lemma: ### Lemma (Fomin and Thilikos, SIAM J. Comp. 2006) Let G_1 and G_2 be graphs with one edge or one vertex in common. Then $\mathbf{bw}(G_1 \cup G_2) \leq \max\{\mathbf{bw}(G_1), \mathbf{bw}(G_2), 2\}$. ``` Yields bw(G^*) \leq \max\{2, \max\{bw(G_i^*) | i = 1, ..., \rho\}\}. ``` ## The algorithm (II) - Notice that each G and G* is the clique-sum of its blocks. - Using the following lemma: #### Lemma (Fomin and Thilikos, SIAM J. Comp. 2006) Let G_1 and G_2 be graphs with one edge or one vertex in common. Then $\mathbf{bw}(G_1 \cup G_2) \leq \max\{\mathbf{bw}(G_1), \mathbf{bw}(G_2), 2\}$. Yields $$bw(G^*) \le max\{2, max\{bw(G_i^*) \mid i = 1, ..., \rho\}\}.$$ - Observe that we may assume that for each $i = 1, \ldots, \rho, G_i$ - Notice that each G and G* is the clique-sum of its blocks. - Using the following lemma: #### Lemma (Fomin and Thilikos, SIAM J. Comp. 2006) Let G_1 and G_2 be graphs with one edge or one vertex in common. Then $\mathbf{bw}(G_1 \cup G_2) \leq \max\{\mathbf{bw}(G_1), \mathbf{bw}(G_2), 2\}$. Yields **bw**(G^*) $\leq \max\{2, \max\{\mathbf{bw}(G_i^*) \mid i = 1, ..., \rho\}\}.$ - Observe that we may assume that for each $i = 1, ..., \rho, G_i$ and G_i^* are embedded in a surface Σ_i such that G_i is the dual of G_i^* and $eg(\Sigma) = \sum_{i=1}^{\infty} eg(\Sigma_i)$. - Notice that $\mathbf{bw}(G_i) < \mathbf{bw}(G), i = 1, \dots, \rho$, as the possible - Notice that each G and G* is the clique-sum of its blocks. - Using the following lemma: #### Lemma (Fomin and Thilikos, SIAM J. Comp. 2006) Let G_1 and G_2 be graphs with one edge or one vertex in common. Then $\mathbf{bw}(G_1 \cup G_2) \leq \max\{\mathbf{bw}(G_1), \mathbf{bw}(G_2), 2\}$. Yields **bw**(G^*) $\leq \max\{2, \max\{\mathbf{bw}(G_i^*) \mid i = 1, ..., \rho\}\}.$ - Observe that we may assume that for each $i = 1, ..., \rho, G_i$ and G_i^* are embedded in a surface Σ_i such that G_i is the dual of G_i^* and $eg(\Sigma) = \sum_{i=1}^{\infty} eg(\Sigma_i)$. - Notice that $\mathbf{bw}(G_i) \leq \mathbf{bw}(G), i = 1, \dots, \rho$, as the possible edge addition does not increase the branchwidth, since each block of G is a minor of G. - We set $\mathcal{B} \leftarrow \mathcal{B} \setminus \{G\} \cup \{G_1, \dots, G_o\}$ and ### The algorithm (II) - Notice that each G and G* is the clique-sum of its blocks. - Using the following lemma: #### Lemma (Fomin and Thilikos, SIAM J. Comp. 2006) Let G_1 and G_2 be graphs with one edge or one vertex in common. Then $\mathbf{bw}(G_1 \cup G_2) \leq \max\{\mathbf{bw}(G_1), \mathbf{bw}(G_2), 2\}$. Yields $$bw(G^*) \le max\{2, max\{bw(G_i^*) \mid i = 1, ..., \rho\}\}.$$ - Observe that we may assume that for each $i = 1, ..., \rho, G_i$ and G_i^* are embedded in a surface Σ_i such that G_i is the dual of G_i^* and $eg(\Sigma) = \sum_{i=1}^{\infty} eg(\Sigma_i)$. - Notice that $\mathbf{bw}(G_i) \leq \mathbf{bw}(G), i = 1, \dots, \rho$, as the possible edge addition does not increase the branchwidth, since each block of G is a minor of G. - We set $\mathcal{B} \leftarrow \mathcal{B} \setminus \{G\} \cup \{G_1, \dots, G_a\}$ and $\mathcal{B}^* \leftarrow \mathcal{B}^* \setminus \{G^*\} \cup \{G_1^*, \ldots, G_n^*\}.$ Preliminaries Motivation The result Conclusions ## The algorithm (III) - 3. If (G, Σ) has a non-contractible and non-surface-separating noose meeting a set $S \subseteq V(G)$ with $|S| \le 2$: - Let $G' = G[V(G) \setminus S]$ and let F be the set of of faces in G^* corresponding to the vertices in S. - Observe that the obtained graph G' has an embedding to some surface Σ' of Euler genus *strictly* smaller than Σ that, in turn, has some dual $G^{\prime*}$ in Σ' . Therefore $eq(\Sigma') < eq(\Sigma)$. - G'* is the result of the contraction in G* of the |S| faces in F. - Using the following lemma: - 4. Apply Steps 2–4 for each block $G \in \mathcal{B}$ and its dual, $\bullet \bullet$ ### The algorithm (III) - 3. If (G, Σ) has a non-contractible and non-surface-separating noose meeting a set $S \subseteq V(G)$ with $|S| \le 2$: - Let $G' = G[V(G) \setminus S]$ and let F be the set of of faces in G^* corresponding to the vertices in S. - Observe that the obtained graph G' has an embedding to some surface Σ' of Euler genus *strictly* smaller than Σ that, in turn, has some dual $G^{\prime*}$ in Σ' . Therefore $eq(\Sigma') < eq(\Sigma)$. - G'* is the result of the contraction in G* of the |S| faces in F. - Using the following lemma: #### Lemma The removal of a vertex or the contraction of a face from an embedded graph decreases its branchwidth by at most 1. yields $$\mathbf{bw}(G^*) \leq \mathbf{bw}(G'^*) + |S|$$. - Set $\mathcal{B} \leftarrow \mathcal{B} \setminus \{G\} \cup \{G'\}$ and $\mathcal{B}^* \leftarrow \mathcal{B}^* \setminus \{G^*\} \cup \{G'^*\}$. - 4. Apply Steps 2–4 for each block $G \in \mathcal{B}$ and its dual, ## 3. If (G, Σ) has a non-contractible and non-surface-separating noose meeting a set $S \subseteq V(G)$ with $|S| \le 2$: - Let $G' = G[V(G) \setminus S]$ and let F be the set of affaces in G^* corresponding to the vertices in S. - Observe that the obtained graph G' has an embedding to some surface Σ' of Euler genus *strictly* smaller than Σ that, in turn, has some dual $G^{\prime*}$ in Σ' . Therefore $eq(\Sigma') < eq(\Sigma)$. - G'* is the result of the contraction in G* of the |S| faces in F. - Using the following lemma: #### Lemma The removal of a vertex or the contraction of a face from an embedded graph decreases its branchwidth by at most 1. yields $$\mathbf{bw}(G^*) \leq \mathbf{bw}(G'^*) + |S|$$. - Set $\mathcal{B} \leftarrow \mathcal{B} \setminus \{G\} \cup \{G'\}$ and $\mathcal{B}^* \leftarrow \mathcal{B}^* \setminus \{G^*\} \cup \{G'^*\}$. - 4. Apply Steps 2–4 for each block $G \in \mathcal{B}$ and its dual, ### The algorithm (III) - 3. If (G, Σ) has a non-contractible and non-surface-separating noose meeting a set $S \subseteq V(G)$ with $|S| \le 2$: - Let $G' = G[V(G) \setminus S]$ and let F be the set of affaces in G^* corresponding to the vertices in S. - Observe that the obtained graph G' has an embedding to some surface Σ' of Euler genus *strictly* smaller than Σ that, in turn, has some dual $G^{\prime*}$ in Σ' . Therefore $eq(\Sigma') < eq(\Sigma)$. - G'* is the result of the contraction in G* of the |S| faces in F. - Using the following lemma: #### Lemma The removal of a vertex or the contraction of a face from an embedded graph decreases its branchwidth by at most 1. yields $$\mathbf{bw}(G^*) \leq \mathbf{bw}(G'^*) + |S|$$. - Set $\mathcal{B} \leftarrow \mathcal{B} \setminus \{G\} \cup \{G'\}$ and $\mathcal{B}^* \leftarrow \mathcal{B}^* \setminus \{G^*\} \cup \{G'^*\}$. - 4. Apply Steps 2–4 for each block $G \in \mathcal{B}$ and its dual. - Idea: induction on the distance from the root of the recursion tree of the algorithm. - Base case of the induction: All embeddings of graphs in - Idea: induction on the distance from the root of the recursion tree of the algorithm. - Base case of the induction: All embeddings of graphs in the collections \mathcal{B} and \mathcal{B}^* constructed by the algorithm are polyhedral (except from the trivial case that they are just cliques of size 2). Therefore, the result holds. - Idea: induction on the distance from the root of the recursion tree of the algorithm. - Base case of the induction: All embeddings of graphs in the collections \mathcal{B} and \mathcal{B}^* constructed by the algorithm are polyhedral (except from the trivial case that they are just cliques of size 2). Therefore, the result holds. - Induction step (case 1): Suppose that G (resp. G^*) is the - Idea: induction on the distance from the root of the recursion tree of the algorithm. - Base case of the induction: All embeddings of graphs in the collections \mathcal{B} and \mathcal{B}^* constructed by the algorithm are polyhedral (except from the trivial case that they are just cliques of size 2). Therefore, the result holds. - Induction step (case 1): Suppose that G (resp. G^*) is the clique-sum of its blocks G_1, \ldots, G_{ρ} (resp. $G_1^*, \ldots, G_{\rho}^*$) embedded in the surfaces $\Sigma_1, \ldots, \Sigma_n$ (Step 2). - By induction, we have that - Idea: induction on the distance from the root of the recursion tree of the algorithm. - Base case of the induction: All embeddings of graphs in the collections \mathcal{B} and \mathcal{B}^* constructed by the algorithm are polyhedral (except from the trivial case that they are just cliques of size 2). Therefore, the result holds. - Induction step (case 1): Suppose that G (resp. G^*) is the clique-sum of its blocks G_1, \ldots, G_ρ (resp. G_1^*, \ldots, G_ρ^*) embedded in the surfaces $\Sigma_1, \ldots, \Sigma_n$ (Step 2). - By induction, we have that $\mathsf{bw}(G_i^*) \leq 6 \cdot \mathsf{bw}(G_i) + 2\mathsf{eg}(\Sigma_i) - 4, i = 1, \dots, \rho.$ - Then, the claim follows from - $bw(G^*) < max\{2, max\{bw(G_i^*) \mid i = 1, ..., \rho\}\}.$ - $bw(G_i) \leq bw(G), i = 1, ..., \rho$. - $\operatorname{eg}(\Sigma) = \sum_{i=1}^{n} \operatorname{eg}(\Sigma_i)$. - Idea: induction on the distance from the root of the recursion tree of the algorithm. - Base case of the induction: All embeddings of graphs in the collections \mathcal{B} and \mathcal{B}^* constructed by the algorithm are polyhedral (except from the trivial case that they are just cliques of size 2). Therefore, the result holds. - **Induction step (case 1)**: Suppose that G (resp. G^*) is the clique-sum of its blocks G_1, \ldots, G_ρ (resp. G_1^*, \ldots, G_ρ^*) embedded in the surfaces $\Sigma_1, \ldots, \Sigma_\rho$ (Step 2). - By induction, we have that $\mathbf{bw}(G_i^*) \leq 6 \cdot \mathbf{bw}(G_i) + 2\mathbf{eg}(\Sigma_i) 4, i = 1, \dots, \rho.$ - Then, the claim follows from - $\mathbf{bw}(G^*) \leq \max\{2, \max\{\mathbf{bw}(G_i^*) \mid i = 1, \dots, \rho\}\}.$ - $bw(G_i) \le bw(G), i = 1, ..., \rho.$ - $\operatorname{eg}(\Sigma) = \sum_{i=1,\ldots,\rho} \operatorname{eg}(\Sigma_i)$. - Induction step (case 2): Suppose now (Step 3) that G (resp. G^*) occurs from some graph G' (resp. G'^*) embedded in a surface Σ' where $eq(\Sigma') < eq(\Sigma)$ after adding the vertices in S (resp. S^*). - From the induction hypothesis, **bw**(G^{*}) < $6 \cdot bw(G') + 2eq(\Sigma') - 4 < 6 \cdot bw(G') + 2eq(\Sigma) - 2 - 4$. - Induction step (case 2): Suppose now (Step 3) that G (resp. G^*) occurs from some graph G' (resp. G'^*) embedded in a surface Σ' where $eq(\Sigma') < eq(\Sigma)$ after adding the vertices in S (resp. S^*). - From the induction hypothesis, **bw** $(G'^*) \leq$ $6 \cdot bw(G') + 2eg(\Sigma') - 4 \le 6 \cdot bw(G') + 2eg(\Sigma) - 2 - 4$. ## Sketch of proof (II) - Induction step (case 2): Suppose now (Step 3) that G (resp. G^*) occurs from some graph G' (resp. G'^*) embedded in a surface Σ' where $eq(\Sigma') < eq(\Sigma)$ after adding the vertices in S (resp. S^*). - From the induction hypothesis, bw(G'*) ≤ $6 \cdot \mathbf{bw}(G') + 2\mathbf{eq}(\Sigma') - 4 < 6 \cdot \mathbf{bw}(G') + 2\mathbf{eq}(\Sigma) - 2 - 4$. - And the claim follows from - $bw(G^*) < bw(G'^*) + |S|$. - |S| < 2. - bw(G') < bw(G). ## Sketch of proof (II) - Induction step (case 2): Suppose now (Step 3) that G (resp. G^*) occurs from some graph G' (resp. G'^*) embedded in a surface Σ' where $eq(\Sigma') < eq(\Sigma)$ after adding the vertices in S (resp. S^*). - From the induction hypothesis, **bw** $(G'^*) \leq$ $6 \cdot \mathbf{bw}(G') + 2\mathbf{eg}(\Sigma') - 4 \le 6 \cdot \mathbf{bw}(G') + 2\mathbf{eq}(\Sigma) - 2 - 4.$ - And the claim follows from - $bw(G^*) < bw(G'^*) + |S|$. - |S| ≤ 2. - $bw(G') \leq bw(G)$. - We proved that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g. - Very recently: treewidth is a (1,g+1)-self-dual parameter in graphs embeddable in surfaces of Euler genus g. [Frédéric Mazoit, DIMAP workshop on Algorithmic Graph Theory, Warwick (U.K.), March 2009] Using that, if $|E(G)| \geq 3$, $\mathbf{bw}(G) \leq \mathbf{tw}(G) + 1 \leq \frac{3}{2}\mathbf{bw}(G)$. [Robertson and Seymour, J. Comb. Theory Series B, 1991] we get $\mathbf{bw}(G^*) \leq \frac{3}{2}\mathbf{bw}(G) + g + 2$, which improves the constants of our result. - We believe that If G is a graph embedded in some surface Σ , then $bw(G^*) \leq bw(G) + eq(\Sigma)$. - We proved that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g. - Very recently: treewidth is a (1, g+1)-self-dual parameter in graphs embeddable in surfaces of Euler genus g. [Frédéric Mazoit, DIMAP workshop on Algorithmic Graph Theory, Warwick (U.K.), March 2009] Using that, if $|E(G)| \ge 3$, $\mathbf{bw}(G) \le \mathbf{tw}(G) + 1 \le \frac{3}{2}\mathbf{bw}(G)$. [Robertson and Seymour, J. Comb. Theory Series B, 1991] we get $\mathbf{bw}(G^*) \le \frac{3}{2}\mathbf{bw}(G) + g + 2$, which improves the constants of our result. - We believe that #### Conjecture If G is a graph embedded in some surface Σ , then $\mathbf{bw}(G^*) \leq \mathbf{bw}(G) + \mathbf{eq}(\Sigma)$. - We proved that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g. - Very recently: treewidth is a (1, g+1)-self-dual parameter in graphs embeddable in surfaces of Euler genus g. [Frédéric Mazoit, DIMAP workshop on Algorithmic Graph Theory, Warwick (U.K.), March 2009] Using that, if $|E(G)| \ge 3$, $\mathbf{bw}(G) \le \mathbf{tw}(G) + 1 \le \frac{3}{2}\mathbf{bw}(G)$. [Robertson and Seymour, J. Comb. Theory Series B, 1991] we get $\mathbf{bw}(G^*) \le \frac{3}{2}\mathbf{bw}(G) + g + 2$, which improves the constants of our result. - We believe that #### Conjecture If G is a graph embedded in some surface Σ , then $\mathbf{bw}(G^*) \leq \mathbf{bw}(G) + \mathbf{eq}(\Sigma)$. - We proved that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g. - Very recently: treewidth is a (1, g+1)-self-dual parameter in graphs embeddable in surfaces of Euler genus g. [Frédéric Mazoit, DIMAP workshop on Algorithmic Graph Theory, Warwick (U.K.), March 2009] Using that, if $|E(G)| \geq 3$, $\mathbf{bw}(G) \leq \mathbf{tw}(G) + 1 \leq \frac{3}{2}\mathbf{bw}(G)$. [Robertson and Seymour, J. Comb. Theory Series B, 1991] we get $\mathbf{bw}(G^*) \leq \frac{3}{2}\mathbf{bw}(G) + g + 2$, which improves the constants of our result. - We believe that #### Conjecture If G is a graph embedded in some surface Σ , then $\mathbf{bw}(G^*) \leq \mathbf{bw}(G) + \mathbf{eq}(\Sigma)$. - We proved that branchwidth is (6, 2g 4)-self-dual in graphs of Euler genus at most g. - Very recently: treewidth is a (1, g+1)-self-dual parameter in graphs embeddable in surfaces of Euler genus g. [Frédéric Mazoit, DIMAP workshop on Algorithmic Graph Theory, Warwick (U.K.), March 2009] Using that, if $|E(G)| \ge 3$, $\mathbf{bw}(G) \le \mathbf{tw}(G) + 1 \le \frac{3}{2}\mathbf{bw}(G)$. [Robertson and Seymour, J. Comb. Theory Series B, 1991] we get $\mathbf{bw}(G^*) \le \frac{3}{2}\mathbf{bw}(G) + g + 2$, which improves the constants of our result. - We believe that #### Conjecture If G is a graph embedded in some surface Σ , then $\mathbf{bw}(G^*) \leq \mathbf{bw}(G) + \mathbf{eg}(\Sigma)$. # Gràcies!