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Graph modification problems

Let C be a target graph class (planar graphs, bounded degree, ...).

LetM be a set of allowed graph modification operations
(vertex deletion, edge deletion/addition/contraction, ...).

M-Modification to C
Input: A graph G and an integer k.
Question: Can we transform G to a graph in C by applying
spaceeeeeerrrat most k operations fromM?

This meta-problem has a huge expressive power.
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Particular case: blocker problems

Let π be a graph parameter
(independence number, domination number, size of longest path, ...).
LetM be a set of allowed graph modification operations
(vertex deletion, edge deletion/addition/contraction, ...).

M-Blocker(π)
Input: A graph G and two integers k, d .
Question: Can G can be modified into a graph G ′, via at most k
aaaaaaaaaaaoperations fromM, such that π(G ′) ≤ π(G)− d?

M = {vertex deletion}, π = length of a longest path/cycle, d = 1:
aatransversal of longest paths/cycles
[Rautenbach, Sereni. 2014] [Cerioli et al. 2019, 2020] [Chen et al. 2017]

π = chromatic/independence/clique/matching/domination number
[Bentz et al. 2010] [Costa et al. 2011] [Bazgan et al. 2011, 2015]
[Diner et al. 2018] [Paulusma et al. 2019] [Fomin et al. 2020]
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More particular case: edge contractions
We focus onM = {edge contraction}.

Contraction(π)
Input: A graph G and two integers k, d .
Question: Can G can be k-edge-contracted into a graph
aaaaaaaaaaaG ′ such that π(G ′) ≤ π(G)− d?

π = chromatic/independence/clique/domination number
[Diner et al. 2018] [Paulusma et al. 2019] [Galby et al. 2019]

Address the problem mainly from the viewpoint of graph classes.

Proposition (Galby, Lima, Ries. 2019)
Let π be a graph parameter such that
(i) it is NP-hard to compute the π-number of a graph and
(ii) contracting an edge reduces π by at most one.
Unless P=NP, there exists no polynomial-time algorithm deciding whether
contracting one given edge decreases the π-number of a graph.
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Family of graph parameters: graph transversals

Let ≺ be a fixed graph containment relation
(subgraph, induced subgraph, minor, topological minor).

Let H be a fixed (finite or infinite) graph collection.

For a graph G , let τ≺H(G): minimum size of a set S ⊆ V (G) hitting all
For a graph G , let τ≺H(G): occurrences of graphs in H according to ≺ in G .

Examples:
≺ = subgraph, H = {K2}:
some spaceeeτ≺H = vc (size of a minimum vertex cover).
≺ = subgraph, H = {all cycles}:
some spaceeeτ≺H = fvs (size of a minimum feedback vertex set).
≺ = subgraph, H = {odd cycles}:
some spaceeeτ≺H = oct (size of a minimum odd cycle transversal).

These three parameters satisfy the conditions of the previous Proposition.
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Theorem
Let H: collection of 2-connected graphs containing a non-complete graph.

Let ≺ ∈ {subgraph, induced subgraph, minor, topological minor}.

The Contraction(τ≺H) problem is co-NP-hard for fixed k = d = 1.

Corollary
Contraction(fvs) and Contraction(oct) co-NP-hard for k = d = 1.

Theorem
Let H be a collection of cliques, each having at least three vertices.
Let ≺ ∈ {minor, topological minor}.

The Contraction(τ≺H) problem is co-NP-hard for fixed k = d = 1.

Theorem
Let H = Pi with i ≥ 4.
Let H contain H and any collection of 2-connected graphs.
Let ≺ ∈ {subgraph, induced subgraph, minor, topological minor}.

The Contraction(τ≺H) problem is co-NP-hard for fixed k = d = 1.
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Corollary
Contraction(fvs) and Contraction(oct) co-NP-hard for k = d = 1.

Is the Contraction(π) problem always hard for natural parameters π?

Theorem
The Contraction(vc) problem can be solved on n-vertex graphs in time
f (d) · n2d for some computable function f .

In particular, polynomial-time solvable for every fixed d ≥ 1.

Parameterized complexity: Contraction(vc) in XP parameterized by d .

Corollary
The Contraction(vc) problem can be 2-approximated (in k) on
n-vertex graphs in time f (d) · nO(1) for some computable function f .

Contraction(vc) can be 2-approximated in FPT time param. by d .
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Theorem
The Contraction(vc) problem can be solved on n-vertex graphs in time
f (d) · n2d for some computable function f .

Contraction(vc)
Input: A graph G and two integers k, d .
Question: Can G can be k-edge-contracted into a graph
aaaaaaaaaaaG ′ such that vc(G ′) ≤ vc(G)− d?

Contraction(vc) is NP-hard, even if vc(G) is given with the input:

The case d = vc(G)− 1 ≡ Star Contraction.

Star Contraction ≡ Connected Vertex Cover.
[Krithika et al. 2016]

Connected Vertex Cover is NP-hard even if vc is polynomial
(bipartite graphs). [Escoffier et al. 2010]
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Basic insight: polynomial-time algorithm for k = d = 1.

X

minimum
vertex cover

independent
set
independent

Given G , consider a minimum vertex cover X of G .

If G is not bipartite, then G [X ] contains some edge ⇒ Yes-instance!

Otherwise, G is bipartite:

We first compute vc(G) in polynomial time.

For every edge e ∈ E (G), we compute vc(G/e) in polynomial time.

We check whether vc(G/e) < vc(G) for some edge e ∈ E (G).
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Let us generalize this idea to arbitrary k, d ≥ 1

bc(G): minimum size of a set F ⊆ E (G) such that G/F is bipartite.

Deciding if bc(G) ≤ k is FPT parameterized by k. [Heggernes et al. 2013]

1 We may assume that k ≥ d , otherwise we have a No-instance.

2 Check if bc(G) ≤ d − 1 in time f (d) · nO(1):

If bc(G) ≥ d , consider a minimum vertex cover X of G .
Then G [X ] contains at least d “good” edges ⇒ Yes-instance!

We have bc(G) ≤ d − 1. Let C1, . . . ,Cp be the conn. comp. of G :

If vc(Ci ) ≤ d for every i ∈ {1, . . . , p}, then tw(G) ≤ d + 1.

We solve the problem in time f (d) · nO(1) by expressing it with an MSO
formula (Courcelle), and then using a simple dynamic programming
algorithm to combine the solutions for the connected components.

There exists a connected component C of G such that vc(C) ≥ d + 1.
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There exists a connected component C of G such that vc(C) ≥ d + 1.

Claim ∃ F ⊆ E (C) with |F | ≤ 2d such that vc(G/F ) ≤ vc(G)− d .

Sufficient: H connected, X minimum vertex cover of H, |X | ≥ 2:
Sufficient: there exist u, v ∈ X such that distH(u, v) ≤ 2.

Since vc(C) ≥ d + 1, iteratively contracting such pairs of vertices u, v ∈ X
gives the desired set F ⊆ E (G) with |F | ≤ 2d s.t. vc(G/F ) ≤ vc(G)− d .
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There exists a connected component C of G such that vc(C) ≥ d + 1.

Claim ∃ F ⊆ E (C) with |F | ≤ 2d such that vc(G/F ) ≤ vc(G)− d .

If k ≥ 2d ⇒ Yes-instance!

We have k ≤ 2d − 1:

Enumerate all candidate sets F ⊆ E (G) with |F | ≤ k ≤ 2d − 1.
We have nO(d) choices (only step that takes XP time).

For each F ⊆ E (G), compute vc(G/F ) in time 2O(d) · nO(1):

Goal: find B ⊆ V (G/F ) with |B| = O(d) s.t. (G/F ) \ B is bipartite.

Given B, compute vc(G/F ) in time 2O(d) · nO(1) by branching on B.

To obtain B, recall that bc(G) ≤ d − 1, certified by L ⊆ E(G).
Set B := V (L) ∪ VF (vertices resulting from the contraction of F ).

Finally, check whether vc(G/F ) < vc(G)− d for some set F ⊆ E (G).
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Theorem
Let H: collection of 2-connected graphs containing a non-complete graph.
Let ≺ ∈ {subgraph, induced subgraph, minor, topological minor}.

The Contraction(τ≺H) problem is co-NP-hard for fixed k = d = 1.

Reduction from the Clean 3-Sat problem:
Each variable appears exactly three times, at least once positively and
at least once negatively.
Each clause of contains two or three literals and does not contain
twice the same variable.

Clean 3-Sat is NP-hard. [Cygan, Marx, Pilipczuk, Pilipczuk. 2017]

Our reduction is inspired by the classical NP-hardness reduction from
3-Sat to Vertex Cover:
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H: collection of 2-connected graphs containing a non-complete graph.

Goal: given a clean formula ϕ, construct in poly time a graph Gϕ such
that ϕ is satisfiable ⇔ Gϕ is a No-instance of 1-Contraction(τ≺C4

, 1).

For each variable x and each clause Ci containing x in a literal ` ∈ {x , x̄}:

ax,C1,`

ax,C2,¯̀
ax,C3,`

ax

18
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Goal: given a clean formula ϕ, construct in poly time a graph Gϕ such
that ϕ is satisfiable ⇔ Gϕ is a No-instance of 1-Contraction(τ≺C4

, 1).

ax,C1,`

ax,C2,¯̀
ax,C3,`

ax bC,`2

bC,`1

bC,`3

AB-copy

z
s

Budget: 2 per variable, |C | − 1 per clause C , 1 per literal: 8n −m.

Claim 1: τC4(Gϕ) = 8n −m ⇔ ϕ is satisfiable.

Claim 2: If τC4(Gϕ) = 8n −m, @ edge e such that τC4(Gϕ/e) < τC4(Gϕ).

Claim 3: If τC4(Gϕ) > 8n −m, ∃ edge e s.t. τC4(Gϕ/e) < τC4(Gϕ).
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We proved that Contraction(τ≺H) is co-NP-hard for fixed k = d = 1 if:
H = 2-connected graphs containing at least one non-complete graph,
≺ = (induced) subgraph or (topological) minor.
H = cliques with at least three vertices, ≺ = (topological) minor.
H = {Pi} with i ≥ 4, ≺ = (induced) subgraph or (topological) minor.

Polynomial-time solvable for any fixed d ≥ 1 if H = {K2}, for any ≺.
Open cases:
H = {Kh} with h ≥ 3 for ≺ = (induced) subgraph.
H = {P3} for any ≺.
H = {T} for a tree T , for any ≺.
What about if H contains disconnected graphs?

Contraction(τ≺K2
) in time f (d) · n2d .spaceFPT or W[1]-hard by d?

co-NP-hard cases: natural to parameterize Contraction(τ≺H) by τ≺H .
If ≺ = minor and H contains a planar graph, FPT param. by τ≺H + k.
In particular, Contraction(fvs) is FPT param. by fvs + k.
What about non-planar collections H?
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