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Outline of this course

1 Introduction to graph minors

2 Introduction to parameterized complexity

3 Treewidth

4 Bidimensionality

5 Irrelevant vertex technique

6 Application to hitting minors

7 Kernelization (?)
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Outline of this course (more precise)
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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Evaluación de este curso

En los slides, hay ∼ 20 preguntas, indicadas con (why?)

El último día de curso, voy a elegir 12 o 13 de ellas,
y podréis elegir 10 entre ellas para responderlas por escrito.

Todos los slides están disponibles en
www.lirmm.fr/~sau/talks/ECI-2023-Ignasi.pdf.

Se podrán traer los slides en un ordenador, y apuntes.
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Next section is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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Graph minors

A graph H is a minor of a graph G , denoted by H 6m G , if H can be
obtained by a subgraph of G by contracting edges.
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Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

G ∈ C ⇒ H ∈ C for every H 6m G .

Examples of minor-closed graph classes:

Independent sets.
Forests.
Subgraphs of series-parallel graphs (why?).
Planar graphs (why?).
Graphs embeddable in a fixed surface.
Linklessly embeddable graphs.
Knotlessly embeddable graphs.
...
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Characterizing a graph class by excluded minors

Let F be a (possibly infinite) family of graphs. We define exc(F) as the
class of all graphs that do not contain any of the graphs in F as a minor.

Easy: for every family F , the class exc(F) is minor-closed (why?).

We say that F characterizes exc(F) by excluded minors.

Conversely, every minor-closed graph class C can be characterized by
excluded minors:

List all the graphs FC := {G1,G2, . . .} that do not belong to C, and
then C = exc(FC).

Note that, in general, this list FC = {G1,G2, . . .} may be infinite.
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Examples for some minor-closed classes

If C = independent sets, then C =

exc(K2).
If C = forests, then C = exc(K3).
If C = series-parallel graphs, then C = exc(K4).
If C = outerplanar graphs, then C = exc(K4,K2,3).
If C = planar graphs, then C = exc(K5,K3,3). [Kuratowski. 1930]
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If C = graphs embeddable in the projective plane, then |FC | = 35.
If C = graphs embeddable in a fixed non-orientable surface,

then FC is finite. [Archdeacon, Huneke. 1989]

If C = graphs embeddable in a fixed orientable surface,
then FC is finite. [Robertson, Seymour. 1990]
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A last example

If C = linklessly embeddable graphs, then FC =

[Robertson, Seymour. 1990]

FC seems to get complicated... but always finite!
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Wagner’s conjecture

Conjecture (Wagner. 1970)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).
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Wagner’s conjecture... now Robertson-Seymour’s theorem

Theorem (Robertson, Seymour. 1983-2004)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).
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Reformulations

Theorem (Robertson, Seymour. 1983-2004)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).

Note that for every minor-closed graph class C, the set of minor-minimal
graphs not in C is unique (why?): it is denoted by obs(C) (obstruction set).

Equivalent: For every minor-closed graph class C, obs(C) is finite.

Yet equivalent: Every infinite set {G1,G2, . . .} of finite graphs contains two
graphs such that one is a minor of the other (there is no infinite antichain).
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Well-quasi orders

A partially ordered set (poset) is a set P with a partial binary relation ≤:
1 Reflexive: a ≤ a.
2 Antisymmetric: if a ≤ b and b ≤ a, then a = b.
3 Transitive: if a ≤ b and b ≤ c, then a ≤ c.

A poset (P,≤) is well-quasi-ordered (wqo) if every infinite sequence
(x1, x2, . . .) has two elements xi and xj such that i < j and xi ≤ xj .

Equivalent (why?): (P,≤) contains neither an infinite descending chain nor
an infinite antichain (i.e., set of pairwise incomparable elements).

In the case of graph minors: there is no infinite descending chain (why?),
so wqo ⇔ no infinite antichain.

R&S theorem: Finite graphs are wqo with respect to the minor relation.
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Illustrative example: rooted trees

Let T1 and T2 be two finite rooted trees.
Def: T1 ≤ T2 if there is a subdivision of T1 that occurs as a rooted
subgraph of T2 (the root of T1 is not necessarily mapped to the root of T2).
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Conjecture (Vázsonyi. 1937)
Finite rooted trees are wqo with respect to the relation ≤.

Proved independently by: [Kruskal. 1960]
[Tarkowski. 1960]

We will now see a simple proof by [Nash-Williams. 1963]
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By contradiction, suppose that there is a bad infinite sequence:
(T1,T2, . . .) of rooted trees with no i < j such that Ti ≤ Tj .

We choose the bad sequence in this particular way:
Choose T1 as a smallest tree that can start a bad sequence.
For every k > 1, choose Tk as a smallest tree which occurs as the
k-th element of a bad sequence starting with (T1, . . . ,Tk−1).

For k ≥ 1:
Let T ′i be the tree obtained from Ti by deleting any branch from the root.
Let T ′′i be the deleted branch (rooted at a child of the root of Ti).
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Choose T1 as a smallest tree that can start a bad sequence.
For every k > 1, choose Tk as a smallest tree which occurs as the
k-th element of a bad sequence starting with (T1, . . . ,Tk−1).

For k ≥ 1:
Let T ′i be the tree obtained from Ti by deleting any branch from the root.
Let T ′′i be the deleted branch (rooted at a child of the root of Ti).
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Claim: the sequence (T ′1,T ′2, . . .) cannot contain a bad subsequence.

Proof: Suppose it does, and let (T ′i1 ,T
′
i2 , . . .) be a bad subsequence.

Then (T1, . . . ,Ti1−1,T ′i1 ,T
′
i2 , . . .) is bad... but T ′i1 is smaller than Ti1 . �

It follows (why? hard! Uses Ramsey) that (T ′1,T ′2, . . .) contains an infinite
increasing subsequence T ′j1 ≤ T ′j2 ≤ . . .

Claim: the sequence (T ′′j1 ,T
′′
j2 , . . .) cannot be bad (why?).

There exist k < ` such that T ′′jk ≤ T ′′j` ⇒ Tjk ≤ Tj` , contradiction to bad!
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A notion strongly linked to graph minors

Disjoint Paths
Input: a graph G and 2k vertices s1, . . . , sk , t1, . . . , tk .
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

Tin Te My

imma stain

to S3

R

s t

S
Much stronger than k vertex-disjoint paths from s1, . . . , sk to t1, . . . , tk .

A graph G is k-linked if every instance of Disjoint Paths in G with k
pairs is positive.
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Topology appears naturally in linkages

Theorem (Thomassen and Seymour. 1980)
Let G be a 4-connected graph and s1, s2, t1, t2 ∈ V (G). Then (s1, s2) and
(t1, t2) are linked unless G is planar and s1, s2, t1, t2 are on the boundary
of the same face, in this cyclic order.

A combinatorial condition (linkage) is translated to a purely topological
one (embedding).
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Why linkages are useful for finding graph minors?

Let H be a graph with |E (H)| = k and G be a k-linked graph.

Tel
K 5

Then we can easily find H as a minor in G!

Idea: if the goal is to decide whether H ≤m G , if G is k-linked, then “yes”.
Otherwise, we may exploit a topological obstruction to k-linkedness...
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Another crucial notion: treewidth

Let G1 and G2 be two graphs, and let Si ⊆ V (Gi ) be a k-clique.

Cat IIII

Q
Let G be obtained by identifying S1 with S2 and deleting some (possibly
none, possibly all) edges between the vertices in S1 = S2.

We say that G is a k-clique-sum of G1 and G2.

We say that a graph G has treewidth at most k if it can be obtained by
repeatedly taking a k-clique-sum with a graph on at most k + 1 vertices.
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Structure of minor-free graphs
Let H be a fixed graph. Recall that exc(H) is the class of all graphs that
do not contain H as a minor.

What is the typical structure of a graph G ∈ exc(H)?

Theorem (Wagner. 1937)
A graph G ∈ exc(K5) if and only if it can be obtained by 0-, 1-, 2- and
3-clique-sums from planar graphs and V8.

Cat its
G Q

o V8

Paradigm: we find “pieces” that exclude K5 for topological reasons
(planarity), add some exceptions (V8), and then define rules (clique-sums)
that preserve being K5-minor-free.
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An intermediate case: excluding a planar graph

Let H be a fixed planar graph.

What is the structure of a graph G ∈ exc(H)?

Theorem (Robertson, Seymour. 1986)
For every planar graph H there is an integer t(H) > 0 such that every
graph in exc(H) has treewidth at most t(H).

Thus, every graph in exc(H) can be built by “gluing” bounded-sized
graphs in a tree-like structure (t(H)-clique-sums).

Note: this is an approximate characterization (i.e., not “iff”).
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Vortices

3 i It
Adding a vortex of depth h to a cycle C :

Select arcs on C so that each vertex is contained in at most h arcs.
For each arc A, create a vertex vA.
Connect vA to some vertices on the arc A.
connect any pair (vA, vB) for which A and B have a common vertex.
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Structure theorem

Theorem (Robertson, Seymour. 1999)
For every graph H there is an integer h > 0 such that every graph in
exc(H) can be (efficiently) constructed in the following way:

1 Start with a graph G embedded in a connected closed surface Σ with
genus at most h so that each face is homeomorphic with an open disc.

2 Select at most h faces of G and add a vortex of depth at most h to
each of them.

3 Create at most h new vertices (apices) and connect them to the other
vertices arbitrarily.

4 Repeatedly construct the h-clique-sum of the current graph with
another graph constructed using steps 1-2-3 above.
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A visualization of an H-minor-free graph

[Figure by Felix Riedl]
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Sketch of sketch of sketch of proof of Wagner’s conjecture
Let’s try to mimic the proof for rooted trees by Nash-Williams:

By contradiction, suppose that there is a bad infinite sequence:
(G1,G2, . . .) of graphs with no i < j such that Gi ≤m Gj .
Again, choose (G1,G2, . . .) so that Gi is a minimal continuation.
For trees, we decomposed each Ti into T ′i and T ′′i ... but now??
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Every Gi with i ≥ 2 is G1-minor-free  structure theorem of R&S!

If G1 is planar, every Gi has bounded treewidth: similar to trees.
Otherwise, by the structure theorem: similar to “extended” surfaces
(with apices and vortices), glued in a tree-like way.
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Again, choose (G1,G2, . . .) so that Gi is a minimal continuation.

For trees, we decomposed each Ti into T ′i and T ′′i ... but now??
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Every Gi with i ≥ 2 is G1-minor-free  structure theorem of R&S!

If G1 is planar, every Gi has bounded treewidth: similar to trees.
Otherwise, by the structure theorem: similar to “extended” surfaces
(with apices and vortices), glued in a tree-like way.
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Some algorithmic consequences

Disjoint Paths
Input: an n-vertex graph G and vertices s1, . . . , sk , t1, . . . , tk .
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

Theorem (Robertson, Seymour. 1995)
The Disjoint Paths problem can be solved in time f (k) · n3.

Improved to f (k) · n2. [Kawarabayash, Kobayashi, Reed. 2012]

Corollary
For an n-vertex graph G and an h-vertex graph H, testing whether
H ≤m G can be done in time f (h) · n2.
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More algorithmic consequences

Corollary
For an n-vertex graph G and an h-vertex graph H, testing whether
H ≤m G can be done in time f (h) · n2.

Recall:

Theorem (Robertson, Seymour. 1983-2004)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).

Corollary
Every minor-closed property can be tested in quadratic time.

Proof: check H ≤m G for every graph H in the finite set FC . �

This says that there exists an algorithm... no idea how to construct it!!
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A few words on other containment relations

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.
1. Graphs are WQO w.r.t. the contraction minor relation? NO! (why?)
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| ≤ 4. [Brouwer and Veldman. 1987]
3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree ≤ 2.
1. Graphs are WQO w.r.t. the topological minor relation? NO! (why?)
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]
3. Nice structure? YES! [Grohe and Marx. 2012]
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Structure of sparse graphs

[Figure by Felix Riedl]
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Next section is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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Parameterized complexity in a nutshell

Idea Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established and very active area.
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Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Clique: Does a graph G contain a set S ⊆ V (G), with |S| ≥ k, of
pairwise adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?
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They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n))

= f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk)

= f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard skip
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Why k-Clique may not be FPT?

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)
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How to transfer hardness among parameterized problems?

Let A,B ⊆ Σ∗ ×N be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i ]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]
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Kernelization (more later!)

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel
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Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels?

NO!

Theorem (Bodlaender, Downey, Fellows, Hermelin. 2009)
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.
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Typical approach to deal with a parameterized problem

Parameterized problem L
k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring
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Next section is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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The multiples origins of treewidth

1972: Bertelè and Brioschi (dimension).

1976: Halin (S-functions of graphs).

1984: Arnborg and Proskurowski (partial k-trees).

1984: Robertson and Seymour (treewidth).
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A measure of the similarity with a tree
Treewidth measures the (topological) similarity of a graph with a tree.

Natural candidates:

Number of cycles.

Vertex-deletion distance to a forest (feedback vertex set number).

Generalization based on the following property of trees:
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Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.
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An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:

⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G . 45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

G

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

G

T

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

G

T

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu
G

T

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

G

T

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

Xw

G

T

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

Xw

Xs

G

T

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

Xw

Xs

Xt

G

T

45



An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T )}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

Xw

Xs

Xt

Xz

G

T

45



Treewidth measures the tree-likeness of a graph
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Every bag of a tree decomposition is a separator

Let (T ,X = {Xt | t ∈ V (T )}) be a tree decomposition of a graph G .

For every t ∈ V (T ), Xt is a separator in G .

For every edge {t1, t2} ∈ E (T ), Xt1 ∩ Xt2 is a separator in G .

Xt1 ∩Xt2

Xt1 Xt2
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Every clique is entirely contained in some bag
Let G be a graph, (T ,X ) be a tree decomposition of G , and let
K ⊆ V (G) be a clique.

Then there exists a bag Xt ∈ X such that K ⊆ Xt .

Let K = {v1, . . . , vt}. Proof by induction on t. True for t ≤ 2.

Consider the subtrees in (T ,X ) corresponding to vertices {v1, . . . , vt−1}:
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Examples

If F is a forest, then tw(F ) = 1. (why?)

If C is a cycle, then tw(C) = 2. (why?)

If Kn is the clique on n vertices, then tw(Kn) = n − 1.

If Ka,b is the complete bipartite graph with parts of sizes a and b,
then tw(Ka,b) = min{a, b}. (why?)

If G is an outerplanar graph, or a series-parallel graph, then
tw(G) ≤ 2. (why?)

If G is a planar graph on n vertices, then tw(G) = O(
√
n).
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Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

3 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

50



Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

3 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

50



Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

3 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

50



Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

3 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

50



Next subsection is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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Brambles

How to provide a lower bound on the treewidth of a graph?

Two sets A,B ⊆ V (G) touch if either A ∩ B 6= ∅ or there is an edge in G
from A to B.

A set S ⊆ V (G) is connected if G [S] is connected.

A bramble in a graph G is a family B of pairwise touching connected
vertex sets of G .

The order of a bramble B in a graph G is the minimum size of a vertex set
S ⊆ V (G) intersecting all the sets in B.

Theorem (Robertson and Seymour. 1993)
For every k ≥ 0 and graph G, the treewidth of G is at least k if and only if
G contains a bramble of order at least k + 1.
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Another dual notion to treewidth: linkedness
[slides borrowed from Christophe Paul]

Two sets Y ,Z ⊆ V (G), with |Y | = |Z |, are separable if there is a set
S ⊆ V (G) with |S| < |Y | and such that G − S contains no path
between Y \ S and Z \ S.

For k ≥ 1, a set X ⊆ V (G) is k-well-linked if |X | ≥ k and
∀ Y ,Z ⊆ X , |Y | = |Z | ≤ k, Y and Z are not separable.
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The perimeter of the
(k × k)-grid is k-well-linked
(why?)
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∀ Y ,Z ⊆ X , |Y | = |Z | ≤ k, Y and Z are not separable.

The perimeter of the
(k × k)-grid is k-well-linked
(why?)

K2k,k is k-well-linked (why?)

53



Highly linked graphs have large treewidth

Lemma
If G contains a (k + 1)-well-linked set X with |X | > 3k, then tw(G) ≥ k.

skip
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Highly linked graphs have large treewidth

Lemma
If G contains a (k + 1)-well-linked set X with |X | > 3k, then tw(G) ≥ k.

skip

Contradiction: Consider a tree decomposition of G of width < k.

t

r

t t1 2 tl

tG

Let t be a “lowest” node with |Vt ∩ X | > 2k.
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Highly linked graphs have large treewidth

Lemma
If G contains a (k + 1)-well-linked set X with |X | > 3k, then tw(G) ≥ k.

skip

Contradiction: Consider a tree decomposition of G of width < k.

t

r

t t1 2 tl

tG

Let t be a “lowest” node with |Vt ∩ X | > 2k.

If ∃i ∈ [`] such that |Vti ∩ X | > k, then
we can choose Y ⊆ Vti ∩ X , |Y | = k and
Z ⊆ (V \ Vti ) ∩ X , |Z | = k.

But S = Xti ∩ Xt separates Y and Z and
|S| ≤ k − 1.
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Highly linked graphs have large treewidth

Lemma
If G contains a (k + 1)-well-linked set X with |X | > 3k, then tw(G) ≥ k.

skip

Contradiction: Consider a tree decomposition of G of width < k.

t

r

t t1 2 tl

tG

Let t be a “lowest” node with |Vt ∩ X | > 2k.

Otherwise, let W = Vt1 ∪ · · · ∪ Vti with
|W ∩ X | > k and |(W \ Vtj ) ∩ X | ≤ k for
1 ≤ j ≤ i .

Y ⊆W ∩ X , |Y | = k + 1 and
Z ⊆ (V \W ) ∩ X , |Z | = k + 1 (why?).

But S = Xt separates Y from Z and |S| 6 k.
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Deciding linkedness is FPT

Lemma
Given a vertex set X of a graph G and k ≤ |X | ≤ ck for some constant c,
it is possible to decide whether X is k-well-linked in time f (k) · nO(1).

For every pair of subsets Y ,Z ⊆ X with |Y | = |Z | ≤ k, we can test
whether Y and Z are separable in polynomial time (flow algorithm).

Complexity: 4ck · nO(1). (why?)
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Deciding linkedness is FPT

Lemma
Given a vertex set X of a graph G and k ≤ |X | ≤ ck for some constant c,
it is possible to decide whether X is k-well-linked in time f (k) · nO(1).

For every pair of subsets Y ,Z ⊆ X with |Y | = |Z | ≤ k, we can test
whether Y and Z are separable in polynomial time (flow algorithm).

Complexity: 4ck · nO(1). (why?)

Remark If X is not k-well-linked we can find, within the same running
time, two separable subsets Y ,Z ⊆ X .
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Next subsection is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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Complexity of computing the treewidth of a graph

Given a graph G on n vertices and a positive integer k:

Deciding whether tw(G) ≤ k is NP-complete. [Arnborg, Corneil, Proskurowski. 1987]

Can be solved in time kO(k3) · n. [Bodlaender. 1996]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 4k in time O(33k · k · n2). [Robertson and Seymour. 1995]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 9k/2 in time O(23k · k3/2 · n2). [Amir. 2010]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most 5k + 4 in time 2O(k) · n. [Bodlaender et al. 2016]

Either concludes that tw(G) ≥ k or finds a tree decomposition of
width at most O(k ·

√
log k) in time nO(1). [Feige, Hajiaghayi, Lee. 2008]
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4-approximation of Robertson and Seymour
[slides borrowed from Christophe Paul]

Idea

We add vertices to a set U in a greedy way, until U = V (G).

We maintain a tree decomposition TU of G [U] s.t. width(TU) < 4k,
unless we stop the algorithm and conclude that tw(G) ≥ k.

Invariant

Every connected component of G −U has at most 3k neighbors in U.
There exists a bag Xt of TU containing all these neighbors.

Initially, we start with U being any set of 3k vertices.
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4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X ⊆ Xt .
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4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X ⊆ Xt .

If |X | < 3k: we add a node t ′ neighbor of t such that Xt′ = {x} ∪ X ,
with x ∈ C being a neighbor of Xt . The invariant is respected (why?).
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4-approximation of Robertson and Seymour (2)

Let X be the neighbors of a component C and t be the node s.t. X ⊆ Xt .

If |X | = 3k: test if X is (k + 1)-well-linked in time f (k) · nO(1):

1 If X is (k + 1)-well-linked, then tw(G) ≥ k, and we stop.
2 Otherwise, we find sets Y , Z , S with |S| < |Y | = |Z | ≤ k + 1

and such that S separates Y and Z .

Obs: the neighbors of every new component C ′ ⊆ C are in
(X \ Z ) ∪ (S ∩ C) or in (X \ Y ) ∪ (S ∩ C)

⇒ ≤ 3k neighbors.
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Next subsection is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms
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6 Application to hitting minors
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Weighted Independent Set on trees
[slides borrowed from Christophe Paul]
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Weighted Independent Set on trees
[slides borrowed from Christophe Paul]
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Observations:
1 Every vertex of a tree is a separator.
2 The union of independent sets of distinct connected components is an

independent set.
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Weighted Independent Set on trees
[slides borrowed from Christophe Paul]
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Let x be the root of T , x1 . . . x` its children, T1, . . .T` subtrees of T − x :

wIS(T , x): maximum weighted independent set containing x .
wIS(T , x): maximum weighted independent set not containing x .
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Let x be the root of T , x1 . . . x` its children, T1, . . .T` subtrees of T − x :
wIS(T , x): maximum weighted independent set containing x .
wIS(T , x): maximum weighted independent set not containing x .

wIS(T , x) = ω(x) +
∑
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Dynamic programming on tree decompositions

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

Starting from the leaves of the tree decomposition, a set of
appropriately defined partial solutions is computed recursively until
the root, where a global solution is obtained.

The way that these partial solutions are defined depends on each
particular problem:

G′

GB

B

A

[Figure by Valentin Garnero]
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Back to tree decompositions

Let (T , {Xt | t ∈ V (T )}) be a tree decomposition of a graph G .

For every t ∈ V (T ), Xt is a separator in G .

For every edge {t1, t2} ∈ E (T ), Xt1 ∩ Xt2 is a separator in G .

Notation: If we root (T , {Xt | t ∈ V (T )}), then:

Vt : all vertices of G appearing in bags that are descendants of t.

Gt = G [Vt ].
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Independent Set on tree decompositions

∀S ⊆ Xt , IS(S, t) = maximum independent set I of Gt s.t. I ∩ Xt = S
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Independent Set on tree decompositions

Idea of the dynamic programming algorithm:

1

t

2t

S

t
t3

S2

How to compute |IS(S, t)| from |IS(S i
j , tj)|, ∀j ∈ [`], ∀S i

j ⊆ Xtj :

verify that S i
j ∩ Xt = S ∩ Xtj = Sj and Sj ⊆ S i

j .
verify that S i

j is an independent set.

|IS(S, t)| =


|S| +∑

i∈[`] max {|IS(S i
j , tj)| − |Sj | :

S i
j ∩ Xt = Sj ∧ Sj ⊆ S i

j independent}
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Independent Set on tree decompositions

|IS(S, t)| =


|S| +∑

i∈[`] max {|IS(S i
j , tj)| − |Sj | :

S i
j ∩ Xt = Sj ∧ Sj ⊆ S i

j independent}

Analysis of the running time, with bags of size k:

Computing IS(S, t): O(2k · k2 · `).

Computing IS(S, t) for every S ⊆ Xt : O(2k · 2k · k2 · `).

Computing an optimal solution: O(4k · k2 · n).

F We have to add the time in order to compute a “good” tree
decomposition of the input graph (as we have seen before).
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Helpful tool: nice tree decompositions

A rooted tree decomposition (T , {Xt : t ∈ T}) of a graph G is nice if
every node t ∈ V (T ) \ root is of one of the following four types:

�

Leaf: no children and |Xt | = 1.

Introduce: a unique child t ′ and Xt = Xt′ ∪ {v} with v /∈ Xt′ .
Forget: a unique child t ′ and Xt = Xt′ \ {v} with v ∈ Xt′ .
Join: two children t1 and t2 with Xt = Xt1 = Xt2 .
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n-vertex graph G can be transformed in time O(k2 · n) into a nice tree
decomposition of G of width k and O(k · x) nodes. (why?)
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Simpler algorithm for Independent Set

How to compute IS(S, t) for every S ⊆ Xt :

If t is a leaf: trivial.

t is an introduce node: Xt = Xt′ ∪ {v}

|IS(S, t)| =


|IS(S, t ′)| if v /∈ S
|IS(S \ {v}, t ′)|+ 1 if v ∈ S and S independent
−∞ otherwise

If t is a forget node: Xt = Xt′ \ {v}
|IS(S, t)| = max{|IS(S, t ′)|, |IS(S ∪ {v}, t ′)|}

If t is a join node: Xt = Xt1 = Xt2

|IS(S, t)| = |IS(S, t1)|+ |IS(S, t2)| − |S|

Complexity : O(2k · k2 · n)
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Hamiltonian Cycle on tree decompositions
[slides borrowed from Christophe Paul]

Let C be a Hamiltonian cycle.

Note that C ∩ G [Vt ] is a
collection of paths.

Partition of the bag Xt :
X 0

t : isolated in G [Vt ].
X 1

t : extremities of paths.
X 2

t : internal vertices.

Vt

Xt
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Hamiltonian Cycle on tree decompositions
[slides borrowed from Christophe Paul]

Let C be a Hamiltonian cycle.

Note that C ∩ G [Vt ] is a
collection of paths.

Partition of the bag Xt :
X 0

t : isolated in G [Vt ].
X 1

t : extremities of paths.
X 2

t : internal vertices.
Vt

Xt

For every node t of the tree decomposition, we need to know if

(X 0
t ,X 1

t ,X 2
t ,M)

where M is a matching on X 1
t , corresponds to a partial solution. skip
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Forget node

Let t be a forget node and t ′ its child such that Xt = Xt′ \ {v}.

v

Claim Xt is a separator ⇒
∀v ∈ Vt \ Xt , v is internal in every partial solution.
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Forget node

Let t be a forget node and t ′ its child such that Xt = Xt′ \ {v}.

v

Claim Xt is a separator ⇒
∀v ∈ Vt \ Xt , v is internal in every partial solution.

(X 0
t′ ,X 1

t′ ,X 2
t′ \ {v},M) is a partial solution for t

⇔
(X 0

t′ ,X 1
t′ ,X 2

t′ ,M) is a partial solution for t ′ with v ∈ X 2
t′
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Introduce node

Let t be an introduce node and t ′ its child such that Xt = Xt′ ∪ {v}.

Suppose: v ∈ X 0
t .
v
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Introduce node (2)

Let t be an introduce node and t ′ its child such that Xt = Xt′ ∪ {v}.

Suppose: v ∈ X 1
t .

v

Fact Xt′ is a separator ⇒ N(v) ∩ Vt ⊆ Xt .
a vertex u ∈ X 1

t′ becomes internal ⇒ u ∈ X 2
t .

or a vertex w ∈ X 0
t′ becomes extremity of a path ⇒ w ∈ X 1

t (similar).

(X 0
t′ ,X 1

t′ ∪ {v} \ {u},X 2
t′ ∪ {u},M ′) is a partial solution for t

⇔
(X 0

t′ ,X 1
t′ ,X 2

t′ ,M) is a partial solution for t ′
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Introduce node (3)

Let t be an introduce node and t ′ its child such that Xt = Xt′ ∪ {v}.

Suppose. v ∈ X 2
t .

v

Fact Xt′ is a separator ⇒ N(v) ∩ Vt ⊆ Xt .

1 two vertices u, u′ ∈ X 1
t′ become internal ⇒ u, u′ ∈ X 2

t .

2 two vertices w ,w ′ ∈ X 0
t′ become extremities ⇒ w ,w ′ ∈ X 1

t .
3 w ∈ X 0

t′ becomes extremity and v ∈ X 1
t′ internal ⇒ w ∈ X 1

t , v ∈ X 2
t .

(X 0
t′ ,X 1

t′ \ {u, u′},X 2
t′ ∪ {v , u, u′},M ′) is a partial solution for t

⇔
(X 0

t′ ,X 1
t′ ,X 2

t′ ,M) is a partial solution for t ′
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Join node

Let t be a join node and t1, t2 its children such that Xt = Xt1 = Xt2

Fact For being compatible, partial solutions should verify:
X 2

t1 ⊆ X 0
t2 and X 1

t1 ⊆ X 1
t2 ∪ X 0

t2 .
X 2

t2 ⊆ X 0
t1 and X 1

t2 ⊆ X 1
t1 ∪ X 0

t1 .
The union of matchings M1 et M2 does not create any cycle.
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Hamiltonian Cycle on tree decompositions

Analysis of the running time, given a tree decomposition of width k:

Number of subproblems at each node: : 3k · k!.

Number of nodes in a nice tree decomposition: k · n.

Total running time of the algorithm: kO(k) · n.

Can this approach be generalized to more problems?
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Monadic second order logic of graphs

We represent a graph G = (V ,E ) with a structure
G = (U, vertex, edge, I), where

U = V ∪ E is the universe.
“vertex” and “edge” are unary relations that allow to distinguish
vertices and edges.
I = {(v , e) | v ∈ V , e ∈ E , v ∈ e} is the incidence relation.

An MSO formula is built using the following:
Logical connectors ∨, ∧, ⇒, ¬, =, 6=.
Predicates adj(u, v) and inc(e, v).
Relations ∈, ⊆ on vertex/edge sets.
Quantifiers ∃, ∀ on vertex/edge variables or vertex/edge sets.

(MSO1/MSO2)
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Monadic second order logic of graphs: examples

Example 1 Expressing that {u, v} ∈ E (G): ∃e ∈ E , inc(u, e) ∧ inc(v , e).

Example 2 Expressing that a set S ⊆ V (G) is a dominating set.

DomSet(S) : ∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G).

Example 3 Expressing that a graph G = (V ,E ) is connected.

For every bipartition de V , there is a transversal edge:

Expressing that two sets V1,V2 define a bipartition of V :
∀v ∈ V , (v ∈ V1 ∨ v ∈ V2) ∧ (v ∈ V1 ⇒ v 6∈ V2) ∧ (v ∈ V2 ⇒ v 6∈ V1).
Connected: ∀ bipartition V1,V2, ∃v1 ∈ V1, ∃v2 ∈ V2, {v1, v2} ∈ E (G).

Other properties that can be expressed in MSO2:
a set being a vertex cover, independent set. (why?)
a graph being k-colorable (for fixed k), having a Hamiltonian cycle.
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Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

The function f (tw) depends on the structure of the MSO2 formula.

Withing the same running time, one can also optimize the size of a
vertex/edge set satisfying an MSO2 formula.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

In parameterized complexity: FPT parameterized by treewidth.
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Are there only good news for treewidth?

Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

1 Are all “natural” graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:
List Coloring is W[1]-hard parameterized by treewidth.

[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

Some problems are even NP-hard on graphs of constant treewidth:
Steiner Forest (tw = 3), Bandwidth (tw = 1).

2 Most natural problems (Vertex Cover, Dominating Set, ...)
do not admit polynomial kernels parameterized by treewidth.
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Next subsection is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
80



Is it enough to prove that a problem is FPT?

Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · n

= 2345678tw

· n

Major goal find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box” in all kinds of parameterized algorithms.
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Two behaviors for problems parameterized by treewidth
Local problems Vertex Cover, Dominating Set, Clique,

Independent Set, q-Coloring for fixed q.

B

It is sufficient to store, for each bag B, the subset of vertices of B
that belong to a partial solution: 2tw choices

The “natural” DP algorithms lead to (optimal) single-exponential
algorithms:

2O(tw) · nO(1).
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Connectivity problems seem to be more complicated...

Connectivity problems Hamiltonian Cycle, Longest Path,
Steiner Tree, Connected Vertex Cover.

B

Now it is not sufficient to store the subset of vertices of B that
belong to a partial solution, but also how they are matched:

2O(tw log tw) choices

The “natural” DP algorithms provide only time 2O(tw·log tw) · nO(1).
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Two types of behavior

There seem to be two behaviors for problems parameterized by treewidth:

Local problems:

2O(tw) · nO(1)

Vertex Cover, Dominating Set, ...

Connectivity problems:

2O(tw·log tw) · nO(1)

Longest Path, Steiner Tree, ...
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How topology helps for dynamic programming?

On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

We consider a special tree-decomposition of a sparse graph, and
exploit the structure of the subgraph induced by the bags.

More precisely, we use the existence of tree decompositions of small
width and with nice topological properties.

These nice properties do not change the DP algorithms, but the
analysis of their running time.
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Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ
homeomorphic to S1 that meets G only at vertices.

talk
ÉÉ
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Let G be a planar graph. A sphere cut decomposition of G is a tree
decomposition (T , {Xt : t ∈ V (T )}) of G such that the vertices in
each bag Xt are situated around a noose in the plane.

[NB: several details are missing in this definition]

Theorem (Seymour and Thomas. 1994)
Every planar graph G has a sphere cut decomposition whose width is at
most 3

2 · tw(G), and that can be computed in polynomial time.

The size of the tables of a DP algorithm depends on how many ways
a partial solution can intersect the vertices in a bag Xt .
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Using sphere cut decompositions

Suppose we do DP on a sphere cut decomposition of width ≤ k.

In how many ways can we draw polygons inside a circle such that
they touch the circle only on its k vertices and they do not intersect?

Exactly the number of non-crossing partitions over k elements, which is
given by the k-th Catalan number:

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .
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How to use this framework?

1 Let P be a “packing-encodable” problem on a planar graph G .

2 As a preprocessing step, build a surface cut decomposition of G , using
the theorem of Seymour and Thomas.

3 Run a “natural” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time is just a consequence of the
topological properties of surface cut decomposition.

This idea was first used in [Dorn, Penninkx, Bodlaender, Fomin. 2005]
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Generalizations to other sparse graph classes

Main idea special type of decomposition with nice topological properties:
partial solutions ⇐⇒ non-crossing partitions

This idea has been generalized to other graph classes and problems:

Graphs on surfaces: [Dorn, Fomin, Thilikos ’06]
[Rué, S., Thilikos ’10]

H-minor-free graphs: [Dorn, Fomin, Thilikos ’08]
[Rué, S., Thilikos ’12]
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The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]
Randomized single-exponential algorithms for connectivity problems.

1 Relax the connectivity requirement by considering a set of cuts that contain
the relevant (connected) solutions.

2 Count modulo 2 the number of cuts, because the non-connected solutions
will cancel out. By assigning random weights to the vertices/edges,
guarantee that w.h.p. the optimal solution is unique (Isolation Lemma).

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]
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End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

This reduction uses a framework by [Lokshtanov, Marx, Saurabh. 2011]

There are other examples of such problems (as we may see later)...
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Next section is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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A few representative problems

Vertex Cover
Input: A graph G = (V ,E ) and a positive integer k.
Parameter: k.
Question: Does there exist a subset C ⊆ V of size at most k such that
G [V \ C ] is an independent set?

Long Path
Input: A graph G = (V ,E ) and a positive integer k.
Parameter: k.
Question: Does there exist a path P in G of length at least k?
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A few representative problems (II)

Feedback Vertex Set
Input: A graph G = (V ,E ) and a positive integer k.
Parameter: k.
Question: Does there exist a subset F ⊆ V of size at most k such that
for G [V \ F ] is a forest?

Dominating Set
Input: A graph G = (V ,E ) and a positive integers k.
Parameter: k.
Question: Does there exist a subset D ⊆ V of size at most k such that
for all v ∈ V , N[v ] ∩ D 6= ∅?
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Minor-closed parameters

A graph class G is minor (contraction)-closed if any minor
(contraction) of a graph in G is also in G.

A parameter P is any function mapping graphs to nonnegative
integers.

The parameterized problem associated with P asks, for some fixed k,
whether for a given graph G , P(G) ≤ k (for minimization) or
P(G) ≥ k (for maximization problem).

We say that a parameter P is closed under taking of
minors/contractions (or, briefly, minor/contraction-closed) if for every
graph H, H �m G / H �cm G implies that P(H) ≤ P(G).
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Examples of minor/contraction closed parameters

Minor-closed parameters:

Vertex Cover, Feedback Vertex Set, Long Path,
Treewidth, . . . (why?)

Contraction-closed parameters:

Dominating Set, Connected Vertex Cover, r-Dominating
Set, . . . (why?)
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Grid Exclusion Theorem

Let H`,` be the (`× `)-grid: `

We have tw (H`,`) = `.

As Treewidth is minor-closed, if ` �m G , then
tw(G) ≥ tw(H`,`) = `. Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of

treewidth ≥ c(`) contains ` as a minor.

Smallest possible function c(`)? Ω(`2 log `) ≤ c(`) ≤ 202`5

Some improvement: c(`) = 2O(` log `). [Leaf and Seymour. 2012]

Recent breakthrough: c(`) = poly(`). [Chekuri and Chuzhoy. 2013]
c(`) = O(`9polylog`). [Chuzhoy and Tan. 2021]

Important message grid-minors are the certificate of large treewidth.
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Grid Exclusion Theorems on sparse graphs

Theorem (Robertson, Seymour, Thomas. 1994)

Every planar graph of treewidth ≥ 6 · ` contains ` as a minor.

Theorem (Demaine, Fomin, Hajiaghayi, Thilikos. 2005)
For every fixed g, there is a constant cg such that every graph of genus g

and of treewidth ≥ cg · ` contains ` as a minor.

Theorem (Demaine and Hajiaghayi. 2008)
For every fixed graph H, there is a constant cH such that every

H-minor-free graph of treewidth ≥ cH · ` contains ` as a minor.

Best constant in the above theorem is by [Kawarabayashi and Kobayashi. 2012]

In sparse graphs: linear dependency between treewidth and grid-minors
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How to use Grid Theorems algorithmically?
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Example: FPT algorithm for Planar Vertex Cover

A vertex cover of a graph G is a set of vertices C such that every
edge of G has at least one endpoint in C . Min size: vc(G).
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Example: FPT algorithm for Planar Vertex Cover

INPUT: Planar graph G on n vertices, and an integer k.

OUTPUT: Either a vertex cover of G of size ≤ k, or a proof
that G has no such a vertex cover.

RUNNING TIME: 2O(
√

k) · nO(1).

Objective subexponential FPT algorithm for Planar Vertex Cover.
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Example: FPT algorithm for Planar Vertex Cover

vc(H`,`) ≥ `2

2
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Example: FPT algorithm for Planar Vertex Cover

Let G be a planar graph of
treewidth ≥ 6 · `

=⇒ G contains the (`× `)-grid
H`,` as a minor

The size of any vertex cover of H`,` is at least `2/2.

Recall that Vertex Cover is a minor-closed parameter.

Since H`,` �m G , it holds that vc(G) ≥ vc(H`,`) ≥ `2/2.
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We are already very close to an algorithm...

Recall:
k is the parameter of the problem.
We have that tw(G) = 6 · ` and ` is the size of a grid-minor of G .
Therefore, vc(G) ≥ `2/2.

WIN/WIN approach:

If k < `2/2, we can safely answer “NO”.

If k ≥ `2/2, then tw(G) = O(`) = O(
√
k), and we can solve the

problem by standard DP in time 2O(tw(G)) · nO(1) = 2O(
√

k) · nO(1).

This gives a subexponential FPT algorithm!
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Was Vertex Cover really just an example...?

What is so special in Vertex Cover?

F Nothing special! It is just a minor bidimensional parameter:

minor-closed + vc( k) = Ω(k2).

Where did we use planarity?

F Only the linear Grid Exclusion Theorem!

Arguments go through up to H-minor-free graphs.
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Next subsection is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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Minor Bidimensionality:
[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition
A parameter p is minor bidimensional if

1 p is closed under taking of minors (minor-closed), and

2 p
(

k

)
= Ω(k2).
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Vertex Cover of a Grid

H`,` for ` = 10
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Vertex Cover of a Grid

vc(H`,`) ≥ `2/2
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Feedback Vertex Set of a Grid
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Feedback Vertex Set of a Grid

fvs(H`,`) ≥ `2/4
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How to obtain subexponential algorithms for BP?

First we must restrict ourselves to special graph classes, like planar or
H-minor-free graphs.

Show that if the graph has large treewidth (> c
√
k) then it has a

(
√
k ×
√
k)-grid as a minor, and hence the answer to the problem is

YES (or NO) immediately.

Otherwise, the treewidth is bounded by c
√
k, and hence we can use a

dynamic programming (DP) algorithm on graphs of bounded treewidth.

If we have a DP algorithm for bounded treewidth running in time ct

or tt , then it implies 2O(
√

k) or 2O(
√

k log k) algorithm.
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Piecing everything together

Theorem
Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 2O(tw(G)) · nO(1).
Then deciding “ p(G) = k” can be done in time 2O(

√
k) · nO(1).

1 Compute (or approximate) tw(G).

We can use a fast FPT algorithm or a constant-factor approx.

2 If tw(G) = Ω(
√
k), then answer NO.

This follows because of the linear Grid Exclusion Theorems.

3 Otherwise tw(G) = O(
√
k), and we solve the problem by DP.

Doing DP in time 2O(tw(G)) · nO(1) is a whole area of research:
Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]
Randomized algorithms using Cut&Count. [Cygan et al. 2011]
Deterministic algorithms based on matrix rank. [Boadlaender et al. 2012]
Deterministic algorithms based on matroids. [Fomin et al. 2013]
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Minor Bidimensionality provides a meta-algorithm

This result applies to all minor-closed parameters:

Vertex Cover, Feedback Vertex Set, Long Path,
Cycle Cover, . . .

What about contraction-closed parameters??

Dominating Set, Connected Vertex Cover,
r-Dominating Set, . . .

skip
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Extensions: contraction bidimensionality

Dominating Set is NOT minor-closed,
so we cannot use Grid Exclusion Theorems!!

But it is contraction-closed...

Contraction Bidimensionality:
[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition
A parameter p is contraction bidimensional if

1 p is closed under taking of contractions (contraction-closed), and

2 for a “(k × k)-grid-like graph" Γ, p(Γ) = Ω(k2).

What is a (k × k)-grid-like graph...?
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Contraction bidimensionality: old setting
A “(k × k)-grid-like graph" was different for each graph class:

F For planar graphs this is a partially triangulated (k × k)-grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2006]

F For graphs of Euler genus γ, this is a partially triangulated (k × k)-grid with
up to γ additional handles.

[Demaine, Hajiaghayi, Thilikos. 2006]

F For apex-minor-free graphs, this is a (k × k)-augmented grid, i.e., partially
triangulated grid augmented with additional edges such that each vertex is
incident to O(1) edges to non-boundary vertices of the grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

H is an apex graph if ∃v ∈ V (H): H − v is planar
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Contraction bidimensionality: new definition
Finally, the right “(k × k)-grid-like graph” was found:
[Fomin, Golovach, Thilikos. 2009]

k

Definition
A parameter p is contraction bidimensional if the following hold:

1 p is contraction-closed, and

2 p( k) = Ω(k2).
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Meta-algorithms for contraction bidimensional parameters

Theorem
Let H be a fixed apex graph, let G be an H-minor free graph, and let p
be a contraction bidimensional parameter computable in 2O(tw(G)) · nO(1).
Then deciding p(G) = k can be done in time 2O(

√
k) · nO(1).

As for minor bidimensionality, we need to prove that

I If tw(G) = Ω(k) then G contains k as a contraction.
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Two important grid-like graphs

Two pattern graphs Γk and Πk :

Bidimensionality for minors and contractions The irrelevant vertex technique

Limits of bidimensionality

What about contraction-closed parameters?

We define the following two pattern graphs Γk and Πk:

Πk =Γk =

vnew

Πk = Γk+ a new vertex vnew, connected to all the vertices in V (Γk).

Dimitrios M. Thilikos ΕΚΠΑ-NKUA

Algorithmic Graph Minor Theory Part 2 77

Πk = Γk+ a new universal vertex vnew.
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The “contraction-certificates” for large treewidth

Theorem (Fomin, Golovach, Thilikos. 2009)
For any integer ` > 0, there is c` such that every connected graph of
treewidth at least c` contains K`, Γ`, or Π` as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)
For every graph H, there is cH > 0 such that every connected H-minor-free
graph of treewidth at least cH · `2 contains Γ` or Π` as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)
For every apex graph H, there is cH > 0 such that every connected
H-minor-free graph of treewidth at least cH · ` contains Γ` as a contraction.
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Further applications of Bidimensionality

1 Bidimensionality + DP ⇒ Subexponential FPT algorithms

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]
[Fomin, Golovach, Thilikos. 2009]

2 Bidimensionality + separation properties ⇒ (E)PTAS

[Demaine and Hajiaghayi. 2005]
[Fomin, Lokshtanov, Raman, Saurabh. 2011]

3 Bidimensionality + separation properties ⇒ Kernelization

[Fomin, Lokshtanov, Saurabh, Thilikos. 2009-2010]

4 Bidimensionality + new Grid Theorems ⇒ Geometric graphs

[Fomin, Lokshtanov, Saurabh. 2012]
[Grigoriev, Koutsonas, Thilikos. 2013]
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Next section is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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Basic principle of the irrelevant vertex technique

This technique was invented in [Robertson and Seymour. 1995]

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

Strategy:

1 If tw(G) > f (k), find an irrelevant vertex:

A vertex v ∈ V (G) such that (G ,T , k) and (G \ v ,T , k) are
equivalent instances.

2 Otherwise, if tw(G) ≤ f (k), solve the problem using dynamic
programming (by Courcelle).
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How to find an irrelevant vertex when the treewidth is large?

By using the Grid Exclusion Theorem!

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.

 

s I[Figure by Dimitrios M. Thilikos]
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How to find an irrelevant vertex when the treewidth is large?

By using the Wall Exclusion Theorem!

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.

 

s I[Figure by Dimitrios M. Thilikos]
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How to find an irrelevant vertex when the treewidth is large?

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.246 D.M. Thilikos

Fig. 5. A subdivided wall W ′ and the way a 13-linkage L is traversing its compass K′.
The only vertices that are depicted are the endpoints of the paths in L (white vertices).
The only edges that are depicted are those of the paths in L and the edges of W ′. The
grey area contains the vertices and the edges of the graph G that do not belong to K′.

so that the paths of L could be rerouted to an equivalent linkage that does not
enter very deeply inside K ′. To formalize this claim Robertson and Seymour
defined the notion of a vital linkage in [111].

A linkage L in a graph G is called vital if its vertices meet all the vertices of
G and if there is no other linkage in G that is equivalent to L. An example of
a vital k-linkage in a graph is depicted in Figure 6. Clearly, if a solution of the
k-Disjoint Paths Problem corresponds to a vital linkage, then no irrelevant
vertex can be detected. The main result of [111] asserts that this possible “lack
of flexibility” of linkages vanishes when graphs have big enough treewidth.

Theorem 13. There exists a recursive function λ : N → N such that every
graph with a vital k-linkage has treewidth at most λ(k).

Actually, it was also proved in [111] that treewidth can be replaced by pathwidth
in Theorem 13. As the proof of 13 uses the Structure Theorem of the GMT [109],
the upper bound for λ that follows from [111] is immense. However it was proved
in [3] that in the case of planar graphs it holds that λ(k) = 2O(k). Moreover, this
bound is, in a sense, tight: as argued in [3], for each k it is possible to construct
a planar graph that contains a vital k-linkage and has treewidth 2Ω(k) (the 5-
linkage in the graph of Figure 6 already gives the flavor of such a construction).

Let now G′ be the subgraph of G defined by the union of the paths in L, and
the compass K ′ of W ′. At this point, a naive idea might be to directly apply
Theorem 13 and set q′ = λ(k) so that the linkage L of G′, corresponding to a
solution of the k-Disjoint Paths problem, cannot be vital. However, from this
alone, we cannot expect nothing better than avoiding some vertices that will not

[Figure by Dimitrios M. Thilikos]
126



Goal: declare one of the central vertices of the wall irrelevant.246 D.M. Thilikos
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This is only possible if the wall is insulated from the exterior!
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This is only possible if the wall is insulated from the exterior!
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Flat walls

Goal: enrich the notion of wall so that we can insulate it from the exterior.

 

s I
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Flat walls

We need to allow some extra edges in the interior of the wall.
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Flat walls
We impose a topological property that defines the “flatness” of the wall.
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Flat walls
There are no crossing paths s1 − t1 and s2 − t2 from/to the perimeter.
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Flat walls
A real flat wall can be quite wild... [Figure by Dimitrios M. Thilikos]
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Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]
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The Weak Structure Graph Minors Theorem

Theorem (Robertson and Seymour. 1995)
There exist recursive functions f1 : N2 → N and f2 : N→ N, such that for
every graph G and every q, r ∈ N, one of the following holds:

1 Kq is a minor of G.

2 The treewidth of G is at most f1(q, r).

3 There exists A ⊆ V (G) (apices) with |A| ≤ f2(q) such that G \ A
contains as a subgraph a flat wall W of height r .

There are many different variants and optimizations of this theorem...
[Chuzhoy. 2015]

[Kawarabayashi, Thomas, Wollan. 2018]

[S., Stamoulis, Thilikos. 2021]

Important: possible to find one of the outputs in time f (q, r) · |V (G)|.
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Theorem (Robertson and Seymour. 1995)
There exist recursive functions f1 : N2 → N and f2 : N→ N, such that for
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1 Kq is a minor of G.

2 The treewidth of G is at most f1(q, r).
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contains as a subgraph a flat wall W of height r .
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Back to the Disjoint Paths problem

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

By the Weak Structure Theorem:

If tw(G) ≤ f (k): solve using dynamic programming.

If G contains a Kg(k)-minor: “easy” to find an irrelevant vertex.

If G contains a “small” apex set A and a flat wall W in G \ A of size
at least h(k): declare the central vertex of the flat wall irrelevant.

The irrelevant vertex technique has been applied to many problems...
usually with a lot of technical pain.
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Rerouting inside a big flat wall...

f11 b

f10

Df10

Cp

[Figure by Dimitrios M. Thilikos]
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Crucial notion: homogeneity
In order to declare a vertex irrelevant for some problem, usually we need to
consider a homogenous flat wall, which we proceed to define.
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Crucial notion: homogeneity
We consider a flap-coloring encoding the relevant information of our
favorite problem inside each flap (similar to tables of DP).
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Crucial notion: homogeneity
For every brick of the wall, we define its palette as the colors appearing in
the flaps it contains.

 

723ms HITS 225.4

2,4 11213,4 249

He 244A HE

112,344 112394,5 2464
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Crucial notion: homogeneity
A flat wall is homogenous if every (internal) brick has the same palette.
Fact: every brick of a homogenous flat wall has the same “behavior”.
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Crucial notion: homogeneity
Price of homogeneity to obtain a homogenous flat r -wall (zooming):
If we have c colors, we need to start with a flat r c -wall. (why?)
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Next section is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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Hitting forbidden minors

If C = {edgeless graphs}, then F = {K2}.
If C = {forests}, then F = {K3}.
If C = {outerplanar graphs}, then F = {K4,K2,3}.
If C = {planar graphs}, then F = {K5,K3,3}.

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
F = {K3}: Feedback Vertex Set.
F = {K5,K3,3}: Vertex Planarization.
F = {diamond}: Cactus Vertex Deletion.
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Hitting forbidden minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

NP-hard if F contains a graph with some edge. [Lewis, Yannakakis. 1980]

We consider the following two parameterizations of F-M-Deletion:

1 Structural parameter: tw(G).

2 Solution size: k.

Joint work with Dimitrios M. Thilikos, Julien Baste, Giannos Stamoulis,
and Laure Morelle.
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Next subsection is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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Theorem (Courcelle. 1990)
Every problem expressible in MSOL can be solved in time fF (tw) · n on
graphs on n vertices and treewidth at most tw.

It is not difficult to see that can F-M-Deletion be expressed in MSOL:

————-F-M-Deletion is FPT parameterized by tw...

fF (tw) · n

= 2345678tw

· n

Goal For every F , find the smallest possible function fF (tw).

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n).
[Impagliazzo, Paturi. 1999]
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What was known for particular collections F
Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1).

[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1).

[Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]
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Work with Julien Baste and Dimitrios M. Thilikos (2016-)

Objective

Determine, for every fixed F , the (asymptotically) smallest function fF
such that F-M-Deletion on n-vertex graphs can be solved in time

fF (tw) · nO(1).

We do not want to optimize the degree of the polynomial factor.

We do not want to optimize the constants.

Our hardness results hold under the ETH.
[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. I. General upper bounds. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. II. Single-exponential algorithms. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. III. Lower bounds. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. IV. An optimal algorithm. 2021]
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Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every planar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
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A dichotomy for hitting a connected minor

Theorem (Baste, S., Thilikos. 2016-2020)
Let H be a connected graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H 6c or H 6c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip
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Complexity of hitting a single connected minor H

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

Classification of the complexity of {H}-M-Deletion for all connected
simple planar graphs H with |V (H)| ≤ 5 and |E (H)| ≥ 1: for the 9 graphs
on the left (resp. 20 graphs on the right), the problem is solvable in time
2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion, K1,4
should be on the left.
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A compact statement for a single connected graph

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3
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All these cases can be succinctly described as follows:

All graphs on the left are contractions of or

All graphs on the right are not contractions of or
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We have three types of results

1 General algorithms
For every F : time 22O(tw·log tw) · nO(1).
F planar: time 2O(tw·log tw) · nO(1).
F ���XXXplanar: time 2O(tw·log tw) · nO(1).
G planar: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

skip
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Algorithm in time 2OF (tw·log tw) · nO(1) for any collection F
[Fig. by Valentin Garnero]

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F 6m G ′ ⊕ G1 ⇐⇒ F 6m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R ∈ R(F ,t):

p(GB,R) = min{|S| : S ⊆ V (GB) ∧ repF ,t(GB \ S) = R}

This gives an algorithm running in time |R(F ,t)|O(1) · nO(1).

Goal Bound the number of representatives: |R(F ,t)| = 2OF (tw·log tw).
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Bounding the set of representatives

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

Then, by the sparsity of the representatives,

|R(F ,t)| = OF (1) ·
(
t2

t

)
= 2OF (t·log t),

and we are done!

Flat Wall Theorem [Robertson, Seymour. GMXIII. 1995]

As a representative R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.
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As we know, a flat wall can be quite wild...

[Figure by Dimitrios M. Thilikos]aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaskip
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Hard part: finding an irrelevant vertex inside a flat wall

f11 b

f10

Df10

Cp

[Figure by Dimitrios M. Thilikos]skip
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Diagram of the algorithm for a general collection F
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Next subsection is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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We parameterize by the size of the desired solution
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

It is easy to see that, for every k > 1, the class of graphs

Ck = {G | (G , k) is a positive instance of F-M-Deletion}

is minor-closed.

Theorem (Robertson and Seymour. 1983-2004)
For every minor-closed graph class C, deciding whether an n-vertex graph
G belongs to C can be solved in time f (C) · n2.

For every k ≥ 1, there exists an FPT algorithm for F-M-Deletion.

But... only existential, non-uniform, f (Ck) astronomical.
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Can we do better?

The function f (Ck) is constructible. [Adler, Grohe, Kreutzer. 2008]

If F contains a planar graph: 2OF (k) · nO(1).
[Fomin, Lokshtanov, Misra, Saurabh. 2012]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

For some non-planar collections F :

F = {K5,K3,3}: 2O(k log k) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014]

Deletion to genus at most g : 2Og (k2 log k) · nO(1). [Kociumaka, Ma. Pilipczuk. 2019]

For every F , some enormous explicit function fF (k) can be derived
from an FPT algorithm for hitting topological minors:

thisisjustsomespacefF (k) · nO(1). [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi. 2020]
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Our results

Theorem (S., Stamoulis, Thilikos. 2020)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n3.

Here, poly(k) is a polynomial whose degree depends on F .

Theorem (S., Stamoulis, Thilikos. 2020)
If F contains an apex graph, the F-M-Deletion problem can be solved
in time 2poly(k) · n2.

Again, poly(k) is a polynomial whose degree depends on F .

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n2.
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Sketch of the proofs

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

Theorem (S., Stamoulis, Thilikos. 2020)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n3.
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General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:

Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:

Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.
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Main idea of our improved algorithm

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n2.

Improvement from n3 to n2: avoiding iterative compression.

How to achieve it?

We are able to detect a vertex that must belong to every solution.

Approach inspired by [Marx, Schlotter. 2012]
[S., Stamoulis, Thilikos. 2020]

skip
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Finding a vertex belonging to every solution of size k

Let F be a finite collection of graphs.

The apex number aF is the smallest number of vertices that can be re-
moved from a graph of F such that the remaining graph is planar.

[Figure by Laure Morelle]

aF = 1 → apex graph

158



Finding a vertex belonging to every solution of size k

[Figure by Laure Morelle]
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Finding a vertex belonging to every solution of size k

[Figure by Laure Morelle]
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Finding a vertex belonging to every solution of size k

[Figure by Laure Morelle]
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Strategy for solving F-M-Deletion in time 2polyF (k) · n2:

If the treewidth of G is small (namely, tw ≤ polyF (k)):

Dynamic programming using algorithm of [Baste, S., Thilikos. 2020]
Solve in time 2polyF (tw log tw) · n.

If the treewidth of G is big, remove a vertex from G using one of the
following approaches:

Irrelevant vertex technique: time O∗(n).
Detect vertex v such that (G , k) and (G \ {v}, k) are equivalent
instances of F-M-Deletion.

Branching: time O∗(n2).
Find set A of aF vertices that intersects every k-apex set.
“Guess” a vertex v ∈ A in a k-apex set and solve (G \ {v}, k − 1).

(Branching tree is of size ak
F , so we do not get an extra factor n).

skip
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Next subsection is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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Motivation: distance from triviality
Distance from triviality: [Guo, Hüffner, Niedermeier. 2004]

Concept to express the closeness of a graph G to a “trivial” graph class H.

Motivation: Solve problems parameterized by the “distance to H”.

→ Vertex Deletion to H

[Figure by Laure Morelle]

→ Elimination Distance to H
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Notion recently introduced by [Bulian, Dawar. 2016]

The elimination distance of a graph G to a graph class H is:

edH(G) =


0 if G ∈ H,

1 + min{edH(G \ {v}) | v ∈ V (G)} if G is connected,

max{edH(H) | H is a connected component of G} otherwise.

[Figure by Laure Morelle]

k-elimination set: set of removed vertices such that edH(G) ≤ k.
Remark: the size of a k-elimination set is not necessarily a function of k!
→ H = {∅}: treedepth
Stronger parameter than vertex deletion: edH(G) ≤ VertexDeletionH(G)
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Remark: the size of a k-elimination set is not necessarily a function of k!
→ H = {∅}: treedepth

Stronger parameter than vertex deletion: edH(G) ≤ VertexDeletionH(G)
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Elimination Distance to H
Input: A graph G and a k ∈ N.
Question: Is edH(G) ≤ k?
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What is known about Elimination Distance to H?

Let Ek(H) = {G | edH(G) ≤ k}.

(G , k) yes-instance of Elimination Distance to H ⇔ G ∈ Ek(H).

H minor-closed ⇒ Ek(H) minor-closed ⇒ non-constructive FPT-algo.

If we are given F = Obs(H), it is possible to construct Obs(Ek(H)).
[Bulian, Dawar. 2017]

⇒ constructive FPT-algorithm: f (k) · n2

Can we provide an explicit function f (k)?
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Taking the treewidth as the parameter

If H = {∅} (treedepth): [Reidl, Rossmanith, Sanchez Villaamil, Sikdar. 2014]

Dynamic programming algorithm parameterized by treewidth in 2O(k·tw) · n.

Since tw(G) ≤ td(G) ≤ tw(G) · log n → time nO(tw2) and 2O(k2) · n.

(Open problem: computing td parameterized by tw is FPT?)

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and with treewidth at most tw, and k ∈ N,
there is an algorithm that solves Elimination Distance to H for the
instance (G , k) in time 2OH(k·tw+tw log tw) · n.

→ algorithm in time nOH(tw2) for Elimination Distance to H.
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Our results for Elimination Distance to H

Theorem (Morelle, S., Stamoulis, Thilikos. 2022)
Given a graph G on n vertices and k ∈ N, there is an algorithm that solves
Elimination Distance to H for the instance (G , k) in time

222polyH(k)
· n2 for a general minor-closed class H,

22polyH(k) · n2 if Obs(H) contains an apex graph.

[Figure by Laure Morelle]

Main challenge compared to Vertex Deletion to H:
The size of a k-elimination set may be unbounded, so we cannot branch!
We always have to find an irrelevant vertex: larger treewidth bounds.
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What’s next about F -M-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:
Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented an algorithm in time 2kOF (1) · n3.
With parameter kmIs 2OF (kc ) · nO(1) possible for some constant c?

skip parameter kmIs the price of homogeneity unavoidable?
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For topological minors, there is (at least) one change

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1
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Next section is...
1 Introduction to graph minors
2 Introduction to parameterized complexity
3 Treewidth

Definition and simple properties
Brambles and duality
Computing treewidth
Dynamic programming on tree decompositions
Exploiting topology in dynamic programming

4 Bidimensionality
Some ingredients and an illustrative example
Meta-algorithms

5 Irrelevant vertex technique
6 Application to hitting minors

Parameterized by treewidth
Parameterized by solution size
More general modification operations

7 Kernelization (?)
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Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel
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Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels?

NO!

Theorem (Bodlaender, Downey, Fellows, Hermelin. 2009)
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.

173
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Fact: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels? NO!
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Now, on the board!

Definitions.

Some simple kernels.

Crown decompositions.

Kernels based on linear programming.

Sunflower lemma.
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Gràcies!

FREEDOM FOR ALL CATALAN POLITICAL PRISONERS IN SPAIN
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