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Graph modification problem:
Input: Graph G, integer k.
Question: Can we do ≤ k modifications to G s.t.
the modified graph belongs to the target class H?
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Modification Target class Problem

vertex deletion edgeless graphs Vertex Cover

forests Feedback Vertex Set

bipartite graphs Odd Cycle Transversal

edge addition +
deletion

union of cliques Cluster Editing

edge contraction planar graphs Contraction to planar

+ =
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2



Graph modification problem:
Input: Graph G, integer k.
Question: Can we do ≤ k modifications to G s.t.
the modified graph belongs to the target class H?

Most graph modification problems are NP-complete.

Modification M, graph class H

2



Graph modification problem:
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→ Parameterize by the solution size k: running time f(k) · nc = FPT
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Graph modification problem:
Input: Graph G, integer k.
Question: Can we do ≤ k modifications to G s.t.
the modified graph belongs to the target class H?

Most graph modification problems are NP-complete.

→ Parameterize by the solution size k:

Highly prolific field:
299 papers mentionned just for edge-modifications in
[A survey of parameterized algorithms and the complexity of edge-modification,

Crespelle, Drange, Fomin, Golovach, 2023]

running time f(k) · nc = FPT

Modification M, graph class H
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Graph modification problem:
Input: Graph G, integer k.
Question: Can we do ≤ k modifications to G s.t.
the modified graph belongs to the target class H?

Holy grail:
Instead of solving modification problems one by one, can we provide a
meta-algorithm solving as many problems as possible at once?

Modification M, graph class H
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Meta-algorithm on target classes

G minor of G

edge contraction

edge deletion

vertex deletion
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Meta-algorithm on target classes

G minor of G

edge contraction

edge deletion

vertex deletion

Minor-closed graph class H If G ∈ H, then minors of G in H.
edgeless graphs, forests,
planar graphs, graphs
embeddable on a surface, . . .
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Meta-algorithm on target classes

G minor of G

edge contraction

edge deletion

vertex deletion

Minor-closed graph class H If G ∈ H, then minors of G in H.

[Robertson, Seymour, 2004]

H has a finite number of minor-obstructions.
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Meta-algorithm on target classes

G minor of G

edge contraction

edge deletion

vertex deletion

Minor-closed graph class H If G ∈ H, then minors of G in H.

[Robertson, Seymour, 2004]

H has a finite number of minor-obstructions.

Obs(Planar)=

[Korhonen, Pilipczuk, Stamoulis, 2024]

Checking whether H is a minor of G can be done in time OH(n1+o(1)).
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Meta-algorithm on target classes

G minor of G

edge contraction

edge deletion

vertex deletion

Minor-closed graph class H If G ∈ H, then minors of G in H.

[Robertson, Seymour, 2004]+[Korhonen, Pilipczuk, Stamoulis, 2024]

Deciding membership in H can be done in time OH(n1+o(1)).

→ Vertex / Edge Deletion to H in time fH(k) · n1+o(1).

because yes-instances of k-Vertex / Edge Deletion to H are minor-closed.
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Meta-algorithm on modifications
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R-action: function L mapping each graph H to a collection L(H) of
graphs of the same size.

Meta-algorithm on modifications

L

H L(H)
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F ∈ L(G[S])
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Input: A graph G, k ∈ N.
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R-action: function L mapping each graph H to a collection L(H) of
graphs of the same size.

Meta-algorithm on modifications

L

H L(H)

L

G GS
F

S

F ∈ L(G[S])

L-Replacement to H
Input: A graph G, k ∈ N.
Question: Is there a set S ⊆ V (G) of
size at most k and F ∈ L(G[S])
such that GS

F ∈ H?

[Fomin, Golovach, Thilikos, 2019]

L-Replacement to Planar in time f(k) · n2.
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R-action: function L mapping each graph H to a collection L(H) of
graphs of the same size.

Meta-algorithm on modifications

L

H L(H)

L

G GS
F

S

F ∈ L(G[S])

L-Replacement to H
Input: A graph G, k ∈ N.
Question: Is there a set S ⊆ V (G) of
size at most k and F ∈ L(G[S])
such that GS

F ∈ H?

[Fomin, Golovach, Thilikos, 2019]

L-Replacement to Planar in time f(k) · n2.
Edge Deletion to Planar
Planar Completion to a Subgraph
Matching Deletion to Planar
Planar Subgraph Isomorphism
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Meta-algorithm on modifications and target classes
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Meta-algorithm on modifications and target classes

[S., Stamoulis, Thilikos, 2025]

Given a formula φ ∈ CMSO/tw + dp, and a graph G that is H-minor-free,
one can check whether G |= φ in time f(|φ|, |H|) · n2.

5



Meta-algorithm on modifications and target classes

[S., Stamoulis, Thilikos, 2025]

Given a formula φ ∈ CMSO/tw + dp, and a graph G that is H-minor-free,
one can check whether G |= φ in time f(|φ|, |H|) · n2.

Graph modification problems to a minor-closed graph class where the
modification involves a vertex set of “annotated treewidth ≤ k” can be
solved in time f(k) · n2.

5



Meta-algorithm on modifications and target classes

[S., Stamoulis, Thilikos, 2025]

Given a formula φ ∈ CMSO/tw + dp, and a graph G that is H-minor-free,
one can check whether G |= φ in time f(|φ|, |H|) · n2.

Graph modification problems to a minor-closed graph class where the
modification involves a vertex set of “annotated treewidth ≤ k” can be
solved in time f(k) · n2.

?

5



Meta-algorithm on modifications and target classes

[S., Stamoulis, Thilikos, 2025]

Given a formula φ ∈ CMSO/tw + dp, and a graph G that is H-minor-free,
one can check whether G |= φ in time f(|φ|, |H|) · n2.

Graph modification problems to a minor-closed graph class where the
modification involves a vertex set of “annotated treewidth ≤ k” can be
solved in time f(k) · n2.

Tree decomposition (T , β) of G

β(t) ⊆ V (G)

⋃
t∈V (T ) β(t) = V (G)

5



Meta-algorithm on modifications and target classes

[S., Stamoulis, Thilikos, 2025]

Given a formula φ ∈ CMSO/tw + dp, and a graph G that is H-minor-free,
one can check whether G |= φ in time f(|φ|, |H|) · n2.

Graph modification problems to a minor-closed graph class where the
modification involves a vertex set of “annotated treewidth ≤ k” can be
solved in time f(k) · n2.

Tree decomposition (T , β) of G

β(t) ⊆ V (G)

each edge is in a bag

⋃
t∈V (T ) β(t) = V (G)

5



Meta-algorithm on modifications and target classes

[S., Stamoulis, Thilikos, 2025]

Given a formula φ ∈ CMSO/tw + dp, and a graph G that is H-minor-free,
one can check whether G |= φ in time f(|φ|, |H|) · n2.

Graph modification problems to a minor-closed graph class where the
modification involves a vertex set of “annotated treewidth ≤ k” can be
solved in time f(k) · n2.

Tree decomposition (T , β) of G

β(t) ⊆ V (G)

each edge is in a bag

each vertex is in a
connected subtree

⋃
t∈V (T ) β(t) = V (G)

5



Meta-algorithm on modifications and target classes

[S., Stamoulis, Thilikos, 2025]
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Tree decomposition (T , β) of G

β(t) ⊆ V (G)

each edge is in a bag
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connected subtree
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Given a formula φ ∈ CMSO/tw + dp, and a graph G that is H-minor-free,
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tw = 1 tw = 2 tw = k
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Meta-algorithm on modifications and target classes

[S., Stamoulis, Thilikos, 2025]

Given a formula φ ∈ CMSO/tw + dp, and a graph G that is H-minor-free,
one can check whether G |= φ in time f(|φ|, |H|) · n2.

Graph modification problems to a minor-closed graph class where the
modification involves a vertex set of “annotated treewidth ≤ k” can be
solved in time f(k) · n2.

very bad (not even explicit!)

Natural goal: efficient parametric dependence on k, for particular
(still relevant) cases of the modification operation.
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H minor-closed Vertex Deletion to H in time
2OH(tw log tw) · n
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Vertex Deletion to H in time
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“Modification of Bounded Size to H” in time 2polyH(k) · n2

The result of this paper
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[Baste, S., Thilikos, 2018-2020]

[S., Stamoulis, Thilikos, 2020-2021]

[Morelle, S., Stamoulis, Thilikos, 2023]

[Morelle, S., Thilikos, ESA 2025]

H minor-closed Vertex Deletion to H in time
2OH(tw log tw) · n

Vertex Deletion to H in time
2polyH(k) · n3

Vertex Deletion to H in time
2polyH(k) · n2

L-Replacement to H in time 2polyH(k) · n2

Our result can be seen as a rare example of an efficient meta-algorithm
for graph modification problems to minor-closed graph classes.

The result of this paper
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One can solve L-Replacement to H in time 2polyH(k) · n2.

Our result: if H minor-closed
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One can solve L-Replacement to H in time 2polyH(k) · n2.

[Fomin, Golovach, Thilikos, 2019]

L-Replacement to Planar in time f(k) · n2.

L
S

L

H F

G GS
F

R-action: function L mapping each graph H to a collection L(H) of
graphs of same size.

L-Replacement to H
Input: A graph G, k ∈ N.
Question: Is there a set S ⊆ V (G)
of size at most k and F ∈ L(G[S])
such that GS

F ∈ H?

Our result: if H minor-closed
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One can solve L-Replacement to H in time 2polyH(k) · n2 for L hereditary.

Our result: if H minor-closed

• Vertex Deletion to H
• Edge Deletion to H
• Edge Contraction to H
• Subgraph Complementation to H
• Vertex Identification to H
• Matching Contraction to H
• Independent Set Deletion to H

L hereditary:

L
S

L

H

G

(F, ϕ)

GS
(F,ϕ)

7



One can solve L-Replacement to H in time 2polyH(k) · n2 for L hereditary.

Our result: if H minor-closed

• Vertex Deletion to H
• Edge Deletion to H
• Edge Contraction to H
• Subgraph Complementation to H
• Vertex Identification to H
• Matching Contraction to H
• Independent Set Deletion to H

L hereditary:

L non-hereditary:

• deleting exactly k vertices/edges
• Planar Subgraph Isomorphism

L
S

L

H

G

(F, ϕ)

GS
(F,ϕ)
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The Irrelevant Vertex technique

A flat wall:

Given a graph G and a big enough flat wall W in G, one can find a vertex v
such that (G, k) and (G− v, k) are equivalent instances of the problem.

irrelevant vertex v
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The Flat Wall theorem

Given a graph G and integers t and r, one can find either:
• a Kt-minor in G,

• a tree decomposition of G of width f(t) · r, or

• a set A ⊆ V (G) of size at most f(t) and a flat wall W of G−A of
height r.

A

W
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or branch to identify some vertex v that is in the solution.

Courcelle’s theorem: Every problem expressible in CMSO
logic is solvable in time f(tw) · n.

sH = max size of an obstruction of H

Recurse on (G− v, k)

Conclude
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works also for the class of graphs
embeddable on a surface Σ
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Can we improve?

Can we go further?

Can we remove?

k: bound on the size of the vertex set involved in the modification

treewidth instead?

Elimination Distance to H
H-Treewidth
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