Graph modification of bounded size to minor-closed classes as fast as vertex deletion

Laure Morelle, Ignasi Sau, Dimitrios M. Thilikos

LIRMM, CNRS, Université de Montpellier, France

ESA 2025, Warsaw, Poland

Graph modification problem:

Input: Graph G, integer k.

Question: Can we do $\leq k$ modifications to G s.t.

the modified graph belongs to the target class \mathcal{H} ?

Graph modification problem:

Input: Graph G, integer k.

Question: Can we do $\leq k$ modifications to G s.t.

the modified graph belongs to the target class \mathcal{H} ?

Modification $+$ Target class $=$ Problem		
vertex deletion	edgeless graphs	Vertex Cover
	forests	FEEDBACK VERTEX SET
	bipartite graphs	Odd Cycle Transversal
edge addition + deletion	union of cliques	Cluster Editing
edge contraction	planar graphs	CONTRACTION TO PLANAR

Graph modification problem:

Input: Graph G, integer k.

Question: Can we do $\leq k$ modifications to G s.t.

the modified graph belongs to the target class \mathcal{H} ?

Most graph modification problems are NP-complete.

Graph modification problem:

Input: Graph G, integer k.

Question: Can we do $\leq k$ modifications to G s.t.

the modified graph belongs to the target class \mathcal{H} ?

Most graph modification problems are NP-complete.

 \rightarrow Parameterize by the solution size k: running time $f(k) \cdot n^c = \text{FPT}$

Graph modification problem:

Input: Graph G, integer k.

Question: Can we do $\leq k$ modifications to G s.t.

the modified graph belongs to the target class \mathcal{H} ?

Most graph modification problems are NP-complete.

 \rightarrow Parameterize by the solution size k: running time $f(k) \cdot n^c = \text{FPT}$

Highly prolific field:

299 papers mentionned just for edge-modifications in

[A survey of parameterized algorithms and the complexity of edge-modification, Crespelle, Drange, Fomin, Golovach, 2023]

Graph modification problem:

Input: Graph G, integer k.

Question: Can we do $\leq k$ modifications to G s.t.

the modified graph belongs to the target class \mathcal{H} ?

Holy grail:

Instead of solving modification problems one by one, can we provide a meta-algorithm solving as many problems as possible at once?

Minor-closed graph class ${\cal H}$

Minor-closed graph class \mathcal{H} \blacktriangleleft If $G \in \mathcal{H}$, then minors of G in \mathcal{H} .

Minor-closed graph class \mathcal{H} If $G \in \mathcal{H}$, then minors of G in \mathcal{H} .

edgeless graphs, forests,

planar graphs, graphs

embeddable on a surface, ...

Minor-closed graph class \mathcal{H} \blacktriangleleft If $G \in \mathcal{H}$, then minors of G in \mathcal{H} .

[Robertson, Seymour, 2004]

 ${\cal H}$ has a finite number of minor-obstructions.

Minor-closed graph class $\mathcal H$ If $G\in\mathcal H$, then minors of G in $\mathcal H$. [Robertson, Seymour, 2004] Obs(Planar)= $\mathcal H$ has a finite number of minor-obstructions.

Minor-closed graph class \mathcal{H} \longrightarrow If $G \in \mathcal{H}$, then minors of G in \mathcal{H} .

[Robertson, Seymour, 2004] \mathcal{H} has a finite number of minor-obstructions.

Obs(Planar)=

[Korhonen, Pilipczuk, Stamoulis, 2024]

Checking whether H is a minor of G can be done in time $\mathcal{O}_{H}(n^{1+o(1)})$.

Minor-closed graph class \mathcal{H} \longrightarrow If $G \in \mathcal{H}$, then minors of G in \mathcal{H} .

[Robertson, Seymour, 2004]+[Korhonen, Pilipczuk, Stamoulis, 2024] Deciding membership in \mathcal{H} can be done in time $\mathcal{O}_{\mathcal{H}}(n^{1+o(1)})$.

Minor-closed graph class \mathcal{H} \longrightarrow If $G \in \mathcal{H}$, then minors of G in \mathcal{H} .

[Robertson, Seymour, 2004]+[Korhonen, Pilipczuk, Stamoulis, 2024] Deciding membership in \mathcal{H} can be done in time $\mathcal{O}_{\mathcal{H}}(n^{1+o(1)})$.

 \rightarrow Vertex / Edge Deletion to \mathcal{H} in time $f_{\mathcal{H}}(\mathbf{k}) \cdot n^{1+o(1)}$.

Minor-closed graph class \mathcal{H} \longrightarrow If $G \in \mathcal{H}$, then minors of G in \mathcal{H} .

[Robertson, Seymour, 2004]+[Korhonen, Pilipczuk, Stamoulis, 2024] Deciding membership in \mathcal{H} can be done in time $\mathcal{O}_{\mathcal{H}}(n^{1+o(1)})$.

 $ightharpoonup ext{VERTEX} / ext{EDGE DELETION TO } \mathcal{H} ext{ in time } f_{\mathcal{H}}(k) \cdot n^{1+o(1)}.$ because yes-instances of k-Vertex / Edge Deletion to \mathcal{H} are minor-closed.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of the same size.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of the same size.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of the same size.

 \mathcal{L} -Replacement to \mathcal{H}

Input: A graph G, $k \in \mathbb{N}$.

Question: Is there a set $S \subseteq V(G)$ of

size at most k and $F \in \mathcal{L}(G[S])$

such that $G_F^S \in \mathcal{H}$?

[Fomin, Golovach, Thilikos, 2019]

 \mathcal{L} -Replacement to Planar in time $f(\mathbf{k}) \cdot n^2$.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of the same size.

\mathcal{L} -Replacement to \mathcal{H}

Input: A graph G, $k \in \mathbb{N}$.

Question: Is there a set $S \subseteq V(G)$ of

size at most k and $F \in \mathcal{L}(G[S])$

such that $G_F^S \in \mathcal{H}$?

[Fomin, Golovach, Thilikos, 2019]

 \mathcal{L} -Replacement to Planar in time $f(\mathbf{k}) \cdot n^2$.

EDGE DELETION TO PLANAR

PLANAR COMPLETION TO A SUBGRAPH

MATCHING DELETION TO PLANAR

PLANAR SUBGRAPH ISOMORPHISM

[S., Stamoulis, Thilikos, 2025] Given a formula $\varphi \in \text{CMSO/tw} + \text{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

[S., Stamoulis, Thilikos, 2025]

Given a formula $\varphi \in \mathsf{CMSO}/\mathsf{tw} + \mathsf{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

[S., Stamoulis, Thilikos, 2025]

Given a formula $\varphi \in \mathsf{CMSO/tw} + \mathsf{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

[S., Stamoulis, Thilikos, 2025]

Given a formula $\varphi \in \mathsf{CMSO}/\mathsf{tw} + \mathsf{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

[S., Stamoulis, Thilikos, 2025]

Given a formula $\varphi \in \mathsf{CMSO}/\mathsf{tw} + \mathsf{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

[S., Stamoulis, Thilikos, 2025]

Given a formula $\varphi \in \mathsf{CMSO}/\mathsf{tw} + \mathsf{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

[S., Stamoulis, Thilikos, 2025]

Given a formula $\varphi \in \mathsf{CMSO}/\mathsf{tw} + \mathsf{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

[S., Stamoulis, Thilikos, 2025]

Given a formula $\varphi \in \mathsf{CMSO}/\mathsf{tw} + \mathsf{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

[S., Stamoulis, Thilikos, 2025]

Given a formula $\varphi \in \mathsf{CMSO}/\mathsf{tw} + \mathsf{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

[S., Stamoulis, Thilikos, 2025]

Given a formula $\varphi \in \mathsf{CMSO}/\mathsf{tw} + \mathsf{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

[S., Stamoulis, Thilikos, 2025]

Given a formula $\varphi \in \mathsf{CMSO}/\mathsf{tw} + \mathsf{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

[S., Stamoulis, Thilikos, 2025]

Given a formula $\varphi \in \mathsf{CMSO/tw} + \mathsf{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

Graph modification problems to a minor-closed graph class where the modification involves a vertex set of "annotated treewidth $\leq k$ " can be solved in time $f(k) \cdot n^2$.

very bad (not even explicit!)

Meta-algorithm on modifications and target classes

[S., Stamoulis, Thilikos, 2025]

Given a formula $\varphi \in \mathsf{CMSO}/\mathsf{tw} + \mathsf{dp}$, and a graph G that is H-minor-free, one can check whether $G \models \varphi$ in time $f(|\varphi|, |H|) \cdot n^2$.

Graph modification problems to a minor-closed graph class where the modification involves a vertex set of "annotated treewidth $\leq k$ " can be solved in time $f(k) \cdot n^2$.

very bad (not even explicit!)

Natural goal: efficient parametric dependence on k, for particular (still relevant) cases of the modification operation.

H minor-closed

[Baste, S., Thilikos, 2018-2020]

[S., Stamoulis, Thilikos, 2020-2021]

[Morelle, S., Stamoulis, Thilikos, 2023]

[Morelle, S., Thilikos, ESA 2025]

H minor-closed

VERTEX DELETION TO \mathcal{H} in time $2^{O_{\mathcal{H}}(\mathsf{tw}\log\mathsf{tw})} \cdot n$

[Baste, S., Thilikos, 2018-2020]

[S., Stamoulis, Thilikos, 2020-2021]

[Morelle, S., Stamoulis, Thilikos, 2023]

[Morelle, S., Thilikos, ESA 2025]

Our result can be seen as a rare example of an efficient meta-algorithm for graph modification problems to minor-closed graph classes.

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\mathsf{poly}_{\mathcal{H}}(k)} \cdot n^2$.

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\mathsf{poly}_{\mathcal{H}}(k)} \cdot n^2$.

[Fomin, Golovach, Thilikos, 2019]

 \mathcal{L} -Replacement to Planar in time $f(\mathbf{k}) \cdot n^2$.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of same size.

L-Replacement to \mathcal{H} Input: A graph G, $k \in \mathbb{N}$. Question: Is there a set $S \subseteq V(G)$ of size at most k and $F \in \mathcal{L}(G[S])$ such that $G_F^S \in \mathcal{H}$?

One can solve \mathcal{L} -Replacement to \mathcal{H} in time $2^{\mathsf{poly}_{\mathcal{H}}(k)} \cdot n^2$.

[Fomin, Golovach, Thilikos, 2019]

 \mathcal{L} -Replacement to Planar in time $f(\mathbf{k}) \cdot n^2$.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of smaller size.

L-Replacement to \mathcal{H} Input: A graph G, $k \in \mathbb{N}$. Question: Is there a set $S \subseteq V(G)$ of size at most k and $F \in \mathcal{L}(G[S])$ such that $G_F^S \in \mathcal{H}$?

One can solve \mathcal{L} -Replacement to \mathcal{H} in time $2^{\mathsf{poly}_{\mathcal{H}}(k)} \cdot n^2$.

[Fomin, Golovach, Thilikos, 2019]

 \mathcal{L} -Replacement to Planar in time $f(\mathbf{k}) \cdot n^2$.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of smaller size.

\mathcal{L} -Replacement to \mathcal{H}

Input: A graph $G, k \in \mathbb{N}$.

Question: Is there a set $S \subseteq V(G)$ of size at most k and $F \in \mathcal{L}(G[S])$

One can solve \mathcal{L} -Replacement to \mathcal{H} in time $2^{\mathsf{poly}_{\mathcal{H}}(k)} \cdot n^2$.

[Fomin, Golovach, Thilikos, 2019]

 \mathcal{L} -Replacement to Planar in time $f(\mathbf{k}) \cdot n^2$.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of smaller size.

identification

 \mathcal{L} -Replacement to \mathcal{H}

Input: A graph G, $k \in \mathbb{N}$.

Question: Is there a set $S \subseteq V(G)$

of size at most k and $F \in \mathcal{L}(G[S])$

One can solve \mathcal{L} -Replacement to \mathcal{H} in time $2^{\mathsf{poly}_{\mathcal{H}}(k)} \cdot n^2$.

[Fomin, Golovach, Thilikos, 2019]

 \mathcal{L} -Replacement to Planar in time $f(\mathbf{k}) \cdot n^2$.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of smaller size.

identification

 \mathcal{L} -Replacement to \mathcal{H}

Input: A graph G, $k \in \mathbb{N}$.

Question: Is there a set $S \subseteq V(G)$

of size at most k and $F \in \mathcal{L}(G[S])$

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\mathsf{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of smaller size.

\mathcal{L} -Replacement to \mathcal{H}

Input: A graph G, $k \in \mathbb{N}$.

Question: Is there a set $S \subseteq V(G)$

of size at most k and $F \in \mathcal{L}(G[S])$

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\mathsf{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of smaller size.

\mathcal{L} -Replacement to \mathcal{H}

Input: A graph G, $k \in \mathbb{N}$.

Question: Is there a set $S \subseteq V(G)$ of size at most k and $F \in \mathcal{L}(G[S])$

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\mathsf{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of smaller size.

\mathcal{L} -Replacement to \mathcal{H}

Input: A graph G, $k \in \mathbb{N}$. Question: Is there a set $S \subseteq V(G)$ of size at most k and $F \in \mathcal{L}(G[S])$

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\mathsf{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of smaller size.

\mathcal{L} -Replacement to \mathcal{H}

Input: A graph G, $k \in \mathbb{N}$. Question: Is there a set $S \subseteq V(G)$

of size at most k and $F \in \mathcal{L}(G[S])$

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\mathsf{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

L hereditary:

- Vertex Deletion to \mathcal{H}
- Edge Deletion to ${\cal H}$
- ullet Edge Contraction to ${\cal H}$
- Subgraph Complementation to ${\cal H}$
- Vertex Identification to ${\cal H}$
- Matching Contraction to ${\cal H}$
- ullet Independent Set Deletion to ${\cal H}$

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\mathsf{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

L hereditary:

- Vertex Deletion to \mathcal{H}
- ullet Edge Deletion to ${\cal H}$
- ullet Edge Contraction to ${\cal H}$
- Subgraph Complementation to ${\cal H}$
- Vertex Identification to ${\cal H}$
- Matching Contraction to ${\cal H}$
- Independent Set Deletion to ${\cal H}$

L non-hereditary:

- deleting exactly k vertices/edges
- Planar Subgraph Isomorphism

The Irrelevant Vertex technique

The Irrelevant Vertex technique ← originates from [Robertson, Seymour, 1995]

The Irrelevant Vertex technique originates from [Robertson, Seymour, 1995]

[S., Stamoulis, Thilikos, 2022] for VERTEXDeletion to \mathcal{H}

[Morelle, S., Thilikos, ESA 2025] for \mathcal{L} -Replacement to \mathcal{H}

The Irrelevant Vertex technique ← originates from [Robertson, Seymour, 1995]

[S., Stamoulis, Thilikos, 2022] for VERTEX Deletion to \mathcal{H}

[Morelle, S., Thilikos, ESA 2025] for $\mathcal{L} ext{-Replacement to }\mathcal{H}$

A wall:

The Irrelevant Vertex technique ← originates from [Robertson, Seymour, 1995]

[S., Stamoulis, Thilikos, 2022] for VERTEX Deletion to \mathcal{H}

[Morelle, S., Thilikos, ESA 2025] for $\mathcal{L} ext{-Replacement to }\mathcal{H}$

A **flat** wall:

The Irrelevant Vertex technique

Given a graph G and a big enough flat wall W in G, one can find a vertex v such that (G, k) and (G - v, k) are equivalent instances of the problem.

A **flat** wall:

Given a graph G and integers t and r, one can find either:

• a K_t -minor in G,

• a tree decomposition of G of width $f(t) \cdot r$, or

• a set $A \subseteq V(G)$ of size at most f(t) and a flat wall W of G - A of height r.

Given a graph G and integers t and r, one can find either:

• a K_t -minor in G,

• a tree decomposition of G of width $f(t) \cdot r$, or

• a set $A \subseteq V(G)$ of size at most f(t) and a flat wall W of G - A of height r.

Irrelevant Vertex technique: find an irrelevant vertex v, or branch to identify some vertex v that is in the solution.

Given a graph G and integers t and r, one can find either:

• a K_t -minor in G,

• a tree decomposition of G of width $f(t) \cdot r$, or

• a set $A \subseteq V(G)$ of size at most f(t) and a flat wall W of G - A of height r.

Irrelevant Vertex technique: find an irrelevant vertex v, or branch to identify some vertex v that is in the solution.

Given a graph G and integers t and r, one can find either:

• a K_t -minor in G,

• a tree decomposition of G of width $f(t) \cdot r$, or

Courcelle's theorem: Every problem expressible in CMSO logic is solvable in time $f(tw) \cdot n$.

• a set $A \subseteq V(G)$ of size at most f(t) and a flat wall W of G-A of height r.

Irrelevant Vertex technique: find an irrelevant vertex v, or branch to identify some vertex v that is in the solution.

Given a graph G and integers t and r, one can find either:

• a K_t -minor in G,

• a tree decomposition of G of width $f(t) \cdot r$, or

Conclude

Courcelle's theorem: Every problem expressible in CMSO logic is solvable in time $f(tw) \cdot n$.

• a set $A \subseteq V(G)$ of size at most f(t) and a flat wall W of G-A of height r.

Irrelevant Vertex technique: find an irrelevant vertex v, or branch to identify some vertex v that is in the solution.

Given a graph G and integers t and r, one can find either:

• a K_t -minor in G,

 $s_{\mathcal{H}} = \max \text{ size of an obstruction of } \mathcal{H}$

• a tree decomposition of G of width $f(t) \cdot r$, or

Courcelle's theorem: Every problem expressible in CMSO logic is solvable in time $f(tw) \cdot n$.

• a set $A \subseteq V(G)$ of size at most f(t) and a flat wall W of G-A of height r.

Irrelevant Vertex technique: find an irrelevant vertex v, or branch to identify some vertex v that is in the solution.

Given a graph G and integers t and r, one can find either:

• a K_t -minor in G,

 $s_{\mathcal{H}} = \max \text{ size of an obstruction of } \mathcal{H}$ $t = s_{\mathcal{H}} + k$

Conclude

Courcelle's theorem: Every problem expressible in CMSO logic is solvable in time $f(tw) \cdot n$.

ullet a set $A\subseteq V(G)$ of size at most f(t) and a flat wall W of G-A of height r.

Irrelevant Vertex technique: find an irrelevant vertex v, or branch to identify some vertex v that is in the solution.

Given a graph G and integers t and r, one can find either:

• a K_t -minor in G,

 $s_{\mathcal{H}} = \max \text{ size of an obstruction of } \mathcal{H}$

• a tree decomposition of G of width $f(t) \cdot r$, or

Courcelle's theorem: Every problem expressible in CMSO logic is solvable in time $f(tw) \cdot n$.

• a set $A \subseteq V(G)$ of size at most f(t) and a flat wall W of G-A of height r.

Irrelevant Vertex technique: find an irrelevant vertex v, or branch to identify some vertex v that is in the solution.

Given a graph G and integers t and r, one can find either:

• a K_t -minor in G,

 $s_{\mathcal{H}} = \max \text{ size of an obstruction of } \mathcal{H}$

$$t = s_{\mathcal{H}} + k$$
 — no-instance

in time $f_{\mathcal{H}}(\mathbf{k}) \cdot n$

• a tree decomposition of G of width $f(t) \cdot r$, or

Courcelle's theorem: Every problem expressible in CMSO logic is solvable in time $f(tw) \cdot n$.

• a set $A \subseteq V(G)$ of size at most f(t) and a flat wall W of G-A of height r.

Irrelevant Vertex technique: find an irrelevant vertex v, or branch to identify some vertex v that is in the solution.

Recurse on
$$(G - v, k)$$
 \longrightarrow in time $2^{f_{\mathcal{H}}(k)} \cdot n$

The Flat Wall theorem

Given a graph G and integers t and r, one can find either:

• a K_t -minor in G,

 $s_{\mathcal{H}} = \max \text{ size of an obstruction of } \mathcal{H}$

$$t = s_{\mathcal{H}} + k$$
 — no-instance

in time $f_{\mathcal{H}}(\mathbf{k}) \cdot n$

• a tree decomposition of G of width $f(t) \cdot r$, or

Courcelle's theorem: Every problem expressible in CMSC logic is solvable in time $f(tw) \cdot n$.

• a set $A \subseteq V(G)$ of size at most f(t) and a flat wall W of G-A of height r.

Irrelevant Vertex technique: find an irrelevant vertex v, or branch to identify some vertex v that is in the solution,

Recurse on
$$(G - v, k)$$
 \longrightarrow in time $2^{f_{\mathcal{H}}(k)} \cdot n$

The Flat Wall theorem

Given a graph G and integers t and r, one can find either:

• a K_t -minor in G,

 $s_{\mathcal{H}} = \max \text{ size of an obstruction of } \mathcal{H}$

$$t = s_{\mathcal{H}} + k$$
 — no-instance

in time $f_{\mathcal{H}}(\mathbf{k}) \cdot n$

• a tree decomposition of G of width $f(t) \cdot r$, or

Courcelle's theorem: Every problem expressible in CMSC logic is solvable in time $f(tw) \cdot n$.

• a set $A \subseteq V(G)$ of size at most f(t) and a flat wall W of G-A of height r.

Irrelevant Vertex technique: find an irrelevant vertex v, or branch to identify some vertex v that is in the solution,

Recurse on
$$(G - v, k)$$
 \longrightarrow in time $2^{f_{\mathcal{H}}(k)} \cdot n$

The Flat Wall theorem

Given a graph G and integers t and r, one can find either:

• a K_t -minor in G,

 $s_{\mathcal{H}} = \max \text{ size of an obstruction of } \mathcal{H}$

 $t = s_{\mathcal{H}} + k$ — no-instance

• a tree decomposition of G of width $f(t) \cdot r$, or

 \mathcal{L} -Replacement to \mathcal{H} in time $2^{O_{\mathcal{H}}(k^2+(k+\mathsf{tw})\log(k+\mathsf{tw}))} \cdot n$

• a set $A \subseteq V(G)$ of size at most f(t) and a flat wall W of G-A of height r.

Irrelevant Vertex technique: find an irrelevant vertex v, or branch to identify some vertex v that is in the solution.

Recurse on
$$(G - v, k)$$
 \longrightarrow in time $2^{f_{\mathcal{H}}(k)} \cdot n$

bad!

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\mathbf{k})} \cdot n^2$ for \mathcal{L} hereditary.

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\pmb{k})} \cdot n^2$ for \mathcal{L} hereditary. $k^{2^{2^s\mathcal{H}^{24}}}$

One can solve \mathcal{L} -Replacement to \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\pmb{k})} \cdot n^2$ for \mathcal{L} hereditary. $k^{2^{2^s\mathcal{H}^{24}}}$

 $\mathcal{H} = \mathcal{P}$ planar: $s_{\mathcal{H}} = 6 \rightarrow \text{already very big!}$

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\pmb{k})} \cdot n^2$ for \mathcal{L} hereditary. $k^{2^{2^s\mathcal{H}^{24}}}$

 $\mathcal{H} = \mathcal{P}$ planar: $s_{\mathcal{H}} = 6 \rightarrow \text{already very big!}$

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{P} in time $2^{\mathcal{O}(\mathbf{k}^9)} \cdot n^2$ for \mathcal{L} hereditary.

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\pmb{k})} \cdot n^2$ for \mathcal{L} hereditary. $k^{2^{2^s\mathcal{H}^{24}}} < \blacksquare$

 $\mathcal{H} = \mathcal{P}$ planar: $s_{\mathcal{H}} = 6 \rightarrow \text{already very big!}$

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{P} in time $2^{\mathcal{O}(\mathbf{k}^9)} \cdot n^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

One can solve \mathcal{L} -Replacement to \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\pmb{k})} \cdot n^2$ for \mathcal{L} hereditary. $k^{2^{2^s\mathcal{H}^{24}}} < \blacksquare$

 $\mathcal{H} = \mathcal{P}$ planar: $s_{\mathcal{H}} = 6 \rightarrow \text{already very big!}$

One can solve \mathcal{L} -Replacement to \mathcal{P} in time $2^{\mathcal{O}(\mathbf{k}^9)} \cdot n^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

General case:

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\pmb{k})} \cdot n^2$ for \mathcal{L} hereditary. $k^{2^{2^s\mathcal{H}^{24}}}$

 $\mathcal{H} = \mathcal{P}$ planar: $s_{\mathcal{H}} = 6 \rightarrow \text{already very big!}$

One can solve \mathcal{L} -Replacement to \mathcal{P} in time $2^{\mathcal{O}(\mathbf{k}^9)} \cdot n^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

General case:

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\pmb{k})} \cdot n^2$ for \mathcal{L} hereditary. $k^{2^{2^s\mathcal{H}^{24}}}$

 $\mathcal{H} = \mathcal{P}$ planar: $s_{\mathcal{H}} = 6 \rightarrow \text{already very big!}$

One can solve \mathcal{L} -Replacement to \mathcal{P} in time $2^{\mathcal{O}(\mathbf{k}^9)} \cdot n^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

General case:

One can solve \mathcal{L} -Replacement to \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\pmb{k})} \cdot n^2$ for \mathcal{L} hereditary. $k^{2^{2^s\mathcal{H}^{24}}}$

 $\mathcal{H} = \mathcal{P}$ planar: $s_{\mathcal{H}} = 6 \rightarrow \text{already very big!}$

One can solve \mathcal{L} -Replacement to \mathcal{P} in time $2^{\mathcal{O}(k^9)} \cdot n^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

General case: Planar case:

One can solve \mathcal{L} -Replacement to \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\pmb{k})} \cdot n^2$ for \mathcal{L} hereditary. $k^{2^{2^s\mathcal{H}^{24}}}$

 $\mathcal{H} = \mathcal{P}$ planar: $s_{\mathcal{H}} = 6 \rightarrow \text{already very big!}$

One can solve \mathcal{L} -Replacement to \mathcal{P} in time $2^{\mathcal{O}(k^9)} \cdot n^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

General case:

Planar case:

One can solve \mathcal{L} -Replacement to \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\pmb{k})} \cdot n^2$ for \mathcal{L} hereditary. $k^{2^{2^s\mathcal{H}^{24}}}$

 $\mathcal{H} = \mathcal{P}$ planar: $s_{\mathcal{H}} = 6 \rightarrow \text{already very big!}$

One can solve \mathcal{L} -Replacement to \mathcal{P} in time $2^{\mathcal{O}(k^9)} \cdot n^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

General case: Planar case:

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\pmb{k})} \cdot n^2$ for \mathcal{L} hereditary. $k^{2^{2^s\mathcal{H}^{24}}}$

 $\mathcal{H} = \mathcal{P}$ planar: $s_{\mathcal{H}} = 6 \rightarrow \text{already very big!}$

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{P} in time $2^{\mathcal{O}(k^9)} \cdot n^2$ for \mathcal{L} hereditary.

works also for the class of graphs embeddable on a surface Σ

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\mathbf{k})} \cdot n^2$ for \mathcal{L} hereditary.

One can solve \mathcal{L} -Replacement to \mathcal{P} in time $2^{\mathcal{O}(k^9)} \cdot n^2$ for \mathcal{L} hereditary.

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{H} in time $2^{\text{poly}_{\mathcal{H}}(\mathbf{k})} \cdot n_{\mathcal{I}}^2$ for \mathcal{L} hereditary.

Can we improve?

One can solve \mathcal{L} -REPLACEMENT TO \mathcal{P} in time $2^{\mathcal{O}(\mathbf{k}^9)} \cdot n^2$ for \mathcal{L} hereditary.

One can solve \mathcal{L} -Replacement to \mathcal{H} in time $2^{\operatorname{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

One can solve \mathcal{L} -Replacement to \mathcal{P} in time $2^{\mathcal{O}(k^9)} \cdot n^2$ for \mathcal{L} hereditary.

One can solve \mathcal{L} -Replacement to \mathcal{H} in time $2^{\operatorname{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

One can solve \mathcal{L} -Replacement to \mathcal{P} in time $2^{\mathcal{O}(k^9)} \cdot n^2$ for \mathcal{L} hereditary.

k: bound on the size of the vertex set involved in the modification

k: bound on the size of the vertex set involved in the modification treewidth instead?

k: bound on the size of the vertex set involved in the modification treewidth instead?

ELIMINATION DISTANCE TO \mathcal{H} $\mathcal{H}\text{-Treewidth}$

k: bound on the size of the vertex set involved in the modification treewidth instead?

ELIMINATION DISTANCE TO \mathcal{H} $\mathcal{H}\text{-Treewidth}$

Thanks!