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Modification M, graph class ‘H

Graph modification problem:

Input: Graph G, integer k.

Question: Can we do < k& modifications to GG s.t.
the modified graph belongs to the target class H?

Most graph modification problems are NP-complete.
— Parameterize by the solution size k:  running time f(k)-n® = FPT

Highly prolific field:
299 papers mentionned just for edge-modifications in
[A survey of parameterized algorithms and the complexity of edge-modification,

Crespelle, Drange, Fomin, Golovach, 2023]



Modification M, graph class ‘H

Graph modification problem:

Input: Graph G, integer k.
Question: Can we do < k modifications to (G s.t.

the modified graph belongs to the target class H?

Holy grail:
Instead of solving modification problems one by one, can we provide a

meta-algorithm solving as many problems as possible at once?
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edge deletion /‘G 7 minor of G
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Minor-closed graph class H <«——— If G € H, then minors of GG in H.
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[Robertson, Seymour, 2004] /
‘H has a finite number of minor-obstructions. M

[Korhonen, Pilipczuk, Stamoulis, 2024]
Checking whether H is a minor of G can be done in time O (n'to).
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Meta-algorithm on target classes

edge contraction

edge deletion /‘G 7 minor of G

vertex deletion

Minor-closed graph class H <«——— If G € H, then minors of GG in H.

[Robertson, Seymour, 2004]+[Korhonen, Pilipczuk, Stamoulis, 2024]
Deciding membership in H can be done in time Oy (n'+oW).

— VERTEX / EDGE DELETION TO H in time fy (k) - ntto().

because yes-instances of k-VERTEX / EDGE DELETION TO H are minor-closed.
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R-action: function £ mapping each graph H to a collection £(H) of

graphs of the same size.

X A{m I Q} L-Replacement to H
y Input: A graph GG, k£ € N.
H L(H) Question: Is there a set S C V(
size at most k£ and F € L(G|[S]

S"*X L m\ such that G2 € H?

- gs ' eL(Els)

[Fomin, Golovach, Thilikos, 2019]
L-REPLACEMENT TO PLANAR in time f(k) - n?.

EDGE DELETION TO PLANAR

PrLANAR COMPLETION TO A SUBGRAPH
MATCHING DELETION TO PLANAR
PLANAR SUBGRAPH ISOMORPHISM
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Meta-algorithm on modifications and target classes

[S., Stamoulis, Thilikos, 2025]
Given a formula ¢ € CMSO/tw + dp, and a graph G that is H-minor-free,
one can check whether G = ¢ in time f(|o|, |H]) - n?.

( Graph modification problems to a minor-closed graph class where the
modification involves a vertex set of “annotated treewidth < £" can be

solved in time f(k) - n?.

:> very bad (not even explicit!)

Natural goal: efficient parametric dependence on k£, for particular
(still relevant) cases of the modification operation.



H minor-closed

[Baste, S., Thilikos, 2018-2020]

[S., Stamoulis, Thilikos, 2020-2021]
[Morelle, S., Stamoulis, Thilikos, 2023]
[Morelle, S., Thilikos, ESA 2025]



H minor-closed VERTEX DELETION TO H in time
20 (tw log tw) | n

[Baste, S., Thilikos, 2018-2020] 4/

[S., Stamoulis, Thilikos, 2020-2021]
[Morelle, S., Stamoulis, Thilikos, 2023]
[Morelle, S., Thilikos, ESA 2025]



H minor-closed VERTEX DELETION TO H in time
20 (tw log tw) | n

[Baste, S., Thilikos, 2018-2020] ‘/ VERTEX DELETION TO H in time
[S., Stamoulis, Thilikos, 2020-2021] <—" 9polys, (k) . 1,3

[Morelle, S., Stamoulis, Thilikos, 2023]

[Morelle, S., Thilikos, ESA 2025]



H minor-closed VERTEX DELETION TO H in time
20 (tw log tw) | n

[Baste, S., Thilikos, 2018-2020] ‘/ VERTEX DELETION TO H in time
[S., Stamoulis, Thilikos, 2020-2021] /onlyﬂ(k) .n3
[Morelle, S., Stamoulis, Thilikos, 2023]

[Morelle, S., Thilikos, ESA 2025] \_VERTEX DELETION TO H In time
QPOIyH(k) . n2



H minor-closed VERTEX DELETION TO H in time
20 (tw log tw) | n

[Baste, S., Thilikos, 2018-2020] ‘/ VERTEX DELETION TO H in time
[S., Stamoulis, Thilikos, 2020-2021] <—" 9polys, (k) . 1,3
[Morelle, S., Stamoulis, Thilikos, 2023]

[Morelle, S., Thilikos, ESA 2025] \VERTEX DELETION TO H in time
2ponH(k) .2
The result of this paper

“MODIFICATION OF BOUNDED SIZE TO A" in time 2Polyx (k) . 2



H minor-closed VERTEX DELETION TO H in time
20 (tw log tw) | n

[Baste, S., Thilikos, 2018-2020] ‘/ VERTEX DELETION TO H in time
[S., Stamoulis, Thilikos, 2020-2021] /onlyﬂ(k) .03

[Morelle, S., Stamoulis, Thilikos, 2023]

[Morelle, S., Thilikos, ESA 2025] \_VERTEX DELETION TO H in time
QPOIyH(k) . rn2

The result of this paper
L-REPLACEMENT TO H in time 2PoV# (k) . 2

Our result can be seen as a rare example of an efficient meta-algorithm
for graph modification problems to minor-closed graph classes.



Our result: if H minor-closed
One can solve L-REPLACEMENT TO H. in time 2Py« (F) . 2.



Our result: if H minor-closed

One can solve L-REPLACEMENT TO H. in time 2Py« (F) . 2.

[Fomin, Golovach, Thilikos, 2019]

L-REPLACEMENT TO PLANAR in time f(k) - n°.

R-action: function £ mapping each graph H to a collection £(H) of

graphs of same size.

L
4

R

G

L

]

F

1

L-Replacement to H

Input: A graph GG, kK € N.
Question: Is there a set S C V(G)
of size at most k£ and F' € L(G|S])
such that G € H?



Our result: if H minor-closed
One can solve L-REPLACEMENT TO H. in time 2PoWx (k) . n2.

[Fomin, Golovach, Thilikos, 2019]
L-REPLACEMENT TO PLANAR in time f(k) - n°.

R-action: function £ mapping each graph H to a collection £(H) of
graphs of smaller size.

X L L L-Replacement to H
Input: A graph GG, kK € N.
H F Question: Is there a set S C V(G)
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sﬁX L L such that G’z € H?
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Our result: if 2 minor-closed
One can solve £L-REPLACEMENT TO 7 in time 2P°V# (%) . n2 for £ hereditary.

L hereditary: X /’é\s Z‘
H (F, )

VERTEX DELETION TO H

EDGE DELETION TO H

EDGE CONTRACTION TO H L
SUBGRAPH COMPLEMENTATION TO SAX Z,
VERTEX IDENTIFICATION TO H

MATCHING CONTRACTION TO H G Gp.g)
INDEPENDENT SET DELETION TO H

L non-hereditary:

deleting exactly k vertices/edges
PLANAR SUBGRAPH [SOMORPHISM
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The Irrelevant Vertex technique

Given a graph GG and a big enough flat wall ¥ in G, one can find a vertex v
such that (G, k) and (G — v, k) are equivalent instances of the problem.

A flat wall:

Ve

A 1 A
arN et
‘;. &>.<"W D) & ‘ o@o, "
.\ "‘." \
af‘ ‘ v%‘,\ \‘;( ;‘
R : s‘ ! ___—irrelevant vertex v

p U
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