
Fast algorithms parameterized by treewidth

ESIGMA meeting
Paris, May 31-June 1, 2018

Ignasi Sau
CNRS, LIRMM, Université de Montpellier

1/23

Outline of the talk

1 Area of research: parameterized complexity

2 FPT algorithms parameterized by treewidth

3 A possible line of research

2/23

Next section is...

1 Area of research: parameterized complexity

2 FPT algorithms parameterized by treewidth

3 A possible line of research

3/23

The area of parameterized complexity

Idea Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established area with hundreds of articles published
every year in the most prestigious TCS journals and conferences.

4/23

The area of parameterized complexity

Idea Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established area with hundreds of articles published
every year in the most prestigious TCS journals and conferences.

4/23

Motivation: NP-complete problems

Cook-Levin Theorem (1971): the SAT problem is NP-complete.

Karp (1972): list of 21 important NP-complete problems.

Nowadays, literally thousands of problems are known to be NP-hard:
unless P = NP, they cannot be solved in polynomial time.

But, are all NP-hard problems (or instances) equally hard?

5/23

Motivation: NP-complete problems

Cook-Levin Theorem (1971): the SAT problem is NP-complete.

Karp (1972): list of 21 important NP-complete problems.

Nowadays, literally thousands of problems are known to be NP-hard:
unless P = NP, they cannot be solved in polynomial time.

But, are all NP-hard problems (or instances) equally hard?

5/23

Parameterized complexity in one slide

Idea given an NP-hard problem with input size n, fix one parameter
k of the input to see whether the problem gets more “tractable".

Example: the size of a Vertex Cover.

Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in time

f (k) · nO(1), for some function f .

6/23

Parameterized complexity in one slide

Idea given an NP-hard problem with input size n, fix one parameter
k of the input to see whether the problem gets more “tractable".

Example: the size of a Vertex Cover.

Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in time

f (k) · nO(1), for some function f .

6/23

Examples of parameterized problems

Decide whether a graph G has a vertex cover of size at most k.

This problem is FPT.

Decide whether a graph G has a clique of size at least k.

This problem is probably not FPT: it is W[1]-hard.

Decide whether a graph G has a clique of size at least k,
parameterized by the maximum degree ∆ of G .

This problem is FPT.

Decide whether a graph G has a clique of size at least k,
parameterized by the treewidth of G , denoted tw(G).

This problem is also FPT...

7/23

Examples of parameterized problems

Decide whether a graph G has a vertex cover of size at most k.

This problem is FPT.

Decide whether a graph G has a clique of size at least k.

This problem is probably not FPT: it is W[1]-hard.

Decide whether a graph G has a clique of size at least k,
parameterized by the maximum degree ∆ of G .

This problem is FPT.

Decide whether a graph G has a clique of size at least k,
parameterized by the treewidth of G , denoted tw(G).

This problem is also FPT...

7/23

Examples of parameterized problems

Decide whether a graph G has a vertex cover of size at most k.

This problem is FPT.

Decide whether a graph G has a clique of size at least k.

This problem is probably not FPT: it is W[1]-hard.

Decide whether a graph G has a clique of size at least k,
parameterized by the maximum degree ∆ of G .

This problem is FPT.

Decide whether a graph G has a clique of size at least k,
parameterized by the treewidth of G , denoted tw(G).

This problem is also FPT...

7/23

Examples of parameterized problems

Decide whether a graph G has a vertex cover of size at most k.

This problem is FPT.

Decide whether a graph G has a clique of size at least k.

This problem is probably not FPT: it is W[1]-hard.

Decide whether a graph G has a clique of size at least k,
parameterized by the maximum degree ∆ of G .

This problem is FPT.

Decide whether a graph G has a clique of size at least k,
parameterized by the treewidth of G , denoted tw(G).

This problem is also FPT...

7/23

Examples of parameterized problems

Decide whether a graph G has a vertex cover of size at most k.

This problem is FPT.

Decide whether a graph G has a clique of size at least k.

This problem is probably not FPT: it is W[1]-hard.

Decide whether a graph G has a clique of size at least k,
parameterized by the maximum degree ∆ of G .

This problem is FPT.

Decide whether a graph G has a clique of size at least k,
parameterized by the treewidth of G , denoted tw(G).

This problem is also FPT...

7/23

Examples of parameterized problems

Decide whether a graph G has a vertex cover of size at most k.

This problem is FPT.

Decide whether a graph G has a clique of size at least k.

This problem is probably not FPT: it is W[1]-hard.

Decide whether a graph G has a clique of size at least k,
parameterized by the maximum degree ∆ of G .

This problem is FPT.

Decide whether a graph G has a clique of size at least k,
parameterized by the treewidth of G , denoted tw(G).

This problem is also FPT...

7/23

Next section is...

1 Area of research: parameterized complexity

2 FPT algorithms parameterized by treewidth

3 A possible line of research

8/23

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

9/23

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

9/23

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

9/23

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

9/23

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

9/23

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

9/23

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

9/23

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

9/23

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

9/23

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

9/23

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G : smallest integer k
such that G is a partial k-tree.

Example of a 2-tree:

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

9/23

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G : smallest integer k
such that G is a partial k-tree.

Example of a 2-tree:

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

9/23

Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

3 Treewidth behaves very well algorithmically...

10/23

Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

3 Treewidth behaves very well algorithmically...

10/23

Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

3 Treewidth behaves very well algorithmically...

10/23

Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

3 Treewidth behaves very well algorithmically...

10/23

Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

11/23

Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

11/23

Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

11/23

Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

11/23

Not all problems are FPT parameterized by treewidth!

Are all “natural” graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:

List Coloring is W[1]-hard parameterized by treewidth.

Some problems involving weights or colors are even NP-hard on
graphs of constant treewidth (or trees!).

12/23

Not all problems are FPT parameterized by treewidth!

Are all “natural” graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:

List Coloring is W[1]-hard parameterized by treewidth.

Some problems involving weights or colors are even NP-hard on
graphs of constant treewidth (or trees!).

12/23

Not all problems are FPT parameterized by treewidth!

Are all “natural” graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:

List Coloring is W[1]-hard parameterized by treewidth.

Some problems involving weights or colors are even NP-hard on
graphs of constant treewidth (or trees!).

12/23

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal: find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

13/23

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal: find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

13/23

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · nO(1)

= 2345678tw

· nO(1)

Major goal: find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

13/23

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal: find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

13/23

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal: find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

13/23

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal: find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

13/23

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).

Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

14/23

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?

Is it possible to obtain an FPT algorithm in time 2O(
√

k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

14/23

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

14/23

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis

– (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

14/23

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

14/23

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

14/23

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

14/23

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH

⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

14/23

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1]

⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

14/23

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

14/23

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).

ETH ⇒ Planar k-Vertex Cover cannot in time 2o(
√

k) · nO(1).

14/23

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

14/23

Bounds for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the
“natural” DP algorithms lead to (optimal) single-exponential algorithms:

2O(tw) · nO(1).

But for the so-called connectivity problems, like Longest Path or
Steiner Tree, the “natural” DP algorithms provide only time

2O(tw·log tw) · nO(1).

15/23

Bounds for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the
“natural” DP algorithms lead to (optimal) single-exponential algorithms:

2O(tw) · nO(1).

But for the so-called connectivity problems, like Longest Path or
Steiner Tree, the “natural” DP algorithms provide only time

2O(tw·log tw) · nO(1).

15/23

Bounds for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the
“natural” DP algorithms lead to (optimal) single-exponential algorithms:

2O(tw) · nO(1).

But for the so-called connectivity problems, like Longest Path or
Steiner Tree, the “natural” DP algorithms provide only time

2O(tw·log tw) · nO(1).

15/23

The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]
Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

16/23

The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]
Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

16/23

The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]
Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

16/23

The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]
Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

16/23

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth? No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

There are other examples of such problems...

17/23

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

There are other examples of such problems...

17/23

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth? No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

There are other examples of such problems...

17/23

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth? No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

There are other examples of such problems...

17/23

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth? No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

There are other examples of such problems...

17/23

Graph minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges.

18/23

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that

G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
The problem is easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
The problem is “hardly” solvable in time 2Θ(tw) · nO(1).
F = {K5, K3,3}: Vertex Planarization.
The problem is solvable in time 2Θ(tw·log tw) · nO(1).

With Dimitrios M. Thilikos and Julien Baste we proved the following...
[arXiv:1704.07284. 2018]

19/23

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that

G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
The problem is easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
The problem is “hardly” solvable in time 2Θ(tw) · nO(1).
F = {K5, K3,3}: Vertex Planarization.
The problem is solvable in time 2Θ(tw·log tw) · nO(1).

With Dimitrios M. Thilikos and Julien Baste we proved the following...
[arXiv:1704.07284. 2018]

19/23

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that

G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.

The problem is easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
The problem is “hardly” solvable in time 2Θ(tw) · nO(1).
F = {K5, K3,3}: Vertex Planarization.
The problem is solvable in time 2Θ(tw·log tw) · nO(1).

With Dimitrios M. Thilikos and Julien Baste we proved the following...
[arXiv:1704.07284. 2018]

19/23

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that

G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
The problem is easily solvable in time 2Θ(tw) · nO(1).

F = {C3}: Feedback Vertex Set.
The problem is “hardly” solvable in time 2Θ(tw) · nO(1).
F = {K5, K3,3}: Vertex Planarization.
The problem is solvable in time 2Θ(tw·log tw) · nO(1).

With Dimitrios M. Thilikos and Julien Baste we proved the following...
[arXiv:1704.07284. 2018]

19/23

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that

G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
The problem is easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.

The problem is “hardly” solvable in time 2Θ(tw) · nO(1).
F = {K5, K3,3}: Vertex Planarization.
The problem is solvable in time 2Θ(tw·log tw) · nO(1).

With Dimitrios M. Thilikos and Julien Baste we proved the following...
[arXiv:1704.07284. 2018]

19/23

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that

G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
The problem is easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
The problem is “hardly” solvable in time 2Θ(tw) · nO(1).

F = {K5, K3,3}: Vertex Planarization.
The problem is solvable in time 2Θ(tw·log tw) · nO(1).

With Dimitrios M. Thilikos and Julien Baste we proved the following...
[arXiv:1704.07284. 2018]

19/23

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that

G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
The problem is easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
The problem is “hardly” solvable in time 2Θ(tw) · nO(1).
F = {K5, K3,3}: Vertex Planarization.

The problem is solvable in time 2Θ(tw·log tw) · nO(1).

With Dimitrios M. Thilikos and Julien Baste we proved the following...
[arXiv:1704.07284. 2018]

19/23

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that

G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
The problem is easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
The problem is “hardly” solvable in time 2Θ(tw) · nO(1).
F = {K5, K3,3}: Vertex Planarization.
The problem is solvable in time 2Θ(tw·log tw) · nO(1).

With Dimitrios M. Thilikos and Julien Baste we proved the following...
[arXiv:1704.07284. 2018]

19/23

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that

G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
The problem is easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
The problem is “hardly” solvable in time 2Θ(tw) · nO(1).
F = {K5, K3,3}: Vertex Planarization.
The problem is solvable in time 2Θ(tw·log tw) · nO(1).

With Dimitrios M. Thilikos and Julien Baste we proved the following...
[arXiv:1704.07284. 2018]

19/23

Complexity of {H}-Deletion for small planar graphs H

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

Classification of the complexity of {H}-M-Deletion for all connected
simple planar graphs H with |V (H)| ≤ 5 and |E (H)| ≥ 1: for the 9 graphs
on the left (resp. 20 graphs on the right), the problem is solvable in time
2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion, K1,4
should be on the left.

20/23

Next section is...

1 Area of research: parameterized complexity

2 FPT algorithms parameterized by treewidth

3 A possible line of research

21/23

Treewidth in ESIGMA

Study the parameterized complexity of graph mining problems
parameterized by treewidth.

Examples:

Edge Clique Cover.

Any of the problems mentioned so far in the talks.

Strategy for a fixed problem:
1 Is the problem FPT parameterized by treewidth?

If it is not, end of the story.

2 If it is, try to find the smallest function f (tw) so that the problem is
solvable in time f (tw) · nO(1), assuming the ETH or the SETH.

22/23

Treewidth in ESIGMA

Study the parameterized complexity of graph mining problems
parameterized by treewidth.

Examples:

Edge Clique Cover.

Any of the problems mentioned so far in the talks.

Strategy for a fixed problem:
1 Is the problem FPT parameterized by treewidth?

If it is not, end of the story.

2 If it is, try to find the smallest function f (tw) so that the problem is
solvable in time f (tw) · nO(1), assuming the ETH or the SETH.

22/23

Treewidth in ESIGMA

Study the parameterized complexity of graph mining problems
parameterized by treewidth.

Examples:

Edge Clique Cover.

Any of the problems mentioned so far in the talks.

Strategy for a fixed problem:
1 Is the problem FPT parameterized by treewidth?

If it is not, end of the story.

2 If it is, try to find the smallest function f (tw) so that the problem is
solvable in time f (tw) · nO(1), assuming the ETH or the SETH.

22/23

Treewidth in ESIGMA

Study the parameterized complexity of graph mining problems
parameterized by treewidth.

Examples:

Edge Clique Cover.

Any of the problems mentioned so far in the talks.

Strategy for a fixed problem:
1 Is the problem FPT parameterized by treewidth?

If it is not, end of the story.

2 If it is, try to find the smallest function f (tw) so that the problem is
solvable in time f (tw) · nO(1), assuming the ETH or the SETH.

22/23

Treewidth in ESIGMA

Study the parameterized complexity of graph mining problems
parameterized by treewidth.

Examples:

Edge Clique Cover.

Any of the problems mentioned so far in the talks.

Strategy for a fixed problem:
1 Is the problem FPT parameterized by treewidth?

If it is not, end of the story.

2 If it is, try to find the smallest function f (tw) so that the problem is
solvable in time f (tw) · nO(1), assuming the ETH or the SETH.

22/23

A “democratic” state (like Spain) should not have political prisoners, right?

23/23

	Area of research: parameterized complexity
	FPT algorithms parameterized by treewidth
	A possible line of research

