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Outline of this mini-course

© Introduction to graph minors
© Bidimensionality

© Irrelevant vertex technique



0 Introduction to graph minors



Graph minors

A graph H is a minor of a graph G, denoted by H <, G, if H can be
obtained by a subgraph of G by contracting edges.
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Characterizing a graph class by excluded minors

Let F be a (possibly infinite) family of graphs. We define exc(F) as the
class of all graphs that do not contain any of the graphs in F as a minor.

Easy: for every family 7, the class exc(F) is minor-closed
We say that F characterizes exc(F) by excluded minors.

Conversely, every minor-closed graph class C can be characterized by
excluded minors:

List all the graphs F¢ := {Gy, Gp, ...} that do not belong to C, and
then C = exc(F¢).

Note that, in general, this list 7o = { Gy, Go, ...} may be infinite.
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Examples for some minor-closed classes

e If C = independent sets, then C =exc(K>).

o If C = forests, then C = exc(K3).

@ If C = series-parallel graphs, then C = exc(Ka).

e If C = outerplanar graphs, then C = exc(Ks, K>3).

e If C = planar graphs, then C = exc(Ks, K33). [Kuratowski. 1930]
@ B

e If C = graphs embeddable in the projective plane, then |F¢| = 35.
o If C = graphs embeddable in a fixed non-orientable surface,
then F¢ is finite. [Archdeacon, Huneke. 1989]

e If C = graphs embeddable in a fixed orientable surface,
then F¢ is finite. [Robertson, Seymour._1990]
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A last example

If C = linklessly embeddable graphs, then F¢ =

i
i

Fec seems to get complicated... but always finite!

[Robertson, Seymour. 1990]



Wagner's conjecture

Conjecture (Wagner. 1970)

For every minor-closed graph class C, there exists a finite set of graphs F¢
such that C = exc(F¢).




Wagner's conjecture... now Robertson-Seymour’s theorem

Theorem (Robertson, Seymour. 1983-2004)

For every minor-closed graph class C, there exists a finite set of graphs F¢
such that C = exc(F¢).
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Reformulations

Theorem (Robertson, Seymour. 1983-2004)

For every minor-closed graph class C, there exists a finite set of graphs F¢
such that C = exc(F¢).

Note that for every minor-closed graph class C, the set of minor-minimal
graphs not in C is unique . it is denoted by obs(C) (obstruction set).

Equivalent: For every minor-closed graph class C, obs(C) is finite.

Yet equivalent: Every infinite set { G1, Gy, ...} of finite graphs contains two
graphs such that one is a minor of the other (there is no infinite antichain).
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Well-quasi orders

A partially ordered set (poset) is a set P with a partial binary relation <:
Q@ Reflexive: a < a.
@ Antisymmetric: if a < b and b < a, then a = b.
© Transitive: if a< band b <c, then a< c.
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A poset (P, <) is well-quasi-ordered (wqo) if every infinite sequence
(x1,x2,...) has two elements x; and x; such that i < j and x; < x;.

Equivalent : (P, <) contains neither an infinite descending chain nor
an infinite antichain (i.e., set of pairwise incomparable elements).

In the case of graph minors: there is no infinite descending chain
SO wqo < no infinite antichain.

R&S theorem: Finite graphs are wqo with respect to the minor relation.
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lllustrative example: rooted trees

Let 77 and T> be two finite rooted trees.
Def: T; < T, if there is a subdivision of T; that occurs as a rooted
subgraph of T, (the root of T; is not necessarily mapped to the root of T5).

Tﬁé{%@ ﬂ%\%/g\fz
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lllustrative example: rooted trees

Let 77 and T> be two finite rooted trees.
Def: T; < T, if there is a subdivision of T; that occurs as a rooted
subgraph of T, (the root of T; is not necessarily mapped to the root of T5).

Tﬁé{%@ Tyf\%/g\fz

Conjecture (Vazsonyi. 1937)

Finite rooted trees are wqo with respect to the relation <.

Proved independently by: [Kruskal. 1960]
[Tarkowski. 1960]

We will now see a simple proof by [Nash-Williams. 1963]
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By contradiction, suppose that there is a bad infinite sequence:
(T1, To,...) of rooted trees with no i < j such that 7; < T;.
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By contradiction, suppose that there is a bad infinite sequence:
(T1, To,...) of rooted trees with no i < j such that 7; < T;.

We choose the bad sequence in this particular way:
@ Choose T; as a smallest tree that can start a bad sequence.
@ For every k > 1, choose T as a smallest tree which occurs as the
k-th element of a bad sequence starting with (77,..., Tx_1).

For k > 1:
Let 7/ be the tree obtained from T; by deleting any branch from the root.
Let T/ be the deleted branch (rooted at a child of the root of T;).

T

.y
T

AN -
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Claim: the sequence (77, T3, ...) cannot contain a bad subsequence.
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Claim: the sequence (77, T3, ...) cannot contain a bad subsequence.

Proof: Suppose it does, and let (7, T/,...) be a bad subsequence.

!

Then (Tl, RN 7_,'1,1, T!

7

.) is bad
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Claim: the sequence (77, T3, ...) cannot contain a bad subsequence.

Proof: Suppose it does, and let (7, T/,...) be a bad subsequence.
Then (Ty,..., Ty 1, T/, T/,...)is bad... but T} is smaller than T;. O

i R j
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Claim: the sequence (77, T3, ...) cannot contain a bad subsequence.

Proof: Suppose it does, and let (7, T/,...) be a bad subsequence.
Then (Ty,..., Ty 1, T/, T/,...)is bad... but T} is smaller than T;. O
It follows that (7{, T3,...) contains an infinite
increasing subsequence TJ’1 < TJ’2 <...
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It follows that (7{, T3,...) contains an infinite
H H / !

increasing subsequence le < Tj2 <...
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J1’

There exist k < ¢ such that T;/ < T}/
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Claim: the sequence (77, T3, ...) cannot contain a bad subsequence.

Proof: Suppose it does, and let (T7/, T/,...) be a bad subsequence.

127

Then (Ty,..., Ty 1, T/, T],...) is bad... but T} is smaller than T;

ne S i i1
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It follows that (77, T3,...) contains an infinite
increasing subsequence T/ < T/ < ...

Claim: the sequence (T, T//,...) cannot be bad

There exist k < ¢ such that Tj’k’ < TJ’[’
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Claim: the sequence (77, T3, ...) cannot contain a bad subsequence.

Proof: Suppose it does, and let (T7/, T/,...) be a bad subsequence.

127

Then (Ty,..., Ty -1, T}, T},....) is bad... but T/ is smaller than T;. O

n? 7" I

It follows that (77, T3,...) contains an infinite
increasing subsequence T/ < T/ < ...

Claim: the sequence (T, T//,...) cannot be bad

There exist k < ¢ such that Tj’k’ < TJ’[’ = T < Tj,, contradiction to bad!
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DisjoINT PATHS
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P; connects s; to t;?
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A notion strongly linked to graph minors

DisjoINT PATHS

Input: a graph G and 2k vertices s1,...,Sk, t1, ..., tk.

Question: does G contain k vertex-disjoint paths Pi,..., P, such that
P; connects s; to t;?

Much stronger than k vertex-disjoint paths from si,.... s, to ty, ..., t.

A graph G is k-linked if every instance of DISJOINT PATHS in G with k

pairs is positive.
15



Topology appears naturally in linkages

Theorem (Thomassen and Seymour. 1980)

Let G be a 4-connected graph and s, s, t1,t> € V(G). Then (s1,s) and
(t1, t2) are linked unless G is planar and sy, s, t1, t» are on the boundary
of the same face, in this cyclic order.

5
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Topology appears naturally in linkages

Theorem (Thomassen and Seymour. 1980)

Let G be a 4-connected graph and s, s, t1,t> € V(G). Then (s1,s) and
(t1, t2) are linked unless G is planar and sy, s, t1, t» are on the boundary
of the same face, in this cyclic order.

5

A combinatorial condition (linkage) is translated to a purely topological
one (embedding).

16



Why linkages are useful for finding graph minors?

Let H be a graph with |E(H)| = k and G be a k-linked graph.
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Then we can easily find H as a minor in G!
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Why linkages are useful for finding graph minors?

Let H be a graph with |E(H)| = k and G be a k-linked graph.

11 e
®=5

I
G

Then we can easily find H as a minor in G!

Idea: if the goal is to decide whether H <., G, if G is k-linked, then “yes".
Otherwise, we may exploit a topological obstruction to k-linkedness...

17



Another crucial notion: treewidth

Let G; and G; be two graphs, and let S; C V/(G;) be a k-clique.
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18



Another crucial notion: treewidth

Let G; and G; be two graphs, and let S; C V/(G;) be a k-clique.

Let G be obtained by identifying S; with S, and deleting some (possibly
none, possibly all) edges between the vertices in S; = S,.

We say that G is a k-clique-sum of G; and G;.

We say that a graph G has treewidth at most k if it can be obtained by
repeatedly taking a k-clique-sum with a graph on at most k + 1 vertices.

18



Structure of minor-free graphs

Let H be a fixed graph. Recall that exc(H) is the class of all graphs that
do not contain H as a minor.
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What is the typical structure of a graph G € exc(H)?

Theorem (Wagner. 1937)

A graph G € exc(Ks) if and only if it can be obtained by 0-, 1-, 2- and
3-clique-sums from planar graphs and Vs.
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Structure of minor-free graphs

Let H be a fixed graph. Recall that exc(H) is the class of all graphs that
do not contain H as a minor.

What is the typical structure of a graph G € exc(H)?

Theorem (Wagner. 1937)

A graph G € exc(Ks) if and only if it can be obtained by 0-, 1-, 2- and
3-clique-sums from planar graphs and Vs.

Paradigm: we find “pieces” that exclude Ks for topological reasons
(planarity), add some exceptions (Vg), and then define rules (clique-sums)

that preserve being Ks-minor-free.
19



An intermediate case: excluding a planar graph

Let H be a fixed planar graph.

What is the structure of a graph G € exc(H)?
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An intermediate case: excluding a planar graph

Let H be a fixed planar graph.
What is the structure of a graph G € exc(H)?

Theorem (Robertson, Seymour. 1986)

For every planar graph H there is an integer t(H) > 0 such that every
graph in exc(H) has treewidth at most t(H).
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graph in exc(H) has treewidth at most t(H).

Thus, every graph in exc(H) can be built by “gluing” bounded-sized
graphs in a tree-like structure (t(H)-clique-sums).
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An intermediate case: excluding a planar graph

Let H be a fixed planar graph.
What is the structure of a graph G € exc(H)?

Theorem (Robertson, Seymour. 1986)

For every planar graph H there is an integer t(H) > 0 such that every
graph in exc(H) has treewidth at most t(H).

Thus, every graph in exc(H) can be built by “gluing” bounded-sized
graphs in a tree-like structure (t(H)-clique-sums).

Note: this is an approximate characterization (i.e., not "iff").

20



Vortices

C
Adding a vortex of depth h to a cycle C:

Select arcs on C so that each vertex is contained in at most h arcs.
For each arc A, create a vertex vy4.
Connect v4 to some vertices on the arc A.

°
°
°
@ connect any pair (va, vg) for which A and B have a common vertex.
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@ Select arcs on C so that each vertex is contained in at most h arcs.
@ For each arc A, create a vertex vy4.

@ Connect v4 to some vertices on the arc A.

@ connect any pair (va, vg) for which A and B have a common vertex.
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Structure theorem

Theorem (Robertson, Seymour. 1999)

For every graph H there is an integer h > 0 such that every graph in
exc(H) can be (efficiently) constructed in the following way:
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For every graph H there is an integer h > 0 such that every graph in
exc(H) can be (efficiently) constructed in the following way:

© Start with a graph G embedded in a connected closed surface > with
genus at most h so that each face is homeomorphic with an open disc.

@ Select at most h faces of G and add a vortex of depth at most h to
each of them.

© Create at most h new vertices (apices) and connect them to the other
vertices arbitrarily.




Structure theorem

Theorem (Robertson, Seymour. 1999)

For every graph H there is an integer h > 0 such that every graph in
exc(H) can be (efficiently) constructed in the following way:

© Start with a graph G embedded in a connected closed surface > with
genus at most h so that each face is homeomorphic with an open disc.

@ Select at most h faces of G and add a vortex of depth at most h to
each of them.

© Create at most h new vertices (apices) and connect them to the other
vertices arbitrarily.

@ Repeatedly construct the h-clique-sum of the current graph with
another graph constructed using steps 1-2-3 above.




A visualization of an H-minor-free graph

7 %
72
7/

[Figure by Felix Riedl]
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Sketch of sketch of sketch of proof of Wagner's conjecture

Let’s try to mimic the proof for rooted trees by Nash-Williams:
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Sketch of sketch of sketch of proof of Wagner's conjecture

By contradiction, suppose that there is a bad infinite sequence:
(Gi, Gy, .. .) of graphs with no i < j such that G; <, G;.

Again, choose (G, Gy, ...) so that G; is a minimal continuation.

For trees, we decomposed each T; into 7/ and T/... but now??

A 2

Every G; with j > 2 is Gi-minor-free ~- structure theorem of R&S!

o If Gy is planar, every G; has bounded treewidth: similar to trees.

@ Otherwise, by the structure theorem: similar to “extended” surfaces
(with apices and vortices), glued in a tree-like way.
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Some algorithmic consequences

DisjoINT PATHS

Input: an n-vertex graph G and vertices sy, ..., sk, t1,. .., tx.

Question: does G contain k vertex-disjoint paths Py, ..., P, such that
P; connects s; to t;?
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DisjoINT PATHS

Input: an n-vertex graph G and vertices sy, ..., sk, t1,. .., tx.

Question: does G contain k vertex-disjoint paths Py, ..., P, such that
P; connects s; to t;?

Theorem (Robertson, Seymour. 1995)

The DISJOINT PATHS problem can be solved in time f (k) - n®.

Improved to f(k) - n?. [Kawarabayash, Kobayashi, Reed. 2012]

For an n-vertex graph G and an h-vertex graph H, testing whether
H <., G can be done in time f(h) - n.
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More algorithmic consequences

For an n-vertex graph G and an h-vertex graph H, testing whether
H < G can be done in time f(h) - n°.

Recall:

Theorem (Robertson, Seymour. 1983-2004)

For every minor-closed graph class C, there exists a finite set of graphs F¢
such that C = exc(F¢).

Every minor-closed property can be tested in quadratic time.

Proof: check H <., G for every graph H in the finite set F¢. O

This says that there an algorithm... no idea how to it!!
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A few words on other containment relations

* Minor: H <,, G if H can be obtained from a subgraph of G by
contracting edges.
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Structure of sparse graphs
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© Bidimensionality
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Next subsection is...

© Bidimensionality
@ Preliminaries
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Parameterized complexity in 2 slides

A parameterized problem is a language L C >* x IN,
where % is a fixed, finite alphabet.

For an instance (x, k) € £* x N, k is called the parameter.
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Parameterized complexity in 2 slides

A parameterized problem is a language L C >* x IN,
where % is a fixed, finite alphabet.

For an instance (x, k) € £* x N, k is called the parameter.

@ k-VERTEX COVER: Does a graph G contain a set S C V(G), with
|S| < k, containing at least an endpoint of every edge?

@ k-CLIQUE: Does a graph G contain a set S C V(G), with |S| > k, of
pairwise adjacent vertices?

@ VERTEX k-COLORING: Can the vertices of a graph be colored with
< k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they hard?
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They behave quite differently...

o k-VERTEX COVER: Solvable in time O(2% - (m + n))

o k-CLIQUE: Solvable in time O(k? - n¥)

@ VERTEX k-COLORING: NP-hard for fixed k = 3.
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They behave quite differently...

o k-VERTEX COVER: Solvable in time O(2% - (m + n)) = f(k) - n®1).

‘The problem is FPT‘ (fixed-parameter tractable)

o k-CLIQUE: Solvable in time O(k?- n¥) = f(k) - n8(k).

‘The problem is XP‘ (slice-wise polynomial)

@ VERTEX k-COLORING: NP-hard for fixed k = 3.

‘The problem is para—NP—hard‘
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Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.
‘\

[Figure by Julien Baste]
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Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.
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o—0

[Figure by Julien Baste]
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[Figure by Julien Baste]
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Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique
Example of a 2-tree:

N

and then iteratively adding a vertex
connected to a k-clique.

[Figure by Julien Baste]
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Treewidth via k-trees
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Example of a 2-tree:

e

[Figure by Julien Baste]

and then iteratively adding a vertex
connected to a k-clique.
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33



Treewidth via k-trees

For k > 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.

AN

[Figure by Julien Baste]

b

33



Treewidth via k-trees

For k > 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.

AN

[Figure by Julien Baste]

b

33



Treewidth via k-trees

Example of a 2-tree:

AN

[Figure by Julien Baste]

b

For k > 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.
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[
o ‘ A partial k-tree is a subgraph of a k-tree.

® Treewidth of a graph G, denoted tw(G):
smallest integer k such that G is a partial k-tree.

b

[Figure by Julien Baste]
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smallest integer k such that G is a partial k-tree.
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[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.
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Treewidth via k-trees

For k > 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.

AN

[
o ‘ A partial k-tree is a subgraph of a k-tree.

® Treewidth of a graph G, denoted tw(G):
smallest integer k such that G is a partial k-tree.

b

[Figure by Julien Baste]
Invariant that measures the topological resemblance of a graph to a forest.
Construction suggests the notion of tree decomposition: small separators.
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Dynamic programming on tree decompositions

o Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.
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Dynamic programming on tree decompositions

o Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

@ Starting from the leaves of the tree decomposition, a set of
appropriately defined partial solutions is computed recursively until
the root, where a global solution is obtained.

@ The way that these partial solutions are defined depends on each
particular problem:

[Figure by ¥alentin=Garnere]
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Monadic second order logic of graphs

We represent a graph G = (V/, E) with a structure
G = (U, vertex, edge, /), where
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Monadic second order logic of graphs
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Monadic second order logic of graphs

We represent a graph G = (V/, E) with a structure
G = (U, vertex, edge, /), where

@ U = V UE is the universe.

@ “vertex" and “edge” are unary relations that allow to distinguish
vertices and edges.

o /|={(v,e)|ve V,eec E, v e e} is the incidence relation.

An MSO formula is built using the following:
) Logical connectors V, A, =, 0, =, 75.
@ Predicates adj(u, v) and inc(e, v).
@ Relations €, C on vertex/edge sets.
e Quantifiers 3, ¥ on vertex/edge variables or vertex/edge sets.

(MSO1/MSO,)
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Monadic second order logic of graphs: examples

Expressing that {u,v} € E(G): 3Je € E,inc(u, e) Ainc(v,e).
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Example 1| Expressing that {u, v} € E(G): Je € E,inc(u, e) Ainc(v, e).
Example 2| Expressing that a set S C V/(G) is a dominating set.

DomSet(S): Vve V(G)\S,JueS:{u,v} e E(G).

Example 3| Expressing that a graph G = (V/, E) is connected.

@ For every bipartition de V/, there is a transversal edge:
Expressing that two sets Vi, V5 define a bipartition of V:
Vv € V,(VG ViVvve V2)/\(V€ V1:>V¢V2)/\(VE V2:>V¢V1).
Connected: V bipartition Vi, Vo, 3vi € V4,3va € Vo, {v1,w} € E(G).
Other properties that can be expressed in MSO»:

@ a set being a vertex cover, independent set.

@ a graph being k-colorable (for fixed k), having a Hamiltonian cycle.
36



Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

37



Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO, formula.

37



Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO, formula.

Within the same running time, one can also optimize the size of a
vertex/edge set satisfying an MSO; formula.

37



Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO, formula.

Within the same running time, one can also optimize the size of a
vertex/edge set satisfying an MSO; formula.

Examples: VERTEX COVER, DOMINATING SET, HAMILTONIAN CYCLE,
CLIQUE, INDEPENDENT SET, k-COLORING for fixed k, ...

37



Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

The function f(tw) depends on the structure of the MSO, formula.

Within the same running time, one can also optimize the size of a
vertex/edge set satisfying an MSO; formula.

Examples: VERTEX COVER, DOMINATING SET, HAMILTONIAN CYCLE,
CLIQUE, INDEPENDENT SET, k-COLORING for fixed k, ...

In parameterized complexity: FPT parameterized by treewidth.

37



Small parenthesis: only good news?
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Small parenthesis: only good news?

Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

@ Are all "natural” graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:

o LIST COLORING is W[1]-hard parameterized by treewidth.

[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

e Some problems are even NP-hard on graphs of constant treewidth:
STEINER FOREST (tw = 3), BANDWIDTH (tw = 1).

@ Most natural problems (VERTEX COVER, DOMINATING SET, ...)
do not admit polynomial kernels parameterized by treewidth.
38



Next subsection is...

© Bidimensionality

@ Some ingredients and an illustrative example
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A few representative problems

VERTEX COVER
Input: A graph and a positive integer
Parameter:

Question: Does there exist a subset

of size at most k such that
is an independent set?
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A few representative problems

VERTEX COVER

Input: A graph and a positive integer
Parameter:
Question: Does there exist a subset of size at most k such that

is an independent set?

LonGg PATH

Input: A graph and a positive integer

Parameter:

Question: Does there exist a path /7 in G of length at least k?
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A few representative problems (II)

FEEDBACK VERTEX SET

Input: A graph and a positive integer
Parameter:
Question: Does there exist a subset of size at most k such that

for is a forest?
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A few representative problems (II)

FEEDBACK VERTEX SET

Input: A graph and a positive integer

Parameter:

Question: Does there exist a subset of size at most k such that
for is a forest?

DOMINATING SET

Input: A graph and a positive integers
Parameter:
Question: Does there exist a subset of size at most & such that

for all ?
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Minor-closed parameters

e A graph class G is minor (contraction)-closed if any minor
(contraction) of a graph in G is also in G.
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Minor-closed parameters

e A graph class G is minor (contraction)-closed if any minor
(contraction) of a graph in G is also in G.

@ A parameter P is any function mapping graphs to nonnegative
integers.

@ The parameterized problem associated with PP asks, for some fixed k,
whether for a given graph G, (for minimization) or
(for maximization problem).

@ We say that a parameter /7 is closed under taking of

minors/contractions (or, briefly, minor/contraction-closed) if for every
graph H, / implies that

42



Examples of minor/contraction closed parameters

@ Minor-closed parameters:

VERTEX COVER, FEEDBACK VERTEX SET, LONG PATH,
TREEWIDTH, ... (why?)
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Examples of minor/contraction closed parameters

@ Minor-closed parameters:

VERTEX COVER, FEEDBACK VERTEX SET, LONG PATH,
TREEWIDTH, ... (why?)

o Contraction-closed parameters:

DOMINATING SET, CONNECTED VERTEX COVER, r-DOMINATING
SET, ... (why?)
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Grid Exclusion Theorem

o Let Hy be the (¢ x /)-grid: %4
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Grid Exclusion Theorem

o Let Hy be the (¢ x /)-grid: %g We have tw (H ) = £.

@ As TREEWIDTH is minor-closed, if %g =<m G, then
tw(G) > tw(Hpe) = Z. ‘Does the reverse implication hold?‘

Theorem (Robertson and Seymour. 1986)

For every integer { > 0, there is an integer c({) such that every graph of

treewidth > c(¢) contains %g as a minor.

@ Smallest possible function c¢(¢)? Q(2logl) < c(l) < 2027
@ Some improvement: c(¢) = 20(¢logf), [Leaf and Seymour. 2012]
@ Recent breakthrough: c(¢) = poly(/). [Chekuri and Chuzhoy. 2013]

C(f) = O(ﬁgpolylogﬁ). [Chuzhoy and Tan. 2021]

Important message‘ grid-minors are the certificate of large treewidth.
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Grid Exclusion Theorems on sparse graphs

Theorem (Robertson, Seymour, Thomas. 1994)

Every planar graph of treewidth > 6 - ¢ contains @g as a minor.
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Grid Exclusion Theorems on sparse graphs

Theorem (Robertson, Seymour, Thomas. 1994)

Every planar graph of treewidth > 6 - ¢ contains @g as a minor.

Theorem (Demaine, Fomin, Hajiaghayi, Thilikos. 2005)

For every fixed g, there is a constant c, such that every graph of genus g

and of treewidth > ¢, - { contains %g as a minor.

Theorem (Demaine and Hajiaghayi. 2008)

For every fixed graph H, there is a constant cy such that every

H-minor-free graph of treewidth > cy - ¢ contains @g as a minor.

v

Best constant in the above theorem is by [Kawarabayashi and Kobayashi. 2012]
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Grid Exclusion Theorems on sparse graphs

Theorem (Robertson, Seymour, Thomas. 1994)

Every planar graph of treewidth > 6 - ¢ contains @g as a minor.

Theorem (Demaine, Fomin, Hajiaghayi, Thilikos. 2005)

For every fixed g, there is a constant c, such that every graph of genus g

and of treewidth > ¢, - { contains %g as a minor.

Theorem (Demaine and Hajiaghayi. 2008)

For every fixed graph H, there is a constant cy such that every

H-minor-free graph of treewidth > cy - ¢ contains @g as a minor.

v

Best constant in the above theorem is by [Kawarabayashi and Kobayashi. 2012]

In sparse graphs: linear dependency between treewidth and grid-minors
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How to use Grid Theorems algorithmically?
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Example: FPT algorithm for Planar Vertex Cover

A vertex cover of a graph G is a set of vertices C such that every
edge of G has at least one endpoint in C. Min size: vc(G).
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Example: FPT algorithm for Planar Vertex Cover

INPUT: Planar graph G on n vertices, and an integer k.

OUTPUT: Either a vertex cover of G of size < k, or a proof
that G has no such a vertex cover.

RUNNING TIME: 20(VK) . ,0(1).

Objective | subexponential FPT algorithm for PLANAR VERTEX COVER.
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Example: FPT algorithm for Planar Vertex Cover

Let G be a planar graph of
treewidth > 6 - /¢
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Example: FPT algorithm for Planar Vertex Cover

Let G be a planar graph of G contains the (¢ x ¢)-grid
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Example: FPT algorithm for Planar Vertex Cover

Let G be a planar graph of G contains the (¢ x ¢)-grid
treewidth > 6 - ¢ Hy ¢ as a minor

@ The size of any vertex cover of Hy is at least 2)2.
@ Recall that VERTEX COVER is a minor-closed parameter.

e Since Hyy =m G, it holds that vc(G) > ve(Hp ) > €2 /2.
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We are already very close to an algorithm...

Recall:
@ k is the parameter of the problem.
e We have that tw(G) = 6 - £ and ¢ is the size of a grid-minor of G.
e Therefore, vc(G) > £2/2.
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Recall:
@ k is the parameter of the problem.
e We have that tw(G) = 6 - £ and ¢ is the size of a grid-minor of G.
e Therefore, vc(G) > £2/2.

WIN/WIN approach:

o If k < ¢?/2, we can safely answer “NO”.
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Recall:
@ k is the parameter of the problem.
e We have that tw(G) = 6 - £ and ¢ is the size of a grid-minor of G.
e Therefore, vc(G) > £2/2.

WIN/WIN approach:

o If k < ¢?/2, we can safely answer “NO”.

o If k> ¢2/2, then tw(G) = O(¢) = O(Vk),
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e Therefore, vc(G) > £2/2.

WIN/WIN approach:

o If k < ¢?/2, we can safely answer “NO”.

o If k > (22, then tw(G) = O(¢) = O(v/k), and we can solve the
problem by standard DP in time 20(t(G)) . ,O(1)
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We are already very close to an algorithm...

Recall:
@ k is the parameter of the problem.
e We have that tw(G) = 6 - £ and ¢ is the size of a grid-minor of G.
e Therefore, vc(G) > £2/2.

WIN/WIN approach:

o If k < ¢?/2, we can safely answer “NO”.

o If k > (22, then tw(G) = O(¢) = O(v/k), and we can solve the
problem by standard DP in time 20(tw(G)) . ,O(1) — 20(VK) . no@1),

This gives a subexponential FPT algorithm!
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Was VERTEX COVER really just an example...?

‘What is so special in VERTEX COVER?‘

Where did we use planarity?
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% Nothing special! It is just a minor bidimensional parameter:

minor-closed + vc(@k)zﬂ(ﬁ).
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Was VERTEX COVER really just an example...?

‘What is so special in VERTEX COVER?‘

% Nothing special! It is just a minor bidimensional parameter:

minor-closed + vc(@k)zﬂ(ﬁ).

Where did we use planarity?‘

% Only the linear Grid Exclusion Theorem!

Arguments go through up to H-minor-free graphs.
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Next subsection is...

© Bidimensionality

@ Meta-algorithms
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Minor Bidimensionality:
[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition

A parameter p is minor bidimensional if

@ p is closed under taking of minors (minor-closed), and

Qp <@k> = Q(k?).
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VERTEX COVER OF A GRID

Hyp for (=10
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FEEDBACK VERTEX SET OF A GRID
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How to obtain subexponential algorithms for BP?

@ First we must restrict ourselves to special graph classes, like planar or
H-minor-free graphs.
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How to obtain subexponential algorithms for BP?

@ First we must restrict ourselves to special graph classes, like planar or
H-minor-free graphs.

o Show that if the graph has large treewidth (> cv/k) then it has a
(Vk x v/k)-grid as a minor, and hence the answer to the problem is
YES (or NO) immediately.

59



How to obtain subexponential algorithms for BP?

@ First we must restrict ourselves to special graph classes, like planar or
H-minor-free graphs.

o Show that if the graph has large treewidth (> cv/k) then it has a
(Vk x v/k)-grid as a minor, and hence the answer to the problem is
YES (or NO) immediately.

o Otherwise, the treewidth is bounded by cvV'k, and hence we can use a
dynamic programming (DP) algorithm on graphs of bounded treewidth.
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How to obtain subexponential algorithms for BP?

@ First we must restrict ourselves to special graph classes, like planar or
H-minor-free graphs.

o Show that if the graph has large treewidth (> cv/k) then it has a
(Vk x v/k)-grid as a minor, and hence the answer to the problem is
YES (or NO) immediately.

o Otherwise, the treewidth is bounded by cvV'k, and hence we can use a
dynamic programming (DP) algorithm on graphs of bounded treewidth.

o If we have a DP algorithm for bounded treewidth running in time ct
or tt, then it implies 20(VK) or 20(Vklogk) 3igorithm.
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Piecing everything together

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 20(tw(G)) . ,O(1),
Then deciding “ p(G) = k" can be done in time 20(Vk) . no(1),
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Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 20(tw(G)) . ,O(1),

Then deciding “ p(G) = k" can be done in time 20(Vk) . no(1),

Compute (or approximate) tw(G).
If tw(G) = Q(Vk), then safely answer NO (or YES).

Otherwise tw(G) = O(v/k), and we solve the problem by DP.

60



Piecing everything together

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 20(tw(G)) . ,O(1),

Then deciding “ p(G) = k" can be done in time 20(Vk) . no(1),

Compute (or approximate) tw(G).
We can use a fast FPT algorithm or a constant-factor approx.
If tw(G) = Q(Vk), then safely answer NO (or YES).

Otherwise tw(G) = O(v/k), and we solve the problem by DP.

60



Piecing everything together

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 20(tw(G)) . ,O(1),

Then deciding “ p(G) = k" can be done in time 20(Vk) . no(1),

Compute (or approximate) tw(G).
We can use a fast FPT algorithm or a constant-factor approx.

If tw(G) = Q(Vk), then safely answer NO (or YES).
This follows because of the linear Grid Exclusion Theorems.

Otherwise tw(G) = O(v/k), and we solve the problem by DP.

60



Piecing everything together

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 20(tw(G)) . ,O(1),

Then deciding “ p(G) = k" can be done in time 20(Vk) . no(1),

Compute (or approximate) tw(G).
We can use a fast FPT algorithm or a constant-factor approx.

If tw(G) = Q(Vk), then safely answer NO (or YES).
This follows because of the linear Grid Exclusion Theorems.

Otherwise tw(G) = O(v/k), and we solve the problem by DP.
Doing DP in time 20(tw(G)) . ,O0(1) s 3 whole area of research:

60



Piecing everything together

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 20(tw(G)) . ,O(1),

Then deciding “ p(G) = k" can be done in time 20(Vk) . no(1),

Compute (or approximate) tw(G).

We can use a fast FPT algorithm or a constant-factor approx.
If tw(G) = Q(Vk), then safely answer NO (or YES).

This follows because of the linear Grid Exclusion Theorems.

Otherwise tw(G) = O(v/k), and we solve the problem by DP.
Doing DP in time 20(tw(G)) . ,O0(1) s 3 whole area of research:

o Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]

60



Piecing everything together

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 20(tw(G)) . ,O(1),

Then deciding “ p(G) = k" can be done in time 20(Vk) . no(1),

Compute (or approximate) tw(G).
We can use a fast FPT algorithm or a constant-factor approx.

If tw(G) = Q(Vk), then safely answer NO (or YES).

This follows because of the linear Grid Exclusion Theorems.

Otherwise tw(G) = O(v/k), and we solve the problem by DP.
Doing DP in time 20(tw(G)) . ,O0(1) s 3 whole area of research:

o Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]
e Randomized algorithms using Cut&Count. [Cygan et al. 2011]
o Deterministic algorithms based on matrix rank. [Boadlaender et al. 2012]
o Deterministic algorithms based on matroids. [Fomin et al. 2013]
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Further applications of Bidimensionality

© Bidimensionality + DP = ‘ Subexponential FPT algorithms‘

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]
[Fomin, Golovach, Thilikos. 2009]
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© Bidimensionality + DP = ‘ Subexponential FPT algorithms‘

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]
[Fomin, Golovach, Thilikos. 2009]

@ Bidimensionality + separation properties = | (E)PTAS

[Demaine and Hajiaghayi. 2005]
[Fomin, Lokshtanov, Raman, Saurabh. 2011]
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[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]
[Fomin, Golovach, Thilikos. 2009]

@ Bidimensionality + separation properties = | (E)PTAS

[Demaine and Hajiaghayi. 2005]
[Fomin, Lokshtanov, Raman, Saurabh. 2011]

© Bidimensionality 4 separation properties =

[Fomin, Lokshtanov, Saurabh, Thilikos. 2009-2010]
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Further applications of Bidimensionality

© Bidimensionality + DP = ‘ Subexponential FPT algorithms‘

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]
[Fomin, Golovach, Thilikos. 2009]

@ Bidimensionality + separation properties = | (E)PTAS

[Demaine and Hajiaghayi. 2005]
[Fomin, Lokshtanov, Raman, Saurabh. 2011]

© Bidimensionality 4 separation properties =

[Fomin, Lokshtanov, Saurabh, Thilikos. 2009-2010]

@ Bidimensionality 4+ new Grid Theorems = ‘ Geometric graphs‘

[Fomin, Lokshtanov, Saurabh. 2012]
[Grigoriev, Koutsonas, Thilikos. 2013]
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e Irrelevant vertex technique
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Basic principle of the irrelevant vertex technique

This technique was invented in [Robertson and Seymour. 1995]
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Basic principle of the irrelevant vertex technique

This technique was invented in [Robertson and Seymour. 1995]

DisjoINT PATHS

Input: a graph G and k pairs of vertices T = {s1,..., Sk, t1,..., tk}.
Question: does G contain k vertex-disjoint paths Pi,..., P, such that
P; connects s; to t;?
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Basic principle of the irrelevant vertex technique

This technique was invented in [Robertson and Seymour. 1995]

DisJOINT PATHS

Input: a graph G and k pairs of vertices T = {s1,..., Sk, t1,..., tk}.

Question: does G contain k vertex-disjoint paths Pi,..., P, such that
P; connects s; to t;?

Strategy:

Q If tw(G) > f(k), find an irrelevant vertex:

A vertex v € V(G) such that (G, T, k) and (G \ v, T, k) are
equivalent instances.
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Basic principle of the irrelevant vertex technique

This technique was invented in [Robertson and Seymour. 1995]

DisJOINT PATHS

Input: a graph G and k pairs of vertices T = {s1,..., Sk, t1,..., tk}.

Question: does G contain k vertex-disjoint paths Pi,..., P, such that
P; connects s; to t;?

Strategy:

Q If tw(G) > f(k), find an irrelevant vertex:

A vertex v € V(G) such that (G, T, k) and (G \ v, T, k) are
equivalent instances.

@ Otherwise, if tw(G) < f(k), solve the problem using dynamic
programming (by Courcelle).
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How to find an irrelevant vertex when the treewidth is large?
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How to find an irrelevant vertex when the treewidth is large?

By using the Grid Exclusion Theorem!
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How to find an irrelevant vertex when the treewidth is large?

By using the m Exclusion Theorem!
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How to find an irrelevant vertex when the treewidth is large?

Theorem (Robertson and Seymour. 1986)

For every integer { > 0, there is an integer c(!) such that every graph of
treewidth > c(?) contains an (-wall as a minor.

[Figure by, Dimitrios=M. Thilikes]
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How to find an irrelevant vertex when the treewidth is large?
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For every integer { > 0, there is an integer c({) such that every graph of

treewidth > ¢(?) contains an (-wall as a minor.
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declare one of the central vertices of the wall irrelevant.

Goal:
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declare one of the central vertices of the wall irrelevant.

Goal:
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This is only possible if the wall is insulated from the exterior!
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Flat walls

Goal: enrich the notion of wall so that we can insulate it from the exterior.
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Flat walls

We need to allow some extra edges in the interior of the wall.
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Flat walls

We impose a topological property that defines the “flatness” of the wall.
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Flat walls

There are no crossing paths s; — t; and s, — tp from/to the perimeter.
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Flat walls

A real flat wall can be quite wild... [Figure by Dimitrios M. Thilikos]
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Flat walls: a bit more formal
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Flat walls: a bit more formal
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Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]
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Flat walls: a bit more formal
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The Weak Structure Graph Minors Theorem

Theorem (Robertson and Seymour. 1995)

There exist recursive functions f; : N2 — N and > : N — N, such that for
every graph G and every q,r € N, one of the following holds:
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There exist recursive functions f; : N2 — N and > : N — N, such that for
every graph G and every q,r € N, one of the following holds:

© Ky is a minor of G.

@ The treewidth of G is at most fi(q,r).
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every graph G and every q,r € N, one of the following holds:

© Ky is a minor of G.
@ The treewidth of G is at most fi(q,r).

© There exists A C V(G) (apices) with |A| < f2(q) such that G\ A
contains as a subgraph a flat wall W of height r.
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The Weak Structure Graph Minors Theorem

Theorem (Robertson and Seymour. 1995)

There exist recursive functions f; : N2 — N and > : N — N, such that for
every graph G and every q,r € N, one of the following holds:

© Ky is a minor of G.
@ The treewidth of G is at most fi(q,r).

© There exists A C V(G) (apices) with |A| < f2(q) such that G\ A
contains as a subgraph a flat wall W of height r.

There are many different variants and optimizations of this theorem...

[Chuzhoy. 2015]
[Kawarabayashi, Thomas, Wollan. 2018]

[S., Stamoulis, Thilikos. 2021]
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The Weak Structure Graph Minors Theorem

Theorem (Robertson and Seymour. 1995)

There exist recursive functions f; : N2 — N and > : N — N, such that for
every graph G and every q,r € N, one of the following holds:

© Ky is a minor of G.
@ The treewidth of G is at most fi(q,r).

© There exists A C V(G) (apices) with |A| < f2(q) such that G\ A
contains as a subgraph a flat wall W of height r.

There are many different variants and optimizations of this theorem...

[Chuzhoy. 2015]
[Kawarabayashi, Thomas, Wollan. 2018]
[S., Stamoulis, Thilikos. 2021]

Important: possible to find one of the outputs in time f(q,r) - |V(G)|.
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Back to the DiSJOINT PATHS problem

DiIsJoINT PATHS

Input: a graph G and k pairs of vertices T = {sq,
Question: does G contain k vertex-disjoint paths Py,
P; connects s; to t;?

...,Sk,tl,...,tk}.
..., Py such that
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Back to the DiSJOINT PATHS problem

DisjoINT PATHS
Input: a graph G and k pairs of vertices T = {s1,..., Sk, t1,..., tx}.

Question: does G contain k vertex-disjoint paths Pi,..., P, such that
P; connects s; to t;?

By the Weak Structure Theorem:

o If tw(G) < f(k): solve using dynamic programming.
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o If G contains a K,(,)-minor: “easy” to find an irrelevant vertex.
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By the Weak Structure Theorem:
o If tw(G) < f(k): solve using dynamic programming.

o If G contains a K,(,)-minor: “easy” to find an irrelevant vertex.

e If G contains a “small” apex set A and a flat wall W in G\ A of size
at least h(k): declare the central vertex of the flat wall irrelevant.
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Back to the DiSJOINT PATHS problem

DisjoINT PATHS

Input: a graph G and k pairs of vertices T = {s1,..., Sk, t1,..., tx}.

Question: does G contain k vertex-disjoint paths Pi,..., P, such that
P; connects s; to t;?

By the Weak Structure Theorem:
o If tw(G) < f(k): solve using dynamic programming.

o If G contains a K,(,)-minor: “easy” to find an irrelevant vertex.

e If G contains a “small” apex set A and a flat wall W in G\ A of size
at least h(k): declare the central vertex of the flat wall irrelevant.

The irrelevant vertex technique has been applied to many problems...
usually with a lot of technical pain.
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Rerouting inside a big flat wall...
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Crucial notion: homogeneity

In order to declare a vertex irrelevant for some problem, usually we need to
consider a homogenous flat wall, which we proceed to define.

\ . ~
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Crucial notion: homogeneity

We consider a flap-coloring encoding the relevant information of our
favorite problem inside each flap (similar to tables of DP).
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Crucial notion: homogeneity

For every brick of the wall, we define its palette as the colors appearing in
the flaps it contains.
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Crucial notion: homogeneity

A flat wall is homogenous if every (internal) brick has the same palette.
Fact: every brick of a homogenous flat wall has the same “behavior”.
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Crucial notion: homogeneity

Price of homogeneity to obtain a homogenous flat r-wall (zooming):
If we have c colors, we need to start with a flat r¢-wall.
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Gracies!
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