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Graph minors

A graph H is a minor of a graph G , denoted by H 6m G , if H can be
obtained by a subgraph of G by contracting edges.
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Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

G ∈ C ⇒ H ∈ C for every H 6m G .

Examples of minor-closed graph classes:

Independent sets.
Forests.
Subgraphs of series-parallel graphs (why?).
Planar graphs (why?).
Graphs embeddable in a fixed surface.
Linklessly embeddable graphs.
Knotlessly embeddable graphs.
...
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Characterizing a graph class by excluded minors

Let F be a (possibly infinite) family of graphs. We define exc(F) as the
class of all graphs that do not contain any of the graphs in F as a minor.

Easy: for every family F , the class exc(F) is minor-closed (why?).

We say that F characterizes exc(F) by excluded minors.

Conversely, every minor-closed graph class C can be characterized by
excluded minors:

List all the graphs FC := {G1,G2, . . .} that do not belong to C, and
then C = exc(FC).

Note that, in general, this list FC = {G1,G2, . . .} may be infinite.
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Examples for some minor-closed classes

If C = independent sets, then C =

exc(K2).
If C = forests, then C = exc(K3).
If C = series-parallel graphs, then C = exc(K4).
If C = outerplanar graphs, then C = exc(K4,K2,3).
If C = planar graphs, then C = exc(K5,K3,3). [Kuratowski. 1930]
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If C = graphs embeddable in the projective plane, then |FC | = 35.
If C = graphs embeddable in a fixed non-orientable surface,

then FC is finite. [Archdeacon, Huneke. 1989]

If C = graphs embeddable in a fixed orientable surface,
then FC is finite. [Robertson, Seymour. 1990]
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A last example

If C = linklessly embeddable graphs, then FC =

[Robertson, Seymour. 1990]

FC seems to get complicated... but always finite!
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Wagner’s conjecture

Conjecture (Wagner. 1970)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).
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Wagner’s conjecture... now Robertson-Seymour’s theorem

Theorem (Robertson, Seymour. 1983-2004)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).
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Reformulations

Theorem (Robertson, Seymour. 1983-2004)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).

Note that for every minor-closed graph class C, the set of minor-minimal
graphs not in C is unique (why?): it is denoted by obs(C) (obstruction set).

Equivalent: For every minor-closed graph class C, obs(C) is finite.

Yet equivalent: Every infinite set {G1,G2, . . .} of finite graphs contains two
graphs such that one is a minor of the other (there is no infinite antichain).
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Well-quasi orders

A partially ordered set (poset) is a set P with a partial binary relation ≤:
1 Reflexive: a ≤ a.
2 Antisymmetric: if a ≤ b and b ≤ a, then a = b.
3 Transitive: if a ≤ b and b ≤ c, then a ≤ c.

A poset (P,≤) is well-quasi-ordered (wqo) if every infinite sequence
(x1, x2, . . .) has two elements xi and xj such that i < j and xi ≤ xj .

Equivalent (why?): (P,≤) contains neither an infinite descending chain nor
an infinite antichain (i.e., set of pairwise incomparable elements).

In the case of graph minors: there is no infinite descending chain (why?),
so wqo ⇔ no infinite antichain.

R&S theorem: Finite graphs are wqo with respect to the minor relation.
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Illustrative example: rooted trees

Let T1 and T2 be two finite rooted trees.
Def: T1 ≤ T2 if there is a subdivision of T1 that occurs as a rooted
subgraph of T2 (the root of T1 is not necessarily mapped to the root of T2).
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Conjecture (Vázsonyi. 1937)
Finite rooted trees are wqo with respect to the relation ≤.

Proved independently by: [Kruskal. 1960]
[Tarkowski. 1960]

We will now see a simple proof by [Nash-Williams. 1963]
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By contradiction, suppose that there is a bad infinite sequence:
(T1,T2, . . .) of rooted trees with no i < j such that Ti ≤ Tj .

We choose the bad sequence in this particular way:
Choose T1 as a smallest tree that can start a bad sequence.
For every k > 1, choose Tk as a smallest tree which occurs as the
k-th element of a bad sequence starting with (T1, . . . ,Tk−1).

For k ≥ 1:
Let T ′i be the tree obtained from Ti by deleting any branch from the root.
Let T ′′i be the deleted branch (rooted at a child of the root of Ti).
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Claim: the sequence (T ′1,T ′2, . . .) cannot contain a bad subsequence.

Proof: Suppose it does, and let (T ′i1 ,T
′
i2 , . . .) be a bad subsequence.

Then (T1, . . . ,Ti1−1,T ′i1 ,T
′
i2 , . . .) is bad... but T ′i1 is smaller than Ti1 . �

It follows (why? hard! Uses Ramsey) that (T ′1,T ′2, . . .) contains an infinite
increasing subsequence T ′j1 ≤ T ′j2 ≤ . . .

Claim: the sequence (T ′′j1 ,T ′′j2 , . . .) cannot be bad (why?).
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A notion strongly linked to graph minors

Disjoint Paths
Input: a graph G and 2k vertices s1, . . . , sk , t1, . . . , tk .
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

Tin Te My

imma stain

to S3

R

s t

S
Much stronger than k vertex-disjoint paths from s1, . . . , sk to t1, . . . , tk .

A graph G is k-linked if every instance of Disjoint Paths in G with k
pairs is positive.
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Topology appears naturally in linkages

Theorem (Thomassen and Seymour. 1980)
Let G be a 4-connected graph and s1, s2, t1, t2 ∈ V (G). Then (s1, s2) and
(t1, t2) are linked unless G is planar and s1, s2, t1, t2 are on the boundary
of the same face, in this cyclic order.

A combinatorial condition (linkage) is translated to a purely topological
one (embedding).
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Why linkages are useful for finding graph minors?

Let H be a graph with |E (H)| = k and G be a k-linked graph.

Tel
K 5

Then we can easily find H as a minor in G!

Idea: if the goal is to decide whether H ≤m G , if G is k-linked, then “yes”.
Otherwise, we may exploit a topological obstruction to k-linkedness...
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Another crucial notion: treewidth

Let G1 and G2 be two graphs, and let Si ⊆ V (Gi ) be a k-clique.

Cat IIII

Q
Let G be obtained by identifying S1 with S2 and deleting some (possibly
none, possibly all) edges between the vertices in S1 = S2.

We say that G is a k-clique-sum of G1 and G2.

We say that a graph G has treewidth at most k if it can be obtained by
repeatedly taking a k-clique-sum with a graph on at most k + 1 vertices.
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Structure of minor-free graphs
Let H be a fixed graph. Recall that exc(H) is the class of all graphs that
do not contain H as a minor.

What is the typical structure of a graph G ∈ exc(H)?

Theorem (Wagner. 1937)
A graph G ∈ exc(K5) if and only if it can be obtained by 0-, 1-, 2- and
3-clique-sums from planar graphs and V8.

Cat its
G Q

o V8

Paradigm: we find “pieces” that exclude K5 for topological reasons
(planarity), add some exceptions (V8), and then define rules (clique-sums)
that preserve being K5-minor-free.
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An intermediate case: excluding a planar graph

Let H be a fixed planar graph.

What is the structure of a graph G ∈ exc(H)?

Theorem (Robertson, Seymour. 1986)
For every planar graph H there is an integer t(H) > 0 such that every
graph in exc(H) has treewidth at most t(H).

Thus, every graph in exc(H) can be built by “gluing” bounded-sized
graphs in a tree-like structure (t(H)-clique-sums).

Note: this is an approximate characterization (i.e., not “iff”).
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Vortices

3 i It
Adding a vortex of depth h to a cycle C :

Select arcs on C so that each vertex is contained in at most h arcs.
For each arc A, create a vertex vA.
Connect vA to some vertices on the arc A.
connect any pair (vA, vB) for which A and B have a common vertex.
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Structure theorem

Theorem (Robertson, Seymour. 1999)
For every graph H there is an integer h > 0 such that every graph in
exc(H) can be (efficiently) constructed in the following way:

1 Start with a graph G embedded in a connected closed surface Σ with
genus at most h so that each face is homeomorphic with an open disc.

2 Select at most h faces of G and add a vortex of depth at most h to
each of them.

3 Create at most h new vertices (apices) and connect them to the other
vertices arbitrarily.

4 Repeatedly construct the h-clique-sum of the current graph with
another graph constructed using steps 1-2-3 above.
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A visualization of an H-minor-free graph

[Figure by Felix Riedl]
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Sketch of sketch of sketch of proof of Wagner’s conjecture
Let’s try to mimic the proof for rooted trees by Nash-Williams:

By contradiction, suppose that there is a bad infinite sequence:
(G1,G2, . . .) of graphs with no i < j such that Gi ≤m Gj .
Again, choose (G1,G2, . . .) so that Gi is a minimal continuation.
For trees, we decomposed each Ti into T ′i and T ′′i ... but now??
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Every Gi with i ≥ 2 is G1-minor-free  structure theorem of R&S!

If G1 is planar, every Gi has bounded treewidth: similar to trees.
Otherwise, by the structure theorem: similar to “extended” surfaces
(with apices and vortices), glued in a tree-like way.
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Some algorithmic consequences

Disjoint Paths
Input: an n-vertex graph G and vertices s1, . . . , sk , t1, . . . , tk .
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

Theorem (Robertson, Seymour. 1995)
The Disjoint Paths problem can be solved in time f (k) · n3.

Improved to f (k) · n2. [Kawarabayash, Kobayashi, Reed. 2012]

Corollary
For an n-vertex graph G and an h-vertex graph H, testing whether
H ≤m G can be done in time f (h) · n2.
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More algorithmic consequences

Corollary
For an n-vertex graph G and an h-vertex graph H, testing whether
H ≤m G can be done in time f (h) · n2.

Recall:

Theorem (Robertson, Seymour. 1983-2004)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).

Corollary
Every minor-closed property can be tested in quadratic time.

Proof: check H ≤m G for every graph H in the finite set FC . �

This says that there exists an algorithm... no idea how to construct it!!
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A few words on other containment relations

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.
1. Graphs are WQO w.r.t. the contraction minor relation? NO! (why?)
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| ≤ 4. [Brouwer and Veldman. 1987]
3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree ≤ 2.
1. Graphs are WQO w.r.t. the topological minor relation? NO! (why?)
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]
3. Nice structure? YES! [Grohe and Marx. 2012]
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Structure of sparse graphs

[Figure by Felix Riedl]
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Next section is...

1 Introduction to graph minors

2 Bidimensionality
Preliminaries
Some ingredients and an illustrative example
Meta-algorithms

3 Irrelevant vertex technique
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Parameterized complexity in 2 slides

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Clique: Does a graph G contain a set S ⊆ V (G), with |S| ≥ k, of
pairwise adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?
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They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n))

= f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk)

= f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard skip
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Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.
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Dynamic programming on tree decompositions

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

Starting from the leaves of the tree decomposition, a set of
appropriately defined partial solutions is computed recursively until
the root, where a global solution is obtained.

The way that these partial solutions are defined depends on each
particular problem:

G′

GB

B

A

[Figure by Valentin Garnero]
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Monadic second order logic of graphs

We represent a graph G = (V ,E ) with a structure
G = (U, vertex, edge, I), where

U = V ∪ E is the universe.
“vertex” and “edge” are unary relations that allow to distinguish
vertices and edges.
I = {(v , e) | v ∈ V , e ∈ E , v ∈ e} is the incidence relation.

An MSO formula is built using the following:
Logical connectors ∨, ∧, ⇒, ¬, =, 6=.
Predicates adj(u, v) and inc(e, v).
Relations ∈, ⊆ on vertex/edge sets.
Quantifiers ∃, ∀ on vertex/edge variables or vertex/edge sets.

(MSO1/MSO2)
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Monadic second order logic of graphs: examples

Example 1 Expressing that {u, v} ∈ E (G): ∃e ∈ E , inc(u, e) ∧ inc(v , e).

Example 2 Expressing that a set S ⊆ V (G) is a dominating set.

DomSet(S) : ∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G).

Example 3 Expressing that a graph G = (V ,E ) is connected.

For every bipartition de V , there is a transversal edge:

Expressing that two sets V1,V2 define a bipartition of V :
∀v ∈ V , (v ∈ V1 ∨ v ∈ V2) ∧ (v ∈ V1 ⇒ v 6∈ V2) ∧ (v ∈ V2 ⇒ v 6∈ V1).
Connected: ∀ bipartition V1,V2, ∃v1 ∈ V1, ∃v2 ∈ V2, {v1, v2} ∈ E (G).

Other properties that can be expressed in MSO2:
a set being a vertex cover, independent set. (why?)
a graph being k-colorable (for fixed k), having a Hamiltonian cycle.
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Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

The function f (tw) depends on the structure of the MSO2 formula.

Within the same running time, one can also optimize the size of a
vertex/edge set satisfying an MSO2 formula.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

In parameterized complexity: FPT parameterized by treewidth.
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Small parenthesis: only good news?

Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

1 Are all “natural” graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:
List Coloring is W[1]-hard parameterized by treewidth.

[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

Some problems are even NP-hard on graphs of constant treewidth:
Steiner Forest (tw = 3), Bandwidth (tw = 1).

2 Most natural problems (Vertex Cover, Dominating Set, ...)
do not admit polynomial kernels parameterized by treewidth.
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Next subsection is...

1 Introduction to graph minors

2 Bidimensionality
Preliminaries
Some ingredients and an illustrative example
Meta-algorithms

3 Irrelevant vertex technique
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A few representative problems

Vertex Cover
Input: A graph G = (V ,E ) and a positive integer k.
Parameter: k.
Question: Does there exist a subset C ⊆ V of size at most k such that
G [V \ C ] is an independent set?

Long Path
Input: A graph G = (V ,E ) and a positive integer k.
Parameter: k.
Question: Does there exist a path P in G of length at least k?
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A few representative problems (II)

Feedback Vertex Set
Input: A graph G = (V ,E ) and a positive integer k.
Parameter: k.
Question: Does there exist a subset F ⊆ V of size at most k such that
for G [V \ F ] is a forest?

Dominating Set
Input: A graph G = (V ,E ) and a positive integers k.
Parameter: k.
Question: Does there exist a subset D ⊆ V of size at most k such that
for all v ∈ V , N[v ] ∩ D 6= ∅?
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Minor-closed parameters

A graph class G is minor (contraction)-closed if any minor
(contraction) of a graph in G is also in G.

A parameter P is any function mapping graphs to nonnegative
integers.

The parameterized problem associated with P asks, for some fixed k,
whether for a given graph G , P(G) ≤ k (for minimization) or
P(G) ≥ k (for maximization problem).

We say that a parameter P is closed under taking of
minors/contractions (or, briefly, minor/contraction-closed) if for every
graph H, H �m G / H �cm G implies that P(H) ≤ P(G).
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Examples of minor/contraction closed parameters

Minor-closed parameters:

Vertex Cover, Feedback Vertex Set, Long Path,
Treewidth, . . . (why?)

Contraction-closed parameters:

Dominating Set, Connected Vertex Cover, r-Dominating
Set, . . . (why?)
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Grid Exclusion Theorem

Let H`,` be the (`× `)-grid: `

We have tw (H`,`) = `.

As Treewidth is minor-closed, if ` �m G , then
tw(G) ≥ tw(H`,`) = `. Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of

treewidth ≥ c(`) contains ` as a minor.

Smallest possible function c(`)? Ω(`2 log `) ≤ c(`) ≤ 202`5

Some improvement: c(`) = 2O(` log `). [Leaf and Seymour. 2012]

Recent breakthrough: c(`) = poly(`). [Chekuri and Chuzhoy. 2013]
c(`) = O(`9polylog`). [Chuzhoy and Tan. 2021]

Important message grid-minors are the certificate of large treewidth.
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Grid Exclusion Theorems on sparse graphs

Theorem (Robertson, Seymour, Thomas. 1994)

Every planar graph of treewidth ≥ 6 · ` contains ` as a minor.

Theorem (Demaine, Fomin, Hajiaghayi, Thilikos. 2005)
For every fixed g, there is a constant cg such that every graph of genus g

and of treewidth ≥ cg · ` contains ` as a minor.

Theorem (Demaine and Hajiaghayi. 2008)
For every fixed graph H, there is a constant cH such that every

H-minor-free graph of treewidth ≥ cH · ` contains ` as a minor.

Best constant in the above theorem is by [Kawarabayashi and Kobayashi. 2012]

In sparse graphs: linear dependency between treewidth and grid-minors
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How to use Grid Theorems algorithmically?
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Example: FPT algorithm for Planar Vertex Cover

A vertex cover of a graph G is a set of vertices C such that every
edge of G has at least one endpoint in C . Min size: vc(G).
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Example: FPT algorithm for Planar Vertex Cover

INPUT: Planar graph G on n vertices, and an integer k.

OUTPUT: Either a vertex cover of G of size ≤ k, or a proof
that G has no such a vertex cover.

RUNNING TIME: 2O(
√

k) · nO(1).

Objective subexponential FPT algorithm for Planar Vertex Cover.
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Example: FPT algorithm for Planar Vertex Cover

vc(H`,`) ≥ `2

2
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Example: FPT algorithm for Planar Vertex Cover

Let G be a planar graph of
treewidth ≥ 6 · `

=⇒ G contains the (`× `)-grid
H`,` as a minor

The size of any vertex cover of H`,` is at least `2/2.

Recall that Vertex Cover is a minor-closed parameter.

Since H`,` �m G , it holds that vc(G) ≥ vc(H`,`) ≥ `2/2.
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We are already very close to an algorithm...

Recall:
k is the parameter of the problem.
We have that tw(G) = 6 · ` and ` is the size of a grid-minor of G .
Therefore, vc(G) ≥ `2/2.

WIN/WIN approach:

If k < `2/2, we can safely answer “NO”.

If k ≥ `2/2, then tw(G) = O(`) = O(
√
k), and we can solve the

problem by standard DP in time 2O(tw(G)) · nO(1) = 2O(
√

k) · nO(1).

This gives a subexponential FPT algorithm!
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Was Vertex Cover really just an example...?

What is so special in Vertex Cover?

F Nothing special! It is just a minor bidimensional parameter:

minor-closed + vc( k) = Ω(k2).

Where did we use planarity?

F Only the linear Grid Exclusion Theorem!

Arguments go through up to H-minor-free graphs.
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Next subsection is...

1 Introduction to graph minors

2 Bidimensionality
Preliminaries
Some ingredients and an illustrative example
Meta-algorithms

3 Irrelevant vertex technique
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Minor Bidimensionality:
[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition
A parameter p is minor bidimensional if

1 p is closed under taking of minors (minor-closed), and

2 p
(

k

)
= Ω(k2).
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Vertex Cover of a Grid

H`,` for ` = 10
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Vertex Cover of a Grid

vc(H`,`) ≥ `2/2
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Feedback Vertex Set of a Grid
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Feedback Vertex Set of a Grid

fvs(H`,`) ≥ `2/4
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How to obtain subexponential algorithms for BP?

First we must restrict ourselves to special graph classes, like planar or
H-minor-free graphs.

Show that if the graph has large treewidth (> c
√
k) then it has a

(
√
k ×
√
k)-grid as a minor, and hence the answer to the problem is

YES (or NO) immediately.

Otherwise, the treewidth is bounded by c
√
k, and hence we can use a

dynamic programming (DP) algorithm on graphs of bounded treewidth.

If we have a DP algorithm for bounded treewidth running in time ct

or tt , then it implies 2O(
√

k) or 2O(
√

k log k) algorithm.
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Piecing everything together

Theorem
Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 2O(tw(G)) · nO(1).
Then deciding “ p(G) = k” can be done in time 2O(

√
k) · nO(1).

1 Compute (or approximate) tw(G).

We can use a fast FPT algorithm or a constant-factor approx.

2 If tw(G) = Ω(
√
k), then safely answer NO (or YES).

This follows because of the linear Grid Exclusion Theorems.

3 Otherwise tw(G) = O(
√
k), and we solve the problem by DP.

Doing DP in time 2O(tw(G)) · nO(1) is a whole area of research:
Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]
Randomized algorithms using Cut&Count. [Cygan et al. 2011]
Deterministic algorithms based on matrix rank. [Boadlaender et al. 2012]
Deterministic algorithms based on matroids. [Fomin et al. 2013]
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2 If tw(G) = Ω(
√
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3 Otherwise tw(G) = O(
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k), and we solve the problem by DP.
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Further applications of Bidimensionality

1 Bidimensionality + DP ⇒ Subexponential FPT algorithms

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]
[Fomin, Golovach, Thilikos. 2009]

2 Bidimensionality + separation properties ⇒ (E)PTAS

[Demaine and Hajiaghayi. 2005]
[Fomin, Lokshtanov, Raman, Saurabh. 2011]

3 Bidimensionality + separation properties ⇒ Kernelization

[Fomin, Lokshtanov, Saurabh, Thilikos. 2009-2010]

4 Bidimensionality + new Grid Theorems ⇒ Geometric graphs

[Fomin, Lokshtanov, Saurabh. 2012]
[Grigoriev, Koutsonas, Thilikos. 2013]
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Next section is...

1 Introduction to graph minors

2 Bidimensionality
Preliminaries
Some ingredients and an illustrative example
Meta-algorithms

3 Irrelevant vertex technique
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Basic principle of the irrelevant vertex technique

This technique was invented in [Robertson and Seymour. 1995]

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

Strategy:

1 If tw(G) > f (k), find an irrelevant vertex:

A vertex v ∈ V (G) such that (G ,T , k) and (G \ v ,T , k) are
equivalent instances.

2 Otherwise, if tw(G) ≤ f (k), solve the problem using dynamic
programming (by Courcelle).
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How to find an irrelevant vertex when the treewidth is large?

By using the Grid Exclusion Theorem!

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.

 

s I[Figure by Dimitrios M. Thilikos]
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How to find an irrelevant vertex when the treewidth is large?

By using the Wall Exclusion Theorem!

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.

 

s I[Figure by Dimitrios M. Thilikos]
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How to find an irrelevant vertex when the treewidth is large?

Theorem (Robertson and Seymour. 1986)
For every integer ` > 0, there is an integer c(`) such that every graph of
treewidth ≥ c(`) contains an `-wall as a minor.246 D.M. Thilikos

Fig. 5. A subdivided wall W ′ and the way a 13-linkage L is traversing its compass K′.
The only vertices that are depicted are the endpoints of the paths in L (white vertices).
The only edges that are depicted are those of the paths in L and the edges of W ′. The
grey area contains the vertices and the edges of the graph G that do not belong to K′.

so that the paths of L could be rerouted to an equivalent linkage that does not
enter very deeply inside K ′. To formalize this claim Robertson and Seymour
defined the notion of a vital linkage in [111].

A linkage L in a graph G is called vital if its vertices meet all the vertices of
G and if there is no other linkage in G that is equivalent to L. An example of
a vital k-linkage in a graph is depicted in Figure 6. Clearly, if a solution of the
k-Disjoint Paths Problem corresponds to a vital linkage, then no irrelevant
vertex can be detected. The main result of [111] asserts that this possible “lack
of flexibility” of linkages vanishes when graphs have big enough treewidth.

Theorem 13. There exists a recursive function λ : N → N such that every
graph with a vital k-linkage has treewidth at most λ(k).

Actually, it was also proved in [111] that treewidth can be replaced by pathwidth
in Theorem 13. As the proof of 13 uses the Structure Theorem of the GMT [109],
the upper bound for λ that follows from [111] is immense. However it was proved
in [3] that in the case of planar graphs it holds that λ(k) = 2O(k). Moreover, this
bound is, in a sense, tight: as argued in [3], for each k it is possible to construct
a planar graph that contains a vital k-linkage and has treewidth 2Ω(k) (the 5-
linkage in the graph of Figure 6 already gives the flavor of such a construction).

Let now G′ be the subgraph of G defined by the union of the paths in L, and
the compass K ′ of W ′. At this point, a naive idea might be to directly apply
Theorem 13 and set q′ = λ(k) so that the linkage L of G′, corresponding to a
solution of the k-Disjoint Paths problem, cannot be vital. However, from this
alone, we cannot expect nothing better than avoiding some vertices that will not

[Figure by Dimitrios M. Thilikos]
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Goal: declare one of the central vertices of the wall irrelevant.246 D.M. Thilikos
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vertex can be detected. The main result of [111] asserts that this possible “lack
of flexibility” of linkages vanishes when graphs have big enough treewidth.
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graph with a vital k-linkage has treewidth at most λ(k).

Actually, it was also proved in [111] that treewidth can be replaced by pathwidth
in Theorem 13. As the proof of 13 uses the Structure Theorem of the GMT [109],
the upper bound for λ that follows from [111] is immense. However it was proved
in [3] that in the case of planar graphs it holds that λ(k) = 2O(k). Moreover, this
bound is, in a sense, tight: as argued in [3], for each k it is possible to construct
a planar graph that contains a vital k-linkage and has treewidth 2Ω(k) (the 5-
linkage in the graph of Figure 6 already gives the flavor of such a construction).

Let now G′ be the subgraph of G defined by the union of the paths in L, and
the compass K ′ of W ′. At this point, a naive idea might be to directly apply
Theorem 13 and set q′ = λ(k) so that the linkage L of G′, corresponding to a
solution of the k-Disjoint Paths problem, cannot be vital. However, from this
alone, we cannot expect nothing better than avoiding some vertices that will not

This is only possible if the wall is insulated from the exterior!
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This is only possible if the wall is insulated from the exterior!
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Flat walls

Goal: enrich the notion of wall so that we can insulate it from the exterior.
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Flat walls

We need to allow some extra edges in the interior of the wall.
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Flat walls
We impose a topological property that defines the “flatness” of the wall.
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Flat walls
There are no crossing paths s1 − t1 and s2 − t2 from/to the perimeter.
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Flat walls
A real flat wall can be quite wild... [Figure by Dimitrios M. Thilikos]
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Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]
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Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]
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Flat walls: a bit more formal

[Figures by Dimitrios M. Thilikos]
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The Weak Structure Graph Minors Theorem

Theorem (Robertson and Seymour. 1995)
There exist recursive functions f1 : N2 → N and f2 : N→ N, such that for
every graph G and every q, r ∈ N, one of the following holds:

1 Kq is a minor of G.

2 The treewidth of G is at most f1(q, r).

3 There exists A ⊆ V (G) (apices) with |A| ≤ f2(q) such that G \ A
contains as a subgraph a flat wall W of height r .

There are many different variants and optimizations of this theorem...
[Chuzhoy. 2015]

[Kawarabayashi, Thomas, Wollan. 2018]

[S., Stamoulis, Thilikos. 2021]

Important: possible to find one of the outputs in time f (q, r) · |V (G)|.
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Back to the Disjoint Paths problem

Disjoint Paths
Input: a graph G and k pairs of vertices T = {s1, . . . , sk , t1, . . . , tk}.
Question: does G contain k vertex-disjoint paths P1, . . . ,Pk such that

Pi connects si to ti?

By the Weak Structure Theorem:

If tw(G) ≤ f (k): solve using dynamic programming.

If G contains a Kg(k)-minor: “easy” to find an irrelevant vertex.

If G contains a “small” apex set A and a flat wall W in G \ A of size
at least h(k): declare the central vertex of the flat wall irrelevant.

The irrelevant vertex technique has been applied to many problems...
usually with a lot of technical pain.
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If G contains a “small” apex set A and a flat wall W in G \ A of size
at least h(k): declare the central vertex of the flat wall irrelevant.

The irrelevant vertex technique has been applied to many problems...
usually with a lot of technical pain.
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Rerouting inside a big flat wall...

f11 b

f10

Df10

Cp

[Figure by Dimitrios M. Thilikos]
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Crucial notion: homogeneity
In order to declare a vertex irrelevant for some problem, usually we need to
consider a homogenous flat wall, which we proceed to define.
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Crucial notion: homogeneity
We consider a flap-coloring encoding the relevant information of our
favorite problem inside each flap (similar to tables of DP).
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Crucial notion: homogeneity
For every brick of the wall, we define its palette as the colors appearing in
the flaps it contains.

 

723ms HITS 225.4

2,4 11213,4 249

He 244A HE

112,344 112394,5 2464
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Crucial notion: homogeneity
A flat wall is homogenous if every (internal) brick has the same palette.
Fact: every brick of a homogenous flat wall has the same “behavior”.

 

723ms HITS 225.4

2,4 11213,4 249

He 244A HE

112,344 112394,5 2464
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Crucial notion: homogeneity
Price of homogeneity to obtain a homogenous flat r -wall (zooming):
If we have c colors, we need to start with a flat r c -wall. (why?)

 

723ms HITS 225.4

2,4 11213,4 249

He 244A HE

112,344 112394,5 2464
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Gràcies!

FREEDOM FOR ALL CATALAN POLITICAL PRISONERS IN SPAIN
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