Hitting minors on bounded treewidth graphs

Ignasi Sau

CNRS, LIRMM, Université de Montpellier, France

Joint work with Julien Baste and Dimitrios M. Thilikos arXiv 1704.07284 + arXiv 1907.04442

FraNorAC 2019 LIRMM, Montpellier, France

うへで 1/25

(Invariant that measures the topological resemblance of a graph to a tree.)

(Invariant that measures the topological resemblance of a graph to a tree.)

Monadic Second Order Logic (MSOL):

Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [$\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G)$]

(Invariant that measures the topological resemblance of a graph to a tree.)

Monadic Second Order Logic (MSOL):

Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [$\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G)$]

Theorem (Courcelle. 1990)

Every problem expressible in MSOL can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

(Invariant that measures the topological resemblance of a graph to a tree.)

Monadic Second Order Logic (MSOL):

Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [$\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G)$]

Theorem (Courcelle. 1990)

Every problem expressible in MSOL can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: VERTEX COVER, DOMINATING SET, HAMILTONIAN CYCLE, CLIQUE, INDEPENDENT SET, *k*-COLORING for fixed *k*, ...

Is it enough to prove that a problem is FPT?

Typically, Courcelle's theorem allows to prove that a problem is FPT...

 $f(\mathsf{tw}) \cdot n^{\mathcal{O}(1)}$

Is it enough to prove that a problem is FPT?

Typically, Courcelle's theorem allows to prove that a problem is FPT... ... but the running time can (and must) be huge!

$$f(\mathsf{tw}) \cdot n^{\mathcal{O}(1)} = 2^{3^{4^{5^{6^{7^{8^{tw}}}}}}} \cdot n^{\mathcal{O}(1)}$$

Typically, Courcelle's theorem allows to prove that a problem is FPT... ... but the running time can (and must) be huge!

$$f(tw) \cdot n^{\mathcal{O}(1)} = 2^{3^{4^{5^{6^{7^{8^{tw}}}}}}} \cdot n^{\mathcal{O}(1)}$$

Major goal find the smallest possible function f(tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a "black box" in all kinds of parameterized algorithms.

Is it enough to prove that a problem is FPT?

Typically, Courcelle's theorem allows to prove that a problem is FPT... ... but the running time can (and must) be huge!

$$f(tw) \cdot n^{\mathcal{O}(1)} = 2^{3^{4^{5^{6^{7^{8^{tw}}}}}}} \cdot n^{\mathcal{O}(1)}$$

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a "black box" in all kinds of parameterized algorithms.

Dynamic programming on tree decompositions

- Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.
- Starting from the leaves of the tree decomposition, a set of appropriately defined partial solutions is computed recursively until the root, where a global solution is obtained.

Dynamic programming on tree decompositions

- Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.
- Starting from the leaves of the tree decomposition, a set of appropriately defined partial solutions is computed recursively until the root, where a global solution is obtained.
- The way that these partial solutions are defined depends on each particular problem:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Local problems: solution can be certified locally at each vertex. VERTEX COVER, DOMINATING SET, CLIQUE • Local problems: solution can be certified locally at each vertex. VERTEX COVER, DOMINATING SET, CLIQUE

Natural DP: $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$

Two distinct types of problems

• Local problems: solution can be certified locally at each vertex. VERTEX COVER, DOMINATING SET, CLIQUE

Natural DP: $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$

• Connectivity problems: certificates need a global information.

Longest Path, Feedback Vertex Set, Steiner Tree

Two distinct types of problems

• Local problems: solution can be certified locally at each vertex. VERTEX COVER, DOMINATING SET, CLIQUE

Natural DP: $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$

• Connectivity problems: certificates need a global information.

LONGEST PATH, FEEDBACK VERTEX SET, STEINER TREE

Natural DP: $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$

It was believed that, except on sparse graphs (planar, surfaces), algorithms in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$ were optimal for connectivity problems.

It was believed that, except on sparse graphs (planar, surfaces), algorithms in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$ were optimal for connectivity problems.

This was false!!

Cut&Count technique:

[Cygan, Nederlof, Pilipczuk², van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

It was believed that, except on sparse graphs (planar, surfaces), algorithms in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$ were optimal for connectivity problems.

This was false!!

Cut&Count technique:[Cygan, Nederlof, Pilipczuk², van Rooij, Wojtaszczyk. 2011]Randomized single-exponential algorithms for connectivity problems.

- Relax the connectivity requirement by considering a set of cuts that contain the relevant (connected) solutions.
- Count modulo 2 the number of cuts, because the non-connected solutions will cancel out. By assigning random weights to the vertices/edges, guarantee that w.h.p. the optimal solution is unique (Isolation Lemma).

It was believed that, except on sparse graphs (planar, surfaces), algorithms in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$ were optimal for connectivity problems.

This was false!!

Cut&Count technique:[Cygan, Nederlof, Pilipczuk², van Rooij, Wojtaszczyk. 2011]Randomized single-exponential algorithms for connectivity problems.

- Relax the connectivity requirement by considering a set of cuts that contain the relevant (connected) solutions.
- Count modulo 2 the number of cuts, because the non-connected solutions will cancel out. By assigning random weights to the vertices/edges, guarantee that w.h.p. the optimal solution is unique (Isolation Lemma).

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013] Representative sets in matroids:

No!

CYCLE PACKING: find the maximum number of vertex-disjoint cycles.

CYCLE PACKING: find the maximum number of vertex-disjoint cycles.

No!

An algorithm in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$ is optimal under the ETH.

[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

This reduction uses a framework introduced by [Loks

[Lokshtanov, Marx, Saurabh. 2011]

No!

CYCLE PACKING: find the maximum number of vertex-disjoint cycles.

An algorithm in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$ is optimal under the ETH.

[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

This reduction uses a framework introduced by

[Lokshtanov, Marx, Saurabh. 2011]

There are other examples of such problems...

The $\mathcal{F}\text{-}\mathrm{M}\text{-}\mathrm{Deletion}$ problem

Let \mathcal{F} be a fixed finite collection of graphs.

$\mathcal{F} ext{-}\mathrm{M} ext{-}\mathrm{Deletion}$

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain any of the graphs in \mathcal{F} as a minor?

$\mathcal{F} ext{-}\mathrm{M} ext{-}\mathrm{Deletion}$

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain any of the graphs in \mathcal{F} as a minor?

• $\mathcal{F} = \{K_2\}$: Vertex Cover.

$\mathcal{F}\text{-}\mathrm{M}\text{-}\mathrm{Deletion}$

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such thatG - S does not contain any of the graphs in \mathcal{F} as a minor?

• $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.

\mathcal{F} -M-Deletion

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such thatG - S does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.
- $\mathcal{F} = \{K_3\}$: Feedback Vertex Set.

$\mathcal{F} ext{-}\mathrm{M} ext{-}\mathrm{Deletion}$

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such thatG - S does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.
- $\mathcal{F} = \{K_3\}$: FEEDBACK VERTEX SET. "Hardly" solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.

[Cut&Count. 2011]

$\mathcal{F}\text{-}\mathrm{M}\text{-}\mathrm{Deletion}$

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such thatG - S does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.
- $\mathcal{F} = \{K_3\}$: FEEDBACK VERTEX SET. "Hardly" solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.

[Cut&Count. 2011]

• $\mathcal{F} = \{K_5, K_{3,3}\}$: Vertex Planarization.

$\mathcal{F} ext{-}\mathrm{M} ext{-}\mathrm{Deletion}$

Input:	A graph G and an integer k .
Parameter:	The treewidth tw of G .
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that
	$G-S$ does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.
- $\mathcal{F} = \{K_3\}$: FEEDBACK VERTEX SET. "Hardly" solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$. [Cut&Count. 2011]
- $\mathcal{F} = \{K_5, K_{3,3}\}$: VERTEX PLANARIZATION. Solvable in time $2^{\Theta(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$. [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/25

Covering topological minors

Let \mathcal{F} be a fixed finite collection of graphs.

$\mathcal{F}\text{-}\mathrm{M}\text{-}\mathrm{Deletion}$

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such thatG - S does not contain any graph in \mathcal{F} as a minor?

Covering topological minors

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain any graph in \mathcal{F} as a minor?

\mathcal{F} -TM-Deletion		
Input:	A graph G and an integer k .	
Parameter:	The treewidth tw of G .	
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that	
	$G-S$ does not contain any graph in \mathcal{F} as a topol. minor?	

Covering topological minors

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such thatG - S does not contain any graph in \mathcal{F} as a minor?

\mathcal{F} -TM-Deletion		
Input:	A graph G and an integer k .	
Parameter:	The treewidth tw of G .	
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that	
	$G-S$ does not contain any graph in \mathcal{F} as a topol. minor?	

Both problems are NP-hard if \mathcal{F} contains some edge. [Lewis, Yannakakis. 1980] FPT by Courcelle's Theorem.

9/25

Objective

Determine, for every fixed \mathcal{F} , the (asymptotically) smallest function $f_{\mathcal{F}}$ such that \mathcal{F} -M-DELETION/ \mathcal{F} -TM-DELETION can be solved in time

 $f_{\mathcal{F}}(\mathsf{tw}) \cdot n^{\mathcal{O}(1)}$

on *n*-vertex graphs.
Objective

Determine, for every fixed \mathcal{F} , the (asymptotically) smallest function $f_{\mathcal{F}}$ such that \mathcal{F} -M-DELETION/ \mathcal{F} -TM-DELETION can be solved in time

 $f_{\mathcal{F}}(\mathsf{tw}) \cdot n^{\mathcal{O}(1)}$

on *n*-vertex graphs.

- We do not want to optimize the degree of the polynomial factor.
- We do not want to optimize the constants.
- Our hardness results hold under the ETH.

¹Connected collection \mathcal{F} : all the graphs are connected.

• For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.

¹Connected collection \mathcal{F} : all the graphs are connected.

- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ + planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

¹Connected collection \mathcal{F} : all the graphs are connected.

- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ \rightarrow planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

¹Connected collection \mathcal{F} : all the graphs are connected.

- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ \rightarrow planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar + \mathcal{F} connected: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$.

¹Connected collection \mathcal{F} : all the graphs are connected.

- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ \rightarrow planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar + \mathcal{F} connected: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

(For \mathcal{F} -TM-DELETION we need: \mathcal{F} contains a subcubic planar graph.)

¹Connected collection \mathcal{F} : all the graphs are connected.

- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ \rightarrow planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar + \mathcal{F} connected: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

(For $\mathcal{F}\text{-}\mathrm{TM}\text{-}\mathrm{Deletion}$ we need: \mathcal{F} contains a subcubic planar graph.)

• \mathcal{F} (connected): \mathcal{F} -M/TM-DELETION not in time $2^{o(tw)} \cdot n^{\mathcal{O}(1)}$ unless the ETH fails, even if G planar.

¹Connected collection \mathcal{F} : all the graphs are connected.

- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ \rightarrow planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar + \mathcal{F} connected: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

(For $\mathcal{F}\text{-}\mathrm{TM}\text{-}\mathrm{Deletion}$ we need: \mathcal{F} contains a subcubic planar graph.)

- \mathcal{F} (connected): \mathcal{F} -M/TM-DELETION not in time $2^{o(tw)} \cdot n^{\mathcal{O}(1)}$ unless the ETH fails, even if G planar.
- $\mathcal{F} = \{H\}, H \text{ connected}:$

¹Connected collection \mathcal{F} : all the graphs are connected.

- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ \neq planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar + \mathcal{F} connected: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

(For $\mathcal{F}\text{-}\mathrm{TM}\text{-}\mathrm{Deletion}$ we need: \mathcal{F} contains a subcubic planar graph.)

- \mathcal{F} (connected): \mathcal{F} -M/TM-DELETION not in time $2^{o(tw)} \cdot n^{\mathcal{O}(1)}$ unless the ETH fails, even if G planar.
- $\mathcal{F} = \{H\}$, *H* connected: complete tight dichotomy...

¹Connected collection \mathcal{F} : all the graphs are connected.

<□ ト < □ ト < □ ト < ⊇ ト < ⊇ ト < ⊇ ト 三 の Q () 12/25

Theorem

Let *H* be a connected graph.

Theorem

Let H be a connected graph. The $\{H\}$ -M-DELETION problem is solvable in time

•
$$2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$$
, if $H \preceq_{\mathsf{c}} \checkmark or H \preceq_{\mathsf{c}} \checkmark$

Theorem

Let H be a connected graph. The $\{H\}$ -M-DELETION problem is solvable in time

•
$$2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$$
, if $H \leq_{\mathsf{c}} \stackrel{\bullet}{\longrightarrow} \text{ or } H \leq_{\mathsf{c}} \stackrel{\bullet}{\longrightarrow}$

• $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$, otherwise.

Theorem

Let H be a connected graph. The $\{H\}$ -M-DELETION problem is solvable in time

- $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$, if $H \leq_c \square$ or $H \leq_c \square$.
- $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$, otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

Complexity of hitting a single connected minor H

↓) Q (↓ 13/25

A compact statement for a single connected graph

All these cases can be succinctly described as follows:

A compact statement for a single connected graph

All these cases can be succinctly described as follows:

• All graphs on the left are contractions of \leftarrow or \leftarrow

A compact statement for a single connected graph

All these cases can be succinctly described as follows:

- All graphs on the left are contractions of 🛶
- All graphs on the right are not contractions of

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

We have three types of results

General algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected + planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected \neq planar: time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar + \mathcal{F} connected: time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

We have three types of results

General algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected + planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected $\neq \mathsf{planar}$: time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar + \mathcal{F} connected: time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$.

Ad-hoc single-exponential algorithms

- Some use "typical" dynamic programming.
- Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

We have three types of results

General algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected + planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected $\neq \mathsf{planar}$: time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar + \mathcal{F} connected: time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$.

Ad-hoc single-exponential algorithms

- Some use "typical" dynamic programming.
- Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

• Lower bounds under the ETH

- 2^{o(tw)} is "easy".
- 2^{o(tw·log tw)} is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

イロト 不得 トイヨト イヨト 三日

Some ideas of the general algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected + planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar + \mathcal{F} connected: time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$.

Some ideas of the general algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected + planar: time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar + \mathcal{F} connected: time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$.

We build on the machinery of boundaried graphs and representatives:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

[Garnero, Paul, S., Thilikos. 2014]

Some ideas of the general algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected + planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar + \mathcal{F} connected: time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$.

We build on the machinery of boundaried graphs and representatives:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009] [Fomin, Lokshtanov, Saurabh, Thilikos. 2010] [Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013] [Garnero, Paul, S., Thilikos. 2014]

F connected → planar: time 2^{O(tw·log tw)} · n^{O(1)}.

 Extra: Bidimensionality, irrelevant vertices, protrusion decompositions...

• We see *G* as a *t*-boundaried graph.

- We see *G* as a *t*-boundaried graph.
- folio of G: set of all its *F*-minor-free minors, up to size O_F(t).

- We see *G* as a *t*-boundaried graph.
- folio of G: set of all its *F*-minor-free minors, up to size O_F(t).
- We compute, using DP over a tree decomposition of *G*, the following parameter for every folio *C*:

$$\mathbf{p}(G,\mathcal{C}) = \min\{|S| : S \subseteq V(G) \land \operatorname{folio}(G-S) = \mathcal{C}\}$$

- We see *G* as a *t*-boundaried graph.
- folio of G: set of all its *F*-minor-free minors, up to size O_F(t).
- We compute, using DP over a tree decomposition of *G*, the following parameter for every folio *C*:

 $\mathbf{p}(G,\mathcal{C}) = \min\{|S| : S \subseteq V(G) \land \operatorname{folio}(G-S) = \mathcal{C}\}$

• For every *t*-boundaried graph *G*, $|\text{folio}(G)| = \mathcal{O}_{\mathcal{F}}(1) \cdot {\binom{t^2}{t}} = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$

- We see *G* as a *t*-boundaried graph.
- folio of G: set of all its *F*-minor-free minors, up to size O_F(t).
- We compute, using DP over a tree decomposition of *G*, the following parameter for every folio *C*:

 $\mathbf{p}(G,\mathcal{C}) = \min\{|S| : S \subseteq V(G) \land \operatorname{folio}(G-S) = \mathcal{C}\}$

- For every *t*-boundaried graph *G*, $|folio(G)| = \mathcal{O}_{\mathcal{F}}(1) \cdot {\binom{t^2}{t}} = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$
- The number of distinct folios is $2^{2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}}$.

- We see *G* as a *t*-boundaried graph.
- folio of G: set of all its *F*-minor-free minors, up to size O_F(t).
- We compute, using DP over a tree decomposition of *G*, the following parameter for every folio *C*:

 $\mathbf{p}(G,\mathcal{C}) = \min\{|S| : S \subseteq V(G) \land \operatorname{folio}(G-S) = \mathcal{C}\}$

- For every *t*-boundaried graph *G*, $|folio(G)| = \mathcal{O}_{\mathcal{F}}(1) \cdot \begin{pmatrix} t^2 \\ t \end{pmatrix} = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$
- The number of distinct folios is $2^{2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}}$.
- This gives an algorithm running in time $2^{2^{\mathcal{O}_{\mathcal{F}}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n_{\mathbb{F}^{\mathcal{O}}(1)}^{\mathcal{O}(1)}$

< □ > < 큔 > < 글 > < 글 > < 글 > < 글 > ○ Q (~ 18/25

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{l} \mathbf{G}_1 \equiv^{(\mathcal{F},t)} \mathbf{G}_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \preceq_{\mathsf{m}} G' \oplus \mathcal{G}_1 \iff \mathcal{F} \preceq_{\mathsf{m}} G' \oplus \mathcal{G}_2. \end{array}$$

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{l} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_1 \iff \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_2. \end{array}$$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{ll} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \preceq_m G' \oplus G_1 \iff \mathcal{F} \preceq_m G' \oplus G_2 \end{array}$$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• We compute, using DP over a tree decomposition of *G*, the following parameter for every representative *R*:

$$\mathbf{p}(G,R) = \min\{|S| : S \subseteq V(G) \land \operatorname{rep}_{\mathcal{F},t}(G-S) = R\}$$
Algorithm for a connected and planar collection ${\cal F}$

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{ll} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_1 \iff \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_2 \end{array}$$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• We compute, using DP over a tree decomposition of *G*, the following parameter for every representative *R*:

 $\mathbf{p}(G,R) = \min\{|S| : S \subseteq V(G) \land \operatorname{rep}_{\mathcal{F},t}(G-S) = R\}$

• The number of representatives is $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$.

Algorithm for a connected and planar collection ${\cal F}$

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{ll} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_1 \iff \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_2 \end{array}$$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• We compute, using DP over a tree decomposition of *G*, the following parameter for every representative *R*:

$$\mathbf{p}(G,R) = \min\{|S| : S \subseteq V(G) \land \operatorname{rep}_{\mathcal{F},t}(G-S) = R\}$$

• The number of representatives is $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$. Planarity! # labeled graphs of size $\leq t$ and tw $\leq h$ is $2^{\mathcal{O}_h(t \cdot \log t)}$. [Baste, Noy, S. 2017]

Algorithm for a connected and planar collection ${\mathcal F}$

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{ll} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_1 \iff \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_2 \end{array}$$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

18/25

• We compute, using DP over a tree decomposition of *G*, the following parameter for every representative *R*:

$$\mathbf{p}(G,R) = \min\{|S| : S \subseteq V(G) \land \operatorname{rep}_{\mathcal{F},t}(G-S) = R\}$$

- The number of representatives is $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$. Planarity! # labeled graphs of size $\leq t$ and tw $\leq h$ is $2^{\mathcal{O}_h(t \cdot \log t)}$. [Baste, Noy, S. 2017]
- This gives an algorithm running in time $2^{\mathcal{O}_{\mathcal{F}}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

- $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.
- Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

• We are done: $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$ and the same DP works!

• Flat Wall Theorem:

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

• We are done: $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$ and the same DP works!

• Flat Wall Theorem: As R is \mathcal{F} -minor-free, if tw $(R \setminus B) > c_{\mathcal{F}}$,

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

• We are done: $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$ and the same DP works!

• Flat Wall Theorem: As R is \mathcal{F} -minor-free, if $tw(R \setminus B) > c_{\mathcal{F}}$, $R \setminus B$ contains a large flat wall,

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

• We are done: $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$ and the same DP works!

• Flat Wall Theorem: As R is \mathcal{F} -minor-free, if $tw(R \setminus B) > c_{\mathcal{F}}$, $R \setminus B$ contains a large flat wall, where we can find an irrelevant vertex.

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

- Flat Wall Theorem: As R is \mathcal{F} -minor-free, if $tw(R \setminus B) > c_{\mathcal{F}}$, $R \setminus B$ contains a large flat wall, where we can find an irrelevant vertex.
- R has a treewidth modulator of size O(t) containing its boundary B.

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

- Flat Wall Theorem: As R is \mathcal{F} -minor-free, if $tw(R \setminus B) > c_{\mathcal{F}}$, $R \setminus B$ contains a large flat wall, where we can find an irrelevant vertex.
- R has a treewidth modulator of size O(t) containing its boundary B.
- We can then find a linear protrusion decomposition of R.

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

- Flat Wall Theorem: As R is \mathcal{F} -minor-free, if $tw(R \setminus B) > c_{\mathcal{F}}$, $R \setminus B$ contains a large flat wall, where we can find an irrelevant vertex.
- R has a treewidth modulator of size O(t) containing its boundary B.
- We can then find a linear protrusion decomposition of *R*.
- By applying protrusion reduction, we obtain that $|V(R)| = \mathcal{O}_{\mathcal{F}}(t)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

➡ skip

20/25

➡ skip

20/25

Hard part: finding an irrelevant vertex inside a flat wall

<ロト < 部ト < 言ト < 言ト 言 の < ? 21/25

Hard part: finding an irrelevant vertex inside a flat wall

➡ skip

• Idea get an improved bound on $|\mathcal{R}^{(\mathcal{F},t)}|$.

• Idea get an improved bound on $|\mathcal{R}^{(\mathcal{F},t)}|$.

• We use a sphere-cut decomposition of the input planar graph *G*.

[Seymour, Thomas. 1994]

[Dorn, Penninkx, Bodlaender, Fomin. 2010]

- Idea get an improved bound on $|\mathcal{R}^{(\mathcal{F},t)}|$.
- We use a sphere-cut decomposition of the input planar graph *G*.

[Seymour, Thomas. 1994]

[Dorn, Penninkx, Bodlaender, Fomin. 2010]

• Nice topological properties: each separator corresponds to a noose.

- Idea get an improved bound on $|\mathcal{R}^{(\mathcal{F},t)}|$.
- We use a sphere-cut decomposition of the input planar graph *G*.

[Seymour, Thomas. 1994]

[Dorn, Penninkx, Bodlaender, Fomin. 2010]

• Nice topological properties: each separator corresponds to a noose.

• The number of representatives is $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t)}$. Number of planar triangulations on t vertices is $2^{\mathcal{O}(t)}$.

[Tutte. 1962]

- Idea get an improved bound on $|\mathcal{R}^{(\mathcal{F},t)}|$.
- We use a sphere-cut decomposition of the input planar graph *G*.

[Seymour, Thomas. 1994]

[Dorn, Penninkx, Bodlaender, Fomin. 2010]

• Nice topological properties: each separator corresponds to a noose.

• The number of representatives is $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t)}$. Number of planar triangulations on t vertices is $2^{\mathcal{O}(t)}$.

[Tutte. 1962]

• This gives an algorithm running in time $2^{\mathcal{O}_{\mathcal{F}}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

- Idea get an improved bound on $|\mathcal{R}^{(\mathcal{F},t)}|$.
- We use a sphere-cut decomposition of the input planar graph *G*.

[Seymour, Thomas. 1994]

[Dorn, Penninkx, Bodlaender, Fomin. 2010]

• Nice topological properties: each separator corresponds to a noose.

• The number of representatives is $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t)}$. Number of planar triangulations on t vertices is $2^{\mathcal{O}(t)}$.

[Tutte. 1962]

- This gives an algorithm running in time $2^{\mathcal{O}_{\mathcal{F}}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- We can extend this algorithm to input graphs G embedded in arbitrary surfaces by using surface-cut decompositions.

 ^(*) skip
 [Rué, S., Thilkos. 2014]

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

• Goal classify the (asymptotically) tight complexity of \mathcal{F} -M-DELETION and \mathcal{F} -TM-DELETION for every family \mathcal{F} .

- Goal classify the (asymptotically) tight complexity of \mathcal{F} -M-DELETION and \mathcal{F} -TM-DELETION for every family \mathcal{F} .
- Concerning the minor version:

- Goal classify the (asymptotically) tight complexity of \mathcal{F} -M-DELETION and \mathcal{F} -TM-DELETION for every family \mathcal{F} .
- Concerning the minor version:
 - We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).

- Goal classify the (asymptotically) tight complexity of \mathcal{F} -M-DELETION and \mathcal{F} -TM-DELETION for every family \mathcal{F} .
- Concerning the minor version:
 - We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
 - Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?

- Goal classify the (asymptotically) tight complexity of \mathcal{F} -M-DELETION and \mathcal{F} -TM-DELETION for every family \mathcal{F} .
- Concerning the minor version:
 - We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
 - Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?
 - Consider families \mathcal{F} containing disconnected graphs.

- Goal classify the (asymptotically) tight complexity of \mathcal{F} -M-DELETION and \mathcal{F} -TM-DELETION for every family \mathcal{F} .
- Concerning the minor version:
 - We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
 - Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?
 - Consider families \mathcal{F} containing disconnected graphs. Deletion to genus at most $g: 2^{\mathcal{O}_g(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$. [Kociumaka, Pilipczuk. 2017]

- Goal classify the (asymptotically) tight complexity of \mathcal{F} -M-DELETION and \mathcal{F} -TM-DELETION for every family \mathcal{F} .
- Concerning the minor version:
 - We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
 - Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?
 - Consider families \mathcal{F} containing disconnected graphs. Deletion to genus at most $g: 2^{\mathcal{O}_g(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$. [Kociumaka, Pilipczuk. 2017]
- Concerning the topological minor version:

- Goal classify the (asymptotically) tight complexity of \mathcal{F} -M-DELETION and \mathcal{F} -TM-DELETION for every family \mathcal{F} .
- Concerning the minor version:
 - We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
 - Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?
 - Consider families \mathcal{F} containing disconnected graphs. Deletion to genus at most $g: 2^{\mathcal{O}_g(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$. [Kociumaka, Pilipczuk. 2017]
- Concerning the topological minor version:
 - Dichotomy for {*H*}-TM-DELETION when *H* connected (+planar).

- Goal classify the (asymptotically) tight complexity of \mathcal{F} -M-DELETION and \mathcal{F} -TM-DELETION for every family \mathcal{F} .
- Concerning the minor version:
 - We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
 - Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?
 - Consider families \mathcal{F} containing disconnected graphs. Deletion to genus at most $g: 2^{\mathcal{O}_g(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$. [Kociumaka, Pilipczuk. 2017]
- Concerning the topological minor version:
 - Dichotomy for {H}-TM-DELETION when H connected (+planar).
 - We do not know if there exists some \mathcal{F} such that \mathcal{F} -TM-DELETION cannot be solved in time $2^{o(tw^2)} \cdot n^{\mathcal{O}(1)}$ under the ETH.

- Goal classify the (asymptotically) tight complexity of \mathcal{F} -M-DELETION and \mathcal{F} -TM-DELETION for every family \mathcal{F} .
- Concerning the minor version:
 - We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
 - Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?
 - Consider families \mathcal{F} containing disconnected graphs. Deletion to genus at most $g: 2^{\mathcal{O}_g(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$. [Kociumaka, Pilipczuk. 2017]
- Concerning the topological minor version:
 - Dichotomy for {H}-TM-DELETION when H connected (+planar).
 - We do not know if there exists some \mathcal{F} such that \mathcal{F} -TM-DELETION cannot be solved in time $2^{o(tw^2)} \cdot n^{\mathcal{O}(1)}$ under the ETH.
 - Conjecture For every (connected) family \mathcal{F} , the \mathcal{F} -TM-DELETION problem is solvable in time $2^{\mathcal{O}(\text{tw-log tw})} \cdot n^{\mathcal{O}(1)}$.
For topological minors, there is (at least) one change

24/25

