
Hitting minors on bounded treewidth graphs

Ignasi Sau
CNRS, LIRMM, Université de Montpellier, France

Joint work with Julien Baste and Dimitrios M. Thilikos
arXiv 1704.07284 + arXiv 1907.04442

FraNorAC 2019
LIRMM, Montpellier, France

1/25

Treewidth behaves very well algorithmically

(Invariant that measures the topological resemblance of a graph to a tree.)

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle. 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

2/25

Treewidth behaves very well algorithmically

(Invariant that measures the topological resemblance of a graph to a tree.)

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle. 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

2/25

Treewidth behaves very well algorithmically

(Invariant that measures the topological resemblance of a graph to a tree.)

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle. 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

2/25

Treewidth behaves very well algorithmically

(Invariant that measures the topological resemblance of a graph to a tree.)

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle. 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

2/25

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · nO(1)

= 2345678tw

· nO(1)

Major goal find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box” in all kinds of parameterized algorithms.

3/25

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...
... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box” in all kinds of parameterized algorithms.

3/25

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...
... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box” in all kinds of parameterized algorithms.

3/25

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...
... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal find the smallest possible function f (tw). Tool: ETH

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box” in all kinds of parameterized algorithms.

3/25

Dynamic programming on tree decompositions

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

Starting from the leaves of the tree decomposition, a set of
appropriately defined partial solutions is computed recursively until
the root, where a global solution is obtained.

The way that these partial solutions are defined depends on each
particular problem:

G′

GB

B

A

[Figure by Valentin Garnero]

4/25

Dynamic programming on tree decompositions

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

Starting from the leaves of the tree decomposition, a set of
appropriately defined partial solutions is computed recursively until
the root, where a global solution is obtained.

The way that these partial solutions are defined depends on each
particular problem:

G′

GB

B

A

[Figure by Valentin Garnero]
4/25

Two distinct types of problems

Local problems: solution can be certified locally at each vertex.

Vertex Cover, Dominating Set, Clique

Natural DP: 2O(tw) · nO(1)

Connectivity problems: certificates need a global information.

Longest Path, Feedback Vertex Set, Steiner Tree

Natural DP: 2O(tw·log tw) · nO(1)

5/25

Two distinct types of problems

Local problems: solution can be certified locally at each vertex.

Vertex Cover, Dominating Set, Clique

Natural DP: 2O(tw) · nO(1)

Connectivity problems: certificates need a global information.

Longest Path, Feedback Vertex Set, Steiner Tree

Natural DP: 2O(tw·log tw) · nO(1)

5/25

Two distinct types of problems

Local problems: solution can be certified locally at each vertex.

Vertex Cover, Dominating Set, Clique

Natural DP: 2O(tw) · nO(1)

Connectivity problems: certificates need a global information.

Longest Path, Feedback Vertex Set, Steiner Tree

Natural DP: 2O(tw·log tw) · nO(1)

5/25

Two distinct types of problems

Local problems: solution can be certified locally at each vertex.

Vertex Cover, Dominating Set, Clique

Natural DP: 2O(tw) · nO(1)

Connectivity problems: certificates need a global information.

Longest Path, Feedback Vertex Set, Steiner Tree

Natural DP: 2O(tw·log tw) · nO(1)

5/25

Two distinct types of problems

Local problems: solution can be certified locally at each vertex.

Vertex Cover, Dominating Set, Clique

Natural DP: 2O(tw) · nO(1)

Connectivity problems: certificates need a global information.

Longest Path, Feedback Vertex Set, Steiner Tree

Natural DP: 2O(tw·log tw) · nO(1)

5/25

The revolution of single-exponential algorithms
It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

1 Relax the connectivity requirement by considering a set of cuts that contain
the relevant (connected) solutions.

2 Count modulo 2 the number of cuts, because the non-connected solutions
will cancel out. By assigning random weights to the vertices/edges,
guarantee that w.h.p. the optimal solution is unique (Isolation Lemma).

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

6/25

The revolution of single-exponential algorithms
It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

1 Relax the connectivity requirement by considering a set of cuts that contain
the relevant (connected) solutions.

2 Count modulo 2 the number of cuts, because the non-connected solutions
will cancel out. By assigning random weights to the vertices/edges,
guarantee that w.h.p. the optimal solution is unique (Isolation Lemma).

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

6/25

The revolution of single-exponential algorithms
It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

1 Relax the connectivity requirement by considering a set of cuts that contain
the relevant (connected) solutions.

2 Count modulo 2 the number of cuts, because the non-connected solutions
will cancel out. By assigning random weights to the vertices/edges,
guarantee that w.h.p. the optimal solution is unique (Isolation Lemma).

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

6/25

The revolution of single-exponential algorithms
It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

1 Relax the connectivity requirement by considering a set of cuts that contain
the relevant (connected) solutions.

2 Count modulo 2 the number of cuts, because the non-connected solutions
will cancel out. By assigning random weights to the vertices/edges,
guarantee that w.h.p. the optimal solution is unique (Isolation Lemma).

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

6/25

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

This reduction uses a framework introduced by [Lokshtanov, Marx, Saurabh. 2011]

There are other examples of such problems...

7/25

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

This reduction uses a framework introduced by [Lokshtanov, Marx, Saurabh. 2011]

There are other examples of such problems...

7/25

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

This reduction uses a framework introduced by [Lokshtanov, Marx, Saurabh. 2011]

There are other examples of such problems...

7/25

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

This reduction uses a framework introduced by [Lokshtanov, Marx, Saurabh. 2011]

There are other examples of such problems...

7/25

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5, K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/25

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5, K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/25

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.

Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5, K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/25

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5, K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/25

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.

“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5, K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/25

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5, K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/25

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5, K3,3}: Vertex Planarization.

Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/25

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5, K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/25

Covering topological minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a minor?

F-TM-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a topol. minor?

Both problems are NP-hard if F contains some edge. [Lewis, Yannakakis. 1980]

FPT by Courcelle’s Theorem.

9/25

Covering topological minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a minor?

F-TM-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a topol. minor?

Both problems are NP-hard if F contains some edge. [Lewis, Yannakakis. 1980]

FPT by Courcelle’s Theorem.

9/25

Covering topological minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a minor?

F-TM-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a topol. minor?

Both problems are NP-hard if F contains some edge. [Lewis, Yannakakis. 1980]

FPT by Courcelle’s Theorem.
9/25

Work with Julien Baste and Dimitrios M. Thilikos (2016-)

Objective

Determine, for every fixed F , the (asymptotically) smallest function fF
such that F-M-Deletion/F-TM-Deletion can be solved in time

fF (tw) · nO(1)

on n-vertex graphs.

We do not want to optimize the degree of the polynomial factor.

We do not want to optimize the constants.

Our hardness results hold under the ETH.

10/25

Work with Julien Baste and Dimitrios M. Thilikos (2016-)

Objective

Determine, for every fixed F , the (asymptotically) smallest function fF
such that F-M-Deletion/F-TM-Deletion can be solved in time

fF (tw) · nO(1)

on n-vertex graphs.

We do not want to optimize the degree of the polynomial factor.

We do not want to optimize the constants.

Our hardness results hold under the ETH.

10/25

Summary of our results: arXiv 1704.07284+1907.04442

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F (connected): F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

11/25

Summary of our results: arXiv 1704.07284+1907.04442

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F (connected): F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

11/25

Summary of our results: arXiv 1704.07284+1907.04442

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F (connected): F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

11/25

Summary of our results: arXiv 1704.07284+1907.04442

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1
���

��XXXXX+ planar2: F-M-Deletion in time 2O(tw·log tw) ·nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F (connected): F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

11/25

Summary of our results: arXiv 1704.07284+1907.04442

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1
���

��XXXXX+ planar2: F-M-Deletion in time 2O(tw·log tw) ·nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F (connected): F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

11/25

Summary of our results: arXiv 1704.07284+1907.04442

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1
���

��XXXXX+ planar2: F-M-Deletion in time 2O(tw·log tw) ·nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F (connected): F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

11/25

Summary of our results: arXiv 1704.07284+1907.04442

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1
���

��XXXXX+ planar2: F-M-Deletion in time 2O(tw·log tw) ·nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F (connected): F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

11/25

Summary of our results: arXiv 1704.07284+1907.04442

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1
���

��XXXXX+ planar2: F-M-Deletion in time 2O(tw·log tw) ·nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F (connected): F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected:

complete tight dichotomy...

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

11/25

Summary of our results: arXiv 1704.07284+1907.04442

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1
���

��XXXXX+ planar2: F-M-Deletion in time 2O(tw·log tw) ·nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F (connected): F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

11/25

A dichotomy for hitting a connected minor

Theorem
Let H be a connected graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H �c or H �c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip

12/25

A dichotomy for hitting a connected minor

Theorem
Let H be a connected graph.

The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H �c or H �c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip

12/25

A dichotomy for hitting a connected minor

Theorem
Let H be a connected graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H �c or H �c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip

12/25

A dichotomy for hitting a connected minor

Theorem
Let H be a connected graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H �c or H �c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip

12/25

A dichotomy for hitting a connected minor

Theorem
Let H be a connected graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H �c or H �c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip

12/25

Complexity of hitting a single connected minor H

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house

C5

K5

Classification of the complexity of {H}-M-Deletion for all connected
simple planar graphs H with |V (H)| ≤ 5 and |E (H)| ≥ 1: for the 9 graphs
on the left (resp. 20 graphs on the right), the problem is solvable in time
2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion, K1,4
should be on the left.

13/25

A compact statement for a single connected graph

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house

C5

K5

All these cases can be succinctly described as follows:

All graphs on the left are contractions of or

All graphs on the right are not contractions of or

14/25

A compact statement for a single connected graph

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house

C5

K5

All these cases can be succinctly described as follows:

All graphs on the left are contractions of or

All graphs on the right are not contractions of or

14/25

A compact statement for a single connected graph

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house

C5

K5

All these cases can be succinctly described as follows:

All graphs on the left are contractions of or

All graphs on the right are not contractions of or
14/25

We have three types of results

1 General algorithms

For every F : time 22O(tw·log tw) · nO(1).
F connected + planar: time 2O(tw·log tw) · nO(1).
F connected���

�XXXX+ planar: time 2O(tw·log tw) · nO(1).
G planar + F connected: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

15/25

We have three types of results

1 General algorithms

For every F : time 22O(tw·log tw) · nO(1).
F connected + planar: time 2O(tw·log tw) · nO(1).
F connected���

�XXXX+ planar: time 2O(tw·log tw) · nO(1).
G planar + F connected: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

15/25

We have three types of results

1 General algorithms

For every F : time 22O(tw·log tw) · nO(1).
F connected + planar: time 2O(tw·log tw) · nO(1).
F connected���

�XXXX+ planar: time 2O(tw·log tw) · nO(1).
G planar + F connected: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

15/25

We have three types of results

1 General algorithms

For every F : time 22O(tw·log tw) · nO(1).
F connected + planar: time 2O(tw·log tw) · nO(1).
F connected���

�XXXX+ planar: time 2O(tw·log tw) · nO(1).
G planar + F connected: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

15/25

Some ideas of the general algorithms

For every F : time 22O(tw·log tw) · nO(1).

F connected + planar: time 2O(tw·log tw) · nO(1).

G planar + F connected: time 2O(tw) · nO(1).

We build on the machinery of boundaried graphs and representatives:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

[Garnero, Paul, S., Thilikos. 2014]

F connected����
�XXXXX+ planar: time 2O(tw·log tw) · nO(1).

Extra: Bidimensionality, irrelevant vertices, protrusion decompositions...

skip

16/25

Some ideas of the general algorithms

For every F : time 22O(tw·log tw) · nO(1).

F connected + planar: time 2O(tw·log tw) · nO(1).

G planar + F connected: time 2O(tw) · nO(1).

We build on the machinery of boundaried graphs and representatives:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

[Garnero, Paul, S., Thilikos. 2014]

F connected����
�XXXXX+ planar: time 2O(tw·log tw) · nO(1).

Extra: Bidimensionality, irrelevant vertices, protrusion decompositions...

skip

16/25

Some ideas of the general algorithms

For every F : time 22O(tw·log tw) · nO(1).

F connected + planar: time 2O(tw·log tw) · nO(1).

G planar + F connected: time 2O(tw) · nO(1).

We build on the machinery of boundaried graphs and representatives:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

[Garnero, Paul, S., Thilikos. 2014]

F connected����
�XXXXX+ planar: time 2O(tw·log tw) · nO(1).

Extra: Bidimensionality, irrelevant vertices, protrusion decompositions...

skip

16/25

Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size OF (t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G ,
|folio(G)| = OF (1) ·

(
t2

t

)

= 2OF (t·log t)

The number of distinct folios is 22OF (t·log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1). skip

17/25

Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size OF (t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G ,
|folio(G)| = OF (1) ·

(
t2

t

)
= 2OF (t·log t)

The number of distinct folios is 22OF (t·log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1). skip

17/25

Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size OF (t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G ,
|folio(G)| = OF (1) ·

(
t2

t

)
= 2OF (t·log t)

The number of distinct folios is 22OF (t·log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1). skip

17/25

Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size OF (t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G ,
|folio(G)| = OF (1) ·

(
t2

t

)
= 2OF (t·log t)

The number of distinct folios is 22OF (t·log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1). skip

17/25

Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size OF (t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G ,
|folio(G)| = OF (1) ·

(
t2

t

)
= 2OF (t·log t)

The number of distinct folios is 22OF (t·log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1). skip

17/25

Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size OF (t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G ,
|folio(G)| = OF (1) ·

(
t2

t

)
= 2OF (t·log t)

The number of distinct folios is 22OF (t·log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1). skip

17/25

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G , R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t). Planarity!
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

18/25

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G , R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t). Planarity!
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

18/25

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G , R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t). Planarity!
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

18/25

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G , R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t). Planarity!
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

18/25

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G , R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).

Planarity!
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

18/25

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G , R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t). Planarity!
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

18/25

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G , R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t). Planarity!
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip

18/25

Algorithm for any connected collection F

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

We are done: |R(F ,t)| = 2OF (t·log t) and the same DP works!

Flat Wall Theorem: As R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = OF (t).

19/25

Algorithm for any connected collection F

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

We are done: |R(F ,t)| = 2OF (t·log t) and the same DP works!

Flat Wall Theorem: As R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = OF (t).

19/25

Algorithm for any connected collection F

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

We are done: |R(F ,t)| = 2OF (t·log t) and the same DP works!

Flat Wall Theorem: As R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = OF (t).

19/25

Algorithm for any connected collection F

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

We are done: |R(F ,t)| = 2OF (t·log t) and the same DP works!

Flat Wall Theorem: As R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = OF (t).

19/25

Algorithm for any connected collection F

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

We are done: |R(F ,t)| = 2OF (t·log t) and the same DP works!

Flat Wall Theorem:

As R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = OF (t).

19/25

Algorithm for any connected collection F

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

We are done: |R(F ,t)| = 2OF (t·log t) and the same DP works!

Flat Wall Theorem: As R is F-minor-free, if tw(R \ B) > cF ,

R \B contains a large flat wall, where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = OF (t).

19/25

Algorithm for any connected collection F

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

We are done: |R(F ,t)| = 2OF (t·log t) and the same DP works!

Flat Wall Theorem: As R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall,

where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = OF (t).

19/25

Algorithm for any connected collection F

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

We are done: |R(F ,t)| = 2OF (t·log t) and the same DP works!

Flat Wall Theorem: As R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = OF (t).

19/25

Algorithm for any connected collection F

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

We are done: |R(F ,t)| = 2OF (t·log t) and the same DP works!

Flat Wall Theorem: As R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = OF (t).

19/25

Algorithm for any connected collection F

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

We are done: |R(F ,t)| = 2OF (t·log t) and the same DP works!

Flat Wall Theorem: As R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = OF (t).

19/25

Algorithm for any connected collection F

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

We are done: |R(F ,t)| = 2OF (t·log t) and the same DP works!

Flat Wall Theorem: As R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = OF (t).

19/25

Algorithm for any connected collection F

skip

20/25

Algorithm for any connected collection F

skip 20/25

Algorithm for any connected collection F

skip 20/25

Hard part: finding an irrelevant vertex inside a flat wall

f11 b

f10

Df10

[Figure by Dimitrios M. Thilikos]skip

21/25

Hard part: finding an irrelevant vertex inside a flat wall

f11 b

f10

Df10

[Figure by Dimitrios M. Thilikos]skip

21/25

Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. skip [Rué, S., Thilikos. 2014]

22/25

Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. skip [Rué, S., Thilikos. 2014]

22/25

Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. skip [Rué, S., Thilikos. 2014]

22/25

Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. skip [Rué, S., Thilikos. 2014]

22/25

Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. skip [Rué, S., Thilikos. 2014]

22/25

Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. skip [Rué, S., Thilikos. 2014]

22/25

What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:
We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.
Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

23/25

What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:
We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.
Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

23/25

What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.
Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

23/25

What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:
We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.
Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

23/25

What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:
We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.
Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

23/25

What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:
We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.

Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

23/25

What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:
We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.
Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

23/25

What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:
We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.
Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

23/25

What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:
We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.
Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

23/25

What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:
We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.
Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

23/25

What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:
We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.
Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

23/25

For topological minors, there is (at least) one change

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house K5

24/25

Gràcies!

FREEDOM FOR ALL CATALAN POLITICAL PRISONERS IN SPAIN

25/25

