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(Invariant that measures the topological resemblance of a graph to a tree.)

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S): [Vve V(G)\S,Jue S:{u,v} e E(G)]

Theorem (Courcelle. 1990)

Every problem expressible in MSOL can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: VERTEX COVER, DOMINATING SET, HAMILTONIAN CYCLE,
CLIQUE, INDEPENDENT SET, k-COLORING for fixed k, ...
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Is it enough to prove that a problem is FPT?

Typically, Courcelle's theorem allows to prove that a problem is FPT...
... but the running time can (and must) be huge!

Major goal | find the ’smallest possible | function f(tw). | Tool: ETH

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box™ in all kinds of parameterized algorithms.
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Dynamic programming on tree decompositions

@ Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

@ Starting from the leaves of the tree decomposition, a set of
appropriately defined partial solutions is computed recursively until
the root, where a global solution is obtained.
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Dynamic programming on tree decompositions

@ Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

@ Starting from the leaves of the tree decomposition, a set of
appropriately defined partial solutions is computed recursively until
the root, where a global solution is obtained.

@ The way that these partial solutions are defined depends on each
particular problem:

[Figure by ¥alentin=Garnere]
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Two distinct types of problems

@ Local problems: solution can be certified locally at each vertex.

VERTEX COVER, DOMINATING SET, CLIQUE
Natural DP: | 20(tw) . ,O(1)

@ Connectivity problems: certificates need a global information.

LONGEST PATH, FEEDBACK VERTEX SET, STEINER TREE

Natural DP: | 20(tw-logtw) . ,O(1)
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CUt&COU nt teChniq ue: [Cygan, Nederlof, PHipczukz. van Rooij, Wojtaszczyk. 2011]
Randomized single-exponential algorithms for connectivity problems.

© Relax the connectivity requirement by considering a set of cuts that contain
the relevant (connected) solutions.

@ Count modulo 2 the number of cuts, because the non-connected solutions
will cancel out. By assigning random weights to the vertices/edges,
guarantee that w.h.p. the optimal solution is unique (Isolation Lemma).

DetermInIStIC a|g0rlthms W|th a|gebraIC trICkS [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fospin, Lokshtanow Saurakh. 2014]
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End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

CYCLE PACKING: find the maximum number of vertex-disjoint cycles.

An algorithm in time 20(twlogtw) . ,O(1) js optimal under the ETH.

[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]
This reduction uses a framework introduced by [Lokshtanov, Marx, Saurabh. 2011]

There are other examples of such problems...
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e F ={Ks}: VERTEX COVER.
Easily solvable in time 20(t) . ,O1),

e F ={K3}: FEEDBACK VERTEX SET.
“Hardly” solvable in time 29(W) . ,O(1),

[Cut&Count. 2011]

o F ={Ks,K33}: VERTEX PLANARIZATION.
SOIVabIe in t|me ze(tW.IOgtW) N no(l) [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]
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Covering topological minors

Let F be a fixed finite collection of graphs.

F-M-DELETION

Input: A graph G and an integer k.

Parameter: The treewidth tw of G.

Question: Does G contain a set S C V/(G) with |S| < k such that
G — S does not contain any graph in F as a minor?

F-TM-DELETION

Input: A graph G and an integer k.
Parameter: The treewidth tw of G.

Question: Does G contain a set S C V/(G) with |S| < k such that
G — S does not contain any graph in F as a topol. minor?

Both problems are NP-hard if F contains some edge.
FPT by Courcelle's Theorem.

[Lewis, Yannakakis. 1980]
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Work with Julien Baste and Dimitrios M. Thilikos (2016-)

Determine, for every fixed F, the (asymptotically) smallest function fr
such that 7-M-DELETION/F-TM-DELETION can be solved in time

fr(tw) - n®1)

on n-vertex graphs.

@ We do not want to optimize the degree of the polynomial factor.
@ We do not want to optimize the constants.

@ Our hardness results hold under the ETH.
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Summary of our results: arXiv 1704.07284+1907.04442

o For every F: F-M/TM-DELETION in time 227®"*™) . ,0(1),
o F connected! Toplanar’: F-M-DELETION in time 20(twlogtw) . ,O(1)

e G planar + F connected: F-M-DELETION in time 20(t) . nO@),

(For F~-TM-DELETION we need: F contains a subcubic planar graph.)

o F (connected): F-M/TM-DELETION not in time 2°(t) . yO(1)
unless the ETH fails, even if G planar.

e F ={H}, H connected: complete tight dichotomy...

!Connected collection F: all the graphs are connected.

2Planar collection F: contains at least one planar graph.
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A dichotomy for hitting a connected minor

Theorem

Let H be a connected graph.
The {H}-M-DELETION problem is solvable in time

e 20(w) . LO(1) if H <. j or H <. U

o 20(twilogtw) . hO()  Hrherwise.

In both cases, the running time is asymptotically optimal under the ETH.

v
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Complexity of hitting a single connected minor H
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Py, e—e <
P; o—eo—o

diamond Cs K14

P, o—o—o—o

A @@

K3 U2K

<1>H<>@ iy

PyUP3 gem house

P3 U2K;

claw

o XD O <
chair  banner I><I E %

bull butterfly cricket co-banner

13/25



A compact statement for a single connected graph
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All these cases can be succinctly described as follows:
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A compact statement for a single connected graph

o | N (Y =

diamond

Nl 2

R3U2K;  Ks-e Wa

%§<>®@@

P U P gem house

S [ ] S e

butterfly cricket co-banner

All these cases can be succinctly described as follows:

@ All graphs on the left are contractions of :I_‘ or U
@ All graphs on the right are not contractions of :I_. or I:I_.
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G planar 4+ F connected: time 20(t) . nO),

© | Ad-hoc single-exponential algorithms

e Some use “typical” dynamic programming.
e Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Q ’Lower bounds under the ETH

o 20(tW) is “easy”.
o 20(twlogt™w) is myuch more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]
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Some ideas of the general algorithms

o For every F: time 227" "™ . hO(1),

o F connected + planar: time 20(twlogtw) . ;O(1),

e G planar + F connected: time 29(tw) . ,O),

We build on the machinery of boundaried graphs and representatives:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

Graph

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

il

[Garnero, Paul, S., Thilikos. 2014]

Protrusion

o F connected Tplanar: time 20(twlogtw) . O(1),

Extra: Bidimensionality, irrelevant vertices, protrusion decompositions...
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@ For every t-boundaried graph G,

2
|folio(G)| = Ox(1) - (i) _ 9Ox(tlogt)

- . . (@) -lo
@ The number of distinct folios is 22 i gt).

. . . . . . O w-log tw
e This gives an algorithm running in time 22 Flwloet) h0(1),
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@ We compute, using DP over a tree decomposition of G,
the following parameter for every representative R:

p(G,R) = min{|S] : SC V(G) A repr,(G—S)=R}

@ The number of representatives is |R(7t)| = 207 (t-logt)

# labeled graphs of size < t and tw < h is 29n(t1081) 5.0 Noy . 2017
@ This gives an algorithm running in time 207 (twlogtw) . ,O(1),
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V(R) = O(2).

We are done: |R(/71)| = 207(t1ogt) and the same DP works!

Flat Wall Theorem: As R is F-minor-free, if tw(R \ B) > cr,
R\ B contains a large flat wall, where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = O£(t).
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[V(R)| = On(t)
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Hard part: finding an irrelevant vertex inside a flat wall
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Algorithm when the input graph G is planar
° get an improved bound on [R(/-1)].

@ We use a sphere-cut decomposition of the input planar graph G.

[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]
@ Nice topological properties: each separator corresponds to a noose.
@ The number of representatives is |[R(/>1)| = 207(1),
Number of planar triangulations on t vertices is 20(1) [Tutte. 1962]
@ This gives an algorithm running in time 207 (W) . nO@),

@ We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. [Rué, S., Thilikos. 2014]
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o Missing: When |F| > 2 (connected): 20(t") or 20(tw-logtw)?

o Consider families F containing disconnected graphs.

Deletion to genus at most g: 20s(twlogtw) . nO) = i Pilipeauk. 2017]

@ Concerning the ’topological minor‘ version:

e Dichotomy for {H}-TM-DELETION when H connected (+planar).

e We do not know if there exist§ some F such that F-TM-DELETION
cannot be solved in time 2°(°) . ,O(1) ynder the ETH.

° For every (connected) family 7, the 7-TM-DELETION

problem is solvable in time 20w logtw) . ,O(1),
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For topological minors, there is (at least) one change
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