Parameterized domination in circle graphs

Ignasi Sau

CNRS, LIRMM, Montpellier, France

Joint work with: Nicolas Bousquet, Daniel Gonçalves, George B. Mertzios, Christophe Paul, Stéphan Thomassé

> 5th GROW, Daejeon, South Korea October 29, 2011

> > A D > A B > A B > A B >

1/22

Outline

Motivation

Hardness results

- Independent dominating set
- Acyclic dominating set
- Tree dominating set

3 Sketch of the algorithms

Motivation

Hardness results

- Independent dominating set
- Acyclic dominating set
- Tree dominating set

3 Sketch of the algorithms

4 Conclusions

Circle graph: intersection graph of chords in a circle.

DOMINATING SET: $S \subseteq V(G)$ s.t. each $v \in V(G) \setminus S$ has a neighbor in *S*.

We will impose extra conditions that G[S] must satisfy.

CONNECTED DOMINATING SET: G[S] is connected.

TOTAL DOMINATING SET: G[S] has no isolated vertices.

ACYCLIC DOMINATING SET: G[S] has no cycles.

ACYCLIC DOMINATING SET: G[S] has no cycles.

INDEPENDENT DOMINATING SET: G[S] has no edges.

INDEPENDENT DOMINATING SET: G[S] has no edges.

State of the art in circle graphs

• Circle graphs can be recognized in $\mathcal{O}(n^2)$ time. [Spinrad. 1994]

- MAXIMUM CLIQUE and MAXIMUM INDEPENDENT SET can be solved in O(n³) time.
 [Gavril. 1973]
- TREEWIDTH can be solved in $\mathcal{O}(n^3)$ time. [Kloks. 1996]
- 3-COLORABILITY can be solved in $\mathcal{O}(n \log n)$ time.
- ► k-COLORABILITY for $k \ge 4$ is NP-complete. [Unger. 1992]

- Circle graphs can be recognized in $\mathcal{O}(n^2)$ time. [Spinrad. 1994]
- ► MAXIMUM CLIQUE and MAXIMUM INDEPENDENT SET can be solved in O(n³) time.
 [Gavril. 1973]
- ► TREEWIDTH can be solved in $O(n^3)$ time. [Kloks. 1996]
- ► 3-COLORABILITY can be solved in $O(n \log n)$ time. [Unger. 1988]
- ► *k*-COLORABILITY for $k \ge 4$ is NP-complete. [Unger. 1992]

- Circle graphs can be recognized in $\mathcal{O}(n^2)$ time. [Spinrad. 1994]
- MAXIMUM CLIQUE and MAXIMUM INDEPENDENT SET can be solved in O(n³) time.
 [Gavril. 1973]
- TREEWIDTH can be solved in $\mathcal{O}(n^3)$ time. [Kloks. 1996]
- ► 3-COLORABILITY can be solved in $O(n \log n)$ time. [Unger. 1988]
- ► *k*-COLORABILITY for $k \ge 4$ is NP-complete. [Unger. 1992]

- DOMINATING SET, CONNECTED DOMINATING SET, and TOTAL DOMINATING SET are NP-complete. [Keil. 1993]
- ► INDEPENDENT DOMINATING SET is NP-complete. [Damian, Pemmaraju. 1999]
- ACYCLIC DOMINATING SET is in P in interval and proper circular-arc graphs.
 [Hedetniemi, Hedetniemi, Rall. 2000]
- ACYCLIC DOMINATING SET is in P in bipartite permutation graphs.
 [Xu, Kang, Shan. 2006]

What about the parameterized complexity of these domination problems, when parameterized by the solution size?

Algorithm with running time O(n^{4k²+3}) for domination in polygon graphs. Therefore, DOMINATING SET is in XP.
[Elmatlah, Stewart, 1995]

- DOMINATING SET, CONNECTED DOMINATING SET, and TOTAL DOMINATING SET are NP-complete. [Keil. 1993]
- ► INDEPENDENT DOMINATING SET is NP-complete. [Damian, Pemmaraju. 1999]
- ACYCLIC DOMINATING SET is in P in interval and proper circular-arc graphs. [Hedetniemi, Hedetniemi, Rall. 2000]
- ACYCLIC DOMINATING SET is in P in bipartite permutation graphs.
 [Xu, Kang, Shan. 2006]

What about the parameterized complexity of these domination problems, when parameterized by the solution size?

Algorithm with running time O(n^{4k²+3}) for domination in polygon graphs. Therefore, DOMINATING SET is in XP.
[Elmallah, Stewart. 1993]

- DOMINATING SET, CONNECTED DOMINATING SET, and TOTAL DOMINATING SET are NP-complete. [Keil. 1993]
- ► INDEPENDENT DOMINATING SET is NP-complete. [Damian, Pemmaraju. 1999]
- ACYCLIC DOMINATING SET is in P in interval and proper circular-arc graphs. [Hedetniemi, Hedetniemi, Rall. 2000]
- ACYCLIC DOMINATING SET is in P in bipartite permutation graphs.
 [Xu, Kang, Shan. 2006]

What about the parameterized complexity of these domination problems, when parameterized by the solution size?

Algorithm with running time O(n^{4k²+3}) for domination in polygon graphs. Therefore, DOMINATING SET is in XP.
[Elmallah, Stewart, 1993]

- DOMINATING SET, CONNECTED DOMINATING SET, and TOTAL DOMINATING SET are NP-complete. [Keil. 1993]
- INDEPENDENT DOMINATING SET is NP-complete. [Damian, Pemmaraiu, 1999]
- ACYCLIC DOMINATING SET is in P in interval and proper circular-arc graphs.
- ACYCLIC DOMINATING SET is in P in bipartite permutation graphs. [Xu, Kang, Shan. 2006]

What about the parameterized complexity of these domination problems, when parameterized by the solution size?

• Algorithm with running time $\mathcal{O}(n^{4k^2+3})$ for domination in polygon graphs. Therefore, DOMINATING SET is in XP. [Elmallah, Stewart. 1993]

[Hedetniemi, Hedetniemi, Rall. 2000]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Our results (in circle graphs)

- Whereas both CONNECTED and ACYCLIC DOMINATING SET are both *W*[1]-hard, CONNECTED ACYCLIC DOM. SET is in P.
- If T is a given fixed tree, the problem of deciding whether a circle graph has a dominating set isomorphic to T is
 - ▶ NP-complete, when T is part of the input.
 - FPT, when parameterized by |V(T)|.

Our results (in circle graphs)

- Whereas both CONNECTED and ACYCLIC DOMINATING SET are both W[1]-hard, CONNECTED ACYCLIC DOM. SET is in P.
- If T is a given fixed tree, the problem of deciding whether a circle graph has a dominating set isomorphic to T is
 - ▶ NP-complete, when *T* is part of the input.
 - FPT, when parameterized by |V(T)|.

Our results (in circle graphs)

- Whereas both CONNECTED and ACYCLIC DOMINATING SET are both *W*[1]-hard, CONNECTED ACYCLIC DOM. SET is in P.
- If T is a given fixed tree, the problem of deciding whether a circle graph has a dominating set isomorphic to T is
 - ▶ NP-complete, when *T* is part of the input.
 - FPT, when parameterized by |V(T)|.

- Whereas both CONNECTED and ACYCLIC DOMINATING SET are both *W*[1]-hard, CONNECTED ACYCLIC DOM. SET is in P.
- If T is a given fixed tree, the problem of deciding whether a circle graph has a dominating set isomorphic to T is
 - ▶ NP-complete, when *T* is part of the input.
 - FPT, when parameterized by |V(T)|.

- Whereas both CONNECTED and ACYCLIC DOMINATING SET are both *W*[1]-hard, CONNECTED ACYCLIC DOM. SET is in P.
- If T is a given fixed tree, the problem of deciding whether a circle graph has a dominating set isomorphic to T is
 - ▶ NP-complete, when *T* is part of the input.
 - FPT, when parameterized by |V(T)|.

- Whereas both CONNECTED and ACYCLIC DOMINATING SET are both *W*[1]-hard, CONNECTED ACYCLIC DOM. SET is in P.
- If T is a given fixed tree, the problem of deciding whether a circle graph has a dominating set isomorphic to T is
 - ▶ NP-complete, when *T* is part of the input.
 - FPT, when parameterized by |V(T)|.

Parameterized complexity in one slide

Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a VERTEX COVER.

 Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

 $f(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)}$, for some function *f*.

Examples: *k*-Vertex Cover, *k*-Longest Path.

Barometer of intractability:

 $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots \subseteq XP$

The higher a problem is located in the W-hierarchy, the more unlikely it is to be in FPT.

Motivation

Hardness results

- Independent dominating set
- Acyclic dominating set
- Tree dominating set

3 Sketch of the algorithms

4 Conclusions

k-Colored Clique	
Instance: Parameter: Question:	A graph $G = (V, E)$ and a coloring of V using k colors. k. Does there exist a clique of size k in G containing exactly one vertex from each color?

W[1]-hard in general graphs.

[Fellows, Hermelin, Rosamond, Vialette. 2009]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

10/22

Motivation

Hardness results

Independent dominating set

- Acyclic dominating set
- Tree dominating set

3 Sketch of the algorithms

Conclusions

Parameterized reduction from k-COLORED CLIQUE in a general graph *G* to finding an INDEPENDENT DOMINATING SET of size at most 2k in a circle graph *H*.

Let $C_1, \ldots, C_k \subseteq V(G)$ be the color classes of *G*, and note that WMA that $G[C_i]$ is an independent set for $1 \le i \le k$.

Image: A mathematical states and a mathem

12/22

Let I_1, \ldots, I_k be a collection of k disjoint intervals in the circle.

For i = 1, ..., k, we proceed to construct an induced subgraph H_i of H.

$$v_{i,1} v_{i,2} v_{i,3} v_{i,4}$$

Let $v_{i,1}, \ldots, v_{i,t}$ be the vertices belonging to the color class $C_i \subseteq V(G)$.

We add a clique L_i with *t* chords $I_{i,1}, \ldots, I_{i,t}$ in this way.

Symmetrically, we add a clique R_i with *t* chords $r_{i,1}, \ldots, r_{i,t}$ in this way.

We also add two sets of 2k + 1 parallel chords in this way.

For each pair $v_{i,p}, v_{j,q} \in V(G)$ such that $i \neq j$ and $\{v_{i,p}, v_{j,q}\} \notin E(G)$, we add to *H* a chord between $v_{i,p}$ in H_i and $v_{j,q}$ in H_j , in this way.

This completes the construction of the circle graph *H*.

We now claim that *G* has a *k*-colored clique if and only if *H* has an independent dominating set of size at most 2k.

Let first *K* be a *k*-colored clique in *G* containing, for i = 1, ..., k, a vertex v_{i,j_i} in H_i .

Let first *K* be a *k*-colored clique in *G* containing, for i = 1, ..., k, a vertex v_{i,j_i} in H_i .

Let us obtain from *K* an independent dominating set *S* in *H*: For i = 1, ..., k, the set *S* contains the two chords l_{i,j_i} and r_{i,j_i} from H_i .

Let us obtain from *K* an independent dominating set *S* in *H*: For i = 1, ..., k, the set *S* contains the two chords l_{i,j_i} and r_{i,j_i} from H_i .

Since *K* is a clique in *G*, it follows that *S* is an independent dominating set of *H* of size 2k.

Conversely, assume that *H* has an independent dominating set *S* with $|S| \leq 2k$.

Because of the sets of 2k + 1 parallel chords, ≥ 1 of the chords in L_i and ≥ 1 of the chords in R_i must belong to S, so $|S| \geq 2k$.

It follows that |S| = 2k and that S contains in H_i , for i = 1, ..., k, a pair of non-crossing chords in L_i and R_i .

In each H_i , the two chords belonging to *S* must leave uncovered at least one of intervals $v_{i,1}, \ldots, v_{i,t}$.

Hence, a *k*-colored clique in *G* can by obtained by selecting in each H_i any of the uncovered vertices.

Theorem

INDEPENDENT DOMINATING SET is W[1]-hard in circle graphs.

Motivation

Hardness results

- Independent dominating set
- Acyclic dominating set
- Tree dominating set
- 3 Sketch of the algorithms
- 4 Conclusions

In order to prove that ACYCLIC DOMINATING SET is W[1]-hard in circle graphs, we modify the previous construction as follows.

We add another set of 2k + 1 parallel chords, in this way. We call these three sets of 2k + 1 chords parallel chords.

Furthermore, we add a new clique with *t* chords $d_{i,1}, \ldots, d_{i,t}$, in this way.

Finally, for each such chord $d_{i,j}$ we add a parallel twin chord, denoted by $d'_{i,i}$. We call these 2*t* chords distance chords, denoted D_i .

We now claim that *G* has a *k*-colored clique if and only if *H* has an acyclic dominating set of size at most 2k.

Key point: a pair of chords I_{i,j_1} and r_{i,j_2} dominates all the distance chords in H_i if and only if I_{i,j_1} and r_{i,j_2} do not cross.

Key point: a pair of chords I_{i,j_1} and r_{i,j_2} dominates all the distance chords in H_i if and only if I_{i,j_1} and r_{i,j_2} do not cross.

Key point: a pair of chords I_{i,j_1} and r_{i,j_2} dominates all the distance chords in H_i if and only if I_{i,j_1} and r_{i,j_2} do not cross.

Let first K be a k-colored clique in G. We define an independent (hence, acyclic) dominating set S of size 2k as before.

Conversely, assume that *H* has an acyclic dominating set *S* with $|S| \le 2k$.

Objective: in each H_i , S contains a pair of non-crossing chords in L_i and R_i .

Assume first that *S* contains no transversal chord. Then it must contain exactly two chords u, v in each H_i .

We need to distinguish several cases. For instance, if $u \in D_i$ and $v \in L_i$, then some chord of H_i is not dominated. OK!

We need to distinguish several cases. For instance, if $u \in D_i$ and $v \in L_i$, then some chord of H_i is not dominated. OK!

Otherwise, *S* contains some transversal chord, going from an interval I_i to another interval I_j .

Otherwise, *S* contains some transversal chord, going from an interval I_i to another interval I_j .

Otherwise, *S* contains some transversal chord, going from an interval I_i to another interval I_j .

Then the intervals containing some transversal chord must contain two transversal chords.

We conclude that H[S] has a connected component with minimum degree at least two, and therefore H[S] contains a cycle.

But this is a contradiction to the assumption that H[S] is an acyclic dominating set!
ACYCLIC DOMINATING SET

Theorem

ACYCLIC DOMINATING SET is W[1]-hard in circle graphs.

Motivation

Hardness results

- Independent dominating set
- Acyclic dominating set
- Tree dominating set
- 3 Sketch of the algorithms
- 4 Conclusions

Theorem

ACYCLIC DOMINATING SET is W[1]-hard in circle graphs.

Theorem

CONNECTED DOMINATING SET is W[1]-hard in circle graphs.

Theorem

CONNECTED ACYCLIC DOMINATING SET is in P in circle graphs.

T-DOMINATING SET Instance: A graph G = (V, E) and a tree T. Question: Has G a dominating set S such that $G[S] \simeq T$?

Theorem

Theorem

ACYCLIC DOMINATING SET is W[1]-hard in circle graphs.

Theorem

CONNECTED DOMINATING SET is W[1]-hard in circle graphs.

Theorem

CONNECTED ACYCLIC DOMINATING SET is in P in circle graphs.

T-DOMINATING SET Instance: A graph G = (V, E) and a tree T. Question: Has G a dominating set S such that $G[S] \simeq T$?

Theorem

Theorem

ACYCLIC DOMINATING SET is W[1]-hard in circle graphs.

Theorem

CONNECTED DOMINATING SET is W[1]-hard in circle graphs.

Theorem

CONNECTED ACYCLIC DOMINATING SET is in P in circle graphs.

T-DOMINATING SET Instance: A graph G = (V, E) and a tree T. Question: Has G a dominating set S such that $G[S] \simeq T$?

Theorem

Theorem

ACYCLIC DOMINATING SET is W[1]-hard in circle graphs.

Theorem

CONNECTED DOMINATING SET is W[1]-hard in circle graphs.

Theorem

CONNECTED ACYCLIC DOMINATING SET is in P in circle graphs.

T-DOMINATING SET Instance: A graph G = (V, E) and a tree *T*. Question: Has *G* a dominating set *S* such that $G[S] \simeq T$?

Theorem

Theorem

ACYCLIC DOMINATING SET is W[1]-hard in circle graphs.

Theorem

CONNECTED DOMINATING SET is W[1]-hard in circle graphs.

Theorem

CONNECTED ACYCLIC DOMINATING SET is in P in circle graphs.

T-DOMINATING SET Instance: A graph G = (V, E) and a tree *T*. Question: Has *G* a dominating set *S* such that $G[S] \simeq T$?

Theorem

Theorem

ACYCLIC DOMINATING SET is W[1]-hard in circle graphs.

Theorem

CONNECTED DOMINATING SET is W[1]-hard in circle graphs.

Theorem

CONNECTED ACYCLIC DOMINATING SET is in P in circle graphs.

T-DOMINATING SET Instance: A graph G = (V, E) and a tree *T*. Question: Has *G* a dominating set *S* such that $G[S] \simeq T$?

Theorem

3-PARTITION

Instance: A multiset $I = \{a_1, ..., a_n\}$ of n = 3m integers. Question: Can *I* be partitioned into *m* triples that all have the same sum *B*?

Strongly NP-complete, even if every $a_i \in (B/4, B/2)$. [Garey, Johnson. 1979]

$$I = \{1,1,1,1,2,2,2,2,3\}$$
$$\{1,2,2\} \ \{1,2,2\} \ \{1,2,2\} \ \{1,1,3\}$$
$$m = 3 \qquad B = 5$$

Let $I = \{a_1, \dots, a_n\}$ be an instance of 3-PARTITION, in which the a_i 's are between B/4 and B/2, and let $B = \sum_{i=1}^n a_i/m$ be the desired sum.

$$I = \{1,1,1,1,2,2,2,2,3\}$$
$$\{1,2,2\} \ \{1,2,2\} \ \{1,2,2\} \ \{1,1,3\}$$
$$m = 3 \qquad B = 5$$

We proceed to define a tree T and to build a circle graph G that has a T-dominating set S if and only if I is a YES-instance of 3-PARTITION.

$$I = \{1,1,1,1,2,2,2,2,3\}$$
$$\{1,2,2\} \ \{1,2,2\} \ \{1,2,2\} \ \{1,1,3\}$$
$$m = 3 \qquad B = 5$$

Let *T* be the rooted tree obtained from a root *r* to which we attach a path with a_i vertices, for i = 1, ..., n.

To build *G*, we start with a chord *r* (the root of *T*), and in each endpoint of *r* we add n + 1 **parallel chords** intersecting only with *r*.

Now we add *mB* parallel chords g_1, \ldots, g_{mB} intersecting only with *r*. These chords are called branch chords.

For i = 1, ..., mB, we add a chord b_i incident only with g_i . These chords are called pendant chords.

Finally, for $i \in \{1, 2, 3, ..., mB - 1\} \setminus \{B, 2B, 3B, ..., (m - 1)B\}$, we add a chain chord r_i , in this way.

First, if *I* be a YES-instance of 3-PARTITION, we define a *T*-dominating set *S* in *G*, in the following way.

First, if *I* be a YES-instance of 3-PARTITION, we define a *T*-dominating set *S* in *G*, in the following way.

First, if *I* be a YES-instance of 3-PARTITION, we define a *T*-dominating set *S* in *G*, in the following way.

Conversely, let S be a T-dominating set S in G. By the parallel chords, necessarily r belongs to S.

As |S| = mB + 1 and the number of pendant chords in *G* is *mB*, it follows by construction that *S* contains no pendant chord.

As the a_i 's are strictly between B/4 and B/2, each **block** has exactly 3 branch chords in *S*.

The fact that chain edges are missing between consecutive blocks assures the existence of a 3-partition of *I*.

Theorem

T-DOMINATING SET is NP-complete in circle graphs.

Motivation

Hardness results

- Independent dominating set
- Acyclic dominating set
- Tree dominating set

3 Sketch of the algorithms

4 Conclusions

Deciding whether a circle graph has a dominating set isomorphic to some tree can be done in polynomial time.

- Idea: By dynamic programming, we compute all partial solutions whose extremal endpoints define a prescribed quadruple in the circle.
- Running time: $\mathcal{O}(k \cdot n^8)$.

Theorem

Deciding whether a circle graph has a dominating set isomorphic to a fixed tree T is FPT, when parameterized by |V(T)|.

Idea: in the previous algorithm, we further impose that a partial solutions consists of a prescribed subset of subgraphs of *T*.
Running time: 2^{O(|V(T)|)} · n⁸.

Deciding whether a circle graph has a dominating set isomorphic to some tree can be done in polynomial time.

- Idea: By dynamic programming, we compute all partial solutions whose extremal endpoints define a prescribed quadruple in the circle.
- Running time: $\mathcal{O}(k \cdot n^8)$.

Theorem

Deciding whether a circle graph has a dominating set isomorphic to a fixed tree T is FPT, when parameterized by |V(T)|.

Idea: in the previous algorithm, we further impose that a partial solutions consists of a prescribed subset of subgraphs of *T*.
Bunning time: 2^{O(|V(T)|)} · n⁸

Deciding whether a circle graph has a dominating set isomorphic to some tree can be done in polynomial time.

- Idea: By dynamic programming, we compute all partial solutions whose extremal endpoints define a prescribed quadruple in the circle.
- Running time: $\mathcal{O}(k \cdot n^8)$.

Theorem

Deciding whether a circle graph has a dominating set isomorphic to a fixed tree T is FPT, when parameterized by |V(T)|.

Idea: in the previous algorithm, we further impose that a partial solutions consists of a prescribed subset of subgraphs of *T*.

• Running time: $2^{\mathcal{O}(|V(T)|)} \cdot n^8$.

Deciding whether a circle graph has a dominating set isomorphic to some tree can be done in polynomial time.

- Idea: By dynamic programming, we compute all partial solutions whose extremal endpoints define a prescribed quadruple in the circle.
- Running time: $\mathcal{O}(k \cdot n^8)$.

Theorem

Deciding whether a circle graph has a dominating set isomorphic to a fixed tree T is FPT, when parameterized by |V(T)|.

- Idea: in the previous algorithm, we further impose that a partial solutions consists of a prescribed subset of subgraphs of *T*.
- Running time: $2^{\mathcal{O}(|V(T)|)} \cdot n^8$.

Motivation

Hardness results

- Independent dominating set
- Acyclic dominating set
- Tree dominating set

3 Sketch of the algorithms

- We also proved that finding a dominating set isomorphic to some path can be solved in polynomial time in circle graphs.
- This result can be extended to a dominating set isomorphic to some graph with pathwidth bounded by a fixed constant *l*.
- ★ Can this result be extended to graphs of bounded treewidth?
- Polynomial kernel when parameterized by treewidth, or by vertex cover? (not plausible in general graphs, even if it is FPT by Courcelle)
- It can be easily seen that DOMINATING CLIQUE can be solved in polynomial time in circle graphs.
- ► DOMINATING CLIQUE is W[1]-hard in 3-interval graphs. [Jiang, Zhang, IPEC'11]
- 🛧 МАХІМИМ CLIQUE in 2-interval graphs: Polynomial or NP-hard?

- We also proved that finding a dominating set isomorphic to some path can be solved in polynomial time in circle graphs.
- ► This result can be extended to a dominating set isomorphic to some graph with pathwidth bounded by a fixed constant *l*.
- ★ Can this result be extended to graphs of bounded treewidth?
- ★ Polynomial kernel when parameterized by treewidth, or by vertex cover? (not plausible in general graphs, even if it is FPT by Courcelle)
- It can be easily seen that DOMINATING CLIQUE can be solved in polynomial time in circle graphs.
- ▶ DOMINATING CLIQUE is W[1]-hard in 3-interval graphs. [Jiang, Zhang, IPEC11]
- 🛧 МАХІМИМ CLIQUE in 2-interval graphs: Polynomial or NP-hard?

- We also proved that finding a dominating set isomorphic to some path can be solved in polynomial time in circle graphs.
- ► This result can be extended to a dominating set isomorphic to some graph with pathwidth bounded by a fixed constant *l*.
- ★ Can this result be extended to graphs of bounded treewidth?
- ★ Polynomial kernel when parameterized by treewidth, or by vertex cover? (not plausible in general graphs, even if it is FPT by Courcelle)
- It can be easily seen that DOMINATING CLIQUE can be solved in polynomial time in circle graphs.
- ▶ DOMINATING CLIQUE is W[1]-hard in 3-interval graphs. [Jiang, Zhang. IPEC'11]
- ★ МАХІМИМ CLIQUE in 2-interval graphs: Polynomial or NP-hard?

- We also proved that finding a dominating set isomorphic to some path can be solved in polynomial time in circle graphs.
- ► This result can be extended to a dominating set isomorphic to some graph with pathwidth bounded by a fixed constant *l*.
- ★ Can this result be extended to graphs of bounded treewidth?
- ★ Polynomial kernel when parameterized by treewidth, or by vertex cover? (not plausible in general graphs, even if it is FPT by Courcelle)
- It can be easily seen that DOMINATING CLIQUE can be solved in polynomial time in circle graphs.
- ► DOMINATING CLIQUE is W[1]-hard in 3-interval graphs. [Jiang, Zhang. IPEC'11]

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

★ МАХІМИМ CLIQUE in 2-interval graphs: Polynomial or NP-hard?

- We also proved that finding a dominating set isomorphic to some path can be solved in polynomial time in circle graphs.
- ► This result can be extended to a dominating set isomorphic to some graph with pathwidth bounded by a fixed constant *l*.
- ★ Can this result be extended to graphs of bounded treewidth?
- ★ Polynomial kernel when parameterized by treewidth, or by vertex cover? (not plausible in general graphs, even if it is FPT by Courcelle)
- It can be easily seen that DOMINATING CLIQUE can be solved in polynomial time in circle graphs.
- ► DOMINATING CLIQUE is W[1]-hard in 3-interval graphs. [Jiang, Zhang. IPEC'11]

★ МАХІМИМ CLIQUE in 2-interval graphs: Polynomial or NP-hard?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- We also proved that finding a dominating set isomorphic to some path can be solved in polynomial time in circle graphs.
- ► This result can be extended to a dominating set isomorphic to some graph with pathwidth bounded by a fixed constant *l*.
- ★ Can this result be extended to graphs of bounded treewidth?
- ★ Polynomial kernel when parameterized by treewidth, or by vertex cover? (not plausible in general graphs, even if it is FPT by Courcelle)
- It can be easily seen that DOMINATING CLIQUE can be solved in polynomial time in circle graphs.
- ► DOMINATING CLIQUE is W[1]-hard in 3-interval graphs. [Jiang, Zhang, IPEC'11]

MAXIMUM CLIQUE in 2-interval graphs: Polynomial or NP-hard?
Conclusions and further research

- We also proved that finding a dominating set isomorphic to some path can be solved in polynomial time in circle graphs.
- ► This result can be extended to a dominating set isomorphic to some graph with pathwidth bounded by a fixed constant *l*.
- ★ Can this result be extended to graphs of bounded treewidth?
- ★ Polynomial kernel when parameterized by treewidth, or by vertex cover? (not plausible in general graphs, even if it is FPT by Courcelle)
- It can be easily seen that DOMINATING CLIQUE can be solved in polynomial time in circle graphs.
- ► DOMINATING CLIQUE is W[1]-hard in 3-interval graphs. [Jiang, Zhang. IPEC'11]
- ★ MAXIMUM CLIQUE in 2-interval graphs: Polynomial or NP-hard?

Gràcies!

