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Circle graphs and domination
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Circle graph: intersection graph of chords in a circle.
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DOMINATING SET: S ⊆ V (G) s.t. each v ∈ V (G) \ S has a neighbor in S.
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We will impose extra conditions that G[S] must satisfy.
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Circle graphs and domination
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CONNECTED DOMINATING SET: G[S] is connected.
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Circle graphs and domination
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TOTAL DOMINATING SET: G[S] has no isolated vertices.
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ACYCLIC DOMINATING SET: G[S] has no cycles.
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State of the art in circle graphs

I Circle graphs can be recognized in O(n2) time. [Spinrad. 1994]

I MAXIMUM CLIQUE and MAXIMUM INDEPENDENT SET can be
solved in O(n3) time. [Gavril. 1973]

I TREEWIDTH can be solved in O(n3) time. [Kloks. 1996]

I 3-COLORABILITY can be solved in O(n log n) time. [Unger. 1988]

I k -COLORABILITY for k ≥ 4 is NP-complete. [Unger. 1992]
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Domination in circle graphs

I DOMINATING SET, CONNECTED DOMINATING SET, and TOTAL

DOMINATING SET are NP-complete. [Keil. 1993]

I INDEPENDENT DOMINATING SET is NP-complete. [Damian, Pemmaraju. 1999]

I ACYCLIC DOMINATING SET is in P in interval and proper
circular-arc graphs. [Hedetniemi, Hedetniemi, Rall. 2000]

I ACYCLIC DOMINATING SET is in P in bipartite permutation graphs.
[Xu, Kang, Shan. 2006]

What about the parameterized complexity of these domination
problems, when parameterized by the solution size?

I Algorithm with running time O(n4k2+3) for domination in polygon
graphs. Therefore, DOMINATING SET is in XP. [Elmallah, Stewart. 1993]
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Our results (in circle graphs)

1 DOMINATING SET,
CONNECTED DOMINATING SET,
TOTAL DOMINATING SET,
INDEPENDENT DOMINATING SET,
ACYCLIC DOMINATING SET

are W [1]-hard, parameterized by the size of the solution.

2 Whereas both CONNECTED and ACYCLIC DOMINATING SET are
both W [1]-hard, CONNECTED ACYCLIC DOM. SET is in P.

3 If T is a given fixed tree, the problem of deciding whether a circle
graph has a dominating set isomorphic to T is

I NP-complete, when T is part of the input.
I FPT, when parameterized by |V (T )|.
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Parameterized complexity in one slide

I Idea: given an NP-hard problem, fix one parameter of the input to
see if the problem gets more “tractable”.

Example: the size of a VERTEX COVER.

I Given a (NP-hard) problem with input of size n and a parameter k ,
a fixed-parameter tractable (FPT) algorithm runs in

f (k) · nO(1), for some function f .

Examples: k -VERTEX COVER, k -LONGEST PATH.

I Barometer of intractability:

FPT ⊆W [1] ⊆W [2] ⊆W [3] ⊆ · · · ⊆ XP

I The higher a problem is located in the W -hierarchy, the more
unlikely it is to be in FPT.
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Multicolored Clique

k -COLORED CLIQUE

espai
Instance: A graph G = (V ,E) and a coloring of V using k colors.

Parameter: k .
Question: Does there exist a clique of size k in G containing

exactly one vertex from each color?

W[1]-hard in general graphs. [Fellows, Hermelin, Rosamond, Vialette. 2009]
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INDEPENDENT DOMINATING SET

Parameterized reduction from k -COLORED CLIQUE in a general graph
G to finding an INDEPENDENT DOMINATING SET of size at most 2k in a
circle graph H.
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INDEPENDENT DOMINATING SET

Let C1, . . . ,Ck ⊆ V (G) be the color classes of G, and note that WMA
that G[Ci ] is an independent set for 1 ≤ i ≤ k .
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INDEPENDENT DOMINATING SET

I1

I i

I k I2

Let I1, . . . , Ik be a collection of k disjoint intervals in the circle.
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INDEPENDENT DOMINATING SET

I1

I i

I k I2

For i = 1, . . . , k , we proceed to construct an induced subgraph Hi of H.
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INDEPENDENT DOMINATING SET

vi,1 vi,2 vi,3 vi,4

Let vi,1, . . . , vi,t be the vertices belonging to the color class Ci ⊆ V (G).
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INDEPENDENT DOMINATING SET

vi,11 2 3 4

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

i,4

Li

We add a clique Li with t chords li,1, . . . , li,t in this way.
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INDEPENDENT DOMINATING SET

vi,11 2 3 4 1 2 3 4

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li R i

Symmetrically, we add a clique Ri with t chords ri,1, . . . , ri,t in this way.
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INDEPENDENT DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li R i

We also add two sets of 2k + 1 parallel chords in this way.
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INDEPENDENT DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li R i

For each pair vi,p, vj,q ∈ V (G) such that i 6= j and {vi,p, vj,q} /∈ E(G),
we add to H a chord between vi,p in Hi and vj,q in Hj , in this way.
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INDEPENDENT DOMINATING SET

I1

I i

I k I2

This completes the construction of the circle graph H.
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INDEPENDENT DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li R i

We now claim that G has a k -colored clique if and only if H has an
independent dominating set of size at most 2k .
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vi,11 2 3 4 1 2 3 4
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ll i,2 l i,3l i,1

vi,2 vi,3 vi,4
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Let first K be a k -colored clique in G containing, for i = 1, . . . , k , a
vertex vi,ji in Hi .
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INDEPENDENT DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li R i

Let us obtain from K an independent dominating set S in H: For
i = 1, . . . , k , the set S contains the two chords li,ji and ri,ji from Hi .
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INDEPENDENT DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li R i

Since K is a clique in G, it follows that S is an independent dominating
set of H of size 2k .
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INDEPENDENT DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li R i

Conversely, assume that H has an independent dominating set S with
|S| ≤ 2k .
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INDEPENDENT DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li R i

Because of the sets of 2k + 1 parallel chords, ≥ 1 of the chords in Li
and ≥ 1 of the chords in Ri must belong to S, so |S| ≥ 2k .
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INDEPENDENT DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li R i

It follows that |S| = 2k and that S contains in Hi , for i = 1, . . . , k , a pair
of non-crossing chords in Li and Ri .
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INDEPENDENT DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li R i

In each Hi , the two chords belonging to S must leave uncovered at
least one of intervals vi,1, . . . , vi,t .
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INDEPENDENT DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li R i

Hence, a k -colored clique in G can by obtained by selecting in each Hi
any of the uncovered vertices.
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INDEPENDENT DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li R i

Theorem
INDEPENDENT DOMINATING SET is W [1]-hard in circle graphs.
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ACYCLIC DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li Ri

In order to prove that ACYCLIC DOMINATING SET is W [1]-hard in circle
graphs, we modify the previous construction as follows.
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ACYCLIC DOMINATING SET

vi,11 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

r r r ri,1 i,2 i,3i,4 i,4

Li Ri

We add another set of 2k + 1 parallel chords, in this way. We call
these three sets of 2k + 1 chords parallel chords.
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ACYCLIC DOMINATING SET

vi,1

d

1 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

d

d
d i,4

r r r r

i,1

i,1

i,2

i,2

i,3

i,3i,4 i,4

Li Ri

Di

Furthermore, we add a new clique with t chords di,1, . . . ,di,t , in this
way.

14/22



ACYCLIC DOMINATING SET

vi,1

d

1 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

d

d
d i,4

r r r r

i,1

i,1

i,2

i,2

i,3

i,3i,4 i,4

Li Ri

Di

Finally, for each such chord di,j we add a parallel twin chord, denoted
by d ′

i,j . We call these 2t chords distance chords, denoted Di .
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ACYCLIC DOMINATING SET

vi,1

d

1 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

d

d
d i,4

r r r r

i,1

i,1

i,2

i,2

i,3

i,3i,4 i,4

Li Ri

Di

We now claim that G has a k -colored clique if and only if H has an
acyclic dominating set of size at most 2k .
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ACYCLIC DOMINATING SET

vi,1

d

1 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

d

d
d i,4

r r r r

i,1

i,1

i,2

i,2

i,3

i,3i,4 i,4

Li Ri

Di

Key point: a pair of chords li,j1 and ri,j2 dominates all the distance
chords in Hi if and only if li,j1 and ri,j2 do not cross.
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ACYCLIC DOMINATING SET

vi,1

d

1 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

d

d
d i,4

r r r r

i,1

i,1

i,2

i,2

i,3

i,3i,4 i,4

Li Ri

Di

Let first K be a k -colored clique in G. We define an independent
(hence, acyclic) dominating set S of size 2k as before.
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ACYCLIC DOMINATING SET

vi,1

d

1 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

d

d
d i,4

r r r r

i,1

i,1

i,2

i,2

i,3

i,3i,4 i,4

Li Ri

Di

Conversely, assume that H has an acyclic dominating set S with
|S| ≤ 2k .
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ACYCLIC DOMINATING SET

vi,1

d

1 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

d

d
d i,4

r r r r

i,1

i,1

i,2

i,2

i,3

i,3i,4 i,4

Li Ri

Di

Objective: in each Hi , S contains a pair of non-crossing chords in Li
and Ri .
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ACYCLIC DOMINATING SET

vi,1

d

1 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

d

d
d i,4

r r r r

i,1

i,1

i,2

i,2

i,3

i,3i,4 i,4

Li Ri

Di

Assume first that S contains no transversal chord. Then it must contain
exactly two chords u, v in each Hi .
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ACYCLIC DOMINATING SET

vi,1

d

1 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

d

d
d i,4

r r r r

i,1

i,1

i,2

i,2

i,3

i,3i,4 i,4

Li Ri

Di

We need to distinguish several cases. For instance, if u ∈ Di and
v ∈ Li , then some chord of Hi is not dominated. OK!
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Ii to another interval Ij .

14/22



ACYCLIC DOMINATING SET

vi,1

d

1 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

d

d
d i,4

r r r r

i,1

i,1

i,2

i,2

i,3

i,3i,4 i,4

Li Ri

Di

Otherwise, S contains some transversal chord, going from an interval
Ii to another interval Ij .

14/22



ACYCLIC DOMINATING SET

vi,1

d

1 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

d

d
d i,4

r r r r

i,1

i,1

i,2

i,2

i,3

i,3i,4 i,4

Li Ri

Di

Otherwise, S contains some transversal chord, going from an interval
Ii to another interval Ij .

14/22



ACYCLIC DOMINATING SET

vi,1

d

1 2 3 4 1 2 3 4
2k+1 2k+1 2k+1

ll i,2 l i,3l i,1

vi,2 vi,3 vi,4

d

d
d i,4

r r r r

i,1

i,1

i,2

i,2

i,3

i,3i,4 i,4

Li Ri

Di

Then the intervals containing some transversal chord must contain two
transversal chords.
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We conclude that H[S] has a connected component with minimum
degree at least two, and therefore H[S] contains a cycle.
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But this is a contradiction to the assumption that H[S] is an acyclic
dominating set!
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Theorem
ACYCLIC DOMINATING SET is W [1]-hard in circle graphs.
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T -DOMINATING SET

Theorem
ACYCLIC DOMINATING SET is W [1]-hard in circle graphs.

Theorem
CONNECTED DOMINATING SET is W [1]-hard in circle graphs.

Theorem
CONNECTED ACYCLIC DOMINATING SET is in P in circle graphs.

T -DOMINATING SET
Instance: A graph G = (V ,E) and a tree T .
Question: Has G a dominating set S such that G[S] ' T ?

Theorem
T -DOMINATING SET is NP-complete in circle graphs,
and FPT when parameterized by |V (T )|.
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NP-completeness of T -DOMINATING SET

3-PARTITION

espai
Instance: A multiset I = {a1, . . . ,an} of n = 3m integers.
Question: Can I be partitioned into m triples

that all have the same sum B?

Strongly NP-complete, even if every ai ∈ (B/4,B/2). [Garey, Johnson. 1979]
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NP-completeness of T -DOMINATING SET

I = {1,1,1,1,2,2,2,2,3}

{1,2,2}  {1,2,2}  {1,1,3}

B = 5m = 3

Let I = {a1, . . . ,an} be an instance of 3-PARTITION, in which the ai ’s
are between B/4 and B/2, and let B =

∑n
i=1 ai/m be the desired sum.
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NP-completeness of T -DOMINATING SET

I = {1,1,1,1,2,2,2,2,3}

{1,2,2}  {1,2,2}  {1,1,3}

B = 5m = 3

We proceed to define a tree T and to build a circle graph G that has a
T -dominating set S if and only if I is a YES-instance of 3-PARTITION.
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NP-completeness of T -DOMINATING SET

I = {1,1,1,1,2,2,2,2,3}

{1,2,2}  {1,2,2}  {1,1,3}

B = 5m = 3

T r

Let T be the rooted tree obtained from a root r to which we attach a
path with ai vertices, for i = 1, . . . ,n.
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NP-completeness of T -DOMINATING SET

I = {1,1,1,1,2,2,2,2,3}

{1,2,2}  {1,2,2}  {1,1,3}

B = 5m = 3

T r

G

r

To build G, we start with a chord r (the root of T ), and in each endpoint
of r we add n + 1 parallel chords intersecting only with r .
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NP-completeness of T -DOMINATING SET

I = {1,1,1,1,2,2,2,2,3}

{1,2,2}  {1,2,2}  {1,1,3}

B = 5m = 3

T r

G

r

Now we add mB parallel chords g1, . . . ,gmB intersecting only with r .
These chords are called branch chords.
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NP-completeness of T -DOMINATING SET

I = {1,1,1,1,2,2,2,2,3}

{1,2,2}  {1,2,2}  {1,1,3}

B = 5m = 3

T r

G

r

For i = 1, . . . ,mB, we add a chord bi incident only with gi . These
chords are called pendant chords.
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B = 5m = 3

T r
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Finally, for i ∈ {1,2,3, . . . ,mB − 1} \ {B,2B,3B, . . . , (m − 1)B}, we
add a chain chord ri , in this way.
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First, if I be a YES-instance of 3-PARTITION, we define a T -dominating
set S in G, in the following way.
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NP-completeness of T -DOMINATING SET

I = {1,1,1,1,2,2,2,2,3}

{1,2,2}  {1,2,2}  {1,1,3}

B = 5m = 3

T r

G

r

Conversely, let S be a T -dominating set S in G. By the parallel chords,
necessarily r belongs to S.
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NP-completeness of T -DOMINATING SET

I = {1,1,1,1,2,2,2,2,3}

{1,2,2}  {1,2,2}  {1,1,3}

B = 5m = 3

T r

G

r

As |S| = mB + 1 and the number of pendant chords in G is mB, it
follows by construction that S contains no pendant chord.
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NP-completeness of T -DOMINATING SET

I = {1,1,1,1,2,2,2,2,3}

{1,2,2}  {1,2,2}  {1,1,3}

B = 5m = 3

T r

G

r

{1,2,2}

{1,2,2}

{1,1,3}

As the ai ’s are strictly between B/4 and B/2, each block has exactly 3
branch chords in S.
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NP-completeness of T -DOMINATING SET
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B = 5m = 3

T r

G
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{1,2,2}
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The fact that chain edges are missing between consecutive blocks
assures the existence of a 3-partition of I.
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Main ideas of the algorithms

Theorem
Deciding whether a circle graph has a dominating set isomorphic to
some tree can be done in polynomial time.

I Idea: By dynamic programming, we compute all partial solutions whose
extremal endpoints define a prescribed quadruple in the circle.

I Running time: O(k · n8).

Theorem
Deciding whether a circle graph has a dominating set isomorphic to a
fixed tree T is FPT, when parameterized by |V (T )|.

I Idea: in the previous algorithm, we further impose that a partial
solutions consists of a prescribed subset of subgraphs of T .

I Running time: 2O(|V (T )|) · n8.
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Conclusions and further research

I We also proved that finding a dominating set isomorphic to some
path can be solved in polynomial time in circle graphs.

I This result can be extended to a dominating set isomorphic to
some graph with pathwidth bounded by a fixed constant `.

F Can this result be extended to graphs of bounded treewidth?

F Polynomial kernel when parameterized by treewidth, or by vertex
cover? (not plausible in general graphs, even if it is FPT by Courcelle)

I It can be easily seen that DOMINATING CLIQUE can be solved in
polynomial time in circle graphs.

I DOMINATING CLIQUE is W [1]-hard in 3-interval graphs. [Jiang, Zhang. IPEC’11]

F MAXIMUM CLIQUE in 2-interval graphs: Polynomial or NP-hard?
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Gràcies!

22/22


	Motivation
	Hardness results
	Independent dominating set
	Acyclic dominating set
	Tree dominating set

	Sketch of the algorithms
	Conclusions

