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Some history of complexity: NP-completeness

Cook-Levin Theorem (1971): the SAT problem is NP-complete.

Karp (1972): list of 21 important NP-complete problems.

Nowadays, literally thousands of problems are known to be NP-hard:
unless P = NP, they cannot be solved in polynomial time.

But what does it mean for a problem to be NP-hard?

No algorithm solves all instances optimally in polynomial time.
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Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

VLSI design: the number of circuit layers is usually ≤ 10.

Computational biology: Real instances of DNA chain reconstruction
usually have treewidth ≤ 11.

Robotics: Number of degrees of freedom in motion planning problems ≤ 10.

Compilers: Checking compatibility of type declarations is hard, but usually
the depth of type declarations is ≤ 10.

Message In many applications, not only the total size of the instance
matters, but also the value of an additional parameter.
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The area of parameterized complexity

Idea Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established area with hundreds of articles published
every year in the most prestigious TCS journals and conferences.
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Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Independent Set: Does a graph G contain a set S ⊆ V (G),
with |S| ≥ k, of pairwise non-adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?
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They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n))

= f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Independent Set: Solvable in time O(k2 · nk)

= f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard
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Why k-Clique may not be FPT?

k-Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)
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How to transfer hardness among parameterized problems?

Let A,B ⊆ Σ∗ ×N be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i ]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]
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Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel
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Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels?

NO!

Theorem (Bodlaender, Downey, Fellows, Hermelin, 2009)
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.
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Typical approach to deal with a parameterized problem

Parameterized problem L
k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring
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Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.
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Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

3 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).
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Next section is...

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions
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What is known about the number of (partial) k-trees?

Labeled k-trees

6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n

k
)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees
k = 1: The number of n-vertex labeled forests is ∼ c · nn−2

for some explicit constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is
∼ g · n− 5

2 γnn! for some constants g , γ > 0.
[Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k.
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Tn,k and an easy upper bound

Let Tn,k be the number of n-vertex labeled partial k-trees.

Objective Obtaining accurate bounds for Tn,k .

As an n-vertex k-tree has kn − k(k+1)
2 edges, we get the upper bound:

Tn,k ≤
(
n
k

)
· (kn − k2 + 1)n−k−2 · 2kn− k(k+1)

2

≤ (k · 2k · n)n · 2−
k(k+1)

2 · k−k
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An easy lower bound

Take a forest on n − (k − 1) vertices:
(n − k + 1)(n−k−1) possibilities

Tn,k ≥ (n − k + 1)(n−k−1) · 2(k−1)(n−k+1)

≥
(

1
4 · 2

k · n
)n
· 2−k2
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An improved lower bound
Summarizing, so far we have:

Tn,k ≤ (k · 2k · n)n · 2−
k(k+1)

2 · k−k

Tn,k ≥
(1
4 · 2

k · n
)n
· 2−k2

Gap in the dominant term: (4 · k)n

Theorem (Baste, Noy, S., 2017)

For any two integers n, k with 1 < k ≤ n, the number Tn,k of n-vertex
labeled graphs with treewidth at most k satisfies

Tn,k ≥
( 1
128e ·

k
log k · 2

k · n
)n
· 2−

k(k+3)
2 · k−2k−2.

Gap in the dominant term: (128e · log k)n
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Meta-kernelization

As in the case of FPT algorithms, there exist meta-kernelization results.

Typical statement:

Every parameterized problem that satisfies property Π is admits
a linear/polynomial kernel on the class of graphs G.

This has been also a very active area in parameterized complexity, specially
on sparse graphs: planar graphs, graphs on surfaces, minor-free graphs, ...
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Minors and topological minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg ≤ 2.

Therefore: H topological minor of G ⇒ H minor of G

Fixed H: H-minor-free graphs ⊆ H-topological-minor-free graphs
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Linear kernels on sparse graphs – an overview

Dominating Set on planar graphs. [Alber, Fellows, Niedermeier. 2002]

Framework for several problems on planar graphs. [Guo, Niedermeier. 2007]

Meta-kernelization for graphs of bounded genus.
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

Meta-kernelization for minor-free graphs. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

F Meta-kernelization for topological-minor-free graphs.
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]
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Protrusions
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

Given a graph G , a set W ⊆ V (G) is a t-protrusion of G if

|∂G(W )| ≤ t and tw(G [W ]) ≤ t.

[Figure by Felix Reidl]

We call ∂G(W ) the boundary and |W | the size of W .
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Meta-kernelization on graphs without topological minors

Theorem (Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar, 2013)
Fix a graph H. Let P be a parameterized graph problem on the class of
H-topological-minor-free graphs that is treewidth-bounding and has finite
integer index (FII). Then P admits a linear kernel.

A parameterized graph problem P is treewidth-bounding if
∃ constants c, t such that if (G , k) ∈ P then

∃X ⊆ V (G) s.t. |X | ≤ c · k and tw(G − X ) ≤ t.

FII allows us to replace large protrusions by smaller gadgets...

Some problems affected by our result:
Treewidth-t Vertex Deletion, Chordal Vertex Deletion, Interval
Vertex Deletion, Edge Dominating Set, Feedback Vertex Set,
Connected Vertex Cover, . . .
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Linear kernels on sparse graphs – the conditions

[Figure by Felix Reidl]
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Are our conditions very restrictive?

We require FII + treewidth-bounding

FII is necessary when using protrusion replacement rules.

What about requiring the problems to be treewidth-bounding?

Conditions on H-minor-free graphs:
bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

But it holds that

bidimensional + separation property ⇒ treewidth-bounding

Our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]
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Idea of the proof(s): protrusion decompositions

Given a problem P with parameter k, a linear protrusion decomposition of
a graph G is a partition Y0 ] Y1 ] · · · ] Y` of V (G) such that:

|Y0| = O(k).
` = O(k) and for every 1 6 i 6 `, Yi is a t-protrusion.

[Figure by Felix Reidl]

Idea Find a linear protrusion decomposition in polynomial time, and
replace each of the O(k) protrusions with a constant-sized gadget.
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Constructibility issues

Idea Find a linear protrusion decomposition in polynomial time, and
replace each of the O(k) protrusions with a constant-sized gadget.

F We assume that the gadgets are given ... the algorithm is non-uniform.

Same problem in the previous work based on protrusion replacement:
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

There are some techniques to actually construct the kernels (CMSO logic),
but it is hard to extract explicit constants on the size of the kernels...
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Explicit linear kernels via dynamic programming

We propose an approach to replace protrusions with explicit constants:

Instead of FII or CMSO logic we use dynamic programming

We formalize the notion of encoding for the tables of
dynamic programming (DP) on tree decompositions.

Conditions to obtain protrusion replacer with explicit constants:

Confined encoder: number of distinct values is a function of the tw.

DP-friendly encoder: we can safely replace equivalent “protrusions”.
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An explicit meta-kernelization result

∂(G)

G

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .
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Next subsection is...

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions
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Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [ ∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G) ]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...
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Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · nO(1)

= 2345678tw

· nO(1)

Major goal: find the smallest possible function f (tw).

This is a very active area in parameterized complexity.
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Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).

Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

[Impagliazzo, Paturi. 1999]

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).
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ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

[Impagliazzo, Paturi. 1999]

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
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Bounds for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the
“natural” DP algorithms lead to (optimal) single-exponential algorithms:

2O(tw) · nO(1).

But for the so-called connectivity problems, like Longest Path or
Steiner Tree, the “natural” DP algorithms provide only time

2O(tw·log tw) · nO(1).
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Single-exponential algorithms on sparse graphs
On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:
partial solutions ⇐⇒ non-crossing partitions

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≤ 4k .
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The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]
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End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

There are other examples of such problems...
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The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

With Julien Baste and Dimitrios M. Thilikos we proved the following...
[arXiv:1704.07284. 2018]
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Complexity of {H}-Deletion for small planar graphs H

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

Classification of the complexity of {H}-M-Deletion for all connected
simple planar graphs H with |V (H)| ≤ 5 and |E (H)| ≥ 1: for the 9 graphs
on the left (resp. 20 graphs on the right), the problem is solvable in time
2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion, K1,4
should be on the left.
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Next section is...

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions
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What’s next?

There are many problems that I would like to solve...

In particular, several questions concerning F-Deletion:

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still very far from it.

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

Conjecture For every connected planar graph H with |V (H)| ≥ 6,
F-Deletion is solvable in time 2Θ(tw·log tw) · nO(1) under the ETH.
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Ultimate goal: classify the (asymptotically) tight complexity of
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We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.
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Gràcies!
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