
Some Contributions to Parameterized Complexity

Habilitation à Diriger des Recherches (HDR)
Montpellier, June 25, 2018

Ignasi Sau
CNRS, LIRMM, Université de Montpellier

Reviewers: Michael R. Fellows - University of Bergen
Rolf Niedermeier - Technische Universität Berlin
Fedor V. Fomin - University of Bergen

Examinators: Jean-Claude Bermond - CNRS, U. de Nice-Sophia Antipolis
Marc Noy - Univ. Politècnica de Catalunya
Dimitrios M. Thilikos - CNRS, Université de Montpellier
Gilles Trombettoni - Université de Montpellier

1/51

Outline of the talk

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions

2/51

Next section is...

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions

3/51

Next subsection is...

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions

4/51

My (scientific) life in one slide

5/51

My (scientific) life in one slide

2000 2005

Degree in Maths
(Barcelona)

Maths + Telecom at Universitat Politècnica de Catalunya (UPC).
My choice was clear

5/51

My (scientific) life in one slide

2000 2005

Degree in Maths
(Barcelona)

Maths + Telecom at Universitat Politècnica de Catalunya (UPC).
My choice was clear

5/51

My (scientific) life in one slide

2000 2005 2006

Degree in Maths Erasmus
(Barcelona) (Nice)

My first contact with France.
Topic: traffic grooming in optical networks.

5/51

My (scientific) life in one slide

2000 2005 2006

Degree in Maths Erasmus
(Barcelona) (Nice)

My first contact with France.
Topic: traffic grooming in optical networks.

8 ADMs

7 ADMs

1 2

34

1 2

34

1 2

3

1 2

34

1 2

34

a

b

5/51

My (scientific) life in one slide

2000 2005 2006 2009

Degree in Maths Erasmus Ph.D
(Barcelona) (Nice) (Nice)

Advisors: X. Muñoz (Barcelona) + D. Coudert, J.-C. Bermond (Sophia).
Topic: optimization in graphs under degree constraints.

5/51

My (scientific) life in one slide

2000 2005 2006 2009

Degree in Maths Erasmus Ph.D
(Barcelona) (Nice) (Nice)

I started collaborating with Dimitrios M. Thilikos.
I converted to parameterized complexity.

5/51

My (scientific) life in one slide

2000 2005 2006 2009

Degree in Maths Erasmus Ph.D
(Barcelona) (Nice) (Nice)

I started collaborating with Dimitrios M. Thilikos.
I converted to parameterized complexity.

5/51

My (scientific) life in one slide

2000 2005 2006 2009

Degree in Maths Erasmus Ph.D
(Barcelona) (Nice) (Nice)

I started collaborating with Dimitrios M. Thilikos.
I converted to parameterized complexity.

5/51

My (scientific) life in one slide

2000 2005 2006 2009 2010

Degree in Maths Erasmus Ph.D Postdoc
(Barcelona) (Nice) (Nice) (Haifa)

Postdoc at the Computer Science Department of the Technion.
With Shmuel Zaks and Mordechai Shalom.

5/51

My (scientific) life in one slide

2000 2005 2006 2009 2010

Degree in Maths Erasmus Ph.D Postdoc CNRS
(Barcelona) (Nice) (Nice) (Haifa) (Montpellier)

Since October 2010, I joined the CNRS at LIRMM, Montpellier.
AlGCo group: Algorithmes, Graphes et Combinatoire.

5/51

My (scientific) life in one slide

2000 2005 2006 2009 2010 2016 2017

Degree in Maths Erasmus Ph.D Postdoc CNRS Visitor
(Barcelona) (Nice) (Nice) (Haifa) (Montpellier) (Fortaleza)

Visiting professor at Universidade Federal do Ceará, Fortaleza, Brazil.
ParGO group: Paralelismo, Grafos e Otimização combinatòria.

5/51

My (scientific) life in one slide

2000 2005 2006 2009 2010 2016 2017

Degree in Maths Erasmus Ph.D Postdoc CNRS Visitor
(Barcelona) (Nice) (Nice) (Haifa) (Montpellier) (Fortaleza)

Since August 2017, back to Montpellier.
AlGCo group: Algorithmes, Graphes et Combinatoire.

5/51

Supervised students

03/2012-08/2012 Valentin Garnero (internship M2)
Polynomial kernels for variants of domination problems on planar graphs
02/2013-07/2013 Julien Baste (internship M2)
The role of planarity in connectivity problems parameterized by treewidth
02/2014-07/2014 Henri Perret du Cray (internship M2)
FPT algorithms and kernels on graphs without induced subgraphs

10/2012-07/2016 Valentin Garnero (Ph.D, with Christophe Paul)
(Méta)-noyaux constructifs et linéaires dans les graphes peu denses
09/2014-09/2017 Julien Baste (Ph.D, with Dimitrios M. Thilikos)
Treewidth: algorithmic, combinatorial and practical aspects

09/2018-08/2019 Raul Wayne (Ph.D internship, Brazil)
Fixed-parameter tractability of the Directed Grid Theorem
09/2018-03/2019 Guilherme Gomes (Ph.D internship, Brazil)
Cliques, bicliques and colorings

6/51

Supervised students

03/2012-08/2012 Valentin Garnero (internship M2)
Polynomial kernels for variants of domination problems on planar graphs
02/2013-07/2013 Julien Baste (internship M2)
The role of planarity in connectivity problems parameterized by treewidth
02/2014-07/2014 Henri Perret du Cray (internship M2)
FPT algorithms and kernels on graphs without induced subgraphs

10/2012-07/2016 Valentin Garnero (Ph.D, with Christophe Paul)
(Méta)-noyaux constructifs et linéaires dans les graphes peu denses
09/2014-09/2017 Julien Baste (Ph.D, with Dimitrios M. Thilikos)
Treewidth: algorithmic, combinatorial and practical aspects

09/2018-08/2019 Raul Wayne (Ph.D internship, Brazil)
Fixed-parameter tractability of the Directed Grid Theorem
09/2018-03/2019 Guilherme Gomes (Ph.D internship, Brazil)
Cliques, bicliques and colorings

6/51

Supervised students

03/2012-08/2012 Valentin Garnero (internship M2)
Polynomial kernels for variants of domination problems on planar graphs
02/2013-07/2013 Julien Baste (internship M2)
The role of planarity in connectivity problems parameterized by treewidth
02/2014-07/2014 Henri Perret du Cray (internship M2)
FPT algorithms and kernels on graphs without induced subgraphs

10/2012-07/2016 Valentin Garnero (Ph.D, with Christophe Paul)
(Méta)-noyaux constructifs et linéaires dans les graphes peu denses
09/2014-09/2017 Julien Baste (Ph.D, with Dimitrios M. Thilikos)
Treewidth: algorithmic, combinatorial and practical aspects

09/2018-08/2019 Raul Wayne (Ph.D internship, Brazil)
Fixed-parameter tractability of the Directed Grid Theorem
09/2018-03/2019 Guilherme Gomes (Ph.D internship, Brazil)
Cliques, bicliques and colorings

6/51

Next subsection is...

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions

7/51

Some history of complexity: NP-completeness

Cook-Levin Theorem (1971): the SAT problem is NP-complete.

Karp (1972): list of 21 important NP-complete problems.

Nowadays, literally thousands of problems are known to be NP-hard:
unless P = NP, they cannot be solved in polynomial time.

But what does it mean for a problem to be NP-hard?

No algorithm solves all instances optimally in polynomial time.

8/51

Some history of complexity: NP-completeness

Cook-Levin Theorem (1971): the SAT problem is NP-complete.

Karp (1972): list of 21 important NP-complete problems.

Nowadays, literally thousands of problems are known to be NP-hard:
unless P = NP, they cannot be solved in polynomial time.

But what does it mean for a problem to be NP-hard?

No algorithm solves all instances optimally in polynomial time.

8/51

Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

VLSI design: the number of circuit layers is usually ≤ 10.

Computational biology: Real instances of DNA chain reconstruction
usually have treewidth ≤ 11.

Robotics: Number of degrees of freedom in motion planning problems ≤ 10.

Compilers: Checking compatibility of type declarations is hard, but usually
the depth of type declarations is ≤ 10.

Message In many applications, not only the total size of the instance
matters, but also the value of an additional parameter.

9/51

Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

VLSI design: the number of circuit layers is usually ≤ 10.

Computational biology: Real instances of DNA chain reconstruction
usually have treewidth ≤ 11.

Robotics: Number of degrees of freedom in motion planning problems ≤ 10.

Compilers: Checking compatibility of type declarations is hard, but usually
the depth of type declarations is ≤ 10.

Message In many applications, not only the total size of the instance
matters, but also the value of an additional parameter.

9/51

Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

VLSI design: the number of circuit layers is usually ≤ 10.

Computational biology: Real instances of DNA chain reconstruction
usually have treewidth ≤ 11.

Robotics: Number of degrees of freedom in motion planning problems ≤ 10.

Compilers: Checking compatibility of type declarations is hard, but usually
the depth of type declarations is ≤ 10.

Message In many applications, not only the total size of the instance
matters, but also the value of an additional parameter.

9/51

The area of parameterized complexity

Idea Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established area with hundreds of articles published
every year in the most prestigious TCS journals and conferences.

10/51

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Independent Set: Does a graph G contain a set S ⊆ V (G),
with |S| ≥ k, of pairwise non-adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

11/51

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Independent Set: Does a graph G contain a set S ⊆ V (G),
with |S| ≥ k, of pairwise non-adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

11/51

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Independent Set: Does a graph G contain a set S ⊆ V (G),
with |S| ≥ k, of pairwise non-adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

11/51

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n))

= f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Independent Set: Solvable in time O(k2 · nk)

= f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

12/51

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

12/51

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

12/51

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

12/51

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

12/51

Why k-Clique may not be FPT?

k-Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

13/51

Why k-Clique may not be FPT?

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

13/51

Why k-Clique may not be FPT?

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

13/51

Why k-Clique may not be FPT?

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

13/51

Why k-Clique may not be FPT?

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

13/51

How to transfer hardness among parameterized problems?

Let A,B ⊆ Σ∗ ×N be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]

14/51

How to transfer hardness among parameterized problems?

Let A,B ⊆ Σ∗ ×N be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]

14/51

How to transfer hardness among parameterized problems?

Let A,B ⊆ Σ∗ ×N be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]

14/51

How to transfer hardness among parameterized problems?

Let A,B ⊆ Σ∗ ×N be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]

14/51

How to transfer hardness among parameterized problems?

Let A,B ⊆ Σ∗ ×N be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT.

Hypothesis: FPT 6= W[1]

14/51

How to transfer hardness among parameterized problems?

Let A,B ⊆ Σ∗ ×N be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]

14/51

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

15/51

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

15/51

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

15/51

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

15/51

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

15/51

Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels?

NO!

Theorem (Bodlaender, Downey, Fellows, Hermelin, 2009)
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.

16/51

Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels? NO!

Theorem (Bodlaender, Downey, Fellows, Hermelin, 2009)
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.

16/51

Typical approach to deal with a parameterized problem

Parameterized problem L
k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

17/51

Typical approach to deal with a parameterized problem

Parameterized problem L

para-NP-hardXP

k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

17/51

Typical approach to deal with a parameterized problem

Parameterized problem L

para-NP-hardXP
Vertex k-Coloring

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

17/51

Typical approach to deal with a parameterized problem

Parameterized problem L

para-NP-hardXP

W[1]-hard FPT

Vertex k-Coloring

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

17/51

Typical approach to deal with a parameterized problem

Parameterized problem L

para-NP-hardXP

W[1]-hard FPT

Vertex k-Coloring

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

17/51

Typical approach to deal with a parameterized problem

Parameterized problem L

para-NP-hardXP

W[1]-hard FPT

poly kernel no poly kernel

Vertex k-Coloring

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

17/51

Typical approach to deal with a parameterized problem

Parameterized problem L

para-NP-hardXP

W[1]-hard FPT

poly kernel no poly kernel

Vertex k-Coloring

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

k-Pathk-Vertex Cover

k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

17/51

Next subsection is...

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions

18/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G , denoted tw(G):
smallest integer k such that G is a partial k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G , denoted tw(G):
smallest integer k such that G is a partial k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G , denoted tw(G):
smallest integer k such that G is a partial k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

19/51

Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

3 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

20/51

Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

3 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

20/51

Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

3 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

20/51

Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

3 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).

20/51

Next section is...

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions

21/51

Next subsection is...

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions

22/51

What is known about the number of (partial) k-trees?

Labeled k-trees

6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n

k
)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees
k = 1: The number of n-vertex labeled forests is ∼ c · nn−2

for some explicit constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is
∼ g · n− 5

2 γnn! for some constants g , γ > 0.
[Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k.

23/51

What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n

k
)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees
k = 1: The number of n-vertex labeled forests is ∼ c · nn−2

for some explicit constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is
∼ g · n− 5

2 γnn! for some constants g , γ > 0.
[Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k.

23/51

What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n

k
)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees
k = 1: The number of n-vertex labeled forests is ∼ c · nn−2

for some explicit constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is
∼ g · n− 5

2 γnn! for some constants g , γ > 0.
[Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k.

23/51

What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n

k
)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees
k = 1: The number of n-vertex labeled forests is ∼ c · nn−2

for some explicit constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is
∼ g · n− 5

2 γnn! for some constants g , γ > 0.
[Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k.

23/51

What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n

k
)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees

k = 1: The number of n-vertex labeled forests is ∼ c · nn−2

for some explicit constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is
∼ g · n− 5

2 γnn! for some constants g , γ > 0.
[Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k.

23/51

What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n

k
)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees
k = 1: The number of n-vertex labeled forests is ∼ c · nn−2

for some explicit constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is
∼ g · n− 5

2 γnn! for some constants g , γ > 0.
[Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k.

23/51

What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n

k
)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees
k = 1: The number of n-vertex labeled forests is ∼ c · nn−2

for some explicit constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is
∼ g · n− 5

2 γnn! for some constants g , γ > 0.
[Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k.

23/51

What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n

k
)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees
k = 1: The number of n-vertex labeled forests is ∼ c · nn−2

for some explicit constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is
∼ g · n− 5

2 γnn! for some constants g , γ > 0.
[Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k.

23/51

Tn,k and an easy upper bound

Let Tn,k be the number of n-vertex labeled partial k-trees.

Objective Obtaining accurate bounds for Tn,k .

As an n-vertex k-tree has kn − k(k+1)
2 edges, we get the upper bound:

Tn,k ≤
(
n
k

)
· (kn − k2 + 1)n−k−2 · 2kn− k(k+1)

2

≤ (k · 2k · n)n · 2−
k(k+1)

2 · k−k

24/51

Tn,k and an easy upper bound

Let Tn,k be the number of n-vertex labeled partial k-trees.

Objective Obtaining accurate bounds for Tn,k .

As an n-vertex k-tree has kn − k(k+1)
2 edges, we get the upper bound:

Tn,k ≤
(
n
k

)
· (kn − k2 + 1)n−k−2 · 2kn− k(k+1)

2

≤ (k · 2k · n)n · 2−
k(k+1)

2 · k−k

24/51

Tn,k and an easy upper bound

Let Tn,k be the number of n-vertex labeled partial k-trees.

Objective Obtaining accurate bounds for Tn,k .

As an n-vertex k-tree has kn − k(k+1)
2 edges, we get the upper bound:

Tn,k ≤
(
n
k

)
· (kn − k2 + 1)n−k−2 · 2kn− k(k+1)

2

≤ (k · 2k · n)n · 2−
k(k+1)

2 · k−k

24/51

An easy lower bound

Take a forest on n − (k − 1) vertices:
(n − k + 1)(n−k−1) possibilities

Tn,k ≥ (n − k + 1)(n−k−1) · 2(k−1)(n−k+1)

≥
(

1
4 · 2

k · n
)n
· 2−k2

25/51

An easy lower bound

Take a forest on n − (k − 1) vertices:
(n − k + 1)(n−k−1) possibilities

Add a vertex arbitrarily connected to the forest:
2n−(k−1) possibilities

Tn,k ≥ (n − k + 1)(n−k−1) · 2(k−1)(n−k+1)

≥
(

1
4 · 2

k · n
)n
· 2−k2

25/51

An easy lower bound

Take a forest on n − (k − 1) vertices:
(n − k + 1)(n−k−1) possibilities

Add a vertex arbitrarily connected to the forest:
2n−(k−1) possibilities

Tn,k ≥ (n − k + 1)(n−k−1) · 2(k−1)(n−k+1)

≥
(

1
4 · 2

k · n
)n
· 2−k2

25/51

An easy lower bound

Take a forest on n − (k − 1) vertices:
(n − k + 1)(n−k−1) possibilities

Add a vertex arbitrarily connected to the forest:
2n−(k−1) possibilities

Tn,k ≥ (n − k + 1)(n−k−1) · 2(k−1)(n−k+1)

≥
(

1
4 · 2

k · n
)n
· 2−k2

25/51

An easy lower bound

Take a forest on n − (k − 1) vertices:
(n − k + 1)(n−k−1) possibilities

Add k − 1 vertices connected to the forest:
≥ 2(k−1)(n−(k−1)) possibilities

Tn,k ≥ (n − k + 1)(n−k−1) · 2(k−1)(n−k+1)

≥
(

1
4 · 2

k · n
)n
· 2−k2

25/51

An easy lower bound

Take a forest on n − (k − 1) vertices:
(n − k + 1)(n−k−1) possibilities

Add k − 1 vertices connected to the forest:
≥ 2(k−1)(n−(k−1)) possibilities

Tn,k ≥ (n − k + 1)(n−k−1) · 2(k−1)(n−k+1)

≥
(

1
4 · 2

k · n
)n
· 2−k2

25/51

An easy lower bound

Take a forest on n − (k − 1) vertices:
(n − k + 1)(n−k−1) possibilities

Add k − 1 vertices connected to the forest:
≥ 2(k−1)(n−(k−1)) possibilities

Tn,k ≥ (n − k + 1)(n−k−1) · 2(k−1)(n−k+1) ≥
(

1
4 · 2

k · n
)n
· 2−k2

25/51

An improved lower bound
Summarizing, so far we have:

Tn,k ≤ (k · 2k · n)n · 2−
k(k+1)

2 · k−k

Tn,k ≥
(1
4 · 2

k · n
)n
· 2−k2

Gap in the dominant term: (4 · k)n

Theorem (Baste, Noy, S., 2017)

For any two integers n, k with 1 < k ≤ n, the number Tn,k of n-vertex
labeled graphs with treewidth at most k satisfies

Tn,k ≥
(1
128e ·

k
log k · 2

k · n
)n
· 2−

k(k+3)
2 · k−2k−2.

Gap in the dominant term: (128e · log k)n

26/51

An improved lower bound
Summarizing, so far we have:

Tn,k ≤ (k · 2k · n)n · 2−
k(k+1)

2 · k−k

Tn,k ≥
(1
4 · 2

k · n
)n
· 2−k2

Gap in the dominant term: (4 · k)n

Theorem (Baste, Noy, S., 2017)

For any two integers n, k with 1 < k ≤ n, the number Tn,k of n-vertex
labeled graphs with treewidth at most k satisfies

Tn,k ≥
(1
128e ·

k
log k · 2

k · n
)n
· 2−

k(k+3)
2 · k−2k−2.

Gap in the dominant term: (128e · log k)n

26/51

An improved lower bound
Summarizing, so far we have:

Tn,k ≤ (k · 2k · n)n · 2−
k(k+1)

2 · k−k

Tn,k ≥
(1
4 · 2

k · n
)n
· 2−k2

Gap in the dominant term: (4 · k)n

Theorem (Baste, Noy, S., 2017)

For any two integers n, k with 1 < k ≤ n, the number Tn,k of n-vertex
labeled graphs with treewidth at most k satisfies

Tn,k ≥
(1
128e ·

k
log k · 2

k · n
)n
· 2−

k(k+3)
2 · k−2k−2.

Gap in the dominant term: (128e · log k)n

26/51

An improved lower bound
Summarizing, so far we have:

Tn,k ≤ (k · 2k · n)n · 2−
k(k+1)

2 · k−k

Tn,k ≥
(1
4 · 2

k · n
)n
· 2−k2

Gap in the dominant term: (4 · k)n

Theorem (Baste, Noy, S., 2017)

For any two integers n, k with 1 < k ≤ n, the number Tn,k of n-vertex
labeled graphs with treewidth at most k satisfies

Tn,k ≥
(1
128e ·

k
log k · 2

k · n
)n
· 2−

k(k+3)
2 · k−2k−2.

Gap in the dominant term: (128e · log k)n

26/51

Next subsection is...

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions

27/51

Meta-kernelization

As in the case of FPT algorithms, there exist meta-kernelization results.

Typical statement:

Every parameterized problem that satisfies property Π is admits
a linear/polynomial kernel on the class of graphs G.

This has been also a very active area in parameterized complexity, specially
on sparse graphs: planar graphs, graphs on surfaces, minor-free graphs, ...

28/51

Meta-kernelization

As in the case of FPT algorithms, there exist meta-kernelization results.

Typical statement:

Every parameterized problem that satisfies property Π is admits
a linear/polynomial kernel on the class of graphs G.

This has been also a very active area in parameterized complexity, specially
on sparse graphs: planar graphs, graphs on surfaces, minor-free graphs, ...

28/51

Meta-kernelization

As in the case of FPT algorithms, there exist meta-kernelization results.

Typical statement:

Every parameterized problem that satisfies property Π is admits
a linear/polynomial kernel on the class of graphs G.

This has been also a very active area in parameterized complexity, specially
on sparse graphs: planar graphs, graphs on surfaces, minor-free graphs, ...

28/51

Minors and topological minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg ≤ 2.

Therefore: H topological minor of G ⇒ H minor of G

Fixed H: H-minor-free graphs ⊆ H-topological-minor-free graphs

29/51

Minors and topological minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg ≤ 2.

Therefore: H topological minor of G ⇒ H minor of G

Fixed H: H-minor-free graphs ⊆ H-topological-minor-free graphs

29/51

Minors and topological minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg ≤ 2.

Therefore: H topological minor of G ⇒ H minor of G

Fixed H: H-minor-free graphs ⊆ H-topological-minor-free graphs

29/51

Minors and topological minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg ≤ 2.

Therefore: H topological minor of G : H minor of G

Fixed H: H-minor-free graphs ⊆ H-topological-minor-free graphs

29/51

Minors and topological minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg ≤ 2.

Therefore: H topological minor of G : H minor of G

Fixed H: H-minor-free graphs ⊆ H-topological-minor-free graphs

29/51

Linear kernels on sparse graphs – an overview

Dominating Set on planar graphs. [Alber, Fellows, Niedermeier. 2002]

Framework for several problems on planar graphs. [Guo, Niedermeier. 2007]

Meta-kernelization for graphs of bounded genus.
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

Meta-kernelization for minor-free graphs. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

F Meta-kernelization for topological-minor-free graphs.
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

30/51

Linear kernels on sparse graphs – an overview

Dominating Set on planar graphs. [Alber, Fellows, Niedermeier. 2002]

Framework for several problems on planar graphs. [Guo, Niedermeier. 2007]

Meta-kernelization for graphs of bounded genus.
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

Meta-kernelization for minor-free graphs. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

F Meta-kernelization for topological-minor-free graphs.
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

30/51

Linear kernels on sparse graphs – an overview

Dominating Set on planar graphs. [Alber, Fellows, Niedermeier. 2002]

Framework for several problems on planar graphs. [Guo, Niedermeier. 2007]

Meta-kernelization for graphs of bounded genus.
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

Meta-kernelization for minor-free graphs. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

F Meta-kernelization for topological-minor-free graphs.
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

30/51

Linear kernels on sparse graphs – an overview

Dominating Set on planar graphs. [Alber, Fellows, Niedermeier. 2002]

Framework for several problems on planar graphs. [Guo, Niedermeier. 2007]

Meta-kernelization for graphs of bounded genus.
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

Meta-kernelization for minor-free graphs. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

F Meta-kernelization for topological-minor-free graphs.
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

30/51

Linear kernels on sparse graphs – an overview

Dominating Set on planar graphs. [Alber, Fellows, Niedermeier. 2002]

Framework for several problems on planar graphs. [Guo, Niedermeier. 2007]

Meta-kernelization for graphs of bounded genus.
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

Meta-kernelization for minor-free graphs. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

F Meta-kernelization for topological-minor-free graphs.
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

30/51

Protrusions
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

Given a graph G , a set W ⊆ V (G) is a t-protrusion of G if

|∂G(W)| ≤ t and tw(G [W]) ≤ t.

[Figure by Felix Reidl]

We call ∂G(W) the boundary and |W | the size of W .
31/51

Meta-kernelization on graphs without topological minors

Theorem (Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar, 2013)
Fix a graph H. Let P be a parameterized graph problem on the class of
H-topological-minor-free graphs that is treewidth-bounding and has finite
integer index (FII). Then P admits a linear kernel.

A parameterized graph problem P is treewidth-bounding if
∃ constants c, t such that if (G , k) ∈ P then

∃X ⊆ V (G) s.t. |X | ≤ c · k and tw(G − X) ≤ t.

FII allows us to replace large protrusions by smaller gadgets...

Some problems affected by our result:
Treewidth-t Vertex Deletion, Chordal Vertex Deletion, Interval
Vertex Deletion, Edge Dominating Set, Feedback Vertex Set,
Connected Vertex Cover, . . .

32/51

Meta-kernelization on graphs without topological minors

Theorem (Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar, 2013)
Fix a graph H. Let P be a parameterized graph problem on the class of
H-topological-minor-free graphs that is treewidth-bounding and has finite
integer index (FII). Then P admits a linear kernel.

A parameterized graph problem P is treewidth-bounding if
∃ constants c, t such that if (G , k) ∈ P then

∃X ⊆ V (G) s.t. |X | ≤ c · k and tw(G − X) ≤ t.

FII allows us to replace large protrusions by smaller gadgets...

Some problems affected by our result:
Treewidth-t Vertex Deletion, Chordal Vertex Deletion, Interval
Vertex Deletion, Edge Dominating Set, Feedback Vertex Set,
Connected Vertex Cover, . . .

32/51

Meta-kernelization on graphs without topological minors

Theorem (Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar, 2013)
Fix a graph H. Let P be a parameterized graph problem on the class of
H-topological-minor-free graphs that is treewidth-bounding and has finite
integer index (FII). Then P admits a linear kernel.

A parameterized graph problem P is treewidth-bounding if
∃ constants c, t such that if (G , k) ∈ P then

∃X ⊆ V (G) s.t. |X | ≤ c · k and tw(G − X) ≤ t.

FII allows us to replace large protrusions by smaller gadgets...

Some problems affected by our result:
Treewidth-t Vertex Deletion, Chordal Vertex Deletion, Interval
Vertex Deletion, Edge Dominating Set, Feedback Vertex Set,
Connected Vertex Cover, . . .

32/51

Meta-kernelization on graphs without topological minors

Theorem (Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar, 2013)
Fix a graph H. Let P be a parameterized graph problem on the class of
H-topological-minor-free graphs that is treewidth-bounding and has finite
integer index (FII). Then P admits a linear kernel.

A parameterized graph problem P is treewidth-bounding if
∃ constants c, t such that if (G , k) ∈ P then

∃X ⊆ V (G) s.t. |X | ≤ c · k and tw(G − X) ≤ t.

FII allows us to replace large protrusions by smaller gadgets...

Some problems affected by our result:
Treewidth-t Vertex Deletion, Chordal Vertex Deletion, Interval
Vertex Deletion, Edge Dominating Set, Feedback Vertex Set,
Connected Vertex Cover, . . .

32/51

Linear kernels on sparse graphs – the conditions

[Figure by Felix Reidl]

33/51

Are our conditions very restrictive?

We require FII + treewidth-bounding

FII is necessary when using protrusion replacement rules.

What about requiring the problems to be treewidth-bounding?

Conditions on H-minor-free graphs:
bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

But it holds that

bidimensional + separation property ⇒ treewidth-bounding

Our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

34/51

Are our conditions very restrictive?

We require FII + treewidth-bounding

FII is necessary when using protrusion replacement rules.

What about requiring the problems to be treewidth-bounding?

Conditions on H-minor-free graphs:
bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

But it holds that

bidimensional + separation property ⇒ treewidth-bounding

Our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

34/51

Are our conditions very restrictive?

We require FII + treewidth-bounding

FII is necessary when using protrusion replacement rules.

What about requiring the problems to be treewidth-bounding?

Conditions on H-minor-free graphs:
bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

But it holds that

bidimensional + separation property ⇒ treewidth-bounding

Our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

34/51

Are our conditions very restrictive?

We require FII + treewidth-bounding

FII is necessary when using protrusion replacement rules.

What about requiring the problems to be treewidth-bounding?

Conditions on H-minor-free graphs:
bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

But it holds that

bidimensional + separation property ⇒ treewidth-bounding

Our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

34/51

Are our conditions very restrictive?

We require FII + treewidth-bounding

FII is necessary when using protrusion replacement rules.

What about requiring the problems to be treewidth-bounding?

Conditions on H-minor-free graphs:
bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

But it holds that

bidimensional + separation property ⇒ treewidth-bounding

Our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

34/51

Are our conditions very restrictive?

We require FII + treewidth-bounding

FII is necessary when using protrusion replacement rules.

What about requiring the problems to be treewidth-bounding?

Conditions on H-minor-free graphs:
bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

But it holds that

bidimensional + separation property ⇒ treewidth-bounding

Our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

34/51

Idea of the proof(s): protrusion decompositions

Given a problem P with parameter k, a linear protrusion decomposition of
a graph G is a partition Y0] Y1] · · ·] Y` of V (G) such that:

|Y0| = O(k).
` = O(k) and for every 1 6 i 6 `, Yi is a t-protrusion.

[Figure by Felix Reidl]

Idea Find a linear protrusion decomposition in polynomial time, and
replace each of the O(k) protrusions with a constant-sized gadget.

35/51

Idea of the proof(s): protrusion decompositions
Given a problem P with parameter k, a linear protrusion decomposition of
a graph G is a partition Y0] Y1] · · ·] Y` of V (G) such that:

|Y0| = O(k).
` = O(k) and for every 1 6 i 6 `, Yi is a t-protrusion.

[Figure by Felix Reidl]

Idea Find a linear protrusion decomposition in polynomial time, and
replace each of the O(k) protrusions with a constant-sized gadget.

35/51

Idea of the proof(s): protrusion decompositions
Given a problem P with parameter k, a linear protrusion decomposition of
a graph G is a partition Y0] Y1] · · ·] Y` of V (G) such that:

|Y0| = O(k).

` = O(k) and for every 1 6 i 6 `, Yi is a t-protrusion.

[Figure by Felix Reidl]

Idea Find a linear protrusion decomposition in polynomial time, and
replace each of the O(k) protrusions with a constant-sized gadget.

35/51

Idea of the proof(s): protrusion decompositions
Given a problem P with parameter k, a linear protrusion decomposition of
a graph G is a partition Y0] Y1] · · ·] Y` of V (G) such that:

|Y0| = O(k).
` = O(k) and for every 1 6 i 6 `, Yi is a t-protrusion.

[Figure by Felix Reidl]

Idea Find a linear protrusion decomposition in polynomial time, and
replace each of the O(k) protrusions with a constant-sized gadget.

35/51

Idea of the proof(s): protrusion decompositions
Given a problem P with parameter k, a linear protrusion decomposition of
a graph G is a partition Y0] Y1] · · ·] Y` of V (G) such that:

|Y0| = O(k).
` = O(k) and for every 1 6 i 6 `, Yi is a t-protrusion.

[Figure by Felix Reidl]

Idea Find a linear protrusion decomposition in polynomial time, and
replace each of the O(k) protrusions with a constant-sized gadget.

35/51

Idea of the proof(s): protrusion decompositions
Given a problem P with parameter k, a linear protrusion decomposition of
a graph G is a partition Y0] Y1] · · ·] Y` of V (G) such that:

|Y0| = O(k).
` = O(k) and for every 1 6 i 6 `, Yi is a t-protrusion.

[Figure by Felix Reidl]

Idea Find a linear protrusion decomposition in polynomial time, and
replace each of the O(k) protrusions with a constant-sized gadget.

35/51

Constructibility issues

Idea Find a linear protrusion decomposition in polynomial time, and
replace each of the O(k) protrusions with a constant-sized gadget.

F We assume that the gadgets are given ... the algorithm is non-uniform.

Same problem in the previous work based on protrusion replacement:
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

There are some techniques to actually construct the kernels (CMSO logic),
but it is hard to extract explicit constants on the size of the kernels...

36/51

Constructibility issues

Idea Find a linear protrusion decomposition in polynomial time, and
replace each of the O(k) protrusions with a constant-sized gadget.

F We assume that the gadgets are given ... the algorithm is non-uniform.

Same problem in the previous work based on protrusion replacement:
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

There are some techniques to actually construct the kernels (CMSO logic),
but it is hard to extract explicit constants on the size of the kernels...

36/51

Constructibility issues

Idea Find a linear protrusion decomposition in polynomial time, and
replace each of the O(k) protrusions with a constant-sized gadget.

F We assume that the gadgets are given ... the algorithm is non-uniform.

Same problem in the previous work based on protrusion replacement:
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

There are some techniques to actually construct the kernels (CMSO logic),
but it is hard to extract explicit constants on the size of the kernels...

36/51

Constructibility issues

Idea Find a linear protrusion decomposition in polynomial time, and
replace each of the O(k) protrusions with a constant-sized gadget.

F We assume that the gadgets are given ... the algorithm is non-uniform.

Same problem in the previous work based on protrusion replacement:
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

There are some techniques to actually construct the kernels (CMSO logic),
but it is hard to extract explicit constants on the size of the kernels...

36/51

Explicit linear kernels via dynamic programming

We propose an approach to replace protrusions with explicit constants:

Instead of FII or CMSO logic we use dynamic programming

We formalize the notion of encoding for the tables of
dynamic programming (DP) on tree decompositions.

Conditions to obtain protrusion replacer with explicit constants:

Confined encoder: number of distinct values is a function of the tw.

DP-friendly encoder: we can safely replace equivalent “protrusions”.

37/51

Explicit linear kernels via dynamic programming

We propose an approach to replace protrusions with explicit constants:

Instead of FII or CMSO logic

we use dynamic programming

We formalize the notion of encoding for the tables of
dynamic programming (DP) on tree decompositions.

Conditions to obtain protrusion replacer with explicit constants:

Confined encoder: number of distinct values is a function of the tw.

DP-friendly encoder: we can safely replace equivalent “protrusions”.

37/51

Explicit linear kernels via dynamic programming

We propose an approach to replace protrusions with explicit constants:

Instead of FII or CMSO logic we use dynamic programming

We formalize the notion of encoding for the tables of
dynamic programming (DP) on tree decompositions.

Conditions to obtain protrusion replacer with explicit constants:

Confined encoder: number of distinct values is a function of the tw.

DP-friendly encoder: we can safely replace equivalent “protrusions”.

37/51

Explicit linear kernels via dynamic programming

We propose an approach to replace protrusions with explicit constants:

Instead of FII or CMSO logic we use dynamic programming

We formalize the notion of encoding for the tables of
dynamic programming (DP) on tree decompositions.

Conditions to obtain protrusion replacer with explicit constants:

Confined encoder: number of distinct values is a function of the tw.

DP-friendly encoder: we can safely replace equivalent “protrusions”.

37/51

Explicit linear kernels via dynamic programming

We propose an approach to replace protrusions with explicit constants:

Instead of FII or CMSO logic we use dynamic programming

We formalize the notion of encoding for the tables of
dynamic programming (DP) on tree decompositions.

Conditions to obtain protrusion replacer with explicit constants:

Confined encoder: number of distinct values is a function of the tw.

DP-friendly encoder: we can safely replace equivalent “protrusions”.

37/51

Explicit linear kernels via dynamic programming

We propose an approach to replace protrusions with explicit constants:

Instead of FII or CMSO logic we use dynamic programming

We formalize the notion of encoding for the tables of
dynamic programming (DP) on tree decompositions.

Conditions to obtain protrusion replacer with explicit constants:

Confined encoder: number of distinct values is a function of the tw.

DP-friendly encoder: we can safely replace equivalent “protrusions”.

37/51

Explicit linear kernels via dynamic programming

We propose an approach to replace protrusions with explicit constants:

Instead of FII or CMSO logic we use dynamic programming

We formalize the notion of encoding for the tables of
dynamic programming (DP) on tree decompositions.

Conditions to obtain protrusion replacer with explicit constants:

Confined encoder: number of distinct values is a function of the tw.

DP-friendly encoder: we can safely replace equivalent “protrusions”.

37/51

An explicit meta-kernelization result

∂(G)

G

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .

38/51

An explicit meta-kernelization result

∂(G)

G

|∂(G)| ≤ tw(G)

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .

38/51

An explicit meta-kernelization result

∂(G)

G

R1 R2
. . .

encoder generates

|∂(G)| ≤ tw(G)
tables of DP

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .

38/51

An explicit meta-kernelization result

∂(G)

G

R1 R2
. . .

0

|G|

encoder generates each entry Ri has an associated value f(Ri)

|∂(G)| ≤ tw(G)
tables of DP

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .

38/51

An explicit meta-kernelization result

∂(G)

G

R1 R2
. . .

0

|G|

encoder generates each entry Ri has an associated value f(Ri)

f(R1)

|∂(G)| ≤ tw(G)
tables of DP

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .

38/51

An explicit meta-kernelization result

∂(G)

G

R1 R2
. . .

0

|G|

f(R2)

encoder generates each entry Ri has an associated value f(Ri)

f(R1)

|∂(G)| ≤ tw(G)
tables of DP

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .

38/51

An explicit meta-kernelization result

∂(G)

G

R1 R2
. . .

0

|G|

f(R2)

encoder generates each entry Ri has an associated value f(Ri)

f(R1)

|∂(G)| ≤ tw(G)
tables of DP

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .

38/51

An explicit meta-kernelization result

∂(G)

G

R1 R2
. . .

0

|G|

f(R2)

encoder generates each entry Ri has an associated value f(Ri)

f(R1)

|∂(G)| ≤ tw(G)
tables of DP

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .

38/51

An explicit meta-kernelization result

∂(G)

G

R1 R2
. . .

{
0

|G|

g(tw) f(R2)

encoder generates each entry Ri has an associated value f(Ri)

f(R1)

|∂(G)| ≤ tw(G)
tables of DP

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .

38/51

An explicit meta-kernelization result

∂(G)

G

R1 R2
. . .

{
0

|G|

g(tw) f(R2)

encoder generates each entry Ri has an associated value f(Ri)

f(R1) only the values within

this interval “matter”

|∂(G)| ≤ tw(G)
tables of DP

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .

38/51

An explicit meta-kernelization result

∂(G)

G

R1 R2
. . .

{
0

|G|

g(tw) f(R2)

encoder generates each entry Ri has an associated value f(Ri)

f(R1) only the values within

this interval “matter”

|∂(G)| ≤ tw(G)
tables of DP

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .

38/51

An explicit meta-kernelization result

∂(G)

G

R1 R2
. . .

{
0

|G|

g(tw) f(R2)

encoder generates each entry Ri has an associated value f(Ri)

f(R1) only the values within

this interval “matter”

|∂(G)| ≤ tw(G)
tables of DP

[By Valentin Garnero]

Theorem (Garnero, Paul, S., Thilikos, 2014)
Linear protrusion decomp. + confined DP-friendly encoder = linear kernel.

Some problems affected by our result:
r-Dominating Set and r -Scattered Set on apex-minor-free graphs,
Planar-F-Deletion on (topological)-minor-free graphs,
several generalizations of F-Packing, . . .

38/51

Next subsection is...

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions

39/51

Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

40/51

Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

40/51

Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

40/51

Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

40/51

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · nO(1)

= 2345678tw

· nO(1)

Major goal: find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

41/51

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...
... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal: find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

41/51

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...
... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal: find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

41/51

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).

Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

[Impagliazzo, Paturi. 1999]

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

42/51

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

[Impagliazzo, Paturi. 1999]

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

42/51

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

[Impagliazzo, Paturi. 1999]

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

42/51

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

[Impagliazzo, Paturi. 1999]

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

42/51

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

[Impagliazzo, Paturi. 1999]

SETH ⇒ ETH

⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

42/51

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

[Impagliazzo, Paturi. 1999]

SETH ⇒ ETH ⇒ FPT 6= W[1]

⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

42/51

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

[Impagliazzo, Paturi. 1999]

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

42/51

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

[Impagliazzo, Paturi. 1999]

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

42/51

Bounds for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the
“natural” DP algorithms lead to (optimal) single-exponential algorithms:

2O(tw) · nO(1).

But for the so-called connectivity problems, like Longest Path or
Steiner Tree, the “natural” DP algorithms provide only time

2O(tw·log tw) · nO(1).

43/51

Bounds for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the
“natural” DP algorithms lead to (optimal) single-exponential algorithms:

2O(tw) · nO(1).

But for the so-called connectivity problems, like Longest Path or
Steiner Tree, the “natural” DP algorithms provide only time

2O(tw·log tw) · nO(1).

43/51

Bounds for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the
“natural” DP algorithms lead to (optimal) single-exponential algorithms:

2O(tw) · nO(1).

But for the so-called connectivity problems, like Longest Path or
Steiner Tree, the “natural” DP algorithms provide only time

2O(tw·log tw) · nO(1).

43/51

Single-exponential algorithms on sparse graphs
On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:
partial solutions ⇐⇒ non-crossing partitions

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≤ 4k .

44/51

Single-exponential algorithms on sparse graphs
On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:
partial solutions ⇐⇒ non-crossing partitions

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≤ 4k .

44/51

Single-exponential algorithms on sparse graphs
On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:
partial solutions ⇐⇒ non-crossing partitions

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≤ 4k .

44/51

Single-exponential algorithms on sparse graphs
On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:
partial solutions ⇐⇒ non-crossing partitions

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≤ 4k .

44/51

Single-exponential algorithms on sparse graphs
On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:

partial solutions ⇐⇒ non-crossing partitions

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≤ 4k .

44/51

Single-exponential algorithms on sparse graphs
On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:
partial solutions ⇐⇒ non-crossing partitions

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≤ 4k .

44/51

Single-exponential algorithms on sparse graphs
On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:
partial solutions ⇐⇒ non-crossing partitions

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≤ 4k .

44/51

The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

45/51

The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

45/51

The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

45/51

The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

45/51

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

There are other examples of such problems...

46/51

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

There are other examples of such problems...

46/51

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

There are other examples of such problems...

46/51

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

With Julien Baste and Dimitrios M. Thilikos we proved the following...
[arXiv:1704.07284. 2018]

47/51

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

With Julien Baste and Dimitrios M. Thilikos we proved the following...
[arXiv:1704.07284. 2018]

47/51

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.

Easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

With Julien Baste and Dimitrios M. Thilikos we proved the following...
[arXiv:1704.07284. 2018]

47/51

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

With Julien Baste and Dimitrios M. Thilikos we proved the following...
[arXiv:1704.07284. 2018]

47/51

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.

“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

With Julien Baste and Dimitrios M. Thilikos we proved the following...
[arXiv:1704.07284. 2018]

47/51

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

With Julien Baste and Dimitrios M. Thilikos we proved the following...
[arXiv:1704.07284. 2018]

47/51

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.

Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

With Julien Baste and Dimitrios M. Thilikos we proved the following...
[arXiv:1704.07284. 2018]

47/51

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

With Julien Baste and Dimitrios M. Thilikos we proved the following...
[arXiv:1704.07284. 2018]

47/51

The F -Deletion problem
Let F be a fixed finite collection of graphs.

F-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).
F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

With Julien Baste and Dimitrios M. Thilikos we proved the following...
[arXiv:1704.07284. 2018]

47/51

Complexity of {H}-Deletion for small planar graphs H

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

Classification of the complexity of {H}-M-Deletion for all connected
simple planar graphs H with |V (H)| ≤ 5 and |E (H)| ≥ 1: for the 9 graphs
on the left (resp. 20 graphs on the right), the problem is solvable in time
2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion, K1,4
should be on the left.

48/51

Next section is...

1 Introduction
Career path
Scientific context: parameterized complexity
A relevant parameter: treewidth

2 Some of my contributions (related to treewidth)
The number of graphs of bounded treewidth
Linear kernels on sparse graphs
Fast FPT algorithms parameterized by treewidth

3 Conclusions

49/51

What’s next?

There are many problems that I would like to solve...

In particular, several questions concerning F-Deletion:

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still very far from it.

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

Conjecture For every connected planar graph H with |V (H)| ≥ 6,
F-Deletion is solvable in time 2Θ(tw·log tw) · nO(1) under the ETH.

50/51

What’s next?

There are many problems that I would like to solve...

In particular, several questions concerning F-Deletion:

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F

... we are still very far from it.

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

Conjecture For every connected planar graph H with |V (H)| ≥ 6,
F-Deletion is solvable in time 2Θ(tw·log tw) · nO(1) under the ETH.

50/51

What’s next?

There are many problems that I would like to solve...

In particular, several questions concerning F-Deletion:

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still very far from it.

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

Conjecture For every connected planar graph H with |V (H)| ≥ 6,
F-Deletion is solvable in time 2Θ(tw·log tw) · nO(1) under the ETH.

50/51

What’s next?

There are many problems that I would like to solve...

In particular, several questions concerning F-Deletion:

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still very far from it.

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

Conjecture For every connected planar graph H with |V (H)| ≥ 6,
F-Deletion is solvable in time 2Θ(tw·log tw) · nO(1) under the ETH.

50/51

What’s next?

There are many problems that I would like to solve...

In particular, several questions concerning F-Deletion:

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still very far from it.

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

Conjecture For every connected planar graph H with |V (H)| ≥ 6,
F-Deletion is solvable in time 2Θ(tw·log tw) · nO(1) under the ETH.

50/51

What’s next?

There are many problems that I would like to solve...

In particular, several questions concerning F-Deletion:

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still very far from it.

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

Conjecture For every connected planar graph H with |V (H)| ≥ 6,
F-Deletion is solvable in time 2Θ(tw·log tw) · nO(1) under the ETH.

50/51

Gràcies!

51/51

	Introduction
	Career path
	Scientific context: parameterized complexity
	A relevant parameter: treewidth

	Some of my contributions (related to treewidth)
	The number of graphs of bounded treewidth
	Linear kernels on sparse graphs
	Fast FPT algorithms parameterized by treewidth

	Conclusions

