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Typical approaches to cope with intractability

P: problems that can be solved in polynomial time.
NP: problems for which a solution can be verified in polynomial time.

NP-hard: no algorithm solves all instances optimally in polynomial time.

Approximation algorithms: In polynomial time, find solutions that are
“close” to the optimal ones.

Moderately exponential-time algorithms: Solve the problem in
exponential time, but reasonably “fast” (1.15n vs 2n).

Heuristics: Produce “good” solutions, but with no guarantee.

Parameterized complexity: Topic of this talk...
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The area of parameterized complexity

Idea Measure the complexity of an algorithm in terms of the input size
and an additional integer parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established area with hundreds of articles published
every year in the most prestigious TCS journals and conferences.
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Parameterized problems
In a parameterized problem, an instance is a pair (x , k), where

x is a typical input (in our setting, a graph).
k is a positive integer called the parameter.

Examples of parameterized problems on graphs, with an instance (G , k):

1 k-Vertex Cover: Does G contain a set S ⊆ V (G), with |S| ≤ k,
containing at least an endpoint of every edge?

2 k-Clique: Does G contain a set S ⊆ V (G), with |S| ≥ k,
of pairwise adjacent vertices?

3 Vertex k-Coloring: Can V (G) be colored with ≤ k colors, so
that adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?
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They behave quite differently...

1 k-Vertex Cover: solvable in time 2k · n2

= f (k) · nO(1)

The problem is FPT (fixed-parameter tractable)

2 k-Clique: solvable in time k2 · nk

= f (k) · ng(k)

The problem is XP (slice-wise polynomial)

3 Vertex k-Coloring: NP-hard for every fixed k ≥ 3

The problem is para-NP-hard
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The choice of the parameter is crucial!

Every choice of the parameter defines a different parameterized problem:

Finding a k-clique parameterized by k: W[1]-hard (unlikely FPT).

Finding a k-clique parameterized by ∆: FPT.

There are mainly two types of parameters:

Parameters concerning the desired solution (output):
typically, the size of the solution we are looking for.

Parameters considering structural characteristics of the input graph:
maximum degree, or treewidth.
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Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.
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Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

3 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).
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Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [ ∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G) ]

Theorem (Courcelle. 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...
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Graph modification problems

Let C be a target graph class (planar graphs, bounded degree, ...).

LetM be a set of allowed graph modification operations
(vertex deletion, edge deletion/addition/contraction, ...).

M-Modification to C
Input: A graph G and an integer k.
Question: Can we transform G to a graph in C by applying
spaceeeeeerrrat most k operations fromM?

We focus on:

M = {vertex deletion}.

C is a minor-closed graph class.
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Graph minors

G H
[Figure by Gwenaël Joret]

A graph H is a minor of a graph G if H, denoted by H 6m G , can be
obtained from a subgraph of G by contracting edges.

A graph class C is minor-closed if (G ∈ C and H 6m G) =⇒ H ∈ C.

Theorem (Robertson and Seymour. 1983-2004)
For every minor-closed graph class C there exists a finite collection F of
forbidden minors such that, for every graph G,

G ∈ C ⇐⇒ F 
m G for every F ∈ F .
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Hitting forbidden minors

If C = {edgeless graphs}, then F = {K2}.
If C = {forests}, then F = {K3}.
If C = {outerplanar graphs}, then F = {K4,K2,3}.
If C = {planar graphs}, then F = {K5,K3,3}.

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
F = {K3}: Feedback Vertex Set.
F = {K5,K3,3}: Vertex Planarization.
F = {diamond}: Cactus Vertex Deletion.
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F = {K3}: Feedback Vertex Set.
F = {K5,K3,3}: Vertex Planarization.
F = {diamond}: Cactus Vertex Deletion.
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We consider the following two parameterizations of F-M-Deletion:
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Next subsection is...

1 Introduction
Parameterized complexity
Treewidth

2 Hitting forbidden minors
Parameterized by treewidth
Parameterized by solution size
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Theorem (Courcelle. 1990)
Every problem expressible in MSOL can be solved in time fF (tw) · n on
graphs on n vertices and treewidth at most tw.

It is not difficult to see that can F-M-Deletion be expressed in MSOL:

————-F-M-Deletion is FPT parameterized by tw...

fF (tw) · n

= 2345678tw

· n

Goal For every F , find the smallest possible function fF (tw).

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n).
[Impagliazzo, Paturi. 1999]

Very active area in parameterized complexity during the last decade.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box” in all kinds of parameterized algorithms.
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What was known for particular collections F

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1).

[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]
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Work with Julien Baste and Dimitrios M. Thilikos (2016-)

Objective

Determine, for every fixed F , the (asymptotically) smallest function fF
such that F-M-Deletion on n-vertex graphs can be solved in time

fF (tw) · nO(1).

We do not want to optimize the degree of the polynomial factor.

We do not want to optimize the constants.

Our hardness results hold under the ETH.

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. I. General upper bounds. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. II. Single-exponential algorithms. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. III. Lower bounds. 2020]

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. IV. An optimal algorithm. 2020-]
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Summary of our results

For every F : F-M-Deletion in time 22O(tw·log tw) · nO(1).

For every planar1 F : F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar: F-M-Deletion in time 2O(tw) · nO(1).

For every F : F-M-Deletion not solvable in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Planar collection F : contains at least one planar graph.
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A dichotomy for hitting a connected minor

Theorem (Baste, S., Thilikos. 2016-2020)
Let H be a connected graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H 6c or H 6c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip
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Complexity of hitting a single connected minor H

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house

C5

K5

Classification of the complexity of {H}-M-Deletion for all connected
simple planar graphs H with |V (H)| ≤ 5 and |E (H)| ≥ 1: for the 9 graphs
on the left (resp. 20 graphs on the right), the problem is solvable in time
2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion, K1,4
should be on the left.
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A compact statement for a single connected graph

bull butterfly

bannerchair

claw

diamond
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K2,3

px

W4K5-e
C3 C4

P2

P3
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P5

K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house

C5

K5

All these cases can be succinctly described as follows:

All graphs on the left are contractions of or

All graphs on the right are not contractions of or
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We have three types of results

1 General algorithms

For every F : time 22O(tw·log tw) · nO(1).
F planar: time 2O(tw·log tw) · nO(1).
F ���XXXplanar: time 2O(tw·log tw) · nO(1).
G planar: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

skip
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Algorithm in time 2OF (tw·log tw) · nO(1) for any collection F
[Fig. by Valentin Garnero]

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F 6m G ′ ⊕ G1 ⇐⇒ F 6m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R ∈ R(F ,t):

p(GB,R) = min{|S| : S ⊆ V (GB) ∧ repF ,t(GB \ S) = R}

This gives an algorithm running in time |R(F ,t)|O(1) · nO(1).

Goal Bound the number of representatives: |R(F ,t)| = 2OF (tw·log tw).
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Bounding the set of representatives

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

Then, by the sparsity of the representatives,

|R(F ,t)| = OF (1) ·
(
t2

t

)
= 2OF (t·log t),

and we are done!

Flat Wall Theorem [Robertson, Seymour. GMXIII. 1995]

As a representative R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.
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A flat wall can in fact be quite wild...

[Figure by Dimitrios M. Thilikos]aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaskip
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Hard part: finding an irrelevant vertex inside a flat wall

f11 b

f10

Df10

[Figure by Dimitrios M. Thilikos]skip
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Diagram of the algorithm for a general collection F
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Diagram of the algorithm for a general collection F
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Next subsection is...

1 Introduction
Parameterized complexity
Treewidth

2 Hitting forbidden minors
Parameterized by treewidth
Parameterized by solution size
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We parameterize by the size of the desired solution
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| 6 k such that
viam G \ S does not contain any of the graphs in F as a minor?

It is easy to see that, for every k > 1, the class of graphs

Ck = {G | (G , k) is a positive instance of F-M-Deletion}

is minor-closed.

Theorem (Robertson and Seymour. 1983-2004)
For every minor-closed graph class C, deciding whether an n-vertex graph
G belongs to C can be solved in time f (C) · n3.

For every k ≥ 1, there exists an FPT algorithm for F-M-Deletion.

But... only existential, non-uniform, f (Ck) astronomical.
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Can we do better?

The function f (Ck) is constructible. [Adler, Grohe, Kreutzer. 2008]

If F contains a planar graph: 2OF (k) · nO(1).
[Fomin, Lokshtanov, Misra, Saurabh. 2012]

[Kim, Langer, Paul , Reidl, Rossmanith, S., Sikdar. 2013]

For some non-planar collections F :

F = {K5,K3,3}: 2O(k log k) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014]

Deletion to genus at most g : 2Og (k2 log k) · nO(1). [Kociumaka, Ma. Pilipczuk. 2019]

For every F , some enormous explicit function fF (k) can be derived
from an FPT algorithm for hitting topological minors:

thisisjustsomespacefF (k) · nO(1). [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi. 2020]
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Our results

Theorem (S., Stamoulis, Thilikos. 2020)
For all F , the F-M-Deletion problem can be solved in time 2poly(k) · n3.

Here, poly(k) is a polynomial whose degree depends on F .

Theorem (S., Stamoulis, Thilikos. 2020)
If F contains an apex graph, the F-M-Deletion problem can be solved
in time 2poly(k) · n2.

Again, poly(k) is a polynomial whose degree depends on F .

skip
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General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]

S

G \ S

S
A

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is “large enough” (as a polynomial function of k):

1 Find a “very very large” wall in G \ S.
2 Find a “very large” flat wall W of G \ S with few apices A.
3 Find in W a packing of OF (k4) disjoint “large” subwalls:

If every subwall has at least |A|+ 1 neighbors in S ∪ A:

Every solution intersects S ∪ A → we can branch!

If one of these subwalls has at most |A| neighbors in S ∪ A:

Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.
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Find an irrelevant vertex v inside this flat subwall.
Update G = G \ v and repeat.

Thus, tw(G \ S) = kOF (1):

our previous FPT algo gives 2kOF (1) · n2.
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General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis]
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What’s next about F -M-Deletion?

With parameter tw Classify the asymptotic complexity of
F-M-Deletion for every family F?

We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

We can also consider the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

With parameter k We presented algorithm in time 2kOF (1) · n3.
With parameter kmIs 2OF (kc ) · nO(1) possible for some constant c?

skip parameter kmIs the price of homogeneity unavoidable?
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For topological minors, there is (at least) one change

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house K5
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Gràcies!
Toda raba!

FREEDOM FOR ALL CATALAN POLITICAL PRISONERS IN SPAIN
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