FPT algorithms for hitting forbidden minors

Ignasi Sau

CNRS, LIRMM, Université de Montpellier, France

Joint work with Julien Baste, Giannos Stamoulis, and Dimitrios M. Thilikos

20th Haifa Workshop on Graph Theory, Combinatorics and Algorithms June 8th, 2020

- Parameterized complexity
- Treewidth

- Parameterized by treewidth
- Parameterized by solution size

- Parameterized complexity
- Treewidth

- Parameterized by treewidth
- Parameterized by solution size

• Parameterized complexity

Treewidth

- Parameterized by treewidth
- Parameterized by solution size

P: problems that can be solved in polynomial time.

NP: problems for which a solution can be verified in polynomial time.

- P: problems that can be solved in polynomial time.
- NP: problems for which a solution can be verified in polynomial time.

NP-hard: no algorithm solves all instances optimally in polynomial time.

- P: problems that can be solved in polynomial time.
- NP: problems for which a solution can be verified in polynomial time.

NP-hard: no algorithm solves all instances optimally in polynomial time.

- Approximation algorithms: In polynomial time, find solutions that are "close" to the optimal ones.
- Moderately exponential-time algorithms: Solve the problem in exponential time, but reasonably "fast" (1.15ⁿ vs 2ⁿ).
- Heuristics: Produce "good" solutions, but with no guarantee.

◆□▼ ▲□▼ ▲□▼ ▲□▼ ▲□▼

- P: problems that can be solved in polynomial time.
- NP: problems for which a solution can be verified in polynomial time.

NP-hard: no algorithm solves all instances optimally in polynomial time.

- Approximation algorithms: In polynomial time, find solutions that are "close" to the optimal ones.
- Moderately exponential-time algorithms: Solve the problem in exponential time, but reasonably "fast" (1.15ⁿ vs 2ⁿ).
- Heuristics: Produce "good" solutions, but with no guarantee.
- Parameterized complexity: Topic of this talk...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Idea Measure the complexity of an algorithm in terms of the input size and an additional integer parameter.

This theory started in the late 80's, by Downey and Fellows:

Today, it is a well-established area with hundreds of articles published every year in the most prestigious TCS journals and conferences.

In a parameterized problem, an instance is a pair (x, k), where

- x is a typical input (in our setting, a graph).
- *k* is a positive integer called the parameter.

In a parameterized problem, an instance is a pair (x, k), where

- x is a typical input (in our setting, a graph).
- k is a positive integer called the parameter.

Examples of parameterized problems on graphs, with an instance (G, k):

• *k*-VERTEX COVER: Does *G* contain a set $S \subseteq V(G)$, with $|S| \leq k$, containing at least an endpoint of every edge?

In a parameterized problem, an instance is a pair (x, k), where

- x is a typical input (in our setting, a graph).
- k is a positive integer called the parameter.

Examples of parameterized problems on graphs, with an instance (G, k):

- *k*-VERTEX COVER: Does *G* contain a set $S \subseteq V(G)$, with $|S| \leq k$, containing at least an endpoint of every edge?

In a parameterized problem, an instance is a pair (x, k), where

- x is a typical input (in our setting, a graph).
- k is a positive integer called the parameter.

Examples of parameterized problems on graphs, with an instance (G, k):

- *k*-VERTEX COVER: Does *G* contain a set $S \subseteq V(G)$, with $|S| \leq k$, containing at least an endpoint of every edge?
- ② *k*-CLIQUE: Does *G* contain a set *S* ⊆ *V*(*G*), with $|S| \ge k$, of pairwise adjacent vertices?

• VERTEX *k*-COLORING: Can V(G) be colored with $\leq k$ colors, so that adjacent vertices get different colors?

In a parameterized problem, an instance is a pair (x, k), where

- x is a typical input (in our setting, a graph).
- k is a positive integer called the parameter.

Examples of parameterized problems on graphs, with an instance (G, k):

- *k*-VERTEX COVER: Does *G* contain a set $S \subseteq V(G)$, with $|S| \leq k$, containing at least an endpoint of every edge?
- ② *k*-CLIQUE: Does *G* contain a set *S* ⊆ *V*(*G*), with $|S| \ge k$, of pairwise adjacent vertices?

• VERTEX *k*-COLORING: Can V(G) be colored with $\leq k$ colors, so that adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

• k-VERTEX COVER: solvable in time $2^k \cdot n^2$

2 *k*-CLIQUE: solvable in time $k^2 \cdot n^k$

③ VERTEX *k*-COLORING: NP-hard for every fixed $k \ge 3$

• k-VERTEX COVER: solvable in time $2^k \cdot n^2 = f(k) \cdot n^{\mathcal{O}(1)}$

• k-CLIQUE: solvable in time
$$k^2 \cdot n^k = f(k) \cdot n^{g(k)}$$

③ VERTEX *k*-COLORING: NP-hard for every fixed $k \ge 3$

• k-VERTEX COVER: solvable in time $2^k \cdot n^2 = f(k) \cdot n^{\mathcal{O}(1)}$

The problem is FPT (fixed-parameter tractable)

2 *k*-CLIQUE: solvable in time $k^2 \cdot n^k = f(k) \cdot n^{g(k)}$

③ VERTEX *k*-COLORING: NP-hard for every fixed $k \ge 3$

• k-VERTEX COVER: solvable in time $2^k \cdot n^2 = f(k) \cdot n^{\mathcal{O}(1)}$

The problem is **FPT** (fixed-parameter tractable)

2 *k*-CLIQUE: solvable in time $k^2 \cdot n^k =$

$$= f(k) \cdot n^{g(k)}$$

The problem is XP (slice-wise polynomial)

③ VERTEX *k*-COLORING: NP-hard for every fixed $k \ge 3$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▼ のへの

• k-VERTEX COVER: solvable in time $2^k \cdot n^2 = f(k) \cdot n^{\mathcal{O}(1)}$

The problem is **FPT** (fixed-parameter tractable)

2 *k*-CLIQUE: solvable in time $k^2 \cdot n^k =$

$$= f(k) \cdot \mathbf{n}^{g(k)}$$

The problem is XP (slice-wise polynomial)

• VERTEX *k*-COLORING: NP-hard for every fixed $k \ge 3$

The problem is para-NP-hard

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

• Finding a k-clique parameterized by k: W[1]-hard (unlikely FPT).

- Finding a k-clique parameterized by k: W[1]-hard (unlikely FPT).
- Finding a k-clique parameterized by Δ : FPT.

- Finding a k-clique parameterized by k: W[1]-hard (unlikely FPT).
- Finding a *k*-clique parameterized by Δ : FPT.

There are mainly two types of parameters:

- Finding a k-clique parameterized by k: W[1]-hard (unlikely FPT).
- Finding a k-clique parameterized by Δ : FPT.

There are mainly two types of parameters:

 Parameters concerning the desired solution (output): typically, the size of the solution we are looking for.

- Finding a k-clique parameterized by k: W[1]-hard (unlikely FPT).
- Finding a k-clique parameterized by Δ : FPT.

There are mainly two types of parameters:

- Parameters concerning the desired solution (output): typically, the size of the solution we are looking for.
- Parameters considering structural characteristics of the input graph: maximum degree,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Finding a k-clique parameterized by k: W[1]-hard (unlikely FPT).
- Finding a k-clique parameterized by Δ : FPT.

There are mainly two types of parameters:

- Parameters concerning the desired solution (output): typically, the size of the solution we are looking for.
- Parameters considering structural characteristics of the input graph: maximum degree, or treewidth.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

- Parameterized complexity
- Treewidth

- Parameterized by treewidth
- Parameterized by solution size

Example of a 2-tree:

A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

<ロ> < 部 > < 書 > < 言 > < 言 > うへで 11

Example of a 2-tree:

A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

<ロト < 部ト < 言ト < 言ト 三 の Q () 11

Example of a 2-tree:

A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

<ロ> < 部 > < 書 > < 言 > < 言 > うへで 11

Example of a 2-tree:

A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

<ロト < 部ト < 言ト < 言ト 三 の Q () 11

Example of a 2-tree:

A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 へ () 11

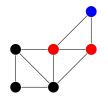
Example of a 2-tree:

A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

<ロ> < 部 > < 書 > < 言 > < 言 > うへで 11

Example of a 2-tree:

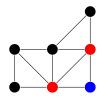


A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

<ロト < 部ト < 画ト < 画ト < 画ト = - のへで 11

Example of a 2-tree:

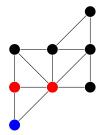


A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

<ロ> < 部> < 書> < 書> < 書> ・ 書 ・ のへの 11

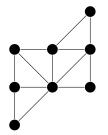
Example of a 2-tree:



[Figure by Julien Baste]

A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

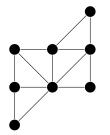
Example of a 2-tree:



[Figure by Julien Baste]

A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

Example of a 2-tree:

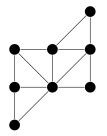


[Figure by Julien Baste]

A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

A partial *k*-tree is a subgraph of a *k*-tree.

Example of a 2-tree:



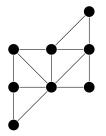
[Figure by Julien Baste]

A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

A partial *k*-tree is a subgraph of a *k*-tree.

Treewidth of a graph G, denoted tw(G): smallest integer k such that G is a partial k-tree.

Example of a 2-tree:



[Figure by Julien Baste]

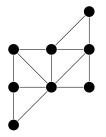
A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

A partial *k*-tree is a subgraph of a *k*-tree.

Treewidth of a graph G, denoted tw(G): smallest integer k such that G is a partial k-tree.

Invariant that measures the topological resemblance of a graph to a tree.

Example of a 2-tree:



[Figure by Julien Baste]

A *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

A partial *k*-tree is a subgraph of a *k*-tree.

Treewidth of a graph G, denoted tw(G): smallest integer k such that G is a partial k-tree.

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.

Treewidth is a fundamental combinatorial tool in graph theory: key role in the Graph Minors project of Robertson and Seymour.

- Treewidth is a fundamental combinatorial tool in graph theory: key role in the Graph Minors project of Robertson and Seymour.
- Treewidth behaves very well algorithmically, and algorithms parameterized by treewidth appear very often in FPT algorithms.

- Treewidth is a fundamental combinatorial tool in graph theory: key role in the Graph Minors project of Robertson and Seymour.
- Treewidth behaves very well algorithmically, and algorithms parameterized by treewidth appear very often in FPT algorithms.
- In many practical scenarios, it turns out that the treewidth of the associated graph is small (programming languages, road networks, ...).

Treewidth behaves very well algorithmically

<ロト < 部ト < 差ト < 差ト 差 のへで 13

Monadic Second Order Logic (MSOL):

Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [$\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G)$]

Monadic Second Order Logic (MSOL):

Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [$\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G)$]

Theorem (Courcelle. 1990)

Every problem expressible in MSOL can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Monadic Second Order Logic (MSOL):

Graph logic that allows quantification over sets of vertices and edges.

 $\textbf{Example: DomSet}(S): \quad [\ \forall v \in V(G) \setminus S, \exists u \in S : \{u,v\} \in E(G) \]$

Theorem (Courcelle. 1990)

Every problem expressible in MSOL can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: VERTEX COVER, DOMINATING SET, HAMILTONIAN CYCLE, CLIQUE, INDEPENDENT SET, *k*-COLORING for fixed *k*, ...

Introduction

- Parameterized complexity
- Treewidth

2 Hitting forbidden minors

- Parameterized by treewidth
- Parameterized by solution size

Graph modification problems

Let \mathcal{M} be a set of allowed graph modification operations (vertex deletion, edge deletion/addition/contraction, ...).

Let \mathcal{M} be a set of allowed graph modification operations (vertex deletion, edge deletion/addition/contraction, ...).

\mathcal{M} -Modification to \mathcal{C}	
Input:	A graph G and an integer k .
Question:	Can we transform G to a graph in $\mathcal C$ by applying
	at most k operations from \mathcal{M} ?

Let \mathcal{M} be a set of allowed graph modification operations (vertex deletion, edge deletion/addition/contraction, ...).

\mathcal{M} -Modification to \mathcal{C}	
Input:	A graph G and an integer k .
Question:	Can we transform G to a graph in $\mathcal C$ by applying
	at most k operations from \mathcal{M} ?

We focus on:

• $\mathcal{M} = \{ \text{vertex deletion} \}.$

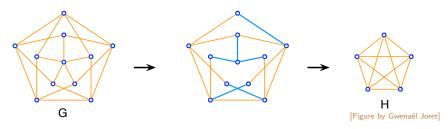
Let \mathcal{M} be a set of allowed graph modification operations (vertex deletion, edge deletion/addition/contraction, ...).

\mathcal{M} -Modification to \mathcal{C}	
Input:	A graph G and an integer k .
Question:	Can we transform G to a graph in $\mathcal C$ by applying
	at most k operations from \mathcal{M} ?

We focus on:

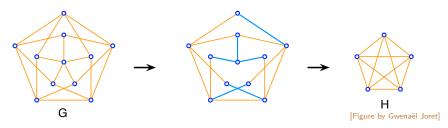
- $\mathcal{M} = \{ \text{vertex deletion} \}.$
- \mathcal{C} is a minor-closed graph class.

Graph minors



A graph *H* is a minor of a graph *G* if *H*, denoted by $H \leq_{m} G$, can be obtained from a subgraph of *G* by contracting edges.

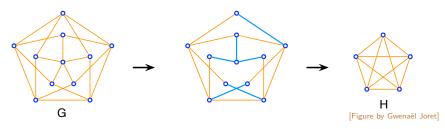
Graph minors



A graph *H* is a minor of a graph *G* if *H*, denoted by $H \leq_{m} G$, can be obtained from a subgraph of *G* by contracting edges.

A graph class \mathcal{C} is minor-closed if $(G \in \mathcal{C} \text{ and } H \leq_{\mathsf{m}} G) \Longrightarrow H \in \mathcal{C}$.

Graph minors



A graph *H* is a minor of a graph *G* if *H*, denoted by $H \leq_{m} G$, can be obtained from a subgraph of *G* by contracting edges.

A graph class \mathcal{C} is minor-closed if $(G \in \mathcal{C} \text{ and } H \leq_{\mathsf{m}} G) \Longrightarrow H \in \mathcal{C}$.

Theorem (Robertson and Seymour. 1983-2004)

For every minor-closed graph class C there exists a finite collection \mathcal{F} of forbidden minors such that, for every graph G,

 $G \in \mathcal{C} \iff F \leq m$ *G* for every $F \in \mathcal{F}$.

- If $C = \{ edgeless graphs \}$, then $\mathcal{F} = \{ K_2 \}$.
- If $C = \{$ forests $\}$, then $\mathcal{F} = \{K_3\}$.
- If $C = \{ \text{outerplanar graphs} \}$, then $\mathcal{F} = \{ K_4, K_{2,3} \}$.
- If $C = \{ \text{planar graphs} \}$, then $\mathcal{F} = \{ K_5, K_{3,3} \}$.

- If $C = \{ edgeless graphs \}$, then $\mathcal{F} = \{ K_2 \}$.
- If $\mathcal{C} = \{\text{forests}\}, \text{ then } \mathcal{F} = \{K_3\}.$
- If $C = \{ \text{outerplanar graphs} \}$, then $\mathcal{F} = \{ K_4, K_{2,3} \}$.
- If $C = \{ \text{planar graphs} \}$, then $\mathcal{F} = \{ K_5, K_{3,3} \}$.

Let \mathcal{F} be a fixed finite collection of graphs.

- If $C = \{ edgeless graphs \}$, then $\mathcal{F} = \{ K_2 \}$.
- If $\mathcal{C} = \{\text{forests}\}, \text{ then } \mathcal{F} = \{K_3\}.$
- If $C = \{ \text{outerplanar graphs} \}$, then $\mathcal{F} = \{ K_4, K_{2,3} \}$.
- If $C = \{ \text{planar graphs} \}$, then $\mathcal{F} = \{ K_5, K_{3,3} \}$.

Let \mathcal{F} be a fixed finite collection of graphs.

```
\mathcal{F}-M-DELETIONInput:A graph G and an integer k.Question:Does G contain a set S \subseteq V(G) with |S| \leq k such that<br/>G \setminus S does not contain any of the graphs in \mathcal{F} as a minor?
```

- If $C = \{ edgeless graphs \}$, then $\mathcal{F} = \{ K_2 \}$.
- If $\mathcal{C} = \{\text{forests}\}, \text{ then } \mathcal{F} = \{K_3\}.$
- If $C = \{ \text{outerplanar graphs} \}$, then $\mathcal{F} = \{ K_4, K_{2,3} \}$.
- If $C = \{ \text{planar graphs} \}$, then $\mathcal{F} = \{ K_5, K_{3,3} \}$.

Let \mathcal{F} be a fixed finite collection of graphs.

F-M-DELETION	
Input:	A graph G and an integer k .
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that
	$G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: Vertex Cover.
- $\mathcal{F} = \{K_3\}$: Feedback Vertex Set.
- $\mathcal{F} = \{K_5, K_{3,3}\}$: Vertex Planarization.
- $\mathcal{F} = \{ \text{diamond} \}$: CACTUS VERTEX DELETION.

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

イロト 不得 トイヨト イヨト 三日

18

Let \mathcal{F} be a fixed finite collection of graphs.

F-M-DELETION	
Input:	A graph G and an integer k .
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that
	$G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

NP-hard if \mathcal{F} contains a graph with some edge.

[Lewis, Yannakakis. 1980]

Let \mathcal{F} be a fixed finite collection of graphs.

F-M-DELETION	
Input:	A graph G and an integer k .
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that
	$G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

NP-hard if \mathcal{F} contains a graph with some edge.

[Lewis, Yannakakis. 1980]

We consider the following two parameterizations of \mathcal{F} -M-DELETION:

- Structural parameter: tw(G).
- Solution size: k.

Introduction

- Parameterized complexity
- Treewidth

2 Hitting forbidden minors

- Parameterized by treewidth
- Parameterized by solution size

Every problem expressible in MSOL can be solved in time $f_{\mathcal{F}}(\mathsf{tw}) \cdot n$ on graphs on n vertices and treewidth at most tw.

Every problem expressible in MSOL can be solved in time $f_{\mathcal{F}}(\mathsf{tw}) \cdot n$ on graphs on n vertices and treewidth at most tw.

It is not difficult to see that can \mathcal{F} -M-DELETION be expressed in MSOL:

*F***-M-DELETION** is **FPT** parameterized by tw...

Every problem expressible in MSOL can be solved in time $f_{\mathcal{F}}(\mathsf{tw}) \cdot n$ on graphs on n vertices and treewidth at most tw.

It is not difficult to see that can \mathcal{F} -M-DELETION be expressed in MSOL:

 \mathcal{F} -M-DELETION is FPT parameterized by tw...

 $f_{\mathcal{F}}(\mathsf{tw}) \cdot \boldsymbol{n}$

Every problem expressible in MSOL can be solved in time $f_{\mathcal{F}}(\mathsf{tw}) \cdot n$ on graphs on n vertices and treewidth at most tw.

It is not difficult to see that can \mathcal{F} -M-DELETION be expressed in MSOL:

*F***-M-DELETION** is **FPT** parameterized by tw...

$$f_{\mathcal{F}}(\mathsf{tw}) \cdot \mathbf{n} = 2^{3^{4^{5^{6^{7^{8^{tw}}}}}}} \cdot \mathbf{n}$$

Every problem expressible in MSOL can be solved in time $f_{\mathcal{F}}(\mathsf{tw}) \cdot n$ on graphs on n vertices and treewidth at most tw.

It is not difficult to see that can \mathcal{F} -M-DELETION be expressed in MSOL:

*F***-M-DELETION** is **FPT** parameterized by tw...

$$f_{\mathcal{F}}(\mathsf{tw}) \cdot \mathbf{n} = 2^{3^{4^{5^{6^{7^{8^{tw}}}}}}} \cdot \mathbf{n}$$

Goal For every \mathcal{F} , find the smallest possible function $f_{\mathcal{F}}(\mathsf{tw})$.

Theorem (Courcelle. 1990)

Every problem expressible in MSOL can be solved in time $f_{\mathcal{F}}(\mathsf{tw}) \cdot n$ on graphs on n vertices and treewidth at most tw.

It is not difficult to see that can \mathcal{F} -M-DELETION be expressed in MSOL:

*F***-M-DELETION** is **FPT** parameterized by tw...

$$f_{\mathcal{F}}(\mathsf{tw}) \cdot \mathbf{n} = 2^{3^{4^{5^{6^{7^{8^{tw}}}}}}} \cdot \mathbf{n}$$

Goal For every \mathcal{F} , find the smallest possible function $f_{\mathcal{F}}(\mathsf{tw})$.

ETH: The 3-SAT problem on *n* variables cannot be solved in time $2^{o(n)}$. [Impagliazzo, Paturi. 1999]

イロト 不得 トイヨト イヨト 三日

Theorem (Courcelle. 1990)

Every problem expressible in MSOL can be solved in time $f_{\mathcal{F}}(\mathsf{tw}) \cdot n$ on graphs on n vertices and treewidth at most tw.

It is not difficult to see that can \mathcal{F} -M-DELETION be expressed in MSOL:

*F***-M-DELETION** is **FPT** parameterized by tw...

$$f_{\mathcal{F}}(\mathsf{tw}) \cdot \mathbf{n} = 2^{3^{4^{5^{6^{7^{8^{tw}}}}}}} \cdot \mathbf{n}$$

Goal For every \mathcal{F} , find the smallest possible function $f_{\mathcal{F}}(\mathsf{tw})$.

ETH: The 3-SAT problem on *n* variables cannot be solved in time $2^{o(n)}$. [Impagliazzo, Paturi. 1999]

Very active area in parameterized complexity during the last decade.

Remark: Algorithms parameterized by treewidth appear very often as a "black box" in all kinds of parameterized algorithms,

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

(日)

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

イロト 不得 トイヨト イヨト 三日

• $\mathcal{F} = \{K_2\}$: Vertex Cover.

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

• $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.
- $\mathcal{F} = \{K_3\}$: FEEDBACK VERTEX SET.

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.
- $\mathcal{F} = \{K_3\}$: FEEDBACK VERTEX SET. "Hardly" solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.

[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.
- $\mathcal{F} = \{K_3\}$: FEEDBACK VERTEX SET. "Hardly" solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.

[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

• $\mathcal{F} = \{K_5, K_{3,3}\}$: VERTEX PLANARIZATION.

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.
- $\mathcal{F} = \{K_3\}$: FEEDBACK VERTEX SET. "Hardly" solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.

[Cut&Count: Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

• $\mathcal{F} = \{K_5, K_{3,3}\}$: VERTEX PLANARIZATION. Solvable in time $2^{\Theta(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$. [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Objective

Determine, for every fixed \mathcal{F} , the (asymptotically) smallest function $f_{\mathcal{F}}$ such that \mathcal{F} -M-DELETION on *n*-vertex graphs can be solved in time

 $f_{\mathcal{F}}(\mathsf{tw}) \cdot n^{\mathcal{O}(1)}.$

Objective

Determine, for every fixed \mathcal{F} , the (asymptotically) smallest function $f_{\mathcal{F}}$ such that \mathcal{F} -M-DELETION on *n*-vertex graphs can be solved in time

 $f_{\mathcal{F}}(\mathsf{tw}) \cdot n^{\mathcal{O}(1)}.$

- We do not want to optimize the degree of the polynomial factor.
- We do not want to optimize the constants.
- Our hardness results hold under the ETH.

Objective

Determine, for every fixed \mathcal{F} , the (asymptotically) smallest function $f_{\mathcal{F}}$ such that \mathcal{F} -M-DELETION on *n*-vertex graphs can be solved in time

 $f_{\mathcal{F}}(\mathsf{tw}) \cdot n^{\mathcal{O}(1)}.$

- We do not want to optimize the degree of the polynomial factor.
- We do not want to optimize the constants.
- Our hardness results hold under the ETH.

[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. I. General upper bounds. 2020]
[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. II. Single-exponential algorithms. 2020]
[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. III. Lower bounds. 2020]
[Baste, S., Thilikos. Hitting minors on bounded treewidth graphs. IV. An optimal algorithm. 2020-]

▲□▶▲□▶▲□▶▲□▶ □ のQで

Summary of our results

• For every \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.

- For every \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- For every planar¹ \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

- For every \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- For every planar¹ \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

- For every \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- For every planar¹ \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$.

- For every \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- For every planar¹ \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$.
- For every \mathcal{F} : \mathcal{F} -M-DELETION not solvable in time $2^{o(tw)} \cdot n^{\mathcal{O}(1)}$ unless the ETH fails, even if *G* planar.

- For every \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- For every planar¹ \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$.
- For every \mathcal{F} : \mathcal{F} -M-DELETION not solvable in time $2^{o(tw)} \cdot n^{\mathcal{O}(1)}$ unless the ETH fails, even if *G* planar.
- $\mathcal{F} = \{H\}, H$ connected:

- For every \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- For every planar¹ \mathcal{F} : \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$.
- For every \mathcal{F} : \mathcal{F} -M-DELETION not solvable in time $2^{o(tw)} \cdot n^{\mathcal{O}(1)}$ unless the ETH fails, even if *G* planar.
- $\mathcal{F} = \{H\}$, *H* connected: complete tight dichotomy...

・ロト (部) (言) (言) (言) (の)(の)
24

Theorem (Baste, S., Thilikos. 2016-2020)

Let *H* be a connected graph.

Theorem (Baste, S., Thilikos. 2016-2020)

Let H be a connected graph. The $\{H\}$ -M-DELETION problem is solvable in time

•
$$2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$$
, if $H \leq_{\mathsf{c}} \stackrel{\frown}{\longrightarrow} \text{or } H \leq_{\mathsf{c}} \stackrel{\frown}{\longrightarrow}$.

Theorem (Baste, S., Thilikos. 2016-2020)

Let **H** be a connected graph.

The $\{H\}$ -M-DELETION problem is solvable in time

•
$$2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$$
, if $H \leq_{\mathsf{c}} \stackrel{\frown}{\longrightarrow} \text{or } H \leq_{\mathsf{c}} \stackrel{\frown}{\longmapsto}$.

• $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$, otherwise.

Theorem (Baste, S., Thilikos. 2016-2020)

Let H be a connected graph.

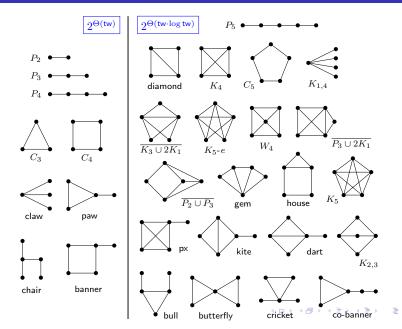
The $\{H\}$ -M-DELETION problem is solvable in time

•
$$2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$$
, if $H \leq_{\mathsf{c}} \stackrel{\bullet}{\longrightarrow} \text{or } H \leq_{\mathsf{c}} \stackrel{\bullet}{\longmapsto}$.

• $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$, otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

Complexity of hitting a single connected minor H



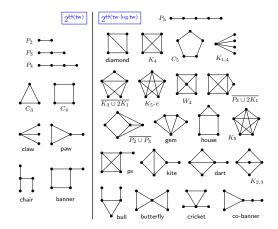
A compact statement for a single connected graph



All these cases can be succinctly described as follows:

<ロト < 同ト < ヨト < ヨト

A compact statement for a single connected graph

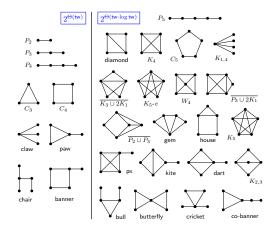


All these cases can be succinctly described as follows:

• All graphs on the left are contractions of \leftarrow or \leftarrow

<ロト < 同ト < ヨト < ヨト

A compact statement for a single connected graph



All these cases can be succinctly described as follows:

- All graphs on the left are contractions of 🛶
- All graphs on the right are not contractions of

<ロ>< (日)> < ((H)> < (H)> < ((H)> < (H)> < ((H)> < ((H)> < (H)> < ((H)> < (

General algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar: time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$.

General algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} planaf: time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar: time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

Ad-hoc single-exponential algorithms

- Some use "typical" dynamic programming.
- Some use the rank-based approach.

[Bodlaender, Cygan, Kratsch, Nederlof. 2013]

(日)

General algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} planaf: time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar: time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

2 Ad-hoc single-exponential algorithms

- Some use "typical" dynamic programming.
- Some use the rank-based approach.

[Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Solution Lower bounds under the ETH

- 2^{o(tw)} is "easy".
- 2^{o(tw·log tw)} is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

General algorithms

- For every \mathcal{F} : time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- ★ \mathcal{F} planar: time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$.
 - G planar: time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

Ad-hoc single-exponential algorithms

- Some use "typical" dynamic programming.
- Some use the rank-based approach.

[Bodlaender, Cygan, Kratsch, Nederlof. 2013]

(日)

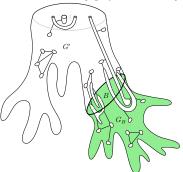
Lower bounds under the ETH

- 2^{o(tw)} is "easy".
- 2^{o(tw·log tw)} is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

Algorithm in time $2^{\mathcal{O}_{\mathcal{F}}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$ for any collection \mathcal{F}

[Fig. by Valentin Garnero]



<ロト < 同ト < ヨト < ヨト

Algorithm in time $2^{\mathcal{O}_{\mathcal{F}}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$ for any collection \mathcal{F}

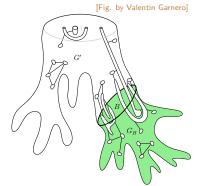
For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{l} \mathbf{G_1} \equiv^{(\mathcal{F},t)} \mathbf{G_2} & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \leqslant_{\mathsf{m}} G' \oplus \mathbf{G_1} \iff \mathcal{F} \leqslant_{\mathsf{m}} G' \oplus \mathbf{G_2}. \end{array}$$

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{l} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \leqslant_{\mathsf{m}} G' \oplus G_1 \iff \mathcal{F} \leqslant_{\mathsf{m}} G' \oplus G_2. \end{array}$$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.



<ロト < 同ト < ヨト < ヨト

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{ll} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \leqslant_m G' \oplus G_1 \iff \mathcal{F} \leqslant_m G' \oplus G_2 \end{array}$$

- $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.
 - We compute, using DP over a tree decomposition of G, the following parameter for every representative R ∈ R^(F,t):

 $\mathbf{p}(G_B, R) = \min\{|S| : S \subseteq V(G_B) \land \operatorname{rep}_{\mathcal{F}, t}(G_B \setminus S) = R\}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

[Fig. by Valentin Garnero]

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{ll} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \leqslant_m G' \oplus G_1 \iff \mathcal{F} \leqslant_m G' \oplus G_2 \end{array}$$

- $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.
 - We compute, using DP over a tree decomposition of G, the following parameter for every representative $R \in \mathcal{R}^{(\mathcal{F},t)}$:

 $\mathbf{p}(G_B, R) = \min\{|S| : S \subseteq V(G_B) \land \operatorname{rep}_{\mathcal{F},t}(G_B \setminus S) = R\}$

• This gives an algorithm running in time $|\mathcal{R}^{(\mathcal{F},t)}|^{\mathcal{O}(1)} \cdot n^{\mathcal{O}(1)}$.

イロト イポト イヨト イヨト

[Fig. by Valentin Garnero]

 For a fixed *F*, we define an equivalence relation ≡^(*F*,t) on *t*-boundaried graphs:

$$\begin{array}{ll} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \leqslant_m G' \oplus G_1 \iff \mathcal{F} \leqslant_m G' \oplus G_2 \end{array}$$

- $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.
 - We compute, using DP over a tree decomposition of G, the following parameter for every representative R ∈ R^(F,t):

 $\mathbf{p}(G_B, R) = \min\{|S| : S \subseteq V(G_B) \land \operatorname{rep}_{\mathcal{F}, t}(G_B \setminus S) = R\}$

• This gives an algorithm running in time $|\mathcal{R}^{(\mathcal{F},t)}|^{\mathcal{O}(1)} \cdot n^{\mathcal{O}(1)}$.

• Goal Bound the number of representatives: $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(\mathsf{tw} \cdot \mathsf{log tw})}$

[Fig. by Valentin Garnero]

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

- $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.
- Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

• Then, by the sparsity of the representatives,

$$|\mathcal{R}^{(\mathcal{F},t)}| = \mathcal{O}_{\mathcal{F}}(1) \cdot {t^2 \choose t} = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)},$$

and we are done!

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

• Then, by the sparsity of the representatives,

$$|\mathcal{R}^{(\mathcal{F},t)}| = \mathcal{O}_{\mathcal{F}}(1) \cdot {t^2 \choose t} = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)},$$

and we are done!

• Flat Wall Theorem

[Robertson, Seymour. GMXIII. 1995]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

• Then, by the sparsity of the representatives,

$$|\mathcal{R}^{(\mathcal{F},t)}| = \mathcal{O}_{\mathcal{F}}(1) \cdot {t^2 \choose t} = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)},$$

and we are done!

• Flat Wall Theorem

[Robertson, Seymour. GMXIII. 1995]

As a representative R is \mathcal{F} -minor-free, if tw $(R \setminus B) > c_{\mathcal{F}}$,

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

• Then, by the sparsity of the representatives,

$$|\mathcal{R}^{(\mathcal{F},t)}| = \mathcal{O}_{\mathcal{F}}(1) \cdot egin{pmatrix} t^2 \ t \end{pmatrix} = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)},$$

and we are done!

• Flat Wall Theorem

[Robertson, Seymour. GMXIII. 1995]

A ロ ト 4 同 ト 4 三 ト 4 三 ト 9 Q Q

As a representative R is \mathcal{F} -minor-free, if $tw(R \setminus B) > c_{\mathcal{F}}$, $R \setminus B$ contains a large flat wall,

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• Suppose that we can prove that, for every $R \in \mathcal{R}^{(\mathcal{F},t)}$,

 $|V(R)| = \mathcal{O}_{\mathcal{F}}(t).$

• Then, by the sparsity of the representatives,

$$|\mathcal{R}^{(\mathcal{F},t)}| = \mathcal{O}_{\mathcal{F}}(1) \cdot {t^2 \choose t} = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)},$$

and we are done!

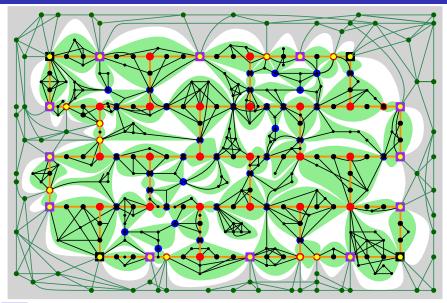
• Flat Wall Theorem

[Robertson, Seymour. GMXIII. 1995]

▲□▶▲□▶▲□▶▲□▶ □ のQで

As a representative R is \mathcal{F} -minor-free, if $tw(R \setminus B) > c_{\mathcal{F}}$, $R \setminus B$ contains a large flat wall, where we can find an irrelevant vertex.

A flat wall can in fact be quite wild...



Hard part: finding an irrelevant vertex inside a flat wall

<ロト < 部 > < 言 > < 言 > うへの 31

Hard part: finding an irrelevant vertex inside a flat wall

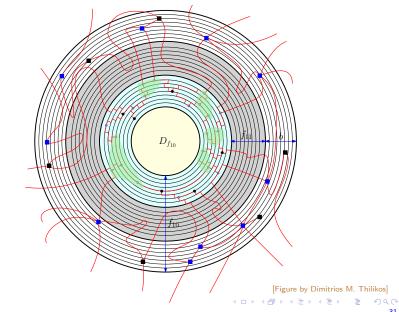


Diagram of the algorithm for a general collection ${\cal F}$

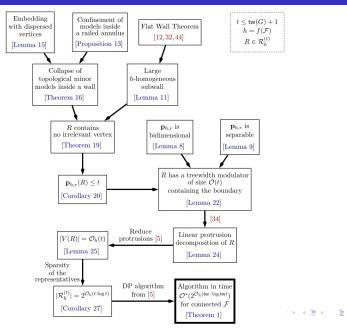
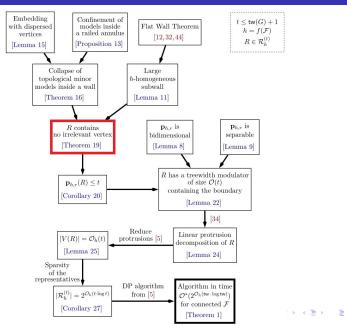


Diagram of the algorithm for a general collection ${\cal F}$



➡ skip

Introduction

- Parameterized complexity
- Treewidth

2 Hitting forbidden minors

- Parameterized by treewidth
- Parameterized by solution size

 \mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:k.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

 \mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:k.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

It is easy to see that, for every $k \ge 1$, the class of graphs

 $C_k = \{G \mid (G, k) \text{ is a positive instance of } \mathcal{F}\text{-}M\text{-}\text{Deletion}\}$

is minor-closed.

 \mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:k.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

It is easy to see that, for every $k \ge 1$, the class of graphs

 $C_k = \{G \mid (G, k) \text{ is a positive instance of } \mathcal{F}\text{-}M\text{-}\text{Deletion}\}$

is minor-closed.

Theorem (Robertson and Seymour. 1983-2004)

For every minor-closed graph class C, deciding whether an n-vertex graph G belongs to C can be solved in time $f(C) \cdot n^3$.

 \mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:k.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

It is easy to see that, for every $k \ge 1$, the class of graphs

 $C_k = \{G \mid (G, k) \text{ is a positive instance of } \mathcal{F}\text{-}M\text{-}\text{Deletion}\}$

is minor-closed.

Theorem (Robertson and Seymour. 1983-2004)

For every minor-closed graph class C, deciding whether an n-vertex graph G belongs to C can be solved in time $f(C) \cdot n^3$.

For every $k \ge 1$, there exists an FPT algorithm for \mathcal{F} -M-DELETION.

 \mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:k.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
 $G \setminus S$ does not contain any of the graphs in \mathcal{F} as a minor?

It is easy to see that, for every $k \ge 1$, the class of graphs

 $C_k = \{G \mid (G, k) \text{ is a positive instance of } \mathcal{F}\text{-}M\text{-}\text{Deletion}\}$

is minor-closed.

Theorem (Robertson and Seymour. 1983-2004)

For every minor-closed graph class C, deciding whether an n-vertex graph G belongs to C can be solved in time $f(C) \cdot n^3$.

For every $k \ge 1$, there exists an FPT algorithm for \mathcal{F} -M-DELETION. But... only existential, non-uniform, $f(\mathcal{C}_k)$ astronomical, $f(\mathcal{C}_k) = 0$

• The function $f(\mathcal{C}_k)$ is constructible.

[Adler, Grohe, Kreutzer. 2008]

• The function $f(\mathcal{C}_k)$ is constructible.

[Adler, Grohe, Kreutzer. 2008]

• If \mathcal{F} contains a planar graph: $2^{\mathcal{O}_{\mathcal{F}}(k)} \cdot n^{\mathcal{O}(1)}$.

[Fomin, Lokshtanov, Misra, Saurabh. 2012]

[Kim, Langer, Paul , Reidl, Rossmanith, S., Sikdar. 2013]

• The function $f(\mathcal{C}_k)$ is constructible.

[Adler, Grohe, Kreutzer. 2008]

• If \mathcal{F} contains a planar graph: $2^{\mathcal{O}_{\mathcal{F}}(k)} \cdot n^{\mathcal{O}(1)}$.

[Fomin, Lokshtanov, Misra, Saurabh. 2012]

[Kim, Langer, Paul , Reidl, Rossmanith, S., Sikdar. 2013]

• For some non-planar collections \mathcal{F} :

• $\mathcal{F} = \{K_5, K_{3,3}\}: 2^{\mathcal{O}(k \log k)} \cdot n^{\mathcal{O}(1)}.$

[Jansen, Lokshtanov, Saurabh. 2014]

- 日本 - 4 日本 - 4 日本 - 日本

• The function $f(\mathcal{C}_k)$ is constructible.

[Adler, Grohe, Kreutzer. 2008]

• If \mathcal{F} contains a planar graph: $2^{\mathcal{O}_{\mathcal{F}}(k)} \cdot n^{\mathcal{O}(1)}$.

[Fomin, Lokshtanov, Misra, Saurabh. 2012]

[Kim, Langer, Paul , Reidl, Rossmanith, S., Sikdar. 2013]

- For some non-planar collections \mathcal{F} :
 - $\mathcal{F} = \{K_5, K_{3,3}\}$: $2^{\mathcal{O}(k \log k)} \cdot n^{\mathcal{O}(1)}$. [Jansen, Lokshtanov, Saurabh. 2014]
 - Deletion to genus at most $g: 2^{\mathcal{O}_g(k^2 \log k)} \cdot n^{\mathcal{O}(1)}$. [Kociumaka, Ma. Pilipczuk. 2019]

• The function $f(\mathcal{C}_k)$ is constructible.

[Adler, Grohe, Kreutzer. 2008]

• If \mathcal{F} contains a planar graph: $2^{\mathcal{O}_{\mathcal{F}}(k)} \cdot n^{\mathcal{O}(1)}$.

[Fomin, Lokshtanov, Misra, Saurabh. 2012]

[Kim, Langer, Paul , Reidl, Rossmanith, S., Sikdar. 2013]

- For some non-planar collections \mathcal{F} :
 - $\mathcal{F} = \{K_5, K_{3,3}\}$: $2^{\mathcal{O}(k \log k)} \cdot n^{\mathcal{O}(1)}$. [Jansen, Lokshtanov, Saurabh. 2014]
 - Deletion to genus at most $g: 2^{\mathcal{O}_g(k^2 \log k)} \cdot n^{\mathcal{O}(1)}$. [Kociumaka, Ma. Pilipczuk. 2019]
- For every \mathcal{F} , some enormous explicit function $f_{\mathcal{F}}(k)$ can be derived from an FPT algorithm for hitting topological minors:

$$f_{\mathcal{F}}(k) \cdot n^{\mathcal{O}(1)}$$
.

[Fomin, Lokshtanov, Panolan, Saurabh, Zehavi. 2020]

▲□▶▲□▶▲□▶▲□▶ □ のQで

Theorem (S., Stamoulis, Thilikos. 2020)

For all \mathcal{F} , the \mathcal{F} -M-DELETION problem can be solved in time $2^{\text{poly}(k)} \cdot n^3$.

Here, poly(k) is a polynomial whose degree depends on \mathcal{F} .

Theorem (S., Stamoulis, Thilikos. 2020)

For all \mathcal{F} , the \mathcal{F} -M-DELETION problem can be solved in time $2^{\text{poly}(k)} \cdot n^3$.

Here, poly(k) is a polynomial whose degree depends on \mathcal{F} .

Theorem (S., Stamoulis, Thilikos. 2020)

If \mathcal{F} contains an apex graph, the \mathcal{F} -M-DELETION problem can be solved in time $2^{\text{poly}(k)} \cdot n^2$.

Again, poly(k) is a polynomial whose degree depends on \mathcal{F} .

➡ skip

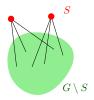
36

[whole slide shamelessly borrowed from Giannos Stamoulis]

[whole slide shamelessly borrowed from Giannos Stamoulis]

Iterative compression: given solution S of size k + 1, search solution of size k.

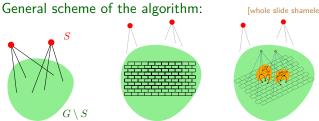
[whole slide shamelessly borrowed from Giannos Stamoulis]



Iterative compression: given solution S of size k + 1, search solution of size k. If treewidth of $G \setminus S$ is "large enough" (as a polynomial function of k):

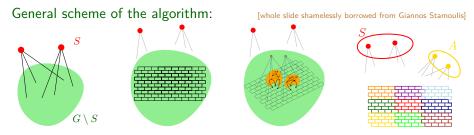
 [whole slide shamelessly borrowed from Giannos Stamoulis]

Iterative compression: given solution S of size k + 1, search solution of size k. If treewidth of $G \setminus S$ is "large enough" (as a polynomial function of k): Find a "very very large" wall in $G \setminus S$.



[whole slide shamelessly borrowed from Giannos Stamoulis]

Iterative compression: given solution S of size k + 1, search solution of size k.
If treewidth of G \ S is "large enough" (as a polynomial function of k):
Find a "very very large" wall in G \ S.
Pind a "very large" flat wall W of G \ S with few apices A.



Iterative compression: given solution S of size k + 1, search solution of size k. If treewidth of $G \setminus S$ is "large enough" (as a polynomial function of k): Find a "very very large" wall in $G \setminus S$.

- **②** Find a "very large" flat wall W of $G \setminus S$ with few apices A.
- Solution Find in W a packing of $\mathcal{O}_{\mathcal{F}}(k^4)$ disjoint "large" subwalls:

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis] S $G \setminus S$

Iterative compression: given solution S of size k + 1, search solution of size k. If treewidth of $G \setminus S$ is "large enough" (as a polynomial function of k): Find a "very very large" wall in $G \setminus S$.

- **②** Find a "very large" flat wall W of $G \setminus S$ with few apices A.
- Solution Find in W a packing of $\mathcal{O}_{\mathcal{F}}(k^4)$ disjoint "large" subwalls:
 - If every subwall has at least |A| + 1 neighbors in $S \cup A$:

Iterative compression: given solution S of size k + 1, search solution of size k. If treewidth of $G \setminus S$ is "large enough" (as a polynomial function of k):

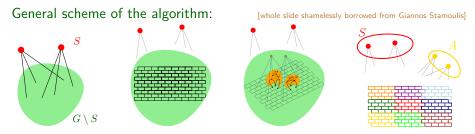
- Find a "very very large" wall in $G \setminus S$.
- **②** Find a "very large" flat wall W of $G \setminus S$ with few apices A.
- Solution Find in W a packing of $\mathcal{O}_{\mathcal{F}}(k^4)$ disjoint "large" subwalls:
 - If every subwall has at least |A| + 1 neighbors in S ∪ A:
 Every solution intersects S ∪ A → we can branch!

Iterative compression: given solution S of size k + 1, search solution of size k. If treewidth of $G \setminus S$ is "large enough" (as a polynomial function of k):

- Find a "very very large" wall in $G \setminus S$.
- **②** Find a "very large" flat wall W of $G \setminus S$ with few apices A.
- Solution Find in W a packing of $\mathcal{O}_{\mathcal{F}}(k^4)$ disjoint "large" subwalls:
 - If every subwall has at least |A| + 1 neighbors in S ∪ A:
 Every solution intersects S ∪ A → we can branch!
 - If one of these subwalls has at most |A| neighbors in $S \cup A$:

Iterative compression: given solution S of size k + 1, search solution of size k. If treewidth of $G \setminus S$ is "large enough" (as a polynomial function of k):

- Find a "very very large" wall in $G \setminus S$.
- **②** Find a "very large" flat wall W of $G \setminus S$ with few apices A.
- Solution Find in W a packing of $\mathcal{O}_{\mathcal{F}}(k^4)$ disjoint "large" subwalls:
 - If every subwall has at least |A| + 1 neighbors in S ∪ A:
 Every solution intersects S ∪ A → we can branch!
 - If one of these subwalls has at most |A| neighbors in S ∪ A: Find an irrelevant vertex v inside this flat subwall. Update G = G \ v and repeat.



Iterative compression: given solution S of size k + 1, search solution of size k. If treewidth of $G \setminus S$ is "large enough" (as a polynomial function of k):

- Find a "very very large" wall in $G \setminus S$.
- **2** Find a "very large" flat wall W of $G \setminus S$ with few apices A.
- Solution Find in W a packing of $\mathcal{O}_{\mathcal{F}}(k^4)$ disjoint "large" subwalls:
 - If every subwall has at least |A| + 1 neighbors in S ∪ A:
 Every solution intersects S ∪ A → we can branch!
 - If one of these subwalls has at most |A| neighbors in S ∪ A: Find an irrelevant vertex v inside this flat subwall. Update G = G \ v and repeat.

Thus, $\operatorname{\mathsf{tw}}(G \setminus S) = k^{\mathcal{O}_{\mathcal{F}}(1)}$:

General scheme of the algorithm: [whole slide shamelessly borrowed from Giannos Stamoulis] S = S = S = S = S [whole slide shamelessly borrowed from Giannos Stamoulis]

Iterative compression: given solution S of size k + 1, search solution of size k. If treewidth of $G \setminus S$ is "large enough" (as a polynomial function of k):

- Find a "very very large" wall in $G \setminus S$.
- **②** Find a "very large" flat wall W of $G \setminus S$ with few apices A.
- Solution Find in W a packing of $\mathcal{O}_{\mathcal{F}}(k^4)$ disjoint "large" subwalls:
 - If every subwall has at least |A| + 1 neighbors in S ∪ A:
 Every solution intersects S ∪ A → we can branch!
 - If one of these subwalls has at most |A| neighbors in S ∪ A: Find an irrelevant vertex v inside this flat subwall. Update G = G \ v and repeat.

Thus, $\mathsf{tw}(G \setminus S) = k^{\mathcal{O}_{\mathcal{F}}(1)}$: our previous FPT algo gives $2^{k^{\mathcal{O}_{\mathcal{F}}(1)}} \cdot n^2$.

With parameter tw Classify the asymptotic complexity of \mathcal{F} -M-DELETION for every family \mathcal{F} ?

With parameter twClassify the asymptotic complexity of \mathcal{F} -M-DELETION for every family \mathcal{F} ?

• We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).

What's next about *F*-M-DELETION?

With parameter twClassify the asymptotic complexity of \mathcal{F} -M-DELETION for every family \mathcal{F} ?

- We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
- Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?

With parameter twClassify the asymptotic complexity of \mathcal{F} -M-DELETION for every family \mathcal{F} ?

- We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
- Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?

We can also consider the topological minor version:

イロト 不得 トイヨト イヨト 三日

What's next about *F*-M-DELETION?

With parameter twClassify the asymptotic complexity of \mathcal{F} -M-DELETION for every family \mathcal{F} ?

- We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
- Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?

We can also consider the topological minor version:

• Dichotomy for $\{H\}$ -TM-DELETION when H connected (+planar).

- We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
- Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?

We can also consider the topological minor version:

- Dichotomy for $\{H\}$ -TM-DELETION when H connected (+planar).
- We do not know if there exists some \mathcal{F} such that \mathcal{F} -TM-DELETION cannot be solved in time $2^{o(tw^2)} \cdot n^{\mathcal{O}(1)}$ under the ETH.

- We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
- Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?

We can also consider the topological minor version:

- Dichotomy for $\{H\}$ -TM-DELETION when H connected (+planar).
- We do not know if there exists some \mathcal{F} such that \mathcal{F} -TM-DELETION cannot be solved in time $2^{o(tw^2)} \cdot n^{\mathcal{O}(1)}$ under the ETH.

With parameter k We presented algorithm in time $2^{k^{\mathcal{O}_{\mathcal{F}}^{(1)}}} \cdot n^3$.

(ロ)、(部)、(E)、(E)、(E)、(O)(C)

- We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
- Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?

We can also consider the topological minor version:

- Dichotomy for $\{H\}$ -TM-DELETION when H connected (+planar).
- We do not know if there exists some \mathcal{F} such that \mathcal{F} -TM-DELETION cannot be solved in time $2^{o(tw^2)} \cdot n^{\mathcal{O}(1)}$ under the ETH.

With parameter k We presented algorithm in time $2^{k^{\mathcal{O}_{\mathcal{F}}(1)}} \cdot n^3$. Is $2^{\mathcal{O}_{\mathcal{F}}(k^c)} \cdot n^{\mathcal{O}(1)}$ possible for some constant *c*?

A ロ ト 4 同 ト 4 三 ト 4 三 ト 9 Q C

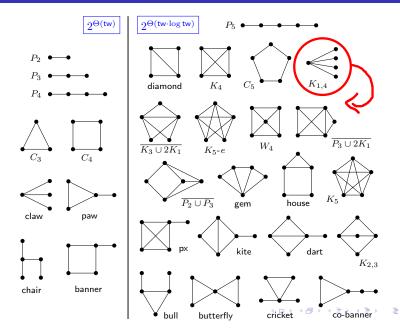
- We obtained a tight dichotomy when $|\mathcal{F}| = 1$ (connected).
- Missing: When $|\mathcal{F}| \ge 2$ (connected): $2^{\Theta(tw)}$ or $2^{\Theta(tw \cdot \log tw)}$?

We can also consider the topological minor version:

- Dichotomy for $\{H\}$ -TM-DELETION when H connected (+planar).
- We do not know if there exists some \mathcal{F} such that \mathcal{F} -TM-DELETION cannot be solved in time $2^{o(tw^2)} \cdot n^{\mathcal{O}(1)}$ under the ETH.

With parameter kWe presented algorithm in time $2^{k^{\mathcal{O}_{\mathcal{F}}(1)}} \cdot n^3$.Is $2^{\mathcal{O}_{\mathcal{F}}(k^c)} \cdot n^{\mathcal{O}(1)}$ possible for some constant c?Is the price of homogeneity unavoidable?

For topological minors, there is (at least) one change



39

Gràcies! Toda raba!

