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Broad family of problems

A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:
I a (weighted or unweighted) graph G, and
I an integer d .

Output:
I a (connected) subgraph H of G,
I satisfying some degree constraints (∆(H) ≤ d or δ(H) ≥ d),
I and optimizing some parameter (|V (H)| or |E(H)|).

Several problems in this broad family are classical widely studied
NP-hard problems.

They have a number of applications in interconnection networks,
routing algorithms, chemistry, ...
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Preliminaries: approximation algorithms

Given a (typically NP-hard) minimization problem Π, we say that
ALG is an α-approximation algorithm for Π (with α ≥ 1) if for any
instance I of Π,

ALG(I) ≤ α ·OPT (I).

Example:

MINIMUM VERTEX COVER

Input: An undirected graph G = (V ,E).
Output: A subset S ⊆ V such that for each {u, v} ∈ E , at least one of u and

v is in S, and such that |S| is minimized.

Approximation algorithm for MINIMUM VERTEX COVER:
−→ output the vertices of a maximal matching.

This algorithm is a 2-approximation for MINIMUM VERTEX COVER.
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Preliminaries (II): hardness of approximation
Class APX (Approximable):

an NP-hard optimization problem is in APX if it can be
approximated within a constant factor.

Example: MINIMUM VERTEX COVER

Class PTAS (Polynomial-Time Approximation Scheme):

an NP-hard optimization problem is in PTAS if it can be
approximated within a constant factor 1 + ε, for all ε > 0
(the best one can hope for an NP-hard problem).

Example: MAXIMUM KNAPSACK

We know that

PTAS  APX (again, MIN VERTEX COVER!)

Thus, if Π is an optimization problem:

Π is APX-hard ⇒ Π /∈ PTAS
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1- MAXIMUM
d -DEGREE-BOUNDED

CONNECTED SUBGRAPH



Definition of the problem
MAXIMUM d -DEGREE-BOUNDED CONNECTED SUBGRAPH
(MDBCSd ):

Input:
I an undirected graph G = (V ,E),
I an integer d ≥ 2, and
I a weight function ω : E → R+.

Output:
a subset of edges E ′ ⊆ E of maximum weight, s.t. H = G[E ′]

I is connected, and
I satisfies ∆(H) ≤ d .

It is one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979].

If the output subgraph is not required to be connected, the
problem is in P for any d (using matching techniques).

For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)
problem.
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Example with d = 3, ω(e) = 1 for all e ∈ E(G)



Example with d = 3 (II)
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Example with d = 3 (III)



Example with d = 3 (IV)
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State of the art

To the best of our knowledge, there were no results in the literature
except for the case d = 2, a.k.a. the LONGEST PATH problem:

Approximation algorithms:
O

(
n

log n

)
-approximation, using the color-coding method.

[N. Alon, R. Yuster and U. Zwick, STOC’94].

O
(

n
(

log log n
log n

)2
)

-approximation.

[A. Björklund and T. Husfeldt, SIAM J. Computing’03].

Hardness results:
It does not accept any constant-factor approximation.
[D. Karger, R. Motwani and G. Ramkumar, Algorithmica’97].
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Our results

Approximation algorithms (n = |V (G)|, m = |E(G)|):

I min{ n
2 ,

m
d }-approximation algorithm for weighted graphs.

I min{ m
log n ,

nd
2 log n}-approximation algorithm for unweighted graphs,

using color coding.

I when G accepts a low-degree spanning tree, in terms of d , then
MDBCSd can be approximated within a small constant factor.

Hardness results:
I For each fixed d ≥ 2, MDBCSd does not accept any

constant-factor approximation in general graphs.
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Approximation algorithm for weighted graphs
Input: undirected graph G = (V ,E), a weight function ω : E → R+,
and an integer d ≥ 2. Let n = |V |, m = |E |.

F : set of d heaviest edges in G, with weight ω(F ).
W : set of endpoints of those edges. Let H = (W ,F ).

Description of the algorithm: Two cases according to H = (W ,F ):

(1) If H = (W ,F ) is connected, the algorithm returns H.
Claim: this yields a min{n/2,m/d}-approximation.

Proof.
Suppose an optimal solution consists of m∗ edges of total weight ω∗.
Then ALG = ω(F ) ≥ ω∗

m∗ · d , since by the choice of F the average weight
of the edges in F can not be smaller than the average weight of the
edges of an optimal solution. As m∗ ≤ m and m∗ ≤ dn/2, we get that
ALG ≥ ω∗

m · d = ω∗

m/d and ALG ≥ ω∗

dn/2 · d = ω∗

n/2 .

(2) If H = (W ,F ) consists of a collection F of k connected
components, we glue them in k − 1 phases.
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Example of the algorithm for weighted graphs

G=(V,E)

d=6

Given a weighted graph G = (V ,E) and an integer d ...



Example of the algorithm for weighted graphs

H=(W,F)

d=6

Let H = (W ,F ) be the graph induced by the d heaviest edges.



Example of the algorithm for weighted graphs

H=(W,F)

d=6
k=4

Assume H has k > 1 connected components.



Example of the algorithm for weighted graphs

H=(W,F)

d=6
k=4

We compute the distance in G between each pair of components.



Example of the algorithm for weighted graphs

H=(W,F)

d=6
k=3

We add to H a path between a pair of closest vertices.



Example of the algorithm for weighted graphs

H=(W,F)

d=6
k=2

We repeat these two steps inductively...



Example of the algorithm for weighted graphs

H=(W,F)

d=6
k=1

Until the graph H is connected.



Example of the algorithm for weighted graphs

H=(W,F)

d=6
k=1

The algorithm outputs this graph H.



Analysis of the algorithm

(a) Running time: clearly polynomial.

(b) Correctness:
I The output subgraph is connected.
I Claim: after i phases, ∆(H) ≤ d − k + i + 1.

The proof is done by induction. When i = k − 1 we get ∆(H) ≤ d .

(c) Approximation ratio: follows from case (1).
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2- MINIMUM SUBGRAPH

OF MINIMUM DEGREE ≥ d



Definition of the problem

MINIMUM SUBGRAPH OF MINIMUM DEGREE ≥ d (MSMDd ):

Input: an undirected graph G = (V ,E) and an integer d ≥ 3.

Output: a subset S ⊆ V with δ(G[S]) ≥ d , s.t. |S| is minimum.

For d = 2 it is the GIRTH problem (find the length of a shortest
cycle), which is in P.

Motivation: close relation with DENSE k -SUBGRAPH problem and
TRAFFIC GROOMING problem in optical networks.
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State of the art + our results

This problem was first introduced in
[O. Amini, I. S. and S. Saurabh, IWPEC’08].

I W[1]-hard in general graphs, for d ≥ 3.
I FPT in minor-closed classes of graphs.

Our results:

I MSMDd is not in APX for any d ≥ 3.
I O(n/ log n)-approximation algorithm for minor-closed classes of

graphs, using a structural result and dynamic programming.
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Hardness result



Idea of the proof for d = 3

(1) First we will see that MSMD3 /∈ PTAS.

(2) Then we will see that MSMD3 /∈ APX.



(1) MSMD3 is not in PTAS

Reduction from VERTEX COVER:

Instance H of VERTEX COVER → Instance G of MSMD3

We will see that

PTAS for MSMD3 ⇒ PTAS for VERTEX COVER

And so,
@ PTAS for MSMD3

We can suppose |E(H)| = 3 · 2m and δ(H) ≥ 3.
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Reduction from VERTEX COVER:

Instance H of VERTEX COVER → Instance G of MSMD3

We will see that

PTAS for MSMD3 ⇒ PTAS for VERTEX COVER

And so,
@ PTAS for MSMD3

We can suppose |E(H)| = 3 · 2m and δ(H) ≥ 3.



We build a complete ternary tree with |E(H)| = 3 · 2m leaves:

T

E(H)



We add a copy of the set of leaves E(H):

T

E(H)

E(H)



We join both sets with a Hamiltonian cycle (for technical reasons):

T

E(H)

E(H)



We add all the vertices of H:

T

E(H)

E(H)

V(H)



We add the incidence relations between E(H) and V (H)→ G:

T

E(H)

E(H)

V(H)



(1) MSMD3 is not in PTAS

If we touch a vertex of G \ V (H), we have to touch all the vertices
of G \ V (H)

Thus, MSMD3 in G is equivalent to minimize the number of
selected vertices in V (H)

→ this is exactly VERTEX COVER in H !!

Thus,

OPTMSMD3(G) = OPTVC(H) + |V (G \ V (H))| =

= OPTVC(H) + 9 · 2m

This clearly proves that

PTAS for MSMD3 ⇒ PTAS for VERTEX COVER
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(2) MSMD3 is not in APX

Let α > 1 be the factor of inapproximability of MSMD3

We use a technique called error amplification:

I We build a sequence of families of graphs Gk , such that MSMD3 is
hard to approximate in Gk within a factor αk

I This proves that the problem is not in APX

(for any constant C, ∃ k > 0 such that αk > C)

Let G1 = G.
We explain the construction of G2: first take our graph G and...
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For any vertex v (note its degree by dv ):

v



We will replace the vertex v with a graph Gv , built as follows:

Gv



We begin by placing a copy of G (described before):

Gv



We select dv vertices of degree 3 in T ⊂ G:

x1
x2

xdv

Gv



We replace each of these vertices xi with a C4:

x1x2

xdv

Gv



In each C4, we join 3 of the vertices to the neighbors of xi :

x1x2

xdv

Gv



We join the dv vertices of degree 2 to the dv neighbors of v :

x1x2

xdv

Gv



This construction for all v ∈ G defines G2:

x1x2

xdv

Gv



(2) MSMD3 is not in APX

Once a vertex in one Gv is chosen → MSMD3 in Gv

(which is hard up to a constant α)

But minimize the number of v ’s for which we touch Gv →
MSMD3 in G (which is also hard up to a constant α)

Thus, in G2 the problem is hard to approximate up to a factor
α · α = α2

Inductively we prove that in Gk the problem is hard to approximate
up to a factor αk
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Approximation algorithm for minor
free graphs



Recall: graph minors

H is a contraction of G (H �c G) if H occurs from G after applying
a series of edge contractions.

H is a minor of G (H �m G) if H is the contraction of some
subgraph of G.

A graph class G is minor closed if every minor of a graph in G is
again in G.

A graph class G is H-minor-free (or, excludes H as a minor) if no
graph in G contains H as a minor.
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The problem is in P for graphs of small treewidth

Lemma

Let G be a graph on n vertices with treewidth at most t, and let d be a
positive integer. Then in time O((d + 1)t (t + 1)d2

n) we can either
• find a smallest subgraph of minimum degree at least d in G, or
• conclude that no such subgraph exists.

Corollary
Let G be an n-vertex graph with treewidth O(log n), and let d be a
positive integer. Then in polynomial time one can either
• find a smallest subgraph of minimum degree at least d in G, or
• conclude that no such subgraph exists.
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Nice partition of M-minor-free graphs

Theorem

For a fixed graph M, there is a constant cM such that for any integer
k ≥ 1 and for every M-minor-free graph G, the vertices of G can be
partitioned into k + 1 sets such that any k of the sets induce a graph of
treewidth at most cMk.
Furthermore, such a partition can be found in polynomial time.

[E. Demaine, M.T. Hajiaghayi and K.C. Kawarabayashi, FOCS’05]



Approximation algorithm for M-minor-free graphs

(1) Relying on the previous Theorem, partition V (G) in polynomial
time into log n + 1 sets V0, . . . ,Vlog n such that any log n of the sets
induce a graph of treewidth at most cM log n, where cM is a
constant depending only on the excluded graph M.

(2) Run the dynamic programming algorithm of the Lemma on all the
subgraphs Gi = G[V \ Vi ] of log n sets, i = 0, . . . , log n.

(3) This procedure finds all the solutions of size at most log n.
(4) If no solution is found, output the whole graph G.

This algorithm provides an O(n/ log n)-approximation for MSMDd
in minor-free graphs, for all d ≥ 3.
The running time of the algorithm is polynomial in n, since in step
(2), for each Gi , the dynamic programming algorithm runs in
O((d + 1)ti (ti + 1)d2

n) time, where ti is the treewidth of Gi , which
is at most cM log n.
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3- DUAL DEGREE-DENSE

k -SUBGRAPH (DDDkS)



Definition of the problem + results

DUAL DEGREE-DENSE k -SUBGRAPH (DDDkS):

Input: an undirected graph G = (V ,E) and a positive integer k .

Output: a subset S ⊆ V with |S| ≤ k , s.t. δ(G[S]) is maximum.

It is the natural dual version of the preceding problem.

Our results:

I Randomized O(
√

n log n)-approximation algorithm in general
graphs.

I Deterministic O(nδ)-approximation algorithm in general graphs, for
some universal constant δ < 1/3.
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Further Research

Problem 1:
I Approximation algorithms and hardness results in general graphs.
I Open: closing the huge complexity gap of MDBCSd , d ≥ 2.

Problem 2:
I Hardness results and an approximation algorithm in minor-free

graphs.
I Open: finding approximation algorithms in general graphs for

MSMDd , d ≥ 3.

Problem 3:
I Approximation algorithms in general graphs.
I Open: hardness results for DDDkS, k ≥ 3.
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Thanks!
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