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Enumeration

Enumeration problem
List the set Sol(x) of all solutions associated with the instance x that
satisfy your problem’s constraints.
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An example - Vertex Cover

Vertex Cover
Input: A graph G and an integer k.
Question: Does G have a vertex cover of size at most k?
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An example - Vertex Cover

Enum Vertex Cover
Input: A graph G and an integer k.
Enumerate: All vertex covers of G of size at most k.
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Enum Vertex Cover
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More on enumeration

Applications
Bioinformatics, robotics, optimization, ...

Input-sensitive paradigm
Complexity should be measured by input size only. Can’t do any
meaningful analysis if we have exponentially many solutions.

Output-sensitive paradigm
Complexity should be measured by input size and number of solutions.

Incremental polynomial time: i-th solution of x should be output in
poly(|x |+ i).

Polynomial-delay: time between consecutive outputs in poly(|x |).
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Parameterized complexity for decision

Decision problems & FPT
Each instance x of problem is given with a parameter k, and Π is said to
be fixed-parameter tractable if it can be solved in f (k) · |x |O(1)-time.

Preprocessing as kernelization
A kernelization algorithm takes (x , k) as input, runs in polynomial time,
and outputs an equivalent instance (y , ℓ) with |y |, ℓ ≤ g(k).

Theorem
A parameterized problem admits an FPT algorithm ⇔ it admits a kernel.
It is in P ⇔ g(k) ∈ O (1).

Goal of kernelization: minimize g(k).
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Parameterized enumeration

FPT-delay
If Π is a parameterized enumeration problem, then FPT-delay is commonly
accepted as the “right” notion of tractability:

We want to spend at most f (k) · |x |O(1)-time between consecutive outputs
of an instance of Π.

Kernelization

??
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Enum-kernels

Introduced by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel
Given (x , k) of Π, kernelization happens in two phases:

Compression: Output an equivalent (y , ℓ) of Π in polynomial time
with |y |, ℓ ≤ g(k).

Lifting: Given a solution Y of y , output a possibly empty
SY ⊆ Sol(x) with (f (k) · |x |O(1))-delay.

The non-empty SY ’s must form a partition of Sol(x).

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

7



Enum-kernels

Introduced by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel
Given (x , k) of Π, kernelization happens in two phases:

Compression: Output an equivalent (y , ℓ) of Π in polynomial time
with |y |, ℓ ≤ g(k).

Lifting: Given a solution Y of y , output a possibly empty
SY ⊆ Sol(x) with (f (k) · |x |O(1))-delay.

The non-empty SY ’s must form a partition of Sol(x).

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

7



Enum-kernels

Introduced by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel
Given (x , k) of Π, kernelization happens in two phases:

Compression: Output an equivalent (y , ℓ) of Π in polynomial time
with |y |, ℓ ≤ g(k).

Lifting: Given a solution Y of y , output a possibly empty
SY ⊆ Sol(x) with (f (k) · |x |O(1))-delay.

The non-empty SY ’s must form a partition of Sol(x).

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

7



Enum-kernels

Introduced by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel
Given (x , k) of Π, kernelization happens in two phases:

Compression: Output an equivalent (y , ℓ) of Π in polynomial time
with |y |, ℓ ≤ g(k).

Lifting: Given a solution Y of y , output a possibly empty
SY ⊆ Sol(x) with (f (k) · |x |O(1))-delay.

The non-empty SY ’s must form a partition of Sol(x).

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

7



Enum-kernels

Introduced by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel
Given (x , k) of Π, kernelization happens in two phases:

Compression: Output an equivalent (y , ℓ) of Π in polynomial time
with |y |, ℓ ≤ g(k).

Lifting: Given a solution Y of y , output a possibly empty
SY ⊆ Sol(x) with (f (k) · |x |O(1))-delay.
The non-empty SY ’s must form a partition of Sol(x).

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

7



Enum-kernels

Introduced by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel
Given (x , k) of Π, kernelization happens in two phases:

Compression: Output an equivalent (y , ℓ) of Π in polynomial time
with |y |, ℓ ≤ g(k).

Lifting: Given a solution Y of y , output a possibly empty
SY ⊆ Sol(x) with (f (k) · |x |O(1))-delay.
The non-empty SY ’s must form a partition of Sol(x).

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

7



A k2 enum-kernel for Enum Vertex Cover

Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4

k = 3 k = 3
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Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4

k = 3 k = 3

Rule 1
If v ∈ V (G) has degree ≥ k + 1, remove v and k ← k − 1.
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A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4 k = 3 k = 3

A bounding criterion
No applicable rule → max degree k. |E (G)| > k2 → NO-instance.
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A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4 k = 3 k = 3

Lifting
Take Y ∈ Sol(G ′, k ′); we never remove vertices from it.
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A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]
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k = 4 k = 3 k = 3

Lifting from Rule 2
May add the deleted vertices if k − |Y | > 0.
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Another look at enum-kernels

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

Question
Is polynomial-delay equivalent to a constant-size enum-kernel?

Not really, as pointed out by [Golovach, Komusiewicz, Kratsch, Le. 2022]

FPT-delay is equivalent to a constant-size enum-kernel.

A new model for enumeration kernels needed to be introduced.
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Polynomial-delay (PD) kernels

New model introduced by [Golovach, Komusiewicz, Kratsch, Le. 2022]

Polynomial-delay (PD) kernel
Given (x , k), kernelization happens in two phases:

Compression: Output an equivalent instance (y , ℓ) in polynomial-time
with |y |, ℓ ≤ g(k).

Lifting: Given Y ∈ Sol(y), output a non-empty SY ⊆ Sol(x)
with poly(|x |+ |y |+ k + ℓ)-delay.
The SY ’s must partition Sol(x).

Theorem (Golovach, Komusiewicz, Kratsch, Le. 2022)
Problem Π admits a PD kernel ⇔ it admits an FPT-delay algorithm.
Moreover, g(k) ∈ O (1) ⇔ Π is solvable with polynomial-delay.
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Known polynomial PD kernels

Problem Parameter Kernel size

Enum Vertex Cover Vertex cover k2

Enum Matching Cut Vertex cover k2

Neigh. diversity k
Feedback edge set k

Enum d-Cut Vertex cover k2

Neigh. diversity k
Clique partition kd+2

Enum Matching Multicut Vertex cover k2

Dist. co-cluster k2

Enum Long Path Vertex cover k2

Dissociation k3

Dist. to clique k3
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Problem Parameter Kernel size
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Enum Matching Cut Vertex cover k2
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Enum d-Cut Vertex cover k2

Neigh. diversity k
Clique partition kd+2

Enum Matching Multicut Vertex cover k2
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Enum Long Path Vertex cover k2
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Dist. to clique k3

Kernels found by [Gomes, Juliano, Martins, dos Santos. IPEC 2024]
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Known polynomial PD kernels

Problem Parameter Kernel size
Enum Vertex Cover Vertex cover k2

Enum Matching Cut Vertex cover k2

Neigh. diversity k
Feedback edge set k

Enum d-Cut Vertex cover k2

Neigh. diversity k
Clique partition kd+2

Enum Matching Multicut Vertex cover k2

Dist. co-cluster k2

Enum Long Path Vertex cover k2

Dissociation k3

Dist. to clique k3

These were all the known PD kernels.
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Our results

Theorem
Enum Vertex Cover admits a PD kernel with at most 2k vertices
when parameterized by the solution size.

Surprising fact: no enumeration kernels were known for
Enum Feedback Vertex Set.

Theorem
Enum Feedback Vertex Set admits a PD kernel with O(k3) vertices
when parameterized by the solution size.
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Sketch of the linear kernel for Enum Vertex Cover

Crown decomposition of a graph G
A partition (C , H, B) of V (G) such that:

C is an independent set.
H separates C and B.
there is an H-saturating matching between H and C ;
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Sketch of the linear kernel for Enum Vertex Cover

Crown decomposition of a graph G
A partition (C , H, B) of V (G) such that:

C is an independent set.
H separates C and B.
there is an H-saturating matching between H and C ;

Theorem (Nemhauser and Trotter, 1975 + Chlebík and Chlebíková, 2008)
Let G be a graph without isolated vertices and at least 2k + 1 vertices.
Then, there is a polynomial-time algorithm that either:

Decides that no vertex cover of size at most k exists.
Or finds a crown decomposition of G.
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The compression step of the kernel is very easy

Rule 1
Let (G , k) be the input instance. If v is an isolated vertex of G :

Remove v from G .
Keep k unchanged.

Rule 2
If G has a crown decomposition (C , H, B):

Remove C , H from G .
Set k ← k − |H|.

Rule 3
If k < 0, conclude that we are dealing with no-instance.

The resulting graph has at most 2k vertices.
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The lifting algorithm is the hard part!

Lifting
Let Y ∈ Sol(G [B], k − |H|).

We only add vertices of H ∪ C .

C

H

B
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Enumerate all vertex covers of G [H ∪ C \ Y ] of size ≤ k − |Y | = |H|+ s.
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What remains
Enumerate vertex covers of G ′ of size |V (G ′)|/2.
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A linear kernel for Enum Vertex Cover

After a long branching algorithm on G ′ and even longer correctness
argument...

Theorem
Enum Vertex Cover admits a PD kernel with at most 2k vertices
when parameterized by the solution size.

Observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.
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Sketch of the cubic kernel for Enum Feed. Vert. Set

Theorem
Enum Feedback Vertex Set admits a PD kernel with O(k3) vertices
when parameterized by the solution size.

Inspired by quadratic kernel for decision version. [Thomassé. 2010]

Namely, design rules to lower and upper bound the degree of the
graph, and then observe that |V (G)| = O(∆(G) · fvs(G)).

But the core ingredient (finding a 2-expansion in an auxiliary graph)
seems to fail for the enumeration version.

Main reason: cannot deal with double edges s.t. there exists some
solution using one of their endpoints (but maybe not all of them).

As a result, we obtain a maximum degree of O(k2) (instead of O(k)).
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Further research

Parameterized enumeration lower bounds:

How to rule out the existence of an FPT-delay algorithm when the
decision version is in FPT?

How to rule out the existence of polynomial enumeration kernels when
the decision version has a polynomial kernel?

Fine grained (S)ETH-like lower bounds?

Is there a O
(
k2)

PD kernel for Enum Feedback Vertex Set?

More examples of enumeration kernels for classical problems.

Recall: observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.
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