Enumeration kernels for Vertex Cover and Feedback Vertex Set

Marin Bougeret

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Guilherme C. M. Gomes

LIRMM, Université de Montpellier, CNRS, Montpellier, France Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Ignasi Sau

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Vinicius F. dos Santos

Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Enumeration

Enumeration problem

List the set Sol(x) of all solutions associated with the instance x that satisfy your problem's constraints.

VERTEX COVER

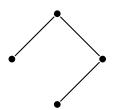
Input: A graph G and an integer k.

Question: Does G have a vertex cover of size at most k?

VERTEX COVER

Input: A graph G and an integer k.

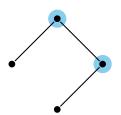
Question: Does G have a vertex cover of size at most k?



VERTEX COVER

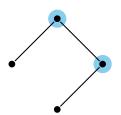
Input: A graph G and an integer k.

Question: Does G have a vertex cover of size at most k?



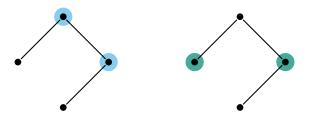
ENUM VERTEX COVER

Input: A graph G and an integer k.



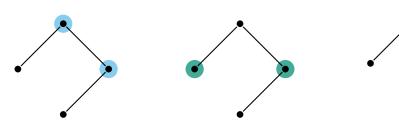
ENUM VERTEX COVER

Input: A graph G and an integer k.



Enum Vertex Cover

Input: A graph G and an integer k.



Applications

Bioinformatics, robotics, optimization, ...

Applications

Bioinformatics, robotics, optimization, ...

Input-sensitive paradigm

Complexity should be measured by input size only.

Applications

Bioinformatics, robotics, optimization, ...

Input-sensitive paradigm

Complexity should be measured by input size only. Can't do any meaningful analysis if we have exponentially many solutions.

Applications

Bioinformatics, robotics, optimization, ...

Input-sensitive paradigm

Complexity should be measured by input size only. Can't do any meaningful analysis if we have exponentially many solutions.

Output-sensitive paradigm

Complexity should be measured by input size and number of solutions.

Applications

Bioinformatics, robotics, optimization, ...

Input-sensitive paradigm

Complexity should be measured by input size only. Can't do any meaningful analysis if we have exponentially many solutions.

Output-sensitive paradigm

Complexity should be measured by input size and number of solutions.

• Incremental polynomial time: *i*-th solution of x should be output in poly(|x|+i).

Applications

Bioinformatics, robotics, optimization, ...

Input-sensitive paradigm

Complexity should be measured by input size only. Can't do any meaningful analysis if we have exponentially many solutions.

Output-sensitive paradigm

Complexity should be measured by input size and number of solutions.

- Incremental polynomial time: *i*-th solution of x should be output in poly(|x|+i).
- Polynomial-delay: time between consecutive outputs in poly(|x|).

Parameterized complexity for decision

Decision problems & FPT

Each instance x of problem is given with a parameter k, and Π is said to be fixed-parameter tractable if it can be solved in $f(k) \cdot |x|^{\mathcal{O}(1)}$ -time.

Preprocessing as kernelization

A kernelization algorithm takes (x, k) as input, runs in polynomial time, and outputs an equivalent instance (y, ℓ) with $|y|, \ell \leq g(k)$.

Theorem

A parameterized problem admits an FPT algorithm \Leftrightarrow it admits a kernel. It is in P \Leftrightarrow $g(k) \in \mathcal{O}(1)$.

Goal of kernelization: minimize g(k).

Parameterized enumeration

FPT-delay

If Π is a parameterized enumeration problem, then FPT-delay is commonly accepted as the "right" notion of tractability:

We want to spend at most $f(k) \cdot |x|^{\mathcal{O}(1)}$ -time between consecutive outputs of an instance of Π .

Parameterized enumeration

FPT-delay

If Π is a parameterized enumeration problem, then FPT-delay is commonly accepted as the "right" notion of tractability:

We want to spend at most $f(k) \cdot |x|^{\mathcal{O}(1)}$ -time between consecutive outputs of an instance of Π .

Kernelization

??

Introduced by

[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Introduced by

[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel

Given (x, k) of Π , kernelization happens in two phases:

Introduced by

[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel

Given (x, k) of Π , kernelization happens in two phases:

• Compression: Output an equivalent (y, ℓ) of Π in polynomial time with $|y|, \ell \leq g(k)$.

Introduced by

[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel

Given (x, k) of Π , kernelization happens in two phases:

- Compression: Output an equivalent (y, ℓ) of Π in polynomial time with $|y|, \ell \leq g(k)$.
- Lifting: Given a solution Y of y, output a possibly empty $S_Y \subseteq \operatorname{Sol}(x)$ with $(f(k) \cdot |x|^{\mathcal{O}(1)})$ -delay.

Introduced by

[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel

Given (x, k) of Π , kernelization happens in two phases:

- Compression: Output an equivalent (y, ℓ) of Π in polynomial time with $|y|, \ell \leq g(k)$.
- Lifting: Given a solution Y of y, output a possibly empty $S_Y \subseteq \operatorname{Sol}(x)$ with $(f(k) \cdot |x|^{\mathcal{O}(1)})$ -delay. The non-empty S_Y 's must form a partition of $\operatorname{Sol}(x)$.

Introduced by

[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel

Given (x, k) of Π , kernelization happens in two phases:

- Compression: Output an equivalent (y, ℓ) of Π in polynomial time with $|y|, \ell \leq g(k)$.
- Lifting: Given a solution Y of y, output a possibly empty $S_Y \subseteq \operatorname{Sol}(x)$ with $(f(k) \cdot |x|^{\mathcal{O}(1)})$ -delay. The non-empty S_Y 's must form a partition of $\operatorname{Sol}(x)$.

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)

 Π admits an FPT-delay algorithm \Leftrightarrow it admits an enum-kernel.

Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover

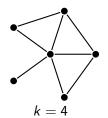
Input: A graph G and an integer k (the parameter).

Observed by

[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

ENUM VERTEX COVER

Input: A graph G and an integer k (the parameter).



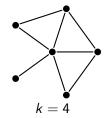
Observed by

[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover

Input: A graph G and an integer k (the parameter).

Enumerate: All vertex covers of G of size at most k.



Rule 1

If $v \in V(G)$ has degree $\geq k+1$, remove v and $k \leftarrow k-1$.

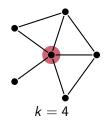
Observed by

[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover

Input: A graph G and an integer k (the parameter).

Enumerate: All vertex covers of G of size at most k.



Rule 1

If $v \in V(G)$ has degree $\geq k+1$, remove v and $k \leftarrow k-1$.

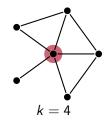
Observed by

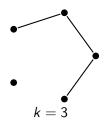
[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

ENUM VERTEX COVER

Input: A graph G and an integer k (the parameter).

Enumerate: All vertex covers of G of size at most k.





Rule 1

If $v \in V(G)$ has degree $\geq k+1$, remove v and $k \leftarrow k-1$.

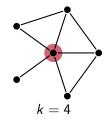
Observed by

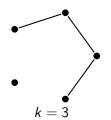
[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

ENUM VERTEX COVER

Input: A graph G and an integer k (the parameter).

Enumerate: All vertex covers of G of size at most k.





Rule 2

If $v \in V(G)$ has degree 0, remove v.

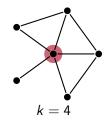
Observed by

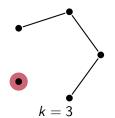
[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

ENUM VERTEX COVER

Input: A graph G and an integer k (the parameter).

Enumerate: All vertex covers of G of size at most k.





Rule 2

If $v \in V(G)$ has degree 0, remove v.

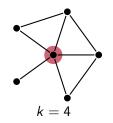
Observed by

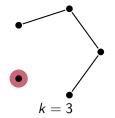
[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

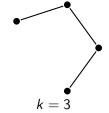
ENUM VERTEX COVER

Input: A graph G and an integer k (the parameter).

Enumerate: All vertex covers of G of size at most k.







Rule 2

If $v \in V(G)$ has degree 0, remove v.

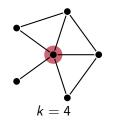
Observed by

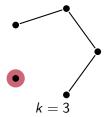
[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

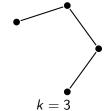
ENUM VERTEX COVER

Input: A graph G and an integer k (the parameter).

Enumerate: All vertex covers of G of size at most k.







A bounding criterion

No applicable rule \rightarrow max degree k. $|E(G)| > k^2 \rightarrow$ NO-instance.

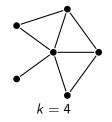
Observed by

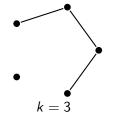
[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

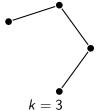
ENUM VERTEX COVER

Input: A graph G and an integer k (the parameter).

Enumerate: All vertex covers of G of size at most k.







Lifting

Take $Y \in Sol(G', k')$; we never remove vertices from it.

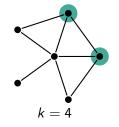
Observed by

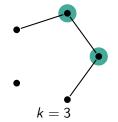
[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

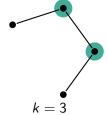
ENUM VERTEX COVER

Input: A graph G and an integer k (the parameter).

Enumerate: All vertex covers of G of size at most k.







Lifting from Rule 2

May add the deleted vertices if k - |Y| > 0.

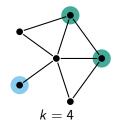
Observed by

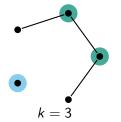
[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

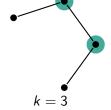
Enum Vertex Cover

Input: A graph G and an integer k (the parameter).

Enumerate: All vertex covers of G of size at most k.







Lifting from Rule 2

May add the deleted vertices if k - |Y| > 0.

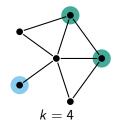
Observed by

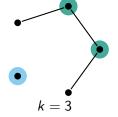
[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

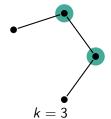
ENUM VERTEX COVER

Input: A graph G and an integer k (the parameter).

Enumerate: All vertex covers of G of size at most k.







Lifting from Rule 1

Must add the deleted vertices; can do so since k > |Y|.

A k^2 enum-kernel for ENUM VERTEX COVER

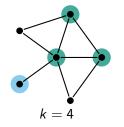
Observed by

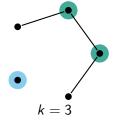
[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

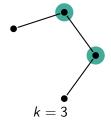
ENUM VERTEX COVER

Input: A graph G and an integer k (the parameter).

Enumerate: All vertex covers of G of size at most k.







Lifting from Rule 1

Must add the deleted vertices; can do so since k > |Y|.

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)

 Π admits an FPT-delay algorithm \Leftrightarrow it admits an enum-kernel.

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)

 Π admits an FPT-delay algorithm \Leftrightarrow it admits an enum-kernel.

Question

Is polynomial-delay equivalent to a constant-size enum-kernel?

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)

 Π admits an FPT-delay algorithm \Leftrightarrow it admits an enum-kernel.

Question

Is polynomial-delay equivalent to a constant-size enum-kernel?

Not really, as pointed out by [Golovach, Komusiewicz, Kratsch, Le. 2022]

FPT-delay is equivalent to a constant-size enum-kernel.

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)

 Π admits an FPT-delay algorithm \Leftrightarrow it admits an enum-kernel.

Question

Is polynomial-delay equivalent to a constant-size enum-kernel?

Not really, as pointed out by [Golovach, Komusiewicz, Kratsch, Le. 2022]

FPT-delay is equivalent to a constant-size enum-kernel.

A new model for enumeration kernels needed to be introduced.

New model introduced by [Golovach, Komusiewicz, Kratsch, Le. 2022]

Polynomial-delay (PD) kernel

Given (x, k), kernelization happens in two phases:

New model introduced by [Golovach, Komusiewicz, Kratsch, Le. 2022]

Polynomial-delay (PD) kernel

Given (x, k), kernelization happens in two phases:

• Compression: Output an equivalent instance (y, ℓ) in polynomial-time with $|y|, \ell \leq g(k)$.

New model introduced by [Golovach, Komusiewicz, Kratsch, Le. 2022]

Polynomial-delay (PD) kernel

Given (x, k), kernelization happens in two phases:

- Compression: Output an equivalent instance (y, ℓ) in polynomial-time with $|y|, \ell \leq g(k)$.
- Lifting: Given $Y \in Sol(y)$, output a non-empty $S_Y \subseteq Sol(x)$ with poly($|x| + |y| + k + \ell$)-delay. The S_Y 's must partition Sol(x).

New model introduced by [Golovach, Komusiewicz, Kratsch, Le. 2022]

Polynomial-delay (PD) kernel

Given (x, k), kernelization happens in two phases:

- Compression: Output an equivalent instance (y, ℓ) in polynomial-time with $|y|, \ell \leq g(k)$.
- Lifting: Given $Y \in Sol(y)$, output a non-empty $S_Y \subseteq Sol(x)$ with poly($|x| + |y| + k + \ell$)-delay. The S_Y 's must partition Sol(x).

Theorem (Golovach, Komusiewicz, Kratsch, Le. 2022)

Problem Π admits a PD kernel \Leftrightarrow it admits an FPT-delay algorithm. Moreover, $g(k) \in \mathcal{O}(1) \Leftrightarrow \Pi$ is solvable with polynomial-delay.

Problem Parameter Kernel size

Problem	Parameter	Kernel size
Enum Vertex Cover	Vertex cover	k^2

Kernel found by

[Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Problem	Parameter	Kernel size
Enum Vertex Cover	Vertex cover	k ²
ENUM MATCHING CUT	Vertex cover	k ²
	Neigh. diversity	k
	Feedback edge set	k

Problem	Parameter	Kernel size
Enum Vertex Cover	Vertex cover	k ²
ENUM MATCHING CUT	Vertex cover	k ²
	Neigh. diversity	k
	Feedback edge set	k
Enum d-Cut	Vertex cover	k ²
	Neigh. diversity	k
	Clique partition	k^{d+2}

Kernels found by

[Komusiewicz, Majumdar. 2023]

Problem	Parameter	Kernel size
Enum Vertex Cover	Vertex cover	k ²
ENUM MATCHING CUT	Vertex cover	k ²
	Neigh. diversity	k
	Feedback edge set	k
Enum d-Cut	Vertex cover	k ²
	Neigh. diversity	k
	Clique partition	k^{d+2}
ENUM MATCHING MULTICUT	Vertex cover	k ²
	Dist. co-cluster	k^2

Kernels found by

[Gomes, Juliano, Martins, dos Santos. IPEC 2024]

Problem	Parameter	Kernel size
Enum Vertex Cover	Vertex cover	k ²
ENUM MATCHING CUT	Vertex cover	k ²
	Neigh. diversity	k
	Feedback edge set	k
Enum d-Cut	Vertex cover	k ²
	Neigh. diversity	k
	Clique partition	k^{d+2}
ENUM MATCHING MULTICUT	Vertex cover	k ²
	Dist. co-cluster	k^2
ENUM LONG PATH	Vertex cover	k ²
	Dissociation	k ³
	Dist. to clique	k ³

Kernels found by

[Komusiewicz, Majumdar, Sommer. 2025]

Problem	Parameter	Kernel size
Enum Vertex Cover	Vertex cover	k ²
ENUM MATCHING CUT	Vertex cover	k ²
	Neigh. diversity	k
	Feedback edge set	k
Enum d-Cut	Vertex cover	k^2
	Neigh. diversity	k
	Clique partition	k^{d+2}
ENUM MATCHING MULTICUT	Vertex cover	k^2
	Dist. co-cluster	k^2
ENUM LONG PATH	Vertex cover	k ²
	Dissociation	k ³
	Dist. to clique	k ³

These were all the known PD kernels.

Our results

Theorem

ENUM VERTEX COVER admits a PD kernel with at most 2k vertices when parameterized by the solution size.

Our results

Theorem

ENUM VERTEX COVER admits a PD kernel with at most 2k vertices when parameterized by the solution size.

Surprising fact: no enumeration kernels were known for ENUM FEEDBACK VERTEX SET.

Our results

Theorem

ENUM VERTEX COVER admits a PD kernel with at most 2k vertices when parameterized by the solution size.

Surprising fact: no enumeration kernels were known for ENUM FEEDBACK VERTEX SET.

Theorem

Enum Feedback Vertex Set admits a PD kernel with $\mathcal{O}(k^3)$ vertices when parameterized by the solution size.

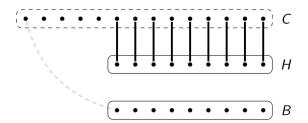
Sketch of the linear kernel for ENUM VERTEX COVER

Sketch of the linear kernel for ENUM VERTEX COVER

Crown decomposition of a graph G

A partition (C, H, B) of V(G) such that:

- *C* is an independent set.
- H separates C and B.
- there is an *H*-saturating matching between *H* and *C*;



Sketch of the linear kernel for ENUM VERTEX COVER

Crown decomposition of a graph G

A partition (C, H, B) of V(G) such that:

- C is an independent set.
- H separates C and B.
- there is an *H*-saturating matching between *H* and *C*;

Theorem (Nemhauser and Trotter, 1975 + Chlebík and Chlebíková, 2008)

Let G be a graph without isolated vertices and at least 2k + 1 vertices. Then, there is a polynomial-time algorithm that either:

- Decides that no vertex cover of size at most k exists.
- Or finds a crown decomposition of G.

Rule 1

Let (G, k) be the input instance. If v is an isolated vertex of G:

- Remove v from G.
- Keep *k* unchanged.

Rule 1

Let (G, k) be the input instance. If v is an isolated vertex of G:

- Remove v from G.
- Keep *k* unchanged.

Rule 2

If G has a crown decomposition (C, H, B):

- Remove *C*, *H* from *G*.
- Set $k \leftarrow k |H|$.

Rule 1

Let (G, k) be the input instance. If v is an isolated vertex of G:

- Remove v from G.
- Keep *k* unchanged.

Rule 2

If G has a crown decomposition (C, H, B):

- Remove C, H from G.
- Set $k \leftarrow k |H|$.

Rule 3

If k < 0, conclude that we are dealing with no-instance.

Rule 1

Let (G, k) be the input instance. If v is an isolated vertex of G:

- Remove v from G.
- Keep k unchanged.

Rule 2

If G has a crown decomposition (C, H, B):

- Remove *C*, *H* from *G*.
- Set $k \leftarrow k |H|$.

Rule 3

If k < 0, conclude that we are dealing with no-instance.

The resulting graph has at most 2k vertices.

Lifting

Let $Y \in Sol(G[B], k - |H|)$.

$$egin{pmatrix} ullet & ull$$

Lifting

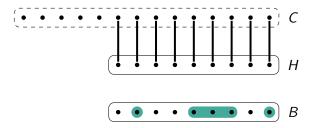
Let $Y \in Sol(G[B], k - |H|)$.

Lifting

Let $Y \in Sol(G[B], k - |H|)$. We only add vertices of $H \cup C$.

Lifting

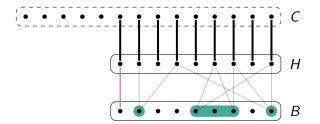
Let $Y \in Sol(G[B], k - |H|)$. We only add vertices of $H \cup C$.



Add to Y any $v \in H \cap N(B)$ incident to an edge uncovered by Y.

Lifting

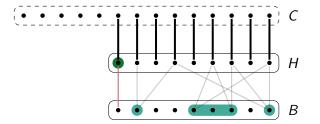
Let $Y \in Sol(G[B], k - |H|)$. We only add vertices of $H \cup C$.



Add to Y any $v \in H \cap N(B)$ incident to an edge uncovered by Y.

Lifting

Let $Y \in Sol(G[B], k - |H|)$. We only add vertices of $H \cup C$.



Add to Y any $v \in H \cap N(B)$ incident to an edge uncovered by Y.

A linear kernel for ENUM VERTEX COVER

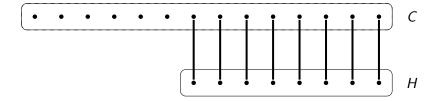
Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

A linear kernel for ENUM VERTEX COVER

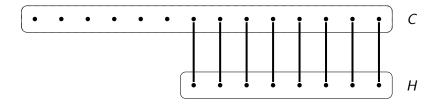
Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.



Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

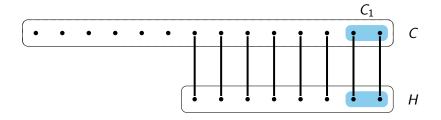


Step 1

Choose E_1 to be the only matching edges with both endpoints in Y.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

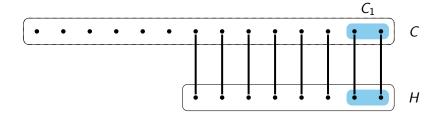


Step 1

Choose E_1 to be the only matching edges with both endpoints in Y.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

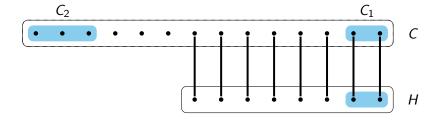


Step 2

Choose $d_2 \leq s - |E_1|$ unmatched vertices and add them to Y.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

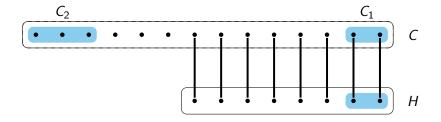


Step 2

Choose $d_2 \leq s - |E_1|$ unmatched vertices and add them to Y.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

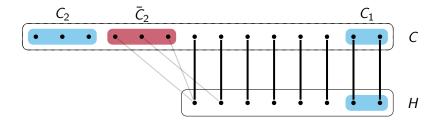


Step 3

Unmatched vertices $\notin C_2$ force vertices of H to be picked.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

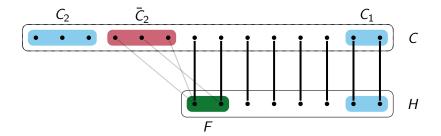


Step 3

Unmatched vertices $\notin C_2$ force vertices of H to be picked.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

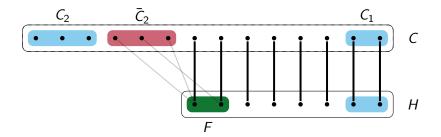


Step 3

Unmatched vertices $\notin C_2$ force vertices of H to be picked.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

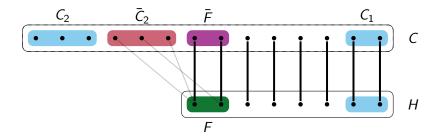


Step 4

Which force its matched vertices to be excluded.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

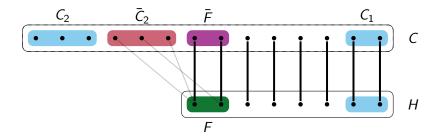


Step 4

Which force its matched vertices to be excluded.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

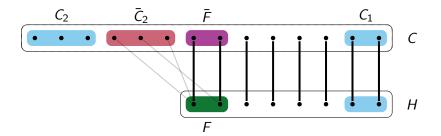


Step 4

Which force its matched vertices to be excluded.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

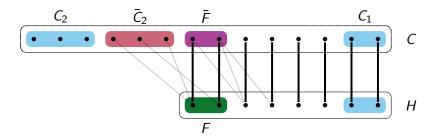


Step 5

Which force its other neighbors to be picked.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

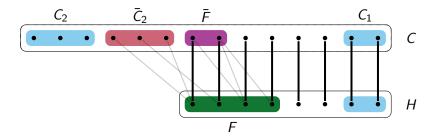


Step 5

Which force its other neighbors to be picked.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

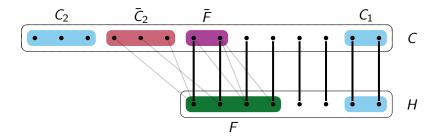


Step 5

Which force its other neighbors to be picked.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

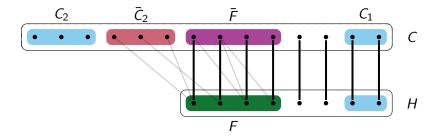


Step 6

Keep going until we don't have to grow F anymore.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

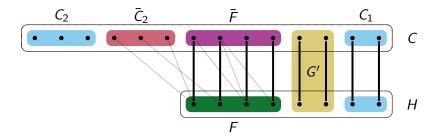


Step 6

Keep going until we don't have to grow F anymore.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.

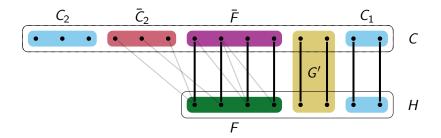


Step 6

Keep going until we don't have to grow F anymore.

Task

Enumerate all vertex covers of $G[H \cup C \setminus Y]$ of size $\leq k - |Y| = |H| + s$.



What remains

Enumerate vertex covers of G' of size |V(G')|/2.

After a long branching algorithm on G' and even longer correctness argument...

After a long branching algorithm on G' and even longer correctness argument...

Theorem

ENUM VERTEX COVER admits a PD kernel with at most 2k vertices when parameterized by the solution size.

After a long branching algorithm on G' and even longer correctness argument...

Theorem

ENUM VERTEX COVER admits a PD kernel with at most 2k vertices when parameterized by the solution size.

Observation

Requiring that every solution of the compressed instance outputs some solution of (G, k) significantly complicates the lifting procedure.

Theorem

Theorem

Enum Feedback Vertex Set admits a PD kernel with $\mathcal{O}(k^3)$ vertices when parameterized by the solution size.

• Inspired by quadratic kernel for decision version. [Thomassé. 2010]

Theorem

- Inspired by quadratic kernel for decision version. [Thomassé. 2010]
- Namely, design rules to lower and upper bound the degree of the graph, and then observe that $|V(G)| = \mathcal{O}(\Delta(G) \cdot \text{fvs}(G))$.

Theorem

- Inspired by quadratic kernel for decision version. [Thomassé. 2010]
- Namely, design rules to lower and upper bound the degree of the graph, and then observe that $|V(G)| = \mathcal{O}(\Delta(G) \cdot \mathsf{fvs}(G))$.
- But the core ingredient (finding a 2-expansion in an auxiliary graph) seems to fail for the enumeration version.

Theorem

- Inspired by quadratic kernel for decision version. [Thomassé. 2010]
- Namely, design rules to lower and upper bound the degree of the graph, and then observe that $|V(G)| = \mathcal{O}(\Delta(G) \cdot \mathsf{fvs}(G))$.
- But the core ingredient (finding a 2-expansion in an auxiliary graph) seems to fail for the enumeration version.
- Main reason: cannot deal with double edges s.t. there exists some solution using one of their endpoints (but maybe not all of them).

Theorem

ENUM FEEDBACK VERTEX SET admits a PD kernel with $\mathcal{O}(k^3)$ vertices when parameterized by the solution size.

- Inspired by quadratic kernel for decision version. [Thomassé. 2010]
- Namely, design rules to lower and upper bound the degree of the graph, and then observe that $|V(G)| = \mathcal{O}(\Delta(G) \cdot \mathsf{fvs}(G))$.
- But the core ingredient (finding a 2-expansion in an auxiliary graph)
 seems to fail for the enumeration version.
- Main reason: cannot deal with double edges s.t. there exists some solution using one of their endpoints (but maybe not all of them).
- As a result, we obtain a maximum degree of $\mathcal{O}(k^2)$ (instead of $\mathcal{O}(k)$).

• Parameterized enumeration lower bounds:

- Parameterized enumeration lower bounds:
 - How to rule out the existence of an FPT-delay algorithm when the decision version is in FPT?

- Parameterized enumeration lower bounds:
 - How to rule out the existence of an FPT-delay algorithm when the decision version is in FPT?
 - How to rule out the existence of polynomial enumeration kernels when the decision version has a polynomial kernel?

- Parameterized enumeration lower bounds:
 - How to rule out the existence of an FPT-delay algorithm when the decision version is in FPT?
 - How to rule out the existence of polynomial enumeration kernels when the decision version has a polynomial kernel?
 - Fine grained (S)ETH-like lower bounds?

- Parameterized enumeration lower bounds:
 - How to rule out the existence of an FPT-delay algorithm when the decision version is in FPT?
 - How to rule out the existence of polynomial enumeration kernels when the decision version has a polynomial kernel?
 - Fine grained (S)ETH-like lower bounds?
- Is there a $\mathcal{O}(k^2)$ PD kernel for ENUM FEEDBACK VERTEX SET?

- Parameterized enumeration lower bounds:
 - How to rule out the existence of an FPT-delay algorithm when the decision version is in FPT?
 - How to rule out the existence of polynomial enumeration kernels when the decision version has a polynomial kernel?
 - Fine grained (S)ETH-like lower bounds?
- Is there a $\mathcal{O}(k^2)$ PD kernel for ENUM FEEDBACK VERTEX SET?
- More examples of enumeration kernels for classical problems.

- Parameterized enumeration lower bounds:
 - How to rule out the existence of an FPT-delay algorithm when the decision version is in FPT?
 - How to rule out the existence of polynomial enumeration kernels when the decision version has a polynomial kernel?
 - Fine grained (S)ETH-like lower bounds?
- Is there a $\mathcal{O}(k^2)$ PD kernel for ENUM FEEDBACK VERTEX SET?
- More examples of enumeration kernels for classical problems.

Recall: observation

Requiring that every solution of the compressed instance outputs some solution of (G, k) significantly complicates the lifting procedure.