
Enumeration kernels for Vertex Cover
and Feedback Vertex Set

Marin Bougeret
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Guilherme C. M. Gomes
LIRMM, Université de Montpellier, CNRS, Montpellier, France
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Ignasi Sau
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Vinicius F. dos Santos
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

September 18, 2025

1

Enumeration

Enumeration problem
List the set Sol(x) of all solutions associated with the instance x that
satisfy your problem’s constraints.

2

An example - Vertex Cover

Vertex Cover
Input: A graph G and an integer k.
Question: Does G have a vertex cover of size at most k?

3

An example - Vertex Cover

Vertex Cover
Input: A graph G and an integer k.
Question: Does G have a vertex cover of size at most k?

3

An example - Vertex Cover

Vertex Cover
Input: A graph G and an integer k.
Question: Does G have a vertex cover of size at most k?

3

An example - Vertex Cover

Enum Vertex Cover
Input: A graph G and an integer k.
Enumerate: All vertex covers of G of size at most k.

3

An example - Vertex Cover

Enum Vertex Cover
Input: A graph G and an integer k.
Enumerate: All vertex covers of G of size at most k.

3

An example - Vertex Cover

Enum Vertex Cover
Input: A graph G and an integer k.
Enumerate: All vertex covers of G of size at most k.

3

More on enumeration

Applications
Bioinformatics, robotics, optimization, ...

Input-sensitive paradigm
Complexity should be measured by input size only. Can’t do any
meaningful analysis if we have exponentially many solutions.

Output-sensitive paradigm
Complexity should be measured by input size and number of solutions.

Incremental polynomial time: i-th solution of x should be output in
poly(|x |+ i).

Polynomial-delay: time between consecutive outputs in poly(|x |).

4

More on enumeration

Applications
Bioinformatics, robotics, optimization, ...

Input-sensitive paradigm
Complexity should be measured by input size only.

Can’t do any
meaningful analysis if we have exponentially many solutions.

Output-sensitive paradigm
Complexity should be measured by input size and number of solutions.

Incremental polynomial time: i-th solution of x should be output in
poly(|x |+ i).

Polynomial-delay: time between consecutive outputs in poly(|x |).

4

More on enumeration

Applications
Bioinformatics, robotics, optimization, ...

Input-sensitive paradigm
Complexity should be measured by input size only. Can’t do any
meaningful analysis if we have exponentially many solutions.

Output-sensitive paradigm
Complexity should be measured by input size and number of solutions.

Incremental polynomial time: i-th solution of x should be output in
poly(|x |+ i).

Polynomial-delay: time between consecutive outputs in poly(|x |).

4

More on enumeration

Applications
Bioinformatics, robotics, optimization, ...

Input-sensitive paradigm
Complexity should be measured by input size only. Can’t do any
meaningful analysis if we have exponentially many solutions.

Output-sensitive paradigm
Complexity should be measured by input size and number of solutions.

Incremental polynomial time: i-th solution of x should be output in
poly(|x |+ i).

Polynomial-delay: time between consecutive outputs in poly(|x |).

4

More on enumeration

Applications
Bioinformatics, robotics, optimization, ...

Input-sensitive paradigm
Complexity should be measured by input size only. Can’t do any
meaningful analysis if we have exponentially many solutions.

Output-sensitive paradigm
Complexity should be measured by input size and number of solutions.

Incremental polynomial time: i-th solution of x should be output in
poly(|x |+ i).

Polynomial-delay: time between consecutive outputs in poly(|x |).

4

More on enumeration

Applications
Bioinformatics, robotics, optimization, ...

Input-sensitive paradigm
Complexity should be measured by input size only. Can’t do any
meaningful analysis if we have exponentially many solutions.

Output-sensitive paradigm
Complexity should be measured by input size and number of solutions.

Incremental polynomial time: i-th solution of x should be output in
poly(|x |+ i).

Polynomial-delay: time between consecutive outputs in poly(|x |).

4

Parameterized complexity for decision

Decision problems & FPT
Each instance x of problem is given with a parameter k, and Π is said to
be fixed-parameter tractable if it can be solved in f (k) · |x |O(1)-time.

Preprocessing as kernelization
A kernelization algorithm takes (x , k) as input, runs in polynomial time,
and outputs an equivalent instance (y , ℓ) with |y |, ℓ ≤ g(k).

Theorem
A parameterized problem admits an FPT algorithm ⇔ it admits a kernel.
It is in P ⇔ g(k) ∈ O (1).

Goal of kernelization: minimize g(k).

5

Parameterized enumeration

FPT-delay
If Π is a parameterized enumeration problem, then FPT-delay is commonly
accepted as the “right” notion of tractability:

We want to spend at most f (k) · |x |O(1)-time between consecutive outputs
of an instance of Π.

Kernelization

??

6

Parameterized enumeration

FPT-delay
If Π is a parameterized enumeration problem, then FPT-delay is commonly
accepted as the “right” notion of tractability:

We want to spend at most f (k) · |x |O(1)-time between consecutive outputs
of an instance of Π.

Kernelization

??

6

Enum-kernels

Introduced by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel
Given (x , k) of Π, kernelization happens in two phases:

Compression: Output an equivalent (y , ℓ) of Π in polynomial time
with |y |, ℓ ≤ g(k).

Lifting: Given a solution Y of y , output a possibly empty
SY ⊆ Sol(x) with (f (k) · |x |O(1))-delay.

The non-empty SY ’s must form a partition of Sol(x).

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

7

Enum-kernels

Introduced by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel
Given (x , k) of Π, kernelization happens in two phases:

Compression: Output an equivalent (y , ℓ) of Π in polynomial time
with |y |, ℓ ≤ g(k).

Lifting: Given a solution Y of y , output a possibly empty
SY ⊆ Sol(x) with (f (k) · |x |O(1))-delay.

The non-empty SY ’s must form a partition of Sol(x).

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

7

Enum-kernels

Introduced by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel
Given (x , k) of Π, kernelization happens in two phases:

Compression: Output an equivalent (y , ℓ) of Π in polynomial time
with |y |, ℓ ≤ g(k).

Lifting: Given a solution Y of y , output a possibly empty
SY ⊆ Sol(x) with (f (k) · |x |O(1))-delay.

The non-empty SY ’s must form a partition of Sol(x).

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

7

Enum-kernels

Introduced by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel
Given (x , k) of Π, kernelization happens in two phases:

Compression: Output an equivalent (y , ℓ) of Π in polynomial time
with |y |, ℓ ≤ g(k).

Lifting: Given a solution Y of y , output a possibly empty
SY ⊆ Sol(x) with (f (k) · |x |O(1))-delay.

The non-empty SY ’s must form a partition of Sol(x).

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

7

Enum-kernels

Introduced by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel
Given (x , k) of Π, kernelization happens in two phases:

Compression: Output an equivalent (y , ℓ) of Π in polynomial time
with |y |, ℓ ≤ g(k).

Lifting: Given a solution Y of y , output a possibly empty
SY ⊆ Sol(x) with (f (k) · |x |O(1))-delay.
The non-empty SY ’s must form a partition of Sol(x).

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

7

Enum-kernels

Introduced by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum-kernel
Given (x , k) of Π, kernelization happens in two phases:

Compression: Output an equivalent (y , ℓ) of Π in polynomial time
with |y |, ℓ ≤ g(k).

Lifting: Given a solution Y of y , output a possibly empty
SY ⊆ Sol(x) with (f (k) · |x |O(1))-delay.
The non-empty SY ’s must form a partition of Sol(x).

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

7

A k2 enum-kernel for Enum Vertex Cover

Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4

k = 3 k = 3

8

A k2 enum-kernel for Enum Vertex Cover

Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4

k = 3 k = 3

8

A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4

k = 3 k = 3

Rule 1
If v ∈ V (G) has degree ≥ k + 1, remove v and k ← k − 1.

8

A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4

k = 3 k = 3

Rule 1
If v ∈ V (G) has degree ≥ k + 1, remove v and k ← k − 1.

8

A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4 k = 3

k = 3

Rule 1
If v ∈ V (G) has degree ≥ k + 1, remove v and k ← k − 1.

8

A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4 k = 3

k = 3

Rule 2
If v ∈ V (G) has degree 0, remove v .

8

A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4 k = 3

k = 3

Rule 2
If v ∈ V (G) has degree 0, remove v .

8

A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4 k = 3 k = 3

Rule 2
If v ∈ V (G) has degree 0, remove v .

8

A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4 k = 3 k = 3

A bounding criterion
No applicable rule → max degree k. |E (G)| > k2 → NO-instance.

8

A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4 k = 3 k = 3

Lifting
Take Y ∈ Sol(G ′, k ′); we never remove vertices from it.

8

A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4 k = 3 k = 3

Lifting from Rule 2
May add the deleted vertices if k − |Y | > 0.

8

A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4 k = 3 k = 3

Lifting from Rule 2
May add the deleted vertices if k − |Y | > 0.

8

A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4 k = 3 k = 3

Lifting from Rule 1
Must add the deleted vertices; can do so since k > |Y |.

8

A k2 enum-kernel for Enum Vertex Cover
Observed by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

Enum Vertex Cover
Input: A graph G and an integer k (the parameter).
Enumerate: All vertex covers of G of size at most k.

k = 4 k = 3 k = 3

Lifting from Rule 1
Must add the deleted vertices; can do so since k > |Y |.

8

Another look at enum-kernels

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

Question
Is polynomial-delay equivalent to a constant-size enum-kernel?

Not really, as pointed out by [Golovach, Komusiewicz, Kratsch, Le. 2022]

FPT-delay is equivalent to a constant-size enum-kernel.

A new model for enumeration kernels needed to be introduced.

9

Another look at enum-kernels

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

Question
Is polynomial-delay equivalent to a constant-size enum-kernel?

Not really, as pointed out by [Golovach, Komusiewicz, Kratsch, Le. 2022]

FPT-delay is equivalent to a constant-size enum-kernel.

A new model for enumeration kernels needed to be introduced.

9

Another look at enum-kernels

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

Question
Is polynomial-delay equivalent to a constant-size enum-kernel?

Not really, as pointed out by [Golovach, Komusiewicz, Kratsch, Le. 2022]

FPT-delay is equivalent to a constant-size enum-kernel.

A new model for enumeration kernels needed to be introduced.

9

Another look at enum-kernels

Theorem (Creignou, Meier, Müller, Schmidt, Vollmer. 2017)
Π admits an FPT-delay algorithm ⇔ it admits an enum-kernel.

Question
Is polynomial-delay equivalent to a constant-size enum-kernel?

Not really, as pointed out by [Golovach, Komusiewicz, Kratsch, Le. 2022]

FPT-delay is equivalent to a constant-size enum-kernel.

A new model for enumeration kernels needed to be introduced.

9

Polynomial-delay (PD) kernels

New model introduced by [Golovach, Komusiewicz, Kratsch, Le. 2022]

Polynomial-delay (PD) kernel
Given (x , k), kernelization happens in two phases:

Compression: Output an equivalent instance (y , ℓ) in polynomial-time
with |y |, ℓ ≤ g(k).

Lifting: Given Y ∈ Sol(y), output a non-empty SY ⊆ Sol(x)
with poly(|x |+ |y |+ k + ℓ)-delay.
The SY ’s must partition Sol(x).

Theorem (Golovach, Komusiewicz, Kratsch, Le. 2022)
Problem Π admits a PD kernel ⇔ it admits an FPT-delay algorithm.
Moreover, g(k) ∈ O (1) ⇔ Π is solvable with polynomial-delay.

10

Polynomial-delay (PD) kernels

New model introduced by [Golovach, Komusiewicz, Kratsch, Le. 2022]

Polynomial-delay (PD) kernel
Given (x , k), kernelization happens in two phases:

Compression: Output an equivalent instance (y , ℓ) in polynomial-time
with |y |, ℓ ≤ g(k).

Lifting: Given Y ∈ Sol(y), output a non-empty SY ⊆ Sol(x)
with poly(|x |+ |y |+ k + ℓ)-delay.
The SY ’s must partition Sol(x).

Theorem (Golovach, Komusiewicz, Kratsch, Le. 2022)
Problem Π admits a PD kernel ⇔ it admits an FPT-delay algorithm.
Moreover, g(k) ∈ O (1) ⇔ Π is solvable with polynomial-delay.

10

Polynomial-delay (PD) kernels

New model introduced by [Golovach, Komusiewicz, Kratsch, Le. 2022]

Polynomial-delay (PD) kernel
Given (x , k), kernelization happens in two phases:

Compression: Output an equivalent instance (y , ℓ) in polynomial-time
with |y |, ℓ ≤ g(k).

Lifting: Given Y ∈ Sol(y), output a non-empty SY ⊆ Sol(x)
with poly(|x |+ |y |+ k + ℓ)-delay.
The SY ’s must partition Sol(x).

Theorem (Golovach, Komusiewicz, Kratsch, Le. 2022)
Problem Π admits a PD kernel ⇔ it admits an FPT-delay algorithm.
Moreover, g(k) ∈ O (1) ⇔ Π is solvable with polynomial-delay.

10

Polynomial-delay (PD) kernels

New model introduced by [Golovach, Komusiewicz, Kratsch, Le. 2022]

Polynomial-delay (PD) kernel
Given (x , k), kernelization happens in two phases:

Compression: Output an equivalent instance (y , ℓ) in polynomial-time
with |y |, ℓ ≤ g(k).

Lifting: Given Y ∈ Sol(y), output a non-empty SY ⊆ Sol(x)
with poly(|x |+ |y |+ k + ℓ)-delay.
The SY ’s must partition Sol(x).

Theorem (Golovach, Komusiewicz, Kratsch, Le. 2022)
Problem Π admits a PD kernel ⇔ it admits an FPT-delay algorithm.
Moreover, g(k) ∈ O (1) ⇔ Π is solvable with polynomial-delay.

10

Known polynomial PD kernels

Problem Parameter Kernel size

Enum Vertex Cover Vertex cover k2

Enum Matching Cut Vertex cover k2

Neigh. diversity k
Feedback edge set k

Enum d-Cut Vertex cover k2

Neigh. diversity k
Clique partition kd+2

Enum Matching Multicut Vertex cover k2

Dist. co-cluster k2

Enum Long Path Vertex cover k2

Dissociation k3

Dist. to clique k3

11

Known polynomial PD kernels

Problem Parameter Kernel size
Enum Vertex Cover Vertex cover k2

Enum Matching Cut Vertex cover k2

Neigh. diversity k
Feedback edge set k

Enum d-Cut Vertex cover k2

Neigh. diversity k
Clique partition kd+2

Enum Matching Multicut Vertex cover k2

Dist. co-cluster k2

Enum Long Path Vertex cover k2

Dissociation k3

Dist. to clique k3

Kernel found by [Creignou, Meier, Müller, Schmidt, Vollmer. 2017]

11

Known polynomial PD kernels

Problem Parameter Kernel size
Enum Vertex Cover Vertex cover k2

Enum Matching Cut Vertex cover k2

Neigh. diversity k
Feedback edge set k

Enum d-Cut Vertex cover k2

Neigh. diversity k
Clique partition kd+2

Enum Matching Multicut Vertex cover k2

Dist. co-cluster k2

Enum Long Path Vertex cover k2

Dissociation k3

Dist. to clique k3

Kernels found by [Golovach, Komusiewicz, Kratsch, Le. 2022]

11

Known polynomial PD kernels

Problem Parameter Kernel size
Enum Vertex Cover Vertex cover k2

Enum Matching Cut Vertex cover k2

Neigh. diversity k
Feedback edge set k

Enum d-Cut Vertex cover k2

Neigh. diversity k
Clique partition kd+2

Enum Matching Multicut Vertex cover k2

Dist. co-cluster k2

Enum Long Path Vertex cover k2

Dissociation k3

Dist. to clique k3

Kernels found by [Komusiewicz, Majumdar. 2023]

11

Known polynomial PD kernels

Problem Parameter Kernel size
Enum Vertex Cover Vertex cover k2

Enum Matching Cut Vertex cover k2

Neigh. diversity k
Feedback edge set k

Enum d-Cut Vertex cover k2

Neigh. diversity k
Clique partition kd+2

Enum Matching Multicut Vertex cover k2

Dist. co-cluster k2

Enum Long Path Vertex cover k2

Dissociation k3

Dist. to clique k3

Kernels found by [Gomes, Juliano, Martins, dos Santos. IPEC 2024]

11

Known polynomial PD kernels

Problem Parameter Kernel size
Enum Vertex Cover Vertex cover k2

Enum Matching Cut Vertex cover k2

Neigh. diversity k
Feedback edge set k

Enum d-Cut Vertex cover k2

Neigh. diversity k
Clique partition kd+2

Enum Matching Multicut Vertex cover k2

Dist. co-cluster k2

Enum Long Path Vertex cover k2

Dissociation k3

Dist. to clique k3

Kernels found by [Komusiewicz, Majumdar, Sommer. 2025]

11

Known polynomial PD kernels

Problem Parameter Kernel size
Enum Vertex Cover Vertex cover k2

Enum Matching Cut Vertex cover k2

Neigh. diversity k
Feedback edge set k

Enum d-Cut Vertex cover k2

Neigh. diversity k
Clique partition kd+2

Enum Matching Multicut Vertex cover k2

Dist. co-cluster k2

Enum Long Path Vertex cover k2

Dissociation k3

Dist. to clique k3

These were all the known PD kernels.
11

Our results

Theorem
Enum Vertex Cover admits a PD kernel with at most 2k vertices
when parameterized by the solution size.

Surprising fact: no enumeration kernels were known for
Enum Feedback Vertex Set.

Theorem
Enum Feedback Vertex Set admits a PD kernel with O(k3) vertices
when parameterized by the solution size.

12

Our results

Theorem
Enum Vertex Cover admits a PD kernel with at most 2k vertices
when parameterized by the solution size.

Surprising fact: no enumeration kernels were known for
Enum Feedback Vertex Set.

Theorem
Enum Feedback Vertex Set admits a PD kernel with O(k3) vertices
when parameterized by the solution size.

12

Our results

Theorem
Enum Vertex Cover admits a PD kernel with at most 2k vertices
when parameterized by the solution size.

Surprising fact: no enumeration kernels were known for
Enum Feedback Vertex Set.

Theorem
Enum Feedback Vertex Set admits a PD kernel with O(k3) vertices
when parameterized by the solution size.

12

Sketch of the linear kernel for Enum Vertex Cover

Crown decomposition of a graph G
A partition (C , H, B) of V (G) such that:

C is an independent set.
H separates C and B.
there is an H-saturating matching between H and C ;

13

Sketch of the linear kernel for Enum Vertex Cover

Crown decomposition of a graph G
A partition (C , H, B) of V (G) such that:

C is an independent set.
H separates C and B.
there is an H-saturating matching between H and C ;

13

Sketch of the linear kernel for Enum Vertex Cover

Crown decomposition of a graph G
A partition (C , H, B) of V (G) such that:

C is an independent set.
H separates C and B.
there is an H-saturating matching between H and C ;

Theorem (Nemhauser and Trotter, 1975 + Chlebík and Chlebíková, 2008)
Let G be a graph without isolated vertices and at least 2k + 1 vertices.
Then, there is a polynomial-time algorithm that either:

Decides that no vertex cover of size at most k exists.
Or finds a crown decomposition of G.

13

The compression step of the kernel is very easy

Rule 1
Let (G , k) be the input instance. If v is an isolated vertex of G :

Remove v from G .
Keep k unchanged.

Rule 2
If G has a crown decomposition (C , H, B):

Remove C , H from G .
Set k ← k − |H|.

Rule 3
If k < 0, conclude that we are dealing with no-instance.

The resulting graph has at most 2k vertices.

14

The compression step of the kernel is very easy

Rule 1
Let (G , k) be the input instance. If v is an isolated vertex of G :

Remove v from G .
Keep k unchanged.

Rule 2
If G has a crown decomposition (C , H, B):

Remove C , H from G .
Set k ← k − |H|.

Rule 3
If k < 0, conclude that we are dealing with no-instance.

The resulting graph has at most 2k vertices.

14

The compression step of the kernel is very easy

Rule 1
Let (G , k) be the input instance. If v is an isolated vertex of G :

Remove v from G .
Keep k unchanged.

Rule 2
If G has a crown decomposition (C , H, B):

Remove C , H from G .
Set k ← k − |H|.

Rule 3
If k < 0, conclude that we are dealing with no-instance.

The resulting graph has at most 2k vertices.

14

The compression step of the kernel is very easy

Rule 1
Let (G , k) be the input instance. If v is an isolated vertex of G :

Remove v from G .
Keep k unchanged.

Rule 2
If G has a crown decomposition (C , H, B):

Remove C , H from G .
Set k ← k − |H|.

Rule 3
If k < 0, conclude that we are dealing with no-instance.

The resulting graph has at most 2k vertices.

14

The compression step of the kernel is very easy

Rule 1
Let (G , k) be the input instance. If v is an isolated vertex of G :

Remove v from G .
Keep k unchanged.

Rule 2
If G has a crown decomposition (C , H, B):

Remove C , H from G .
Set k ← k − |H|.

Rule 3
If k < 0, conclude that we are dealing with no-instance.

The resulting graph has at most 2k vertices.
14

The lifting algorithm is the hard part!

Lifting
Let Y ∈ Sol(G [B], k − |H|).

We only add vertices of H ∪ C .

C

H

B

15

The lifting algorithm is the hard part!

Lifting
Let Y ∈ Sol(G [B], k − |H|).

We only add vertices of H ∪ C .

C

H

B

15

The lifting algorithm is the hard part!

Lifting
Let Y ∈ Sol(G [B], k − |H|).

We only add vertices of H ∪ C .

C

H

B

15

The lifting algorithm is the hard part!

Lifting
Let Y ∈ Sol(G [B], k − |H|). We only add vertices of H ∪ C .

C

H

B

15

The lifting algorithm is the hard part!

Lifting
Let Y ∈ Sol(G [B], k − |H|). We only add vertices of H ∪ C .

C

H

B

Add to Y any v ∈ H ∩ N(B) incident to an edge uncovered by Y .

15

The lifting algorithm is the hard part!

Lifting
Let Y ∈ Sol(G [B], k − |H|). We only add vertices of H ∪ C .

C

H

B

Add to Y any v ∈ H ∩ N(B) incident to an edge uncovered by Y .

15

The lifting algorithm is the hard part!

Lifting
Let Y ∈ Sol(G [B], k − |H|). We only add vertices of H ∪ C .

C

H

B

Add to Y any v ∈ H ∩ N(B) incident to an edge uncovered by Y .

15

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄ F̄

F

G ′

C

H

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄ F̄

F

G ′

C

H

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄ F̄

F

G ′

C

H

Step 1
Choose E1 to be the only matching edges with both endpoints in Y .

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1

C2 C̄2

F

F̄ F̄

F

G ′

C

H

Step 1
Choose E1 to be the only matching edges with both endpoints in Y .

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1

C2 C̄2

F

F̄ F̄

F

G ′

C

H

Step 2
Choose d2 ≤ s − |E1| unmatched vertices and add them to Y .

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2

C̄2

F

F̄ F̄

F

G ′

C

H

Step 2
Choose d2 ≤ s − |E1| unmatched vertices and add them to Y .

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2

C̄2

F

F̄ F̄

F

G ′

C

H

Step 3
Unmatched vertices /∈ C2 force vertices of H to be picked.

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄ F̄

F

G ′

C

H

Step 3
Unmatched vertices /∈ C2 force vertices of H to be picked.

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄ F̄

F

G ′

C

H

Step 3
Unmatched vertices /∈ C2 force vertices of H to be picked.

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄ F̄

F

G ′

C

H

Step 4
Which force its matched vertices to be excluded.

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄

F̄

F

G ′

C

H

Step 4
Which force its matched vertices to be excluded.

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄

F̄

F

G ′

C

H

Step 4
Which force its matched vertices to be excluded.

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄

F̄

F

G ′

C

H

Step 5
Which force its other neighbors to be picked.

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄

F̄

F

G ′

C

H

Step 5
Which force its other neighbors to be picked.

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄

F̄

F

G ′

C

H

Step 5
Which force its other neighbors to be picked.

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄

F̄

F

G ′

C

H

Step 6
Keep going until we don’t have to grow F anymore.

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄

F̄

F

G ′

C

H

Step 6
Keep going until we don’t have to grow F anymore.

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄

F̄

F

G ′

C

H

Step 6
Keep going until we don’t have to grow F anymore.

16

A linear kernel for Enum Vertex Cover

Task
Enumerate all vertex covers of G [H ∪ C \ Y] of size ≤ k − |Y | = |H|+ s.

C1C2 C̄2

F

F̄

F̄

F

G ′

C

H

What remains
Enumerate vertex covers of G ′ of size |V (G ′)|/2.

16

A linear kernel for Enum Vertex Cover

After a long branching algorithm on G ′ and even longer correctness
argument...

Theorem
Enum Vertex Cover admits a PD kernel with at most 2k vertices
when parameterized by the solution size.

Observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.

17

A linear kernel for Enum Vertex Cover

After a long branching algorithm on G ′ and even longer correctness
argument...

Theorem
Enum Vertex Cover admits a PD kernel with at most 2k vertices
when parameterized by the solution size.

Observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.

17

A linear kernel for Enum Vertex Cover

After a long branching algorithm on G ′ and even longer correctness
argument...

Theorem
Enum Vertex Cover admits a PD kernel with at most 2k vertices
when parameterized by the solution size.

Observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.

17

Sketch of the cubic kernel for Enum Feed. Vert. Set

Theorem
Enum Feedback Vertex Set admits a PD kernel with O(k3) vertices
when parameterized by the solution size.

Inspired by quadratic kernel for decision version. [Thomassé. 2010]

Namely, design rules to lower and upper bound the degree of the
graph, and then observe that |V (G)| = O(∆(G) · fvs(G)).

But the core ingredient (finding a 2-expansion in an auxiliary graph)
seems to fail for the enumeration version.

Main reason: cannot deal with double edges s.t. there exists some
solution using one of their endpoints (but maybe not all of them).

As a result, we obtain a maximum degree of O(k2) (instead of O(k)).

18

Sketch of the cubic kernel for Enum Feed. Vert. Set

Theorem
Enum Feedback Vertex Set admits a PD kernel with O(k3) vertices
when parameterized by the solution size.

Inspired by quadratic kernel for decision version. [Thomassé. 2010]

Namely, design rules to lower and upper bound the degree of the
graph, and then observe that |V (G)| = O(∆(G) · fvs(G)).

But the core ingredient (finding a 2-expansion in an auxiliary graph)
seems to fail for the enumeration version.

Main reason: cannot deal with double edges s.t. there exists some
solution using one of their endpoints (but maybe not all of them).

As a result, we obtain a maximum degree of O(k2) (instead of O(k)).

18

Sketch of the cubic kernel for Enum Feed. Vert. Set

Theorem
Enum Feedback Vertex Set admits a PD kernel with O(k3) vertices
when parameterized by the solution size.

Inspired by quadratic kernel for decision version. [Thomassé. 2010]

Namely, design rules to lower and upper bound the degree of the
graph, and then observe that |V (G)| = O(∆(G) · fvs(G)).

But the core ingredient (finding a 2-expansion in an auxiliary graph)
seems to fail for the enumeration version.

Main reason: cannot deal with double edges s.t. there exists some
solution using one of their endpoints (but maybe not all of them).

As a result, we obtain a maximum degree of O(k2) (instead of O(k)).

18

Sketch of the cubic kernel for Enum Feed. Vert. Set

Theorem
Enum Feedback Vertex Set admits a PD kernel with O(k3) vertices
when parameterized by the solution size.

Inspired by quadratic kernel for decision version. [Thomassé. 2010]

Namely, design rules to lower and upper bound the degree of the
graph, and then observe that |V (G)| = O(∆(G) · fvs(G)).

But the core ingredient (finding a 2-expansion in an auxiliary graph)
seems to fail for the enumeration version.

Main reason: cannot deal with double edges s.t. there exists some
solution using one of their endpoints (but maybe not all of them).

As a result, we obtain a maximum degree of O(k2) (instead of O(k)).

18

Sketch of the cubic kernel for Enum Feed. Vert. Set

Theorem
Enum Feedback Vertex Set admits a PD kernel with O(k3) vertices
when parameterized by the solution size.

Inspired by quadratic kernel for decision version. [Thomassé. 2010]

Namely, design rules to lower and upper bound the degree of the
graph, and then observe that |V (G)| = O(∆(G) · fvs(G)).

But the core ingredient (finding a 2-expansion in an auxiliary graph)
seems to fail for the enumeration version.

Main reason: cannot deal with double edges s.t. there exists some
solution using one of their endpoints (but maybe not all of them).

As a result, we obtain a maximum degree of O(k2) (instead of O(k)).

18

Sketch of the cubic kernel for Enum Feed. Vert. Set

Theorem
Enum Feedback Vertex Set admits a PD kernel with O(k3) vertices
when parameterized by the solution size.

Inspired by quadratic kernel for decision version. [Thomassé. 2010]

Namely, design rules to lower and upper bound the degree of the
graph, and then observe that |V (G)| = O(∆(G) · fvs(G)).

But the core ingredient (finding a 2-expansion in an auxiliary graph)
seems to fail for the enumeration version.

Main reason: cannot deal with double edges s.t. there exists some
solution using one of their endpoints (but maybe not all of them).

As a result, we obtain a maximum degree of O(k2) (instead of O(k)).

18

Further research

Parameterized enumeration lower bounds:

How to rule out the existence of an FPT-delay algorithm when the
decision version is in FPT?

How to rule out the existence of polynomial enumeration kernels when
the decision version has a polynomial kernel?

Fine grained (S)ETH-like lower bounds?

Is there a O
(
k2)

PD kernel for Enum Feedback Vertex Set?

More examples of enumeration kernels for classical problems.

Recall: observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.

19

Further research

Parameterized enumeration lower bounds:

How to rule out the existence of an FPT-delay algorithm when the
decision version is in FPT?

How to rule out the existence of polynomial enumeration kernels when
the decision version has a polynomial kernel?

Fine grained (S)ETH-like lower bounds?

Is there a O
(
k2)

PD kernel for Enum Feedback Vertex Set?

More examples of enumeration kernels for classical problems.

Recall: observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.

19

Further research

Parameterized enumeration lower bounds:

How to rule out the existence of an FPT-delay algorithm when the
decision version is in FPT?

How to rule out the existence of polynomial enumeration kernels when
the decision version has a polynomial kernel?

Fine grained (S)ETH-like lower bounds?

Is there a O
(
k2)

PD kernel for Enum Feedback Vertex Set?

More examples of enumeration kernels for classical problems.

Recall: observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.

19

Further research

Parameterized enumeration lower bounds:

How to rule out the existence of an FPT-delay algorithm when the
decision version is in FPT?

How to rule out the existence of polynomial enumeration kernels when
the decision version has a polynomial kernel?

Fine grained (S)ETH-like lower bounds?

Is there a O
(
k2)

PD kernel for Enum Feedback Vertex Set?

More examples of enumeration kernels for classical problems.

Recall: observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.

19

Further research

Parameterized enumeration lower bounds:

How to rule out the existence of an FPT-delay algorithm when the
decision version is in FPT?

How to rule out the existence of polynomial enumeration kernels when
the decision version has a polynomial kernel?

Fine grained (S)ETH-like lower bounds?

Is there a O
(
k2)

PD kernel for Enum Feedback Vertex Set?

More examples of enumeration kernels for classical problems.

Recall: observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.

19

Further research

Parameterized enumeration lower bounds:

How to rule out the existence of an FPT-delay algorithm when the
decision version is in FPT?

How to rule out the existence of polynomial enumeration kernels when
the decision version has a polynomial kernel?

Fine grained (S)ETH-like lower bounds?

Is there a O
(
k2)

PD kernel for Enum Feedback Vertex Set?

More examples of enumeration kernels for classical problems.

Recall: observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.

19

Further research

Parameterized enumeration lower bounds:

How to rule out the existence of an FPT-delay algorithm when the
decision version is in FPT?

How to rule out the existence of polynomial enumeration kernels when
the decision version has a polynomial kernel?

Fine grained (S)ETH-like lower bounds?

Is there a O
(
k2)

PD kernel for Enum Feedback Vertex Set?

More examples of enumeration kernels for classical problems.

Recall: observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.

19

Further research

Parameterized enumeration lower bounds:

How to rule out the existence of an FPT-delay algorithm when the
decision version is in FPT?

How to rule out the existence of polynomial enumeration kernels when
the decision version has a polynomial kernel?

Fine grained (S)ETH-like lower bounds?

Is there a O
(
k2)

PD kernel for Enum Feedback Vertex Set?

More examples of enumeration kernels for classical problems.

Recall: observation
Requiring that every solution of the compressed instance outputs some
solution of (G , k) significantly complicates the lifting procedure.

19

	Motivation
	Parameterized complexity
	Polynomial-delay kernels
	Concluding remarks

