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Weighted Coloring

We are given a graph G together with a weight function w : V (G)→ R+.

A (proper) k-coloring of G is a partition c = (Si )i∈[1,k] of V (G) into k
stable sets S1, . . . ,Sk .

The weight of a color Si is w(i) = maxv∈Si w(v).

The weight of a coloring c is w(c) =
∑k

i=1 w(i).

The weighted chromatic number of a pair (G ,w) is

σ(G ,w) = min{w(c) | c is a proper coloring of G}.

If w(v) = 1 for every v ∈ V (G), then clearly σ(G ,w) = χ(G).
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What is known about Weighted Coloring

The Weighted Coloring problem was introduced by [Guan, Zhu. 1997]
to study practical applications related to resource allocation.

If all the vertex weights are equal to one, then σ(G ,w) = χ(G).
Thus, determining σ(G ,w) in an NP-hard problem.

The problem is NP-hard even on:
split graphs, interval graphs, bipartite graphs, and
triangle-free planar graphs with bounded degree.

On the other hand, it is polynomial on
cographs and some subclasses of bipartite graphs.

[de Werra, Demange, Monnot, Paschos. 2002]
[Escoffier, Monnot, Paschos. 2006]

[de Werra, Demange, Escoffier, Monnot, Paschos. 2009]
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Complexity of Weighted Coloring on trees (forests)

Weighted Coloring can be solved on forests in time
nO(log n) = 2O(log2 n) (quasi-polynomial). [Guan, Zhu. 1997]

[Linhares, Reed. 2006]

Is Weighted Coloring polynomial on trees/forests?
More generally, on graphs of bounded treewidth?

PTAS on bounded treewidth graphs. [Escoffier, Monnot, Paschos. 2006]
Polynomial on the class of trees where vertices with degree at least
three induce a stable set. [Kavitha, Mestre. 2012]

F There is no algorithm solving Weighted Coloring on n-vertex trees
in time no(log n), under the ETH. [Araújo, Nisse, Pérennes. 2014]

Weighted Coloring on forests is W[1]-hard parameterized by the size
of a largest connected component. [Araújo, Baste, S. 2017]
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Dual parameterization: saving colors

Conclusion Weighted Coloring is a very hard problem!

Let’s try to give some good news:

Dual Weighted Coloring
Input: A vertex-weighted graph (G ,w) and a positive integer k.
Parameter: k.
Question: Is σ(G ,w) ≤

∑
v∈V (G) w(v)− k?

(We assume that all vertex-weights are positive integers.)

The dual parameterization has proved to be useful for
Vertex Coloring, Grundy Coloring, and b-Coloring.

[Chor, Fellows, Juedes. 2004]
[Havet, Sampaio. 2013]
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Known results

Dual Weighted Coloring has been recently studied: [Escoffier. 2016]

WARNING!! Weighted Coloring is also called
Max Coloring in the literature.

Escoffier showed that the problem is FPT, namely:

Algorithm running in time 2O(k log k) · nO(1).

Asked “what size of kernel can be achieved for the problem?”
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Our results for Dual Weighted Coloring

1 FPT algorithm running in time 9k · nO(1).
Inspired from an algorithm for the chromatic number. [Lawler. 1976]

No algorithm in time 2o(k) · nO(1) exists under the ETH.

2 Kernel with at most (2k−1 + 1)(k − 1) vertices.
No polynomial kernels unless NP ⊆ coNP/poly,
even on split graphs with only two different weights.
(Contrast with Dual Vertex Coloring, which admits a linear kernel.)

3 Polynomial kernels on particular graph classes:

Linear kernel on graph classes with bounded clique number.
Cubic kernel on interval graphs.
Based on the “consecutive ones property” of interval graphs.
Subclasses of split graphs, with lower bounds on the degrees.
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An exponential kernel for Dual Weighted Coloring

We start with an idea already used, in particular, by [Escoffier. 2016]
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An exponential kernel for Dual Weighted Coloring

maximum unweighted
antimatching M

We compute (in poly time) a maximum unweighted antimatching M.
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An exponential kernel for Dual Weighted Coloring

maximum unweighted

We may assume
|M | ≤ k − 1

antimatching M

If |M| ≥ k, we are dealing with a Yes-instance.
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An exponential kernel for Dual Weighted Coloring

maximum unweighted
clique K

We may assume
|M | ≤ k − 1

antimatching M

The complement of the antimatching M induces a clique K .
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An exponential kernel for Dual Weighted Coloring

maximum unweighted
clique K

We may assume
|M | ≤ k − 1

equivalence
classes

antimatching M

We partition K into equivalence classes w.r.t. the neighborhood in M.
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An exponential kernel for Dual Weighted Coloring

maximum unweighted
clique K

We may assume
|M | ≤ k − 1

equivalence
classes

antimatching M

We have to bound the number and the size of the equivalence classes.
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An exponential kernel for Dual Weighted Coloring

maximum unweighted
clique K

We may assume
|M | ≤ k − 1

equivalence
classes

antimatching M

Every non-edge has a unique “potential non-neighbor” for the classes.
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An exponential kernel for Dual Weighted Coloring

maximum unweighted
clique K

We may assume
|M | ≤ k − 1

equivalence
classes

antimatching M

≤ 2k−1 − 1

Hence, the number of equivalence classes is at most 2k−1 − 1.
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An exponential kernel for Dual Weighted Coloring

maximum unweighted
clique K

We may assume
|M | ≤ k − 1

equivalence
classes

antimatching M

≤ 2k−1 − 1

It remains to bound the size of each equivalence class.
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An exponential kernel for Dual Weighted Coloring

maximum unweighted
clique K

We may assume
|M | ≤ k − 1

equivalence
classes

antimatching M

≤ k − 1

≤ 2k−1 − 1

heaviest vertices

It is safe to keep only the k − 1 heaviest vertices of each equivalence class.
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An exponential kernel for Dual Weighted Coloring

maximum unweighted
clique K

We may assume
|M | ≤ k − 1

equivalence
classes

antimatching M

≤ k − 1

≤ 2k−1 − 1

heaviest vertices

Thus, |V (G)| ≤ |V (M)|+ |K | ≤ 2(k − 1) + (2k−1 − 1)(k − 1).
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Ruling out polynomial kernels

Theorem
Dual Weighted Coloring does not admit a polynomial kernel unless
NP ⊆ coNP/poly, even on split graphs with only two different weights.

We present a polynomial parameter transformation from Set Cover
parameterized by the size of the universe, known not to admit polynomial
kernels unless NP ⊆ coNP/poly. [Dom, Lokshtanov, Saurabh. 2014]

Let A,B ⊆ Σ∗ ×N be two parameterized problems.
A polynomial parameter transformation from A to B is an algorithm s.t.:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ poly(k). [Bodlaender, Thomassé, Yeo. 2011]
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Theorem
Dual Weighted Coloring does not admit a polynomial kernel unless
NP ⊆ coNP/poly, even on split graphs with only two different weights.

We present a polynomial parameter transformation from Set Cover
parameterized by the size of the universe, known not to admit polynomial
kernels unless NP ⊆ coNP/poly. [Dom, Lokshtanov, Saurabh. 2014]

Our reduction is an appropriate modification of a reduction to prove the
NP-hardness of Weighted Coloring on split graphs:
only the weights change.

[Demange, de Werra, Monnot, Paschos. 2002]
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Polynomial parameter transformation from Set Cover
We are given an instance (U,S, k, `) of Set Cover,
where S is a family of sets over a universe U of size k (the parameter).
Question: ∃? S ′ ⊆ S of at most ` sets covering all the elements of U.

clique stable set

sets elements
S U

We build and instance (G ,w , k ′), with k ′ = k(`+ 1)− ` = O(k2).
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where S is a family of sets over a universe U of size k (the parameter).
Question: ∃? S ′ ⊆ S of at most ` sets covering all the elements of U.

clique stable set

sets elements
S U

weight ` weight `+ 1

S S

(U,S, k, `) satisfiable ⇔ σ(G ,w) ≤
∑

v∈V (G) w(v)− k ′ = |S| · `+ `.
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Exploiting the relation with Set Cover

Dual Weighted Coloring seems to be strongly related to
Set Cover...

and also to d-Set Cover:

Proposition
Dual Weighted Coloring restricted to split graphs such that each
vertex in the clique has at most d non-neighbors in the stable set, for
some constant d ≥ 2, admits a kernel with O(kd ) vertices.

Furthermore, for any ε > 0, a kernel with O(k
d−3

2 −ε) vertices does not
exist unless NP ⊆ coNP/poly.

Using the kernel lower bound for d-Set Cover. [Hermelin, Wu. 2012]
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Next section is...

1 Introduction

2 Our results

3 Sketches of some proofs

4 Conclusions
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Some questions for further research

We presented an FPT algorithm for Dual Weighted Coloring
running in time 9k · nO(1).

Improve the running time and/or prove lower bounds under the SETH.

Can the cubic kernel on interval graphs be improved?

Identify other classes of (dense) graphs allowing for polynomial
kernels.

18/19



Some questions for further research

We presented an FPT algorithm for Dual Weighted Coloring
running in time 9k · nO(1).

Improve the running time and/or prove lower bounds under the SETH.

Can the cubic kernel on interval graphs be improved?

Identify other classes of (dense) graphs allowing for polynomial
kernels.

18/19



Some questions for further research

We presented an FPT algorithm for Dual Weighted Coloring
running in time 9k · nO(1).

Improve the running time and/or prove lower bounds under the SETH.

Can the cubic kernel on interval graphs be improved?

Identify other classes of (dense) graphs allowing for polynomial
kernels.

18/19



Some questions for further research

We presented an FPT algorithm for Dual Weighted Coloring
running in time 9k · nO(1).

Improve the running time and/or prove lower bounds under the SETH.

Can the cubic kernel on interval graphs be improved?

Identify other classes of (dense) graphs allowing for polynomial
kernels.

18/19



Gràcies!
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