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WEIGHTED COLORING

We are given a graph G together with a weight function w : V(G) — R™.

A (proper) k-coloring of G is a partition ¢ = (5;);c[1,4 of V(G) into k
stable sets Sy, ..., Sk.
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WEIGHTED COLORING

We are given a graph G together with a weight function w : V(G) — R™.

A (proper) k-coloring of G is a partition ¢ = (5;);c[1,4 of V(G) into k
stable sets Sy, ..., Sk.

The weight of a color S; is w(i) = max,es, w(v).
The weight of a coloring ¢ is w(c) = S5, w(i).
The weighted chromatic number of a pair (G, w) is

o(G,w) = min{w(c) | c is a proper coloring of G}.

If w(v) =1 for every v € V(G), then clearly (G, w) = x(G).
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What is known about WEIGHTED COLORING

The WEIGHTED COLORING problem was introduced by [Guan, Zhu. 1997]
to study practical applications related to resource allocation.

If all the vertex weights are equal to one, then o(G, w) = x(G).
Thus, determining o(G, w) in an NP-hard problem.
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What is known about WEIGHTED COLORING

The WEIGHTED COLORING problem was introduced by [Guan, Zhu. 1997]
to study practical applications related to resource allocation.

If all the vertex weights are equal to one, then o(G, w) = x(G).
Thus, determining o(G, w) in an NP-hard problem.

The problem is NP-hard even on:

o split graphs, interval graphs, bipartite graphs, and
triangle-free planar graphs with bounded degree.

On the other hand, it is polynomial on

@ cographs and some subclasses of bipartite graphs.

e Werra, Demange, Monnot, Paschos.

de W D M Pasch 2002
[Escoffier, Monnot, Paschos. 2006]

[de Werra, Demange, Escoffier, Monnot, Paschos. 2009]
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Complexity of WEIGHTED COLORING on trees (forests)

WEIGHTED COLORING can be solved on forests in time
2
n@llogn) — 20(log"n) (quasi-polynomial). [Guan, Zhu. 1997]
[Linhares, Reed. 2006]
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[Linhares, Reed. 2006]
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More generally, on graphs of bounded treewidth?

@ PTAS on bounded treewidth graphs. |[Escoffier, Monnot, Paschos. 2006]

@ Polynomial on the class of trees where vertices with degree at least
three induce a stable set. [Kavitha, Mestre. 2012]

% There is no algorithm solving WEIGHTED COLORING on n-vertex trees
in time n°(|°g”), under the ETH. [Aradjo, Nisse, Pérennes. 2014]

WEIGHTED COLORING on forests is W([1]-hard parameterized by the size
of a largest connected component. [Araljo, Baste, S. 2017]

7/19



Dual parameterization: saving colors
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Dual parameterization: saving colors

WEIGHTED COLORING is a very hard problem!

Let's try to give some good news:

DuAL WEIGHTED COLORING

Input: A vertex-weighted graph (G, w) and a positive integer k.
Parameter: k.

Question: Is o(G, w) <37 cy g w(v) — k7

(We assume that all vertex-weights are positive integers.)

The dual parameterization has proved to be useful for
VERTEX COLORING, GRUNDY COLORING, and b-COLORING.
[Chor, Fellows, Juedes. 2004]
[Havet, Sampaio. 2013]
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Known results

DuAL WEIGHTED COLORING has been recently studied: [Escoffier. 2016]

WARNING!!| WEIGHTED COLORING is also called
MAaX COLORING in the literature.

Escoffier showed that the problem is FPT, namely:
o Algorithm running in time 20(klogk) . ,O(1),

@ Asked “what size of kernel can be achieved for the problem?”
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Our results for DuAL WEIGHTED COLORING
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Our results for DuAL WEIGHTED COLORING

@ FPT algorithm running in time 9% . n©(1),
Inspired from an algorithm for the chromatic number. [Lawler. 1976]

No algorithm in time 2°(%) . (1) exists under the ETH.

@ Kernel with at most (271 4+ 1)(k — 1) vertices.

No polynomial kernels unless NP C coNP /poly,
even on split graphs with only two different weights.

(Contrast with DuAL VERTEX COLORING, which admits a linear kernel.)

© Polynomial kernels on particular graph classes:

o Linear kernel on graph classes with bounded clique number.

o Cubic kernel on interval graphs.
Based on the “consecutive ones property” of interval graphs.

e Subclasses of split graphs, with lower bounds on the degrees.
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An exponential kernel for DUAL WEIGHTED COLORING

We start with an idea already used, in particular, by [Escoffier. 2016]
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An exponential kernel for DUAL WEIGHTED COLORING

maximum unweighted
antimatching M

- - — — — - .
- - — - — - °
- - — — — - .
- - — — — - °
- - — — — - .
- - — — — - °

We compute (in poly time) a maximum unweighted antimatching M.
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maximum unweighted
antimatching M

- - — — — - .

- - — — — - °

¢ ----- ¢ We may assume
M| <k—1

- — — — — — °

- - — — — - .

- — — — — — .

If [M| > k, we are dealing with a YEs-instance.
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clique K antimatching M
e — — — — - [ ]
- - — — — - °
¢ - - - -- * We may assume
M| <k—1
- — — — — — .
- - — — — - °
- — — — — — .

The complement of the antimatching M induces a clique K.
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An exponential kernel for DUAL WEIGHTED COLORING

equivalence
classes

clique K

maximum unweighted
antimatching M

We may assume
M| <k—1

We partition K into equivalence classes w.r.t. the neighborhood in M.
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maximum unweighted

clique K antimatching M
- - ———- .
- - ———- .
equivalence & ----- *  We may assume
classes M) <k-1
- - ———= .
- - ———- .
- - ———= .
4>

We have to bound the number and the size of the equivalence classes.
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An exponential kernel for DUAL WEIGHTED COLORING

maximum unweighted
antimatching M

o~ o - ----- °

equivalence > We may assume
M| <k-1

clique K

classes Lo
------ °
® - - - - - .
------ °

4>

Every non-edge has a unique “potential non-neighbor” for the classes.
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An exponential kernel for DUAL WEIGHTED COLORING

maximum unweighted
antimatching M

o~ o - ----- °

S 2]671 -1
equivalence ®---—== We may assume
M| <k-—1

clique K

classes Lo
------ °
®--— - - .
------ °

Hence, the number of equivalence classes is at most 2K~ — 1.
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An exponential kernel for DUAL WEIGHTED COLORING

maximum unweighted
antimatching M

o~ o - ----- °

S 2]671 -1
equivalence ®---—== We may assume
M| <k-—1

clique K

classes Lo
------ °
® - - - - - .
e 6 o o o o
------ °

It remains to bound the size of each equivalence class.
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An exponential kernel for DUAL WEIGHTED COLORING

maximum unweighted
antimatching M

o~ o - ----- °

S 2]671 -1
equivalence ®---—== We may assume
M| <k-—1

clique K

classes Lo
------ °
® - - - - - .
e 6 o o o o
------ °
-«
<k-1

heaviest vertices

It is safe to keep only the k — 1 heaviest vertices of each equivalence class.
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An exponential kernel for DUAL WEIGHTED COLORING

maximum unweighted

clique K antimatching M

S~ ¢ - L

S 2]671 -1
equivalence ®---—== We may assume
M| <k-1

classes Lo
- - ———- °
® - - --- .
e 6 o o o o
- - ———- °
-«
<k-1

heaviest vertices

Thus, |V(G)| < |[V(M)| + |K| < 2(k—1)4 (2Kt —1)(k — 1).
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DuAL WEIGHTED COLORING does not admit a polynomial kernel unless
NP C coNP/poly, even on split graphs with only two different weights.

We present a polynomial parameter transformation from SET COVER
parameterized by the size of the universe, known not to admit polynomial
kernels unless NP C coNP/poly. [Dom, Lokshtanov, Saurabh. 2014]
Let A, B C X* x IN be two parameterized problems.

A polynomial parameter transformation from A to B is an algorithm s.t.:

Instance (x, k) of A ial ti Instance (x', k') of B
| | | |

@ (x, k) is a YEs-instance of A & (x/, k") is a YEs-instance of B.
Q K<

poly(k). [Bodlaender, Thomassé, Yeo. 2011]
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Ruling out polynomial kernels

DuaL WEIGHTED COLORING does not admit a polynomial kernel unless
NP C coNP/poly, even on split graphs with only two different weights.

We present a polynomial parameter transformation from SET COVER
parameterized by the size of the universe, known not to admit polynomial
kernels unless NP C coNP/poly. [Dom, Lokshtanov, Saurabh. 2014]

Our reduction is an appropriate modification of a reduction to prove the
NP-hardness of WEIGHTED COLORING on split graphs:

only the weights change.
[Demange, de Werra, Monnot, Paschos. 2002]
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Polynomial parameter transformation from SET COVER

We are given an instance (U, S, k, /) of SET COVER,
where S is a family of sets over a universe U of size k (the parameter).
Question: 3?7 &’ C S of at most / sets covering all the elements of U.
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We are given an instance (U, S, k, /) of SET COVER,
where S is a family of sets over a universe U of size k (the parameter).
Question: 3?7 &’ C S of at most / sets covering all the elements of U.

clique stable set

sets 4‘- elements

weight /¢ weight ¢+ 1

We build and instance (G, w, k'), with k' = k(¢ + 1) — ¢ = O(k?).
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Polynomial parameter transformation from SET COVER

We are given an instance (U, S, k, /) of SET COVER,
where S is a family of sets over a universe U of size k (the parameter).
Question: 3?7 &’ C S of at most / sets covering all the elements of U.

clique stable set

sets 1 elements
S ""'Illllllllllllgg" U

weight /¢ weight ¢+ 1

(U, S, k, () satisfiable & 0(G,w) <X ,cy(q w(v) —K =S| £ +L.
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DuarL WEIGHTED COLORING seems to be strongly related to
SET COVER... and also to d-SET COVER:

Proposition

DuaAl WEIGHTED COLORING restricted to split graphs such that each
vertex in the clique has at most d non-neighbors in the stable set, for
some constant d > 2, admits a kernel with O(k9) vertices.

Furthermore, for any € > 0, a kernel with O(k%*g) vertices does not
exist unless NP C coNP /poly.

Using the kernel lower bound for d-SET COVER. [Hermelin, Wu. 2012]
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Some questions for further research

@ We presented an FPT algorithm for DUAL WEIGHTED COLORING
running in time 9% . n©(1),

Improve the running time and/or prove lower bounds under the SETH.
@ Can the cubic kernel on interval graphs be improved?

o Identify other classes of (dense) graphs allowing for polynomial
kernels.
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