Hitting (topological) minors on bounded treewidth graphs - part I

Julien Baste¹ Ignasi Sau² Dimitrios M. Thilikos^{2,3}

GT 2018, Nyborg, Denmark August 29 - September 1, 2018

- ¹ Sorbonne Université, Laboratoire d'Informatique de Paris 6, France
- ² CNRS, LIRMM, Université de Montpellier, France
- ³ Dept. of Maths, National and Kapodistrian University of Athens, Greece

[arXiv 1704.07284]

Treewidth behaves very well algorithmically

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Monadic Second Order Logic (MSOL):

Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [$\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G)$]

Monadic Second Order Logic (MSOL):

Graph logic that allows quantification over sets of vertices and edges.

 $\textbf{Example: DomSet}(S): \quad [\ \forall v \in V(G) \setminus S, \exists u \in S : \{u,v\} \in E(G) \]$

Theorem (Courcelle, 1990)

Every problem expressible in MSOL can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: VERTEX COVER, DOMINATING SET, HAMILTONIAN CYCLE, CLIQUE, INDEPENDENT SET, *k*-COLORING for fixed *k*, ...

Is it enough to prove that a problem is FPT?

Typically, Courcelle's theorem allows to prove that a problem is FPT...

 $f(\mathsf{tw}) \cdot n^{\mathcal{O}(1)}$

Is it enough to prove that a problem is FPT?

Typically, Courcelle's theorem allows to prove that a problem is FPT... ... but the running time can (and must) be huge!

$$f(\mathsf{tw}) \cdot n^{\mathcal{O}(1)} = 2^{3^{4^{5^{6^{7^{8^{tw}}}}}}} \cdot n^{\mathcal{O}(1)}$$

Is it enough to prove that a problem is FPT?

Typically, Courcelle's theorem allows to prove that a problem is FPT... ... but the running time can (and must) be huge!

$$f(tw) \cdot n^{\mathcal{O}(1)} = 2^{3^{4^{5^{6^{7^{8^{tw}}}}}}} \cdot n^{\mathcal{O}(1)}$$

Major goal find the smallest possible function f(tw).

This is a very active area in parameterized complexity.

Typically, Courcelle's theorem allows to prove that a problem is FPT... ... but the running time can (and must) be huge!

$$f(tw) \cdot n^{\mathcal{O}(1)} = 2^{3^{4^{5^{6^{7^{8^{tw}}}}}}} \cdot n^{\mathcal{O}(1)}$$

Major goal find the smallest possible function f(tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a "black box" in all kinds of parameterized algorithms. Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.

Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.

For many problems, like VERTEX COVER or DOMINATING SET, the "natural" DP algorithms lead to (optimal) single-exponential algorithms:

 $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.

For many problems, like VERTEX COVER or DOMINATING SET, the "natural" DP algorithms lead to (optimal) single-exponential algorithms:

 $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

But for the so-called connectivity problems, like LONGEST PATH or STEINER TREE, the "natural" DP algorithms provide only time

 $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

Single-exponential algorithms on sparse graphs

On topologically structured graphs (planar, surfaces, minor-free), it is possible to solve connectivity problems in time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$:

- Planar graphs:
- Graphs on surfaces:
- Minor-free graphs:

[Dorn, Penninkx, Bodlaender, Fomin. 2005]

[Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

[Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Single-exponential algorithms on sparse graphs

On topologically structured graphs (planar, surfaces, minor-free), it is possible to solve connectivity problems in time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$:

- Planar graphs:
- Graphs on surfaces:
- Minor-free graphs:

[Dorn, Penninkx, Bodlaender, Fomin. 2005]

[Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

[Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties: partial solutions ↔ non-crossing partitions

Single-exponential algorithms on sparse graphs

On topologically structured graphs (planar, surfaces, minor-free), it is possible to solve connectivity problems in time $2^{\mathcal{O}(tw)} \cdot n^{\mathcal{O}(1)}$:

- Planar graphs:
- Graphs on surfaces:
- Minor-free graphs:

[Dorn, Penninkx, Bodlaender, Fomin. 2005]

[Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

[Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties: partial solutions ↔ non-crossing partitions

It was believed that, except on sparse graphs (planar, surfaces), algorithms in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$ were optimal for connectivity problems.

It was believed that, except on sparse graphs (planar, surfaces), algorithms in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$ were optimal for connectivity problems.

This was false!!

Cut&Count technique:[Cygan, Nederlof, Pilipczuk², van Rooij, Wojtaszczyk. 2011]Randomized single-exponential algorithms for connectivity problems.

It was believed that, except on sparse graphs (planar, surfaces), algorithms in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$ were optimal for connectivity problems.

This was false!!

Cut&Count technique:[Cygan, Nederlof, Pilipczuk², van Rooij, Wojtaszczyk. 2011]Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids:

[Fomin, Lokshtanov, Saurabh. 2014]

No!

CYCLE PACKING: find the maximum number of vertex-disjoint cycles.

No!

CYCLE PACKING: find the maximum number of vertex-disjoint cycles.

An algorithm in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$ is optimal under the ETH.

[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

ETH: The 3-SAT problem on *n* variables cannot be solved in time $2^{o(n)}$ [Impagliazzo, Paturi. 1999]

No!

CYCLE PACKING: find the maximum number of vertex-disjoint cycles.

An algorithm in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$ is optimal under the ETH.

[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

ETH: The 3-SAT problem on *n* variables cannot be solved in time $2^{o(n)}$ [Impagliazzo, Paturi. 1999]

There are other examples of such problems...

The $\mathcal{F}\text{-}\mathrm{M}\text{-}\mathrm{DELETION}$ problem

Let \mathcal{F} be a fixed finite collection of graphs.

$\mathcal{F} ext{-}\mathrm{M} ext{-}\mathrm{Deletion}$

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such thatG - S does not contain any of the graphs in \mathcal{F} as a minor?

$\mathcal{F} ext{-}\mathrm{M} ext{-}\mathrm{Deletion}$

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain any of the graphs in \mathcal{F} as a minor?

• $\mathcal{F} = \{K_2\}$: Vertex Cover.

$\mathcal{F}\text{-}\mathrm{M}\text{-}\mathrm{Deletion}$

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such thatG - S does not contain any of the graphs in \mathcal{F} as a minor?

• $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.

\mathcal{F} -M-Deletion

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such thatG - S does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.
- $\mathcal{F} = \{C_3\}$: Feedback Vertex Set.

$\mathcal{F} ext{-}\mathrm{M} ext{-}\mathrm{Deletion}$

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such thatG - S does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.
- $\mathcal{F} = \{C_3\}$: FEEDBACK VERTEX SET. "Hardly" solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.

[Cut&Count. 2011]

$\mathcal{F} ext{-}\mathrm{M} ext{-}\mathrm{Deletion}$

Input:	A graph G and an integer k .
Parameter:	The treewidth tw of G .
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that
	$G-S$ does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.
- $\mathcal{F} = \{C_3\}$: FEEDBACK VERTEX SET. "Hardly" solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.

[Cut&Count. 2011]

• $\mathcal{F} = \{K_5, K_{3,3}\}$: Vertex Planarization.

$\mathcal{F} ext{-}\mathrm{M} ext{-}\mathrm{Deletion}$

Input:	A graph G and an integer k .
Parameter:	The treewidth tw of G .
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that
	$G-S$ does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: VERTEX COVER. Easily solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$.
- $\mathcal{F} = \{C_3\}$: FEEDBACK VERTEX SET. "Hardly" solvable in time $2^{\Theta(tw)} \cdot n^{\mathcal{O}(1)}$. [Cut&Count. 2011]
- $\mathcal{F} = \{K_5, K_{3,3}\}$: VERTEX PLANARIZATION. Solvable in time $2^{\Theta(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$. [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

イロン 不良 とくほう イロン・ヨー

8/21

Let \mathcal{F} be a fixed finite collection of graphs.

$\mathcal{F}\text{-}\mathrm{M}\text{-}\mathrm{Deletion}$

Input:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such thatG - S does not contain any graph in \mathcal{F} as a minor?

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain any graph in \mathcal{F} as a minor?

F-TM-DELETION		
Input:	A graph G and an integer k .	
Parameter:	The treewidth tw of G .	
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that	
	$G-S$ does not contain any graph in \mathcal{F} as a topol. minor?	

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain any graph in \mathcal{F} as a minor?

\mathcal{F} -TM-Deletion		
Input:	A graph G and an integer k .	
Parameter:	The treewidth tw of G .	
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that	
	$G-S$ does not contain any graph in $\mathcal F$ as a topol. minor?	

Both problems are NP-hard if \mathcal{F} contains some edge.

(日)

9/21

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:The treewidth tw of G.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain any graph in \mathcal{F} as a minor?

\mathcal{F} -TM-Deletion		
Input:	A graph G and an integer k .	
Parameter:	The treewidth tw of G .	
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that	
	$G - S$ does not contain any graph in \mathcal{F} as a topol. minor?	

Both problems are NP-hard if \mathcal{F} contains some edge. [Lewis, Yannakakis. 1980] FPT by Courcelle, or by Graph Minors theory.

9/21

Summary of our results

¹Connected collection \mathcal{F} : all the graphs are connected.

Summary of our results

• For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.

¹Connected collection \mathcal{F} : all the graphs are connected.

Summary of our results

- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ + planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

¹Connected collection \mathcal{F} : all the graphs are connected.
- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log}\,\mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ + planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar + \mathcal{F} connected: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

¹Connected collection \mathcal{F} : all the graphs are connected.

²Planar collection \mathcal{F} : contains at least one planar graph $\square \rightarrow \square \square \rightarrow \square \square \rightarrow \square \square \rightarrow \square$

- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log}\,\mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ + planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar + \mathcal{F} connected: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

(For \mathcal{F} -TM-DELETION we need: \mathcal{F} contains a subcubic planar graph.)

¹Connected collection \mathcal{F} : all the graphs are connected.

- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log}\,\mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ + planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar + \mathcal{F} connected: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

(For $\mathcal{F}\text{-}\mathrm{TM}\text{-}\mathrm{Deletion}$ we need: \mathcal{F} contains a subcubic planar graph.)

• \mathcal{F} connected: \mathcal{F} -M/TM-DELETION not in time $2^{o(tw)} \cdot n^{\mathcal{O}(1)}$ unless the ETH fails, even if G planar.

¹Connected collection \mathcal{F} : all the graphs are connected.

- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ + planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar + \mathcal{F} connected: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

(For \mathcal{F} -TM-DELETION we need: \mathcal{F} contains a subcubic planar graph.)

- \mathcal{F} connected: \mathcal{F} -M/TM-DELETION not in time $2^{o(tw)} \cdot n^{\mathcal{O}(1)}$ unless the ETH fails, even if G planar.
- $\mathcal{F} = \{H\}$, H planar + connected:

¹Connected collection \mathcal{F} : all the graphs are connected.

²Planar collection \mathcal{F} : contains at least one planar graph $\square \rightarrow A \square \rightarrow A$

- For every \mathcal{F} : \mathcal{F} -M/TM-DELETION in time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected¹ + planar²: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log} \, \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- *G* planar + \mathcal{F} connected: \mathcal{F} -M-DELETION in time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

(For \mathcal{F} -TM-DELETION we need: \mathcal{F} contains a subcubic planar graph.)

- \mathcal{F} connected: \mathcal{F} -M/TM-DELETION not in time $2^{o(tw)} \cdot n^{\mathcal{O}(1)}$ unless the ETH fails, even if G planar.
- $\mathcal{F} = \{H\}$, *H* planar + connected: complete tight dichotomy.

¹Connected collection \mathcal{F} : all the graphs are connected.

²Planar collection \mathcal{F} : contains at least one planar graph $\square \rightarrow A \square \rightarrow A$

Complexity of hitting small planar minors H

11/21

For topological minors, there is only one change

12/21

All these cases can be succinctly described as follows:

All these cases can be succinctly described as follows:

• All the graphs on the left are minors of

All these cases can be succinctly described as follows:

- All the graphs on the left are minors of
- All the graphs on the right are not minors of

All these cases can be succinctly described as follows:

- All the graphs on the left are minors of
- All the graphs on the right are not minors of P_{5} .

We can prove that any connected planar H with $|V(H)| \ge 6$ is "hard".

We can prove that any connected planar H with $|V(H)| \ge 6$ is "hard".

Theorem

Let H be a connected planar graph.

We can prove that any connected planar H with $|V(H)| \ge 6$ is "hard".

We can prove that any connected planar H with $|V(H)| \ge 6$ is "hard".

(ロ)・(部)・(言)・(言)) 注 の(() 15/21

General algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected + planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar + \mathcal{F} connected: time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

General algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected + planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar + \mathcal{F} connected: time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

2 Ad-hoc single-exponential algorithms

- Some use "typical" dynamic programming.
- Some use the rank-based approach.

[Bodlaender, Cygan, Kratsch, Nederlof. 2013]

General algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected + planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar + \mathcal{F} connected: time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

2 Ad-hoc single-exponential algorithms

- Some use "typical" dynamic programming.
- Some use the rank-based approach.

[Bodlaender, Cygan, Kratsch, Nederlof. 2013]

15/21

Lower bounds under the ETH

- 2^{o(tw)} is "easy".
- 2^{o(tw·log tw)} is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

Some ideas of the general algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected + planar: time $2^{\mathcal{O}(\mathsf{tw} \cdot \mathsf{log tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar + \mathcal{F} connected: time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

Some ideas of the general algorithms

- For every \mathcal{F} : time $2^{2^{\mathcal{O}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.
- \mathcal{F} connected + planar: time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$.
- G planar + \mathcal{F} connected: time $2^{\mathcal{O}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

We build on the machinery of boundaried graphs and representatives:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

[Garnero, Paul, S., Thilikos. 2014]

Algorithm for a general collection ${\cal F}$

• We see *G* as a *t*-boundaried graph.

Algorithm for a general collection ${\cal F}$

- We see *G* as a *t*-boundaried graph.
- folio of G: set of all its \mathcal{F} -minor-free minors, up to size $\mathcal{O}(t)$.

Algorithm for a general collection \mathcal{F}

- We see *G* as a *t*-boundaried graph.
- folio of G: set of all its *F*-minor-free minors, up to size O(t).
- We compute, using DP over a tree decomposition of *G*, the following parameter for every folio *C*:

$$\mathbf{p}(G,\mathcal{C}) = \min\{|S| : S \subseteq V(G) \land \mathsf{folio}(G-S) = \mathcal{C}\}$$

Algorithm for a general collection \mathcal{F}

- We see *G* as a *t*-boundaried graph.
- folio of G: set of all its *F*-minor-free minors, up to size O(t).
- We compute, using DP over a tree decomposition of *G*, the following parameter for every folio *C*:

 $\mathbf{p}(G,\mathcal{C}) = \min\{|S| : S \subseteq V(G) \land \operatorname{folio}(G-S) = \mathcal{C}\}$

• For every *t*-boundaried graph *G*, $|folio(G)| = 2^{\mathcal{O}_{\mathcal{F}}(t \log t)}$.

Algorithm for a general collection ${\cal F}$

- We see *G* as a *t*-boundaried graph.
- folio of G: set of all its *F*-minor-free minors, up to size O(t).
- We compute, using DP over a tree decomposition of *G*, the following parameter for every folio *C*:

 $\mathbf{p}(G,\mathcal{C}) = \min\{|S| : S \subseteq V(G) \land \operatorname{folio}(G-S) = \mathcal{C}\}$

- For every *t*-boundaried graph *G*, $|folio(G)| = 2^{\mathcal{O}_{\mathcal{F}}(t \log t)}$.
- The number of distinct folios is $2^{2^{\mathcal{O}_{\mathcal{F}}(t \log t)}}$.

Algorithm for a general collection ${\cal F}$

- We see *G* as a *t*-boundaried graph.
- folio of G: set of all its *F*-minor-free minors, up to size O(t).
- We compute, using DP over a tree decomposition of *G*, the following parameter for every folio *C*:

 $\mathbf{p}(G,\mathcal{C}) = \min\{|S| : S \subseteq V(G) \land \operatorname{folio}(G-S) = \mathcal{C}\}$

- For every *t*-boundaried graph *G*, $|folio(G)| = 2^{\mathcal{O}_{\mathcal{F}}(t \log t)}$.
- The number of distinct folios is $2^{2^{\mathcal{O}_{\mathcal{F}}(t \log t)}}$.

• This gives an algorithm running in time $2^{2^{\mathcal{O}_{\mathcal{F}}(\mathsf{tw} \cdot \log \mathsf{tw})}} \cdot n^{\mathcal{O}(1)}$.

<ロ><回><一><一><一><一><一><一</td>18/21

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{l} \mathbf{G}_1 \equiv^{(\mathcal{F},t)} \mathbf{G}_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \preceq_{\mathsf{m}} G' \oplus \mathcal{G}_1 \iff \mathcal{F} \preceq_{\mathsf{m}} G' \oplus \mathcal{G}_2. \end{array}$$

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{l} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_1 \iff \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_2. \end{array}$$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{ll} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_1 \iff \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_2 \end{array}$$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• We compute, using DP over a tree decomposition of *G*, the following parameter for every representative *R*:

$$\mathbf{p}(G,R) = \min\{|S| : S \subseteq V(G) \land \operatorname{rep}_{\mathcal{F},t}(G-S) = R\}$$

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{ll} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_1 \iff \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_2 \end{array}$$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• We compute, using DP over a tree decomposition of *G*, the following parameter for every representative *R*:

 $\mathbf{p}(G,R) = \min\{|S| : S \subseteq V(G) \land \operatorname{rep}_{\mathcal{F},t}(G-S) = R\}$

• The number of representatives is $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$.

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{ll} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_1 \iff \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_2 \end{array}$$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• We compute, using DP over a tree decomposition of *G*, the following parameter for every representative *R*:

$$\mathbf{p}(G,R) = \min\{|S| : S \subseteq V(G) \land \operatorname{rep}_{\mathcal{F},t}(G-S) = R\}$$

• The number of representatives is $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$. # labeled graphs of size $\leq t$ and tw $\leq h$ is $2^{\mathcal{O}_h(t \cdot \log t)}$. [Baste, Noy, S. 2017]

For a fixed *F*, we define an equivalence relation ≡^(*F*,*t*) on *t*-boundaried graphs:

$$\begin{array}{ll} G_1 \equiv^{(\mathcal{F},t)} G_2 & \text{if } \forall G' \in \mathcal{B}^t, \\ \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_1 \iff \mathcal{F} \preceq_{\mathsf{m}} G' \oplus G_2 \end{array}$$

• $\mathcal{R}^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

• We compute, using DP over a tree decomposition of G, the following parameter for every representative R:

$$\mathbf{p}(G,R) = \min\{|S| : S \subseteq V(G) \land \operatorname{rep}_{\mathcal{F},t}(G-S) = R\}$$

• The number of representatives is $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t \cdot \log t)}$. # labeled graphs of size $\leq t$ and tw $\leq h$ is $2^{\mathcal{O}_h(t \cdot \log t)}$. [Baste, Noy, S. 2017]

• This gives an algorithm running in time $2^{\mathcal{O}_{\mathcal{F}}(\mathsf{tw} \cdot \mathsf{log tw})} \cdot n^{\mathcal{O}(1)}_{\mathbb{F}}$

Algorithm when the input graph G is planar

• Idea get an improved bound on $|\mathcal{R}^{(\mathcal{F},t)}|$.

Algorithm when the input graph G is planar

• Idea get an improved bound on $|\mathcal{R}^{(\mathcal{F},t)}|$.

• We use a sphere-cut decomposition of the input planar graph G.

[Seymour, Thomas. 1994]

[Dorn, Penninkx, Bodlaender, Fomin. 2010]
- Idea get an improved bound on $|\mathcal{R}^{(\mathcal{F},t)}|$.
- We use a sphere-cut decomposition of the input planar graph *G*.

[Seymour, Thomas. 1994]

[Dorn, Penninkx, Bodlaender, Fomin. 2010]

• Nice topological properties: each separator corresponds to a noose.

- Idea get an improved bound on $|\mathcal{R}^{(\mathcal{F},t)}|$.
- We use a sphere-cut decomposition of the input planar graph *G*.

[Seymour, Thomas. 1994]

[Dorn, Penninkx, Bodlaender, Fomin. 2010]

• Nice topological properties: each separator corresponds to a noose.

• The number of representatives is $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t)}$. Number of planar triangulations on t vertices is $2^{\mathcal{O}(t)}$.

[Tutte. 1962]

- Idea get an improved bound on $|\mathcal{R}^{(\mathcal{F},t)}|$.
- We use a sphere-cut decomposition of the input planar graph *G*.

[Seymour, Thomas. 1994]

[Dorn, Penninkx, Bodlaender, Fomin. 2010]

• Nice topological properties: each separator corresponds to a noose.

• The number of representatives is $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t)}$. Number of planar triangulations on t vertices is $2^{\mathcal{O}(t)}$.

[Tutte. 1962]

• This gives an algorithm running in time $2^{\mathcal{O}_{\mathcal{F}}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.

- Idea get an improved bound on $|\mathcal{R}^{(\mathcal{F},t)}|$.
- We use a sphere-cut decomposition of the input planar graph *G*.

[Seymour, Thomas. 1994]

[Dorn, Penninkx, Bodlaender, Fomin. 2010]

• Nice topological properties: each separator corresponds to a noose.

• The number of representatives is $|\mathcal{R}^{(\mathcal{F},t)}| = 2^{\mathcal{O}_{\mathcal{F}}(t)}$. Number of planar triangulations on t vertices is $2^{\mathcal{O}(t)}$.

[Tutte. 1962]

- This gives an algorithm running in time $2^{\mathcal{O}_{\mathcal{F}}(\mathsf{tw})} \cdot n^{\mathcal{O}(1)}$.
- We can extend this algorithm to input graphs *G* embedded in arbitrary surfaces by using surface-cut decompositions. [Rué, S., Thilkos. 2014]

• Ultimate goal: classify the (asymptotically) tight complexity of *F*-DELETION for every family *F*

• Ultimate goal: classify the (asymptotically) tight complexity of *F*-DELETION for every family *F*... we are still far from it.

- Ultimate goal: classify the (asymptotically) tight complexity of *F*-DELETION for every family *F*... we are still far from it.
- Dichotomy for $\{H\}$ -TM-DELETION when H planar + connected.

- Ultimate goal: classify the (asymptotically) tight complexity of *F*-DELETION for every family *F*... we are still far from it.
- Dichotomy for $\{H\}$ -TM-DELETION when H planar + connected.
- Only "missing" connected graph on at most 5 vertices: K₅.
 We think that {K₅}-DELETION is solvable in time 2^{Θ(tw·log tw)} · n^{O(1)}.

- Ultimate goal: classify the (asymptotically) tight complexity of *F*-DELETION for every family *F*... we are still far from it.
- Dichotomy for $\{H\}$ -TM-DELETION when H planar + connected.
- Only "missing" connected graph on at most 5 vertices: K₅.
 We think that {K₅}-DELETION is solvable in time 2^{Θ(tw·log tw)} · n^{O(1)}.
- We do not even know if there exists some \mathcal{F} such that \mathcal{F} -DELETION cannot be solved in time $2^{o(tw^2)} \cdot n^{\mathcal{O}(1)}$ under the ETH.

- Ultimate goal: classify the (asymptotically) tight complexity of *F*-DELETION for every family *F*... we are still far from it.
- Dichotomy for $\{H\}$ -TM-DELETION when H planar + connected.
- Only "missing" connected graph on at most 5 vertices: K₅.
 We think that {K₅}-DELETION is solvable in time 2^{Θ(tw·log tw)} · n^{O(1)}.
- We do not even know if there exists some \mathcal{F} such that \mathcal{F} -DELETION cannot be solved in time $2^{o(tw^2)} \cdot n^{\mathcal{O}(1)}$ under the ETH.

Deletion to genus at most $g: 2^{\mathcal{O}_g(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$. [Kociumaka, Pilipczuk. 2017]

- Ultimate goal: classify the (asymptotically) tight complexity of *F*-DELETION for every family *F*... we are still far from it.
- Dichotomy for $\{H\}$ -TM-DELETION when H planar + connected.
- Only "missing" connected graph on at most 5 vertices: K₅.
 We think that {K₅}-DELETION is solvable in time 2^{Θ(tw·log tw)} · n^{O(1)}.
- We do not even know if there exists some \mathcal{F} such that \mathcal{F} -DELETION cannot be solved in time $2^{o(tw^2)} \cdot n^{\mathcal{O}(1)}$ under the ETH.

Deletion to genus at most $g: 2^{\mathcal{O}_g(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$. [Kociumaka, Pilipczuk. 2017]

• Conjecture For every connected family \mathcal{F} , the \mathcal{F} -DELETION problem is solvable in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$.

- Ultimate goal: classify the (asymptotically) tight complexity of *F*-DELETION for every family *F*... we are still far from it.
- Dichotomy for $\{H\}$ -TM-DELETION when H planar + connected.
- Only "missing" connected graph on at most 5 vertices: K₅.
 We think that {K₅}-DELETION is solvable in time 2^{Θ(tw·log tw)} · n^{O(1)}.
- We do not even know if there exists some \mathcal{F} such that \mathcal{F} -DELETION cannot be solved in time $2^{o(tw^2)} \cdot n^{\mathcal{O}(1)}$ under the ETH.

Deletion to genus at most $g: 2^{\mathcal{O}_g(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$. [Kociumaka, Pilipczuk. 2017]

- Conjecture For every connected family \mathcal{F} , the \mathcal{F} -DELETION problem is solvable in time $2^{\mathcal{O}(\text{tw} \cdot \log \text{tw})} \cdot n^{\mathcal{O}(1)}$.
- Consider families \mathcal{F} containing disconnected graphs.

FREEDOM FOR ALL CATALAN POLITICAL PRISONERS IN SPAIN