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Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S): [Vve V(G)\S,Jue S:{u,v}e€ E(G) ]

Theorem (Courcelle, 1990)

Every problem expressible in MSOL can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: VERTEX COVER, DOMINATING SET, HAMILTONIAN CYCLE,
CLIQUE, INDEPENDENT SET, k-COLORING for fixed k, ...
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Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

f(tw) - n©1)
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Is it enough to prove that a problem is FPT?

Typically, Courcelle's theorem allows to prove that a problem is FPT...
... but the running time can (and must) be huge!

Major goal | find the smallest possible function f(tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box™ in all kinds of parameterized algorithms.
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Two behaviors for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.
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Two behaviors for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

For many problems, like VERTEX COVER or DOMINATING SET, the
“natural” DP algorithms lead to (optimal) single-exponential algorithms:

20(tw) | 0(1).

But for the so-called connectivity problems, like LONGEST PATH or
STEINER TREE, the “natural” DP algorithms provide only time

2(9(tw~|ogtw) . nO(l) )
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Single-exponential algorithms on sparse graphs

On topologically structured graphs (planar, surfaces, minor-free), it is

possible to solve connectivity problems in time 29(tW) . ,O(1).
o Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]
@ Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]
@ Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]
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On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 29(tW) . ,O(1).

o Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

@ Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006
[Rué, S., Thilikos. 2010
(] Minor‘free gl’aphS [Dorn, Fomin, Thilikos. 2008

[Rué, S., Thilikos. 2012

special type of decomposition with nice topological properties:

partial solutions <= non-crossing partitions

QOQQ
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The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 20(twlogtw) . ,O(1) \yere optimal for connectivity problems.
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The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 20(twlogtw) . ,O(1) \yere optimal for connectivity problems.

’This was falsell ‘

CUt&COU nt teChniqueZ [Cygan, Nederlof, Pi\ipczuk). van Rooij, Wojtaszczyk. 2011]
Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms with algebraic tricks: (Bodizender, Cygan, Kratsch, Nederlor. 2013]

Repl’esentative sets in matrOIdS [Fomin, Lokshtanov, Saurabh. 2014]
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End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

CYCLE PACKING: find the maximum number of vertex-disjoint cycles.

An algorithm in time 20(twlogtw) . ,O(1) js optimal under the ETH.

[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

ETH: The 3-SAT problem on n variables cannot be solved in time 2°(")

[Impagliazzo, Paturi. 1999]

There are other examples of such problems...
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The F-M-DELETION problem

Let F be a fixed finite collection of graphs.
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Let F be a fixed finite collection of graphs.

F-M-DELETION
Input:

A graph G and an integer k.
Parameter: The treewidth tw of G.

Question: Does G contain a set S C V/(G) with |S| < k such that

G — S does not contain any of the graphs in F as a minor?

e F ={Ks}: VERTEX COVER.
Easily solvable in time 20(t) . ,O1),

e F = {G}: FEEDBACK VERTEX SET.
“Hardly” solvable in time 29(W) . ,O(1),

[Cut&Count. 2011]

o F ={Ks,K33}: VERTEX PLANARIZATION.
SOIVabIe in t|me ze(tW.IOgtW) N no(l) [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]
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Covering topological minors

Let F be a fixed finite collection of graphs.

F-M-DELETION

Input: A graph G and an integer k.
Parameter: The treewidth tw of G.
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G — S does not contain any graph in F as a minor?
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Covering topological minors

Let F be a fixed finite collection of graphs.

F-M-DELETION

Input: A graph G and an integer k.

Parameter: The treewidth tw of G.

Question: Does G contain a set S C V(G) with |S| < k such that
G — S does not contain any graph in F as a minor?

F-TM-DELETION

Input: A graph G and an integer k.
Parameter: The treewidth tw of G.

Question:  Does G contain a set S C V/(G) with |S| < k such that
G — S does not contain any graph in F as a topol. minor?

Both problems are NP-hard if F contains some edge.

[Lewis, Yannakakis. 1980]

FPT by Courcelle, or by Graph Minors theory.
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Summary of our results

!Connected collection F: all the graphs are connected.

2Planar collection F: contains at least one planar graph.
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Summary of our results

o For every F: F-M/TM-DELETION in time 227®"*™) . ,0(1),
e F connected! + planar?: F-M-DELETION in time 20(twlogtw) . ,O(1)

e G planar + F connected: F-M-DELETION in time 20(t) . nO@),

(For F~-TM-DELETION we need: F contains a subcubic planar graph.)

o F connected: F-M/TM-DELETION not in time 2°(t) . nO(1)
unless the ETH fails, even if G planar.

e F ={H}, H planar 4+ connected: complete tight dichotomy.

!Connected collection F: all the graphs are connected.

2Planar collection F: contains at least one planar graph.
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Complexity of hitting small planar minors H

‘2®(tw) ‘ ‘29(tw<logtw) ‘ Py

Py, e—e <
P; o—eo—o

diamond Cs K14

P, o—o—o—o

A @@
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S| 2P

PUPs house

P3 U2K;
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Loy | e on g
chair banne I><I A4 %
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For topological minors, there is only one change

‘ 2®(tw) ‘ ‘ 2®(tW<logtw) ‘ Pse—eo—o oo
P, o—e
P; o—eo—o
diamond Cs
P, o—o—o—o <
{/ﬂ\x K3 U2K, P3U2K,
}.. I: P,UPs house
claw
* I I px I kite : dart S
Ko
chair banner I>.<I .z‘ I>._,_<
bull butterfly cricket co-banner

12/21



A compact statement for small planar minors

All these cases can be succinctly described as follows:
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A compact statement for small planar minors

o | N (Y =

diamond

el a2

R3U2K;  Ks-e Wa

< P

PyuPs house

S [ ] S e

butterfly cricket co-banner

All these cases can be succinctly described as follows:

@ All the graphs on the left are minors of I:I_‘
@ All the graphs on the right are not minors of I:I_‘ except Ps.
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A dichotomy for hitting connected planar minors

We can prove that any connected planar H with |V/(H)| > 6 is “hard”,

Let H be a connected planar graph.
The {H}-M-DELETION problem is solvable in time

o 20(w) . nO(1) if H=m 1 and H+ Ps.

o 20(twlogtw) - hO()  Hrherwise.

In both cases, the running time is asymptotically optimal under the ETH.

v
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We have three types of results

(4] ’ General algorithms ‘

tw-log tw) . no(l)
2(9(tw-|ogtw) . nO(l)_

o For every F: time 227
e F connected + planar: time
o G planar 4+ F connected: time 20(tw) . nO),

© | Ad-hoc single-exponential algorithms

e Some use “typical” dynamic programming.
o Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

o ’Lower bounds under the ETH

o 2°(™) s “easy”.
o 20(twlogt™w) js myuch more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]
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Some ideas of the general algorithms
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Some ideas of the general algorithms

. O(tw-log tw
e For every F: time 22 (elezt)pO(1),

o F connected + planar: time 20(twlogtw) . ;O(1),

o G planar + F connected: time 20(t) . nO),

We build on the machinery of boundaried graphs and representatives:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]
[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

[Garnero, Paul, S., Thilikos. 2014]
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decomposition of G, the following
parameter for every folio C:

p(G,C) = min{|S| : S C V(G) A folio(G—S) = C}

o For every t-boundaried graph G, |folio(G)| = 207 (tlogt),

- . . (@) lo,
@ The number of distinct folios is 22 i gt).

. . . . . . (@] w-log tw
@ This gives an algorithm running in time 22 Flwloet) h0(1),
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Algorithm for a connected and planar collection F

o For a fixed F, we define an equivalence
relation =) on t-boundaried graphs:

G =71 G, if VG e B,
F =<m G/@Gl <— F =<n G/@Gz.

o R(Ft): set of minimum-size

representatives of =(/+1),

@ We compute, using DP over a tree decomposition of G,
the following parameter for every representative R:

p(G,R) = min{|S] : SC V(G) A repr,(G—S5)=R}
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Algorithm when the input graph G is planar
° get an improved bound on [R(/-1)].

@ We use a sphere-cut decomposition of the input planar graph G.

[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]
@ Nice topological properties: each separator corresponds to a noose.
@ The number of representatives is |[R(/>1)| = 207(1),
Number of planar triangulations on t vertices is 20(1) [Tutte. 1962]
@ This gives an algorithm running in time 207 (W) . nO@),

@ We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. [Rué, S., Thilikos. 2014]
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What's next about F-DELETION?

e Ultimate goal: classify the (asymptotically) tight complexity of
F-DELETION for every family F... we are still far from it.

Dichotomy for {H}-TM-DELETION when H planar 4+ connected.

@ Only "missing” connected graph on at most 5 vertices: Ks.
We think that {Ks}-DELETION is solvable in time 20(twlogtw) . ,O(1),

@ We do not even know if there exists some F such that /-DELETION
cannot be solved in time 2°(%) . )O(1) ynder the ETH.

Deletion to genus at most g: 29s(twlogtw) . qO) i biipeu 2007

For every connected family F, the F~-DELETION

problem is solvable in time 20(twlogtw) . ,O(1),

Consider families F containing disconnected graphs.
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Gracies!

LLIBERTAT

PRESOS POLITICS
\FREEDOM FOR ALL CATALAN POLITICAL PRISONERS IN SPAIN\
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