Hitting (topological) minors on bounded treewidth graphs - part I

Julien Baste1 \quad Ignasi Sau2 \quad Dimitrios M. Thilikos2,3

\textbf{GT 2018, Nyborg, Denmark}
August 29 - September 1, 2018

1 Sorbonne Université, Laboratoire d’Informatique de Paris 6, France
2 CNRS, LIRMM, Université de Montpellier, France
3 Dept. of Maths, National and Kapodistrian University of Athens, Greece

[arXiv 1704.07284]
Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):

Graph logic that allows quantification over sets of vertices and edges.

Example:

\[\text{DomSet}(S) : \forall v \in V(G) \cup S, \exists u \in S : \{u, v\} \in E(G) \]

Theorem (Courcelle, 1990)

Every problem expressible in MSOL can be solved in time \(f(tw) \cdot n \) on graphs on \(n \) vertices and treewidth at most \(tw \).

In parameterized complexity: FPT parameterized by treewidth.

Examples:

Vertex Cover, Dominating Set, Hamiltonian Cycle, Clique, Independent Set, \(k \)-Coloring for fixed \(k \), ...
Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL): Graph logic that allows quantification over sets of vertices and edges.

Example: \(\text{DomSet}(S) : \left[\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G) \right] \)
Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: $\text{DomSet}(S) : \left[\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G) \right]$

Theorem (Courcelle, 1990)

Every problem expressible in MSOL can be solved in time $f(tw) \cdot n$ on graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle, Clique, Independent Set, k-Coloring for fixed k, ...
Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

\[f(tw) \cdot n^{O(1)} \]
Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT... ... but the running time can (and must) be huge!

\[f(tw) \cdot n^{O(1)} = 2^{345678^{tw}} \cdot n^{O(1)} \]
Typically, Courcelle’s theorem allows to prove that a problem is FPT...
... but the running time can (and must) be huge!

\[f(tw) \cdot n^{O(1)} = 2^{345678^{tw}} \cdot n^{O(1)} \]

Major goal find the smallest possible function \(f(tw) \).

This is a very active area in parameterized complexity.
Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT... ... but the running time can (and must) be huge!

\[f(tw) \cdot n^{O(1)} = 2^{345678^{tw}} \cdot n^{O(1)} \]

Major goal find the smallest possible function \(f(tw) \).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a “black box” in all kinds of parameterized algorithms.
Two behaviors for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.
Two behaviors for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the “natural” DP algorithms lead to (optimal) single-exponential algorithms:

\[2^{O(tw)} \cdot n^{O(1)}. \]
Two behaviors for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the “natural” DP algorithms lead to (optimal) single-exponential algorithms:

$$2^{O(tw)} \cdot n^{O(1)}.$$

But for the so-called connectivity problems, like Longest Path or Steiner Tree, the “natural” DP algorithms provide only time

$$2^{O(tw \cdot \log tw)} \cdot n^{O(1)}.$$
Single-exponential algorithms on sparse graphs

On topologically structured graphs (planar, surfaces, minor-free), it is possible to solve connectivity problems in time $2^{O(tw)} \cdot n^{O(1)}$:

- **Planar graphs:**

 [Dorn, Penninkx, Bodlaender, Fomin. 2005]

- **Graphs on surfaces:**

 [Dorn, Fomin, Thilikos. 2006]

 [Rué, S., Thilikos. 2010]

 [Dorn, Fomin, Thilikos. 2008]

 [Rué, S., Thilikos. 2012]

- **Minor-free graphs:**

 [Dorn, Fomin, Thilikos. 2008]

 [Rué, S., Thilikos. 2012]
Single-exponential algorithms on sparse graphs

On topologically structured graphs (planar, surfaces, minor-free), it is possible to solve connectivity problems in time $2^{O(tw)} \cdot n^{O(1)}$:

- **Planar graphs:**
 [Dorn, Penninkx, Bodlaender, Fomin. 2005]

- **Graphs on surfaces:**
 [Dorn, Fomin, Thilikos. 2006]
 [Rué, S., Thilikos. 2010]
 [Dorn, Fomin, Thilikos. 2008]
 [Rué, S., Thilikos. 2012]

- **Minor-free graphs:**

Main idea special type of decomposition with nice topological properties:

```
partial solutions ⇐⇒ non-crossing partitions
```

\[
CN(k) = \frac{1 + 1}{2^k} \sim 4k^{3/2} / \sqrt{\pi k} \leq 4k^{5/2}
\]
Single-exponential algorithms on sparse graphs

On topologically structured graphs (planar, surfaces, minor-free), it is possible to solve connectivity problems in time $2^{O(tw)} \cdot n^{O(1)}$:

- **Planar graphs:**
 - [Dorn, Penninkx, Bodlaender, Fomin. 2005]

- **Graphs on surfaces:**
 - [Dorn, Fomin, Thilikos. 2006]
 - [Rué, S., Thilikos. 2010]
 - [Dorn, Fomin, Thilikos. 2008]
 - [Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:

partial solutions \iff non-crossing partitions

$$CN(k) = \frac{1}{k+1} \binom{2k}{k} \sim \frac{4^k}{\sqrt{\pi} k^{3/2}} \leq 4^k.$$
The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms in time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$ were optimal for connectivity problems.
The revolution of single-exponential algorithms

It was believed that, except on \textbf{sparse graphs (planar, surfaces)}, algorithms in time $2^O(tw \cdot \log tw) \cdot n^{O(1)}$ were \textbf{optimal} for connectivity problems.

\begin{center}
This was false!!
\end{center}

\textbf{Cut&Count technique:} \[\text{[Cygan, Nederlof, Pilipczuk}^2, \text{van Rooij, Wojtaszczyk. 2011]}\]

Randomized single-exponential algorithms for connectivity problems.
The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms in time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$ were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk, van Rooij, Wojtaszczyk. 2011]
Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]
Do all connectivity problems admit single-exponential algorithms (on general graphs) parameterized by treewidth?
Do all connectivity problems admit single-exponential algorithms (on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.
Do all connectivity problems admit single-exponential algorithms (on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$ is optimal under the ETH.

[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

ETH: The 3-SAT problem on n variables cannot be solved in time $2^{o(n)}$

[Impagliazzo, Paturi. 1999]
End of the story?

Do all connectivity problems admit single-exponential algorithms (on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$ is optimal under the ETH.

[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

ETH: The 3-SAT problem on n variables cannot be solved in time $2^{o(n)}$

[Impagliazzo, Paturi. 1999]

There are other examples of such problems...
The \mathcal{F}-\textsc{M-Deletion} problem

Let \mathcal{F} be a fixed finite collection of graphs.
The \mathcal{F}-M-Deletion problem

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F}-M-Deletion

Input: A graph G and an integer k.

Parameter: The treewidth tw of G.

Question: Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that $G - S$ does not contain any of the graphs in \mathcal{F} as a minor?
The \mathcal{F}-M-Deletion problem

Let \mathcal{F} be a fixed finite collection of graphs.

<table>
<thead>
<tr>
<th>\mathcal{F}-M-Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Parameter:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
</tbody>
</table>

- $\mathcal{F} = \{K_2\}$: Vertex Cover.
The \mathcal{F}-M-Deletion problem

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F}-M-Deletion

Input: A graph G and an integer k.
Parameter: The treewidth tw of G.
Question: Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that $G - S$ does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: Vertex Cover.
 Easily solvable in time $2^{\Theta(tw)} \cdot n^{O(1)}$.

$\mathcal{F} = \{C_3\}$: Feedback Vertex Set.
"Hardly" solvable in time $2^{\Theta(tw)} \cdot n^{O(1)}$.

$\mathcal{F} = \{K_5, K_3, 3\}$: Vertex Planarization.
Solvable in time $2^{\Theta(tw) \cdot \log tw} \cdot n^{O(1)}$.

[Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]
The \mathcal{F}-M-Deletion problem

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F}-M-Deletion

Input: A graph G and an integer k.

Parameter: The treewidth tw of G.

Question: Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that $G - S$ does not contain any of the graphs in \mathcal{F} as a minor?

- $\mathcal{F} = \{K_2\}$: **Vertex Cover**.
 Easily solvable in time $2^{\Theta(tw)} \cdot n^{O(1)}$.

- $\mathcal{F} = \{C_3\}$: **Feedback Vertex Set**.
The \mathcal{F}-M-Deletion problem

Let \mathcal{F} be a fixed finite collection of graphs.

\begin{itemize}
 \item $\mathcal{F} = \{ \mathcal{K}_2 \}$: **Vertex Cover**.
 Easily solvable in time $2^{\Theta(tw)} \cdot n^{O(1)}$.

 \item $\mathcal{F} = \{ \mathcal{C}_3 \}$: **Feedback Vertex Set**.
 “Hardly” solvable in time $2^{\Theta(tw)} \cdot n^{O(1)}$.
\end{itemize}

[Cut&Count. 2011]
The \textsc{F-M-Deletion} problem

Let \mathcal{F} be a fixed finite collection of graphs.

\begin{framed}
\textsc{F-M-Deletion}
\textbf{Input}: A graph G and an integer k.
\textbf{Parameter}: The treewidth tw of G.
\textbf{Question}: Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that $G - S$ does not contain any of the graphs in \mathcal{F} as a minor?
\end{framed}

- $\mathcal{F} = \{K_2\}$: \textsc{Vertex Cover}.
 Easily solvable in time $2^{\Theta(tw)} \cdot n^{O(1)}$.

- $\mathcal{F} = \{C_3\}$: \textsc{Feedback Vertex Set}.
 “Hardly” solvable in time $2^{\Theta(tw)} \cdot n^{O(1)}$. [Cut&Count. 2011]

- $\mathcal{F} = \{K_5, K_{3,3}\}$: \textsc{Vertex Planarization}.

- $\mathcal{F} = \{K_3\}$: \textsc{Feedback Vertex Set}.
The \(\mathcal{F}\)-M-DELETION problem

Let \(\mathcal{F} \) be a fixed finite collection of graphs.

\[
\begin{align*}
\text{Input:} & \quad \text{A graph } G \text{ and an integer } k. \\
\text{Parameter:} & \quad \text{The treewidth } tw \text{ of } G. \\
\text{Question:} & \quad \text{Does } G \text{ contain a set } S \subseteq V(G) \text{ with } |S| \leq k \text{ such that } G - S \text{ does not contain any of the graphs in } \mathcal{F} \text{ as a minor?}
\end{align*}
\]

- \(\mathcal{F} = \{K_2\} \): **Vertex Cover**.
 Easily solvable in time \(2^{\Theta(tw)} \cdot n^{O(1)} \).

- \(\mathcal{F} = \{C_3\} \): **Feedback Vertex Set**.
 “Hardly” solvable in time \(2^{\Theta(tw)} \cdot n^{O(1)} \).
 \([\text{Cut&Count. 2011}]\)

- \(\mathcal{F} = \{K_5, K_{3,3}\} \): **Vertex Planarization**.
 Solvable in time \(2^{\Theta(tw \cdot \log tw)} \cdot n^{O(1)} \).
 \([\text{Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015}]\)
Covering topological minors

Let \(\mathcal{F} \) be a fixed finite collection of graphs.

\[
\mathcal{F}\text{-M-Deletion}
\]

Input: A graph \(G \) and an integer \(k \).

Parameter: The treewidth \(tw \) of \(G \).

Question: Does \(G \) contain a set \(S \subseteq V(G) \) with \(|S| \leq k\) such that \(G - S \) does not contain any graph in \(\mathcal{F} \) as a minor?

[Both problems are NP-hard if \(\mathcal{F} \) contains some edge. [Lewis, Yannakakis. 1980]

FPT by Courcelle, or by Graph Minors theory.]
Covering topological minors

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F}-M-Deletion

Input: A graph G and an integer k.

Parameter: The treewidth tw of G.

Question: Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that $G - S$ does not contain any graph in \mathcal{F} as a minor?

\mathcal{F}-TM-Deletion

Input: A graph G and an integer k.

Parameter: The treewidth tw of G.

Question: Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that $G - S$ does not contain any graph in \mathcal{F} as a topol. minor?

Both problems are NP-hard if \mathcal{F} contains some edge. [Lewis, Yannakakis. 1980]

FPT by Courcelle, or by Graph Minors theory.
Covering topological minors

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F}-M-Deletion

Input: A graph G and an integer k.
Parameter: The treewidth tw of G.
Question: Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that $G - S$ does not contain any graph in \mathcal{F} as a minor?

\mathcal{F}-TM-Deletion

Input: A graph G and an integer k.
Parameter: The treewidth tw of G.
Question: Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that $G - S$ does not contain any graph in \mathcal{F} as a topol. minor?

Both problems are NP-hard if \mathcal{F} contains some edge. [Lewis, Yannakakis. 1980]
Covering topological minors

Let \mathcal{F} be a fixed finite collection of graphs.

\mathcal{F}-M-Deletion

- **Input:** A graph G and an integer k.
- **Parameter:** The treewidth tw of G.
- **Question:** Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that $G - S$ does not contain any graph in \mathcal{F} as a minor?

\mathcal{F}-TM-Deletion

- **Input:** A graph G and an integer k.
- **Parameter:** The treewidth tw of G.
- **Question:** Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that $G - S$ does not contain any graph in \mathcal{F} as a topol. minor?

Both problems are NP-hard if \mathcal{F} contains some edge.

FPT by Courcelle, or by Graph Minors theory.

[Lewis, Yannakakis. 1980]
Summary of our results

For every F:

F-M/TM-Deletion in time $O(tw \cdot \log tw) \cdot n^{O(1)}$.

F connected, F-M-Deletion in time $O(tw \cdot \log tw) \cdot n^{O(1)}$.

G planar + F connected: F-M-Deletion in time $O(tw) \cdot n^{O(1)}$.

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F connected: F-M/TM-Deletion not in time $o(tw \cdot n^{O(1)})$ unless the ETH fails, even if G planar.

$F = \{H\}$, H planar + connected: complete tight dichotomy.

1. **Connected** collection \mathcal{F}: all the graphs are **connected**.
2. **Planar** collection \mathcal{F}: contains at least one **planar** graph.
Summary of our results

- For every \(\mathcal{F} \): \(\mathcal{F} \)-M/TM-Deletion in time \(2^{2^{O(tw \log tw)}} \cdot n^{O(1)} \).

1. **Connected** collection \(\mathcal{F} \): all the graphs are connected.
2. **Planar** collection \(\mathcal{F} \): contains at least one planar graph.
Summary of our results

- For every \mathcal{F}: \mathcal{F}-M/TM-Deletion in time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.

- \mathcal{F} connected1 + planar2: \mathcal{F}-M-Deletion in time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.

1Connected collection \mathcal{F}: all the graphs are connected.

2Planar collection \mathcal{F}: contains at least one planar graph.
Summary of our results

- For every \mathcal{F}: \mathcal{F}-M/TM-Deletion in time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.

- \mathcal{F} connected1 + planar2: \mathcal{F}-M-Deletion in time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.

- G planar + \mathcal{F} connected: \mathcal{F}-M-Deletion in time $2^{O(tw)} \cdot n^{O(1)}$.

1Connected collection \mathcal{F}: all the graphs are connected.

2Planar collection \mathcal{F}: contains at least one planar graph.
Summary of our results

- For every \mathcal{F}: \mathcal{F}-M/TM-Deletion in time $2^{2^{O\left(tw \cdot \log tw\right)}} \cdot n^{O(1)}$.

- \mathcal{F} connected1 + planar2: \mathcal{F}-M-Deletion in time $2^{O\left(tw \cdot \log tw\right)} \cdot n^{O(1)}$.

- G planar + \mathcal{F} connected: \mathcal{F}-M-Deletion in time $2^{O\left(tw\right)} \cdot n^{O(1)}$.

 (For \mathcal{F}-TM-Deletion we need: \mathcal{F} contains a subcubic planar graph.)

1Connected collection \mathcal{F}: all the graphs are connected.

2Planar collection \mathcal{F}: contains at least one planar graph.
Summary of our results

- For every \mathcal{F}: \texttt{F-M/TM-Deletion} in time $2^{2^{O(tw \cdot \log tw)}} \cdot n^{O(1)}$.

- \mathcal{F} connected1 + planar2: \texttt{F-M-Deletion} in time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.

- G planar + \mathcal{F} connected: \texttt{F-M-Deletion} in time $2^{O(tw)} \cdot n^{O(1)}$.

(For \texttt{F-TM-Deletion} we need: \mathcal{F} contains a subcubic planar graph.)

- \mathcal{F} connected: \texttt{F-M/TM-Deletion} not in time $2^{o(tw)} \cdot n^{O(1)}$ unless the ETH fails, even if G planar.

1Connected collection \mathcal{F}: all the graphs are connected.

2Planar collection \mathcal{F}: contains at least one planar graph.
Summary of our results

- For every \(\mathcal{F} \): \(\mathcal{F}\text{-M/TM-Deletion} \) in time \(2^{O(tw \cdot \log tw)} \cdot n^{O(1)} \).

- \(\mathcal{F} \) connected\(^1\) + planar\(^2\): \(\mathcal{F}\text{-M-Deletion} \) in time \(2^{O(tw \cdot \log tw)} \cdot n^{O(1)} \).

- \(G \) planar + \(\mathcal{F} \) connected: \(\mathcal{F}\text{-M-Deletion} \) in time \(2^{O(tw)} \cdot n^{O(1)} \).

 (For \(\mathcal{F}\text{-TM-Deletion} \) we need: \(\mathcal{F} \) contains a subcubic planar graph.)

- \(\mathcal{F} \) connected: \(\mathcal{F}\text{-M/TM-Deletion not} \) in time \(2^{o(tw)} \cdot n^{O(1)} \)
 unless the ETH fails, even if \(G \) planar.

- \(\mathcal{F} = \{H\} \), \(H \) planar + connected:

\(^1\) Connected collection \(\mathcal{F} \): all the graphs are connected.
\(^2\) Planar collection \(\mathcal{F} \): contains at least one planar graph.
Summary of our results

- For every \mathcal{F}: \mathcal{F}-M/TM-Deletion in time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.

- \mathcal{F} connected1 + planar2: \mathcal{F}-M-Deletion in time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.

- G planar + \mathcal{F} connected: \mathcal{F}-M-Deletion in time $2^{O(tw)} \cdot n^{O(1)}$.

 (For \mathcal{F}-TM-Deletion we need: \mathcal{F} contains a subcubic planar graph.)

- \mathcal{F} connected: \mathcal{F}-M/TM-Deletion not in time $2^{\omega(tw)} \cdot n^{O(1)}$ unless the ETH fails, even if G planar.

- $\mathcal{F} = \{H\}$, H planar + connected: complete tight dichotomy.

1 Connected collection \mathcal{F}: all the graphs are connected.
2 Planar collection \mathcal{F}: contains at least one planar graph.
Complexity of hitting small planar minors H

<table>
<thead>
<tr>
<th>$2\Theta(tw)$</th>
<th>$2\Theta(tw \cdot \log tw)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_2</td>
<td>P_5</td>
</tr>
<tr>
<td>P_3</td>
<td>diamond</td>
</tr>
<tr>
<td>P_4</td>
<td>K_4</td>
</tr>
<tr>
<td>C_3</td>
<td>C_5</td>
</tr>
<tr>
<td>C_4</td>
<td>$K_{1,4}$</td>
</tr>
<tr>
<td>claw</td>
<td>K_{5-e}</td>
</tr>
<tr>
<td>paw</td>
<td>W_4</td>
</tr>
<tr>
<td>$K_3 \cup 2K_1$</td>
<td>$P_3 \cup 2K_1$</td>
</tr>
<tr>
<td>$P_2 \cup P_3$</td>
<td>gem</td>
</tr>
<tr>
<td>house</td>
<td>px</td>
</tr>
<tr>
<td>$K_{2,3}$</td>
<td>kite</td>
</tr>
<tr>
<td>dart</td>
<td>K_4</td>
</tr>
<tr>
<td>$K_1,4$</td>
<td>C_5</td>
</tr>
</tbody>
</table>

Classification of the complexity of $\{H\}$-M-Deletion for all connected simple planar graphs H with $|V(H)| \leq 5$ and $|E(H)| \geq 1$: for the 9 graphs on the left (resp. 20 graphs on the right), the problem is solvable in time $2\Theta(tw) \cdot n^{O(1)}$ (resp. $2\Theta(tw \cdot \log tw) \cdot n^{O(1)}$). For $\{H\}$-TM-Deletion, $K_{1,4}$ should be on the left.
For topological minors, there is only one change

\[2^{\Theta(tw)} \]

\[2^{\Theta(tw \cdot \log tw)} \]

\[P_5 \]

\[
\begin{align*}
P_2 & \quad \text{diamond} \\
P_3 & \quad K_4 \\
P_4 & \quad C_5 \\
C_3 & \quad K_3 \cup 2K_1 \\
C_4 & \quad K_5-e \\
\text{claw} & \quad W_4 \\
\text{paw} & \quad \overline{P_3 \cup 2K_1} \\
\text{chair} & \quad P_2 \cup P_3 \\
\text{banner} & \quad \text{gem} \\
bull & \quad \text{house} \\
\text{butterfly} & \quad px \\
cricket & \quad \text{kite} \\
\text{dart} & \quad \text{K2,3} \\
\co\text{-banner} & \quad \text{K1,4}
\end{align*}
\]
All these cases can be succinctly described as follows:
A compact statement for small planar minors

All these cases can be succinctly described as follows:

- All the graphs on the left are minors of \[K_2,3 \]
A compact statement for small planar minors

All these cases can be succinctly described as follows:

- All the graphs on the left are minors of \(\square \).
- All the graphs on the right are not minors of \(\square \).
A compact statement for small planar minors

All these cases can be succinctly described as follows:

- All the graphs on the left are minors of \square.
- All the graphs on the right are not minors of \square except P_5.

... except P_5. ...
A dichotomy for hitting connected planar minors

We can prove that any connected planar H with $|V(H)| \geq 6$ is “hard”.

A dichotomy for hitting connected planar minors

We can prove that any connected planar H with $|V(H)| \geq 6$ is “hard”.

Theorem

Let H be a connected planar graph.
A dichotomy for hitting connected planar minors

We can prove that any connected planar H with $|V(H)| \geq 6$ is “hard”.

Theorem

Let H be a connected planar graph.

The \{H\}-M-DELETION problem is solvable in time

\[2^{O(tw)} \cdot n^{O(1)}, \quad \text{if } H \preceq_m \begin{array}{c} \infty \\ \infty \end{array} \text{ and } H \neq P_5. \]
A dichotomy for hitting connected planar minors

We can prove that any connected planar H with $|V(H)| \geq 6$ is “hard”.

Theorem

Let H be a connected planar graph. The \{H\}-M-Deletion problem is solvable in time

- $2^{O(tw)} \cdot n^{O(1)}$, if $H \preceq_m \begin{array}{c}
 * \\
 * \end{array}$ and $H \neq P_5$.

- $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$, otherwise.

In both cases, the running time is asymptotically optimal under the ETH.
We have three types of results

1. General algorithms
 - For every F: time $2^O(tw \cdot \log tw) \cdot n^{O(1)}$.
 - F connected + planar: time $2^O(tw \cdot \log tw) \cdot n^{O(1)}$.
 - G planar + F connected: time $2^O(tw) \cdot n^{O(1)}$.

2. Ad-hoc single-exponential algorithms
 - Some use "typical" dynamic programming.
 - Some use the rank-based approach.
 - [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3. Lower bounds under the ETH
 - $2^{o(tw)}$ is "easy".
 - $2^{o(tw \cdot \log tw)}$ is much more involved and we get ideas from:
 - [Lokshtanov, Marx, Saurabh. 2011]
 - [Marcin Pilipczuk. 2017]
 - [Bonnet, Brettell, Kwon, Marx. 2017]
We have three types of results

1. **General algorithms**
 - For every \mathcal{F}: time $2^{2^{O(tw \cdot \log tw)}} \cdot n^{O(1)}$.
 - \mathcal{F} connected + planar: time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.
 - G planar + \mathcal{F} connected: time $2^{O(tw)} \cdot n^{O(1)}$.

2. **Ad-hoc single-exponential algorithms**
 - Some use "typical" dynamic programming.
 - Some use the rank-based approach.
 - [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3. **Lower bounds under the ETH**
 - $2^{o(tw)}$ is "easy".
 - $2^{o(tw \cdot \log tw)}$ is much more involved and we get ideas from:
 - [Lokshtanov, Marx, Saurabh. 2011]
 - [Marcin Pilipczuk. 2017]
 - [Bonnet, Brettell, Kwon, Marx. 2017]
We have three types of results

1. **General algorithms**

 - For every \mathcal{F}: time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.
 - \mathcal{F} connected + planar: time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.
 - G planar + \mathcal{F} connected: time $2^{O(tw)} \cdot n^{O(1)}$.

2. **Ad-hoc single-exponential algorithms**

 - Some use “typical” dynamic programming.
 - Some use the *rank-based* approach.

 [Bodlaender, Cygan, Kratsch, Nederlof. 2013]
We have three types of results

1. **General algorithms**
 - For every F: time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.
 - F connected + planar: time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.
 - G planar + F connected: time $2^{O(tw)} \cdot n^{O(1)}$.

2. **Ad-hoc single-exponential algorithms**
 - Some use “typical” dynamic programming.
 - Some use the rank-based approach.

3. **Lower bounds under the ETH**
 - $2^{o(tw)}$ is “easy”.
 - $2^{o(tw \cdot \log tw)}$ is much more involved and we get ideas from:

 - Lokshtanov, Marx, Saurabh. 2011
 - Marcin Pilipczuk. 2017
 - Bonnet, Brettell, Kwon, Marx. 2017
Some ideas of the general algorithms

- For every \mathcal{F}: time $2^{2^O(tw \cdot \log tw)} \cdot n^{O(1)}$.
- \mathcal{F} connected + planar: time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.
- G planar + \mathcal{F} connected: time $2^{O(tw)} \cdot n^{O(1)}$.
Some ideas of the general algorithms

- For every \mathcal{F}: time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.
- \mathcal{F} connected + planar: time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.
- G planar + \mathcal{F} connected: time $2^{O(tw)} \cdot n^{O(1)}$.

We build on the machinery of **boundaried graphs** and **representatives**:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]
[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]
[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]
[Garnero, Paul, S., Thilikos. 2014]
Algorithm for a general collection \mathcal{F}

- We see G as a t-boundaried graph.
Algorithm for a general collection \mathcal{F}

- We see G as a t-boundaried graph.
- folio of G: set of all its \mathcal{F}-minor-free minors, up to size $\mathcal{O}(t)$.

For every t-boundaried graph G, $|\text{folio}(G)| = 2^{\mathcal{O}(t \log t)}$.

The number of distinct folios is $2^{\mathcal{O}(t \log t)}$.

This gives an algorithm running in time $2^{\mathcal{O}(t \log t) \cdot n^{\mathcal{O}(1)}}$.
Algorithm for a general collection \mathcal{F}

- We see G as a t-boundaried graph.
- **folio of G:** set of all its \mathcal{F}-minor-free minors, up to size $O(t)$.
- We compute, using DP over a tree decomposition of G, the following parameter for every folio C:
 \[
p(G, C) = \min\{|S| : S \subseteq V(G) \land \text{folio}(G - S) = C\}
\]
Algorithm for a general collection \mathcal{F}

- We see G as a t-boundaried graph.
- **folio of G:** set of all its \mathcal{F}-minor-free minors, up to size $\mathcal{O}(t)$.
- We compute, using DP over a tree decomposition of G, the following parameter for every folio C:
 \[
p(G, C) = \min\{|S| : S \subseteq V(G) \wedge \text{folio}(G - S) = C\}
\]
- For every t-boundaried graph G, $|\text{folio}(G)| = 2^{\mathcal{O}_\mathcal{F}(t \log t)}$.
Algorithm for a general collection \mathcal{F}

- We see G as a t-boundaried graph.

- folio of G: set of all its \mathcal{F}-minor-free minors, up to size $O(t)$.

- We compute, using DP over a tree decomposition of G, the following parameter for every folio C:

$$p(G, C) = \min\{|S| : S \subseteq V(G) \land \text{folio}(G-S) = C\}$$

- For every t-boundaried graph G, $|\text{folio}(G)| = 2^{O_{\mathcal{F}}(t \log t)}$.

- The number of distinct folios is $2^{2^{O_{\mathcal{F}}(t \log t)}}$.
Algorithm for a general collection \mathcal{F}

- We see G as a t-boundaried graph.
- folio of G: set of all its \mathcal{F}-minor-free minors, up to size $O(t)$.

We compute, using DP over a tree decomposition of G, the following parameter for every folio C:

$$p(G, C) = \min \{|S| : S \subseteq V(G) \land \text{folio}(G - S) = C\}$$

- For every t-boundaried graph G, $|\text{folio}(G)| = 2^{O_F(t \log t)}$.
- The number of distinct folios is $2^{2^{O_F(t \log t)}}$.
- This gives an algorithm running in time $2^{2^{O_F(tw \cdot \log tw)}} \cdot n^{O(1)}$.
Algorithm for a connected and planar collection \(\mathcal{F} \)

For a fixed \(\mathcal{F} \), we define an equivalence relation \(\equiv \) on \(t \)-boundaried graphs:

\[G_1 \equiv (\mathcal{F}, t) \iff G_2 \iff \forall G' \in B_t, \mathcal{F} \preceq m G' \oplus G_1 \iff \mathcal{F} \preceq m G' \oplus G_2. \]

\(R(\mathcal{F}, t) \): set of minimum-size representatives of \(\equiv (\mathcal{F}, t) \).

We compute, using DP over a tree decomposition of \(G \), the following parameter for every representative \(R \):

\[p(G, R) = \min \{ |S| : S \subseteq V(G) \land \text{rep} \mathcal{F}, t(G - S) = R \} \]

The number of representatives is \(|R(\mathcal{F}, t)| = 2^{O(|F| (t \cdot \log t))} \).

This gives an algorithm running in time \(2^{O(F(tw \cdot \log tw))} \cdot n^{O(1)} \).
Algorithm for a connected and planar collection \mathcal{F}

For a fixed \mathcal{F}, we define an equivalence relation $\equiv^{(\mathcal{F},t)}$ on t-boundaried graphs:

$$G_1 \equiv^{(\mathcal{F},t)} G_2 \quad \text{if } \forall G' \in \mathcal{B}^t,$$

$$\mathcal{F} \preceq_m G' \uplus G_1 \iff \mathcal{F} \preceq_m G' \uplus G_2.$$
For a fixed \mathcal{F}, we define an equivalence relation $\equiv(\mathcal{F}, t)$ on t-boundaried graphs:

$$G_1 \equiv(\mathcal{F}, t) G_2 \quad \text{if} \quad \forall G' \in \mathcal{B}^t, \quad \mathcal{F} \preceq_m G' \oplus G_1 \iff \mathcal{F} \preceq_m G' \oplus G_2.$$

$\mathcal{R}(\mathcal{F}, t)$: set of minimum-size representatives of $\equiv(\mathcal{F}, t)$.

This gives an algorithm running in time $2^{O(F(t \cdot \log t))} \cdot n^{O(1)}$.

[Baste, Noy, S. 2017]
For a fixed \mathcal{F}, we define an equivalence relation $\equiv(\mathcal{F},t)$ on t-boundaried graphs:

$$G_1 \equiv(\mathcal{F},t) G_2 \quad \text{if } \forall G' \in \mathcal{B}^t,$$

$$\mathcal{F} \preceq_m G' \oplus G_1 \iff \mathcal{F} \preceq_m G' \oplus G_2.$$

$\mathcal{R}(\mathcal{F},t)$: set of minimum-size representatives of $\equiv(\mathcal{F},t)$.

We compute, using DP over a tree decomposition of G, the following parameter for every representative R:

$$p(G,R) = \min\{|S| : S \subseteq V(G) \land \text{rep}_{\mathcal{F},t}(G - S) = R\}$$
Algorithm for a connected and planar collection \mathcal{F}

- For a fixed \mathcal{F}, we define an equivalence relation $\equiv^{(\mathcal{F},t)}$ on t-boundaried graphs:

 $$G_1 \equiv^{(\mathcal{F},t)} G_2 \quad \text{if} \quad \forall G' \in \mathcal{B}^t,$$

 $$\mathcal{F} \preceq_m G' \oplus G_1 \iff \mathcal{F} \preceq_m G' \oplus G_2.$$

- $R^{(\mathcal{F},t)}$: set of minimum-size representatives of $\equiv^{(\mathcal{F},t)}$.

- We compute, using DP over a tree decomposition of G, the following parameter for every representative R:

 $$p(G, R) = \min \{|S| : S \subseteq V(G) \land \text{rep}_{\mathcal{F},t}(G - S) = R\}$$

- The number of representatives is $|R^{(\mathcal{F},t)}| = 2^{O_{\mathcal{F}}(t \cdot \log t)}$.

\[\text{[Baste, Noy, S. 2017]}\]
For a fixed \mathcal{F}, we define an equivalence relation $\equiv(\mathcal{F}, t)$ on t-boundaried graphs:

$$G_1 \equiv(\mathcal{F}, t) G_2 \text{ if } \forall G' \in B^t, \\
\mathcal{F} \preceq_m G' \oplus G_1 \iff \mathcal{F} \preceq_m G' \oplus G_2.$$

$\mathcal{R}(\mathcal{F}, t)$: set of minimum-size representatives of $\equiv(\mathcal{F}, t)$.

We compute, using DP over a tree decomposition of G, the following parameter for every representative R:

$$p(G, R) = \min\{|S| : S \subseteq V(G) \land \text{rep}_{\mathcal{F}, t}(G - S) = R\}$$

The number of representatives is $|\mathcal{R}(\mathcal{F}, t)| = 2^{O_{\mathcal{F}}(t \cdot \log t)}$.

The number of labeled graphs of size $\leq t$ and $\text{tw} \leq h$ is $2^{O_h(t \cdot \log t)}$. [Baste, Noy, S. 2017]
Algorithm for a connected and planar collection \mathcal{F}

- For a fixed \mathcal{F}, we define an equivalence relation $\equiv(\mathcal{F}, t)$ on t-boundaried graphs:
 \[G_1 \equiv(\mathcal{F}, t) G_2 \text{ if } \forall G' \in B^t, \]
 \[\mathcal{F} \preceq_m G' \oplus G_1 \iff \mathcal{F} \preceq_m G' \oplus G_2. \]

- $\mathcal{R}(\mathcal{F}, t)$: set of minimum-size representatives of $\equiv(\mathcal{F}, t)$.

- We compute, using DP over a tree decomposition of G, the following parameter for every representative R:
 \[p(G, R) = \min\{|S| : S \subseteq V(G) \land \text{rep}_{\mathcal{F}, t}(G - S) = R\} \]

- The number of representatives is $|\mathcal{R}(\mathcal{F}, t)| = 2^{O_F(t \cdot \log t)}$.

- The number of labeled graphs of size $\leq t$ and $\text{tw} \leq h$ is $2^{O_h(t \cdot \log t)}$. [Baste, Noy, S. 2017]

- This gives an algorithm running in time $2^{O_F(t \cdot \log tw)} \cdot n^{O(1)}$.

\[\]
Algorithm when the input graph G is planar

- **Idea** get an improved bound on $|R^{(F,t)}|$.

 We use a sphere-cut decomposition of the input planar graph G. Nice topological properties: each separator corresponds to a noose. The number of representatives is $|R^{(F,t)}| = 2^{O(F(t))}$. Number of planar triangulations on t vertices is $2^{O(t)}$. This gives an algorithm running in time $2^{O(F(tw))} \cdot n^{O(1)}$.

 We can extend this algorithm to input graphs G embedded in arbitrary surfaces by using surface-cut decompositions. [Rué, S., Thilikos. 2014]
Algorithm when the input graph G is planar

- **Idea** get an improved bound on $|\mathcal{R}(F,t)|$.

- We use a **sphere-cut decomposition** of the input **planar graph** G.

 - [Seymour, Thomas. 1994]
 - [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Number of planar triangulations on t vertices is $2^{O(t)}$.

[Tutte. 1962]

This gives an algorithm running in time $2^{O(tw)} \cdot n^{O(1)}$.

We can extend this algorithm to input graphs G embedded in arbitrary surfaces by using surface-cut decompositions.

[Rué, S., Thilikos. 2014]
Algorithm when the input graph G is planar

- **Idea** get an improved bound on $|\mathcal{R}(\mathcal{F},t)|$.

- We use a sphere-cut decomposition of the input planar graph G.

 [Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

- Nice topological properties: each separator corresponds to a noose.

![Diagram of sphere-cut decomposition]

Number of planar triangulations on t vertices is $2^{O(t)}$.

[Tutte. 1962]

This gives an algorithm running in time $2^{O(f(tw)) \cdot n^{O(1)}}$.

We can extend this algorithm to input graphs G embedded in arbitrary surfaces by using surface-cut decompositions.

[Rué, S., Thilikos. 2014]
Algorithm when the input graph G is planar

- **Idea** get an improved bound on $|\mathcal{R}(\mathcal{F}, t)|$.

- We use a sphere-cut decomposition of the input planar graph G.

 [Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

- Nice topological properties: each separator corresponds to a noose.

 ![Diagram showing sphere-cut decomposition]

- The number of representatives is $|\mathcal{R}(\mathcal{F}, t)| = 2^{O_{\mathcal{F}}(t)}$.

 Number of planar triangulations on t vertices is $2^{O(t)}$. [Tutte. 1962]
Algorithm when the input graph G is planar

- **Idea** get an improved bound on $|\mathcal{R}(\mathcal{F}, t)|$.

- We use a sphere-cut decomposition of the input planar graph G.

 [Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

- Nice topological properties: each separator corresponds to a noose.

![Sphere-cut decomposition](image)

- The number of representatives is $|\mathcal{R}(\mathcal{F}, t)| = 2^{O_{\mathcal{F}}(t)}$.

 Number of planar triangulations on t vertices is $2^{O(t)}$. [Tutte. 1962]

- This gives an algorithm running in time $2^{O_{\mathcal{F}}(tw)} \cdot n^{O(1)}$.

Algorithm when the input graph G is planar

- **Idea** get an improved bound on $|\mathcal{R}(\mathcal{F}, t)|$.

- We use a **sphere-cut decomposition** of the input **planar graph** G.

 [Seymour, Thomas. 1994]
 [Dorn, Penninkx, Bodlaender, Fomin. 2010]

- **Nice topological properties**: each separator corresponds to a **noose**.

- The **number of representatives** is $|\mathcal{R}(\mathcal{F}, t)| = 2^{O(\mathcal{F})}(t)$.
 Number of planar triangulations on t vertices is $2^{O(t)}$.
 [Tutte. 1962]

- This gives an **algorithm** running in time $2^{O(\mathcal{F}(tw))} \cdot n^{O(1)}$.

- We can extend this algorithm to input graphs G embedded in **arbitrary surfaces** by using **surface-cut decompositions**.
 [Rué, S., Thilikos. 2014]
What’s next about \mathcal{F}-DELETION?

Ultimate goal: classify the (asymptotically) tight complexity of \mathcal{F}-Deletion for every family \mathcal{F}. We are still far from it.

Dichotomy for $\{H\}$-TM-Deletion when H planar + connected.

Only “missing” connected graph on at most 5 vertices: K_5.

We think that $\{K_5\}$-Deletion is solvable in time $2^{\Theta(tw \log tw)} \cdot n^O(1)$.

We do not even know if there exists some \mathcal{F} such that \mathcal{F}-Deletion cannot be solved in time $2^{o(tw^2)} \cdot n^{O(1)}$ under the ETH.

Deletion to genus at most g: $2^{O(g)(tw \log tw)} \cdot n^{O(1)}$.

[Kociumaka, Pilipczuk. 2017]

Conjecture: For every connected family \mathcal{F}, the \mathcal{F}-Deletion problem is solvable in time $2^{O(tw \log tw)} \cdot n^{O(1)}$. Consider families \mathcal{F} containing disconnected graphs.
What’s next about \mathcal{F}-DELETION?

- **Ultimate goal**: classify the (asymptotically) tight complexity of \mathcal{F}-DELETION for every family \mathcal{F}
What’s next about \(\mathcal{F}\text{-DELETION} \)?

- **Ultimate goal**: classify the (asymptotically) tight complexity of \(\mathcal{F}\text{-DELETION} \) for every family \(\mathcal{F} \)... we are still far from it.
What’s next about \(\mathcal{F}\text{-Deletion} \)?

- **Ultimate goal**: classify the (asymptotically) tight complexity of \(\mathcal{F}\text{-Deletion} \) for *every family* \(\mathcal{F} \) ... we are still far from it.

- **Dichotomy for** \(\{H\}\text{-TM-Deletion} \) when \(H \) planar + connected.
What’s next about \mathcal{F}-Deletion?

- **Ultimate goal**: classify the (asymptotically) tight complexity of \mathcal{F}-Deletion for every family \mathcal{F}... we are still far from it.

- Dichotomy for $\{H\}$-TM-Deletion when H planar + connected.

- Only “missing” connected graph on at most 5 vertices: K_5.
 We think that $\{K_5\}$-Deletion is solvable in time $2^{\Theta(tw \cdot \log tw)} \cdot n^{O(1)}$.
What’s next about \mathcal{F}-Deletion?

- **Ultimate goal**: classify the (asymptotically) tight complexity of \mathcal{F}-Deletion for every family \mathcal{F}... we are still far from it.

- **Dichotomy for** $\{H\}$-TM-Deletion **when** H **planar + connected**.

- Only “missing” connected graph on at most 5 vertices: K_5.
 We think that $\{K_5\}$-Deletion is solvable in time $2^{\Theta(tw \cdot \log tw)} \cdot n^{O(1)}$.

- We do not even know if there exists some \mathcal{F} such that \mathcal{F}-Deletion cannot be solved in time $2^{o(tw^2)} \cdot n^{O(1)}$ under the ETH.
What’s next about \mathcal{F}-DELETION?

- **Ultimate goal**: classify the (asymptotically) tight complexity of \mathcal{F}-DELETION for every family \mathcal{F}... we are still far from it.

- Dichotomy for $\{H\}$-TM-DELETION when H planar + connected.

- Only “missing” connected graph on at most 5 vertices: K_5. We think that $\{K_5\}$-DELETION is solvable in time $2^{\Theta(tw \cdot \log tw)} \cdot n^{O(1)}$.

- We do not even know if there exists some \mathcal{F} such that \mathcal{F}-DELETION cannot be solved in time $2^{o(tw^2)} \cdot n^{O(1)}$ under the ETH.

Deletion to genus at most g: $2^{O_g(tw \cdot \log tw)} \cdot n^{O(1)}$. [Kociumaka, Pilipczuk. 2017]
What’s next about \(\mathcal{F}\text{-Deletion} \)?

- **Ultimate goal**: classify the (asymptotically) tight complexity of \(\mathcal{F}\text{-Deletion} \) for every family \(\mathcal{F} \)... we are still far from it.

- **Dichotomy for \(\{H\}\text{-TM-Deletion} \)** when \(H \) planar + connected.

- Only “missing” connected graph on at most 5 vertices: \(K_5 \).
 We think that \(\{K_5\}\text{-Deletion} \) is solvable in time \(2^{\Theta(tw \cdot \log tw)} \cdot n^{O(1)} \).

- We do not even know if there exists some \(\mathcal{F} \) such that \(\mathcal{F}\text{-Deletion} \) cannot be solved in time \(2^{o(tw^2)} \cdot n^{O(1)} \) under the ETH.

Deletion to genus at most \(g \): \(2^{O_g(tw \cdot \log tw)} \cdot n^{O(1)} \). \[Kociumaka, Pilipczuk. 2017\]

- **Conjecture** For every connected family \(\mathcal{F} \), the \(\mathcal{F}\text{-Deletion} \) problem is solvable in time \(2^{O(tw \cdot \log tw)} \cdot n^{O(1)} \).
What’s next about \mathcal{F}-Deletion?

- **Ultimate goal:** classify the (asymptotically) tight complexity of \mathcal{F}-Deletion for every family \mathcal{F}... we are still far from it.

- **Dichotomy** for $\{H\}$-TM-Deletion when H planar + connected.

- Only “missing” connected graph on at most 5 vertices: K_5. We think that $\{K_5\}$-Deletion is solvable in time $2^{\Theta(tw \cdot \log tw)} \cdot n^{O(1)}$.

- We do not even know if there exists some \mathcal{F} such that \mathcal{F}-Deletion cannot be solved in time $2^{o(tw^2)} \cdot n^{O(1)}$ under the ETH.

Deletion to genus at most g: $2^{O_g(tw \cdot \log tw)} \cdot n^{O(1)}$. [Kociumaka, Pilipczuk. 2017]

- **Conjecture** For every connected family \mathcal{F}, the \mathcal{F}-Deletion problem is solvable in time $2^{O(tw \cdot \log tw)} \cdot n^{O(1)}$.

- Consider families \mathcal{F} containing disconnected graphs.
Gràcies!

FREEDOM FOR ALL CATALAN POLITICAL PRISONERS IN SPAIN