
Hitting (topological) minors
on bounded treewidth graphs - part I

Julien Baste1 Ignasi Sau2 Dimitrios M. Thilikos2,3

GT 2018, Nyborg, Denmark
August 29 - September 1, 2018

1 Sorbonne Université, Laboratoire d’Informatique de Paris 6, France
2 CNRS, LIRMM, Université de Montpellier, France
3 Dept. of Maths, National and Kapodistrian University of Athens, Greece

[arXiv 1704.07284]

1/21

Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

2/21

Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

2/21

Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Theorem (Courcelle, 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...

2/21

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · nO(1)

= 2345678tw

· nO(1)

Major goal find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box” in all kinds of parameterized algorithms.

3/21

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...
... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box” in all kinds of parameterized algorithms.

3/21

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...
... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box” in all kinds of parameterized algorithms.

3/21

Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...
... but the running time can (and must) be huge!

f (tw) · nO(1) = 2345678tw

· nO(1)

Major goal find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box” in all kinds of parameterized algorithms.

3/21

Two behaviors for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the
“natural” DP algorithms lead to (optimal) single-exponential algorithms:

2O(tw) · nO(1).

But for the so-called connectivity problems, like Longest Path or
Steiner Tree, the “natural” DP algorithms provide only time

2O(tw·log tw) · nO(1).

4/21

Two behaviors for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the
“natural” DP algorithms lead to (optimal) single-exponential algorithms:

2O(tw) · nO(1).

But for the so-called connectivity problems, like Longest Path or
Steiner Tree, the “natural” DP algorithms provide only time

2O(tw·log tw) · nO(1).

4/21

Two behaviors for problems parameterized by treewidth

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

For many problems, like Vertex Cover or Dominating Set, the
“natural” DP algorithms lead to (optimal) single-exponential algorithms:

2O(tw) · nO(1).

But for the so-called connectivity problems, like Longest Path or
Steiner Tree, the “natural” DP algorithms provide only time

2O(tw·log tw) · nO(1).

4/21

Single-exponential algorithms on sparse graphs
On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:
partial solutions ⇐⇒ non-crossing partitions

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≤ 4k .

5/21

Single-exponential algorithms on sparse graphs
On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:
partial solutions ⇐⇒ non-crossing partitions

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≤ 4k .

5/21

Single-exponential algorithms on sparse graphs
On topologically structured graphs (planar, surfaces, minor-free), it is
possible to solve connectivity problems in time 2O(tw) · nO(1):

Planar graphs: [Dorn, Penninkx, Bodlaender, Fomin. 2005]

Graphs on surfaces: [Dorn, Fomin, Thilikos. 2006]

[Rué, S., Thilikos. 2010]

Minor-free graphs: [Dorn, Fomin, Thilikos. 2008]

[Rué, S., Thilikos. 2012]

Main idea special type of decomposition with nice topological properties:
partial solutions ⇐⇒ non-crossing partitions

CN(k) = 1
k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≤ 4k .

5/21

The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

6/21

The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

6/21

The revolution of single-exponential algorithms

It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]

6/21

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

[Impagliazzo, Paturi. 1999]

There are other examples of such problems...

7/21

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

[Impagliazzo, Paturi. 1999]

There are other examples of such problems...

7/21

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

[Impagliazzo, Paturi. 1999]

There are other examples of such problems...

7/21

End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

[Impagliazzo, Paturi. 1999]

There are other examples of such problems...

7/21

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/21

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/21

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.

Easily solvable in time 2Θ(tw) · nO(1).

F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/21

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/21

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {C3}: Feedback Vertex Set.

“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/21

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/21

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.

Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/21

The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {C3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5,K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]

8/21

Covering topological minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a minor?

F-TM-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a topol. minor?

Both problems are NP-hard if F contains some edge. [Lewis, Yannakakis. 1980]

FPT by Courcelle, or by Graph Minors theory.

9/21

Covering topological minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a minor?

F-TM-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a topol. minor?

Both problems are NP-hard if F contains some edge. [Lewis, Yannakakis. 1980]

FPT by Courcelle, or by Graph Minors theory.

9/21

Covering topological minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a minor?

F-TM-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a topol. minor?

Both problems are NP-hard if F contains some edge. [Lewis, Yannakakis. 1980]

FPT by Courcelle, or by Graph Minors theory.

9/21

Covering topological minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a minor?

F-TM-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a topol. minor?

Both problems are NP-hard if F contains some edge. [Lewis, Yannakakis. 1980]

FPT by Courcelle, or by Graph Minors theory.
9/21

Summary of our results

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F connected: F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H planar + connected: complete tight dichotomy.

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

10/21

Summary of our results

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F connected: F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H planar + connected: complete tight dichotomy.

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

10/21

Summary of our results

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F connected: F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H planar + connected: complete tight dichotomy.

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

10/21

Summary of our results

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F connected: F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H planar + connected: complete tight dichotomy.

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

10/21

Summary of our results

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F connected: F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H planar + connected: complete tight dichotomy.

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

10/21

Summary of our results

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F connected: F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H planar + connected: complete tight dichotomy.

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

10/21

Summary of our results

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F connected: F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H planar + connected:

complete tight dichotomy.

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

10/21

Summary of our results

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F connected: F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H planar + connected: complete tight dichotomy.

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.

10/21

Complexity of hitting small planar minors H

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

Classification of the complexity of {H}-M-Deletion for all connected
simple planar graphs H with |V (H)| ≤ 5 and |E (H)| ≥ 1: for the 9 graphs
on the left (resp. 20 graphs on the right), the problem is solvable in time
2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion, K1,4
should be on the left.

11/21

For topological minors, there is only one change

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

12/21

A compact statement for small planar minors

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

All these cases can be succinctly described as follows:

All the graphs on the left are minors of

All the graphs on the right are not minors of ... except P5.

13/21

A compact statement for small planar minors

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

All these cases can be succinctly described as follows:

All the graphs on the left are minors of

All the graphs on the right are not minors of ... except P5.

13/21

A compact statement for small planar minors

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

All these cases can be succinctly described as follows:

All the graphs on the left are minors of

All the graphs on the right are not minors of

... except P5.

13/21

A compact statement for small planar minors

bull butterfly

bannerchair

claw

house

diamond

co-bannercricket

kite

paw

dart

gem

K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

All these cases can be succinctly described as follows:

All the graphs on the left are minors of

All the graphs on the right are not minors of ... except P5.
13/21

A dichotomy for hitting connected planar minors

We can prove that any connected planar H with |V (H)| ≥ 6 is “hard”.

Theorem
Let H be a connected planar graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H �m and H 6= P5.

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

14/21

A dichotomy for hitting connected planar minors

We can prove that any connected planar H with |V (H)| ≥ 6 is “hard”.

Theorem
Let H be a connected planar graph.

The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H �m and H 6= P5.

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

14/21

A dichotomy for hitting connected planar minors

We can prove that any connected planar H with |V (H)| ≥ 6 is “hard”.

Theorem
Let H be a connected planar graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H �m and H 6= P5.

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

14/21

A dichotomy for hitting connected planar minors

We can prove that any connected planar H with |V (H)| ≥ 6 is “hard”.

Theorem
Let H be a connected planar graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H �m and H 6= P5.

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

14/21

We have three types of results

1 General algorithms

For every F : time 22O(tw·log tw) · nO(1).
F connected + planar: time 2O(tw·log tw) · nO(1).
G planar + F connected: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

15/21

We have three types of results

1 General algorithms

For every F : time 22O(tw·log tw) · nO(1).
F connected + planar: time 2O(tw·log tw) · nO(1).
G planar + F connected: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

15/21

We have three types of results

1 General algorithms

For every F : time 22O(tw·log tw) · nO(1).
F connected + planar: time 2O(tw·log tw) · nO(1).
G planar + F connected: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

15/21

We have three types of results

1 General algorithms

For every F : time 22O(tw·log tw) · nO(1).
F connected + planar: time 2O(tw·log tw) · nO(1).
G planar + F connected: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]

15/21

Some ideas of the general algorithms

For every F : time 22O(tw·log tw) · nO(1).

F connected + planar: time 2O(tw·log tw) · nO(1).

G planar + F connected: time 2O(tw) · nO(1).

We build on the machinery of boundaried graphs and representatives:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

[Garnero, Paul, S., Thilikos. 2014]

16/21

Some ideas of the general algorithms

For every F : time 22O(tw·log tw) · nO(1).

F connected + planar: time 2O(tw·log tw) · nO(1).

G planar + F connected: time 2O(tw) · nO(1).

We build on the machinery of boundaried graphs and representatives:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

[Garnero, Paul, S., Thilikos. 2014]

16/21

Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size O(t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G , |folio(G)| = 2OF (t log t).

The number of distinct folios is 22OF (t log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1).

17/21

Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size O(t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G , |folio(G)| = 2OF (t log t).

The number of distinct folios is 22OF (t log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1).

17/21

Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size O(t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G , |folio(G)| = 2OF (t log t).

The number of distinct folios is 22OF (t log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1).

17/21

Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size O(t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G , |folio(G)| = 2OF (t log t).

The number of distinct folios is 22OF (t log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1).

17/21

Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size O(t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G , |folio(G)| = 2OF (t log t).

The number of distinct folios is 22OF (t log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1).

17/21

Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size O(t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G , |folio(G)| = 2OF (t log t).

The number of distinct folios is 22OF (t log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1).
17/21

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1).

18/21

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1).

18/21

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1).

18/21

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1).

18/21

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).

labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1).

18/21

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1).

18/21

Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G ,R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t).
labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1).
18/21

Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. [Rué, S., Thilikos. 2014]

19/21

Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. [Rué, S., Thilikos. 2014]

19/21

Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. [Rué, S., Thilikos. 2014]

19/21

Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. [Rué, S., Thilikos. 2014]

19/21

Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. [Rué, S., Thilikos. 2014]

19/21

Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. [Rué, S., Thilikos. 2014]

19/21

What’s next about F -Deletion?

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still far from it.

Dichotomy for {H}-TM-Deletion when H planar + connected.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Conjecture For every connected family F , the F-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

Consider families F containing disconnected graphs.

20/21

What’s next about F -Deletion?

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F

... we are still far from it.

Dichotomy for {H}-TM-Deletion when H planar + connected.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Conjecture For every connected family F , the F-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

Consider families F containing disconnected graphs.

20/21

What’s next about F -Deletion?

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still far from it.

Dichotomy for {H}-TM-Deletion when H planar + connected.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Conjecture For every connected family F , the F-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

Consider families F containing disconnected graphs.

20/21

What’s next about F -Deletion?

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still far from it.

Dichotomy for {H}-TM-Deletion when H planar + connected.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Conjecture For every connected family F , the F-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

Consider families F containing disconnected graphs.

20/21

What’s next about F -Deletion?

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still far from it.

Dichotomy for {H}-TM-Deletion when H planar + connected.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Conjecture For every connected family F , the F-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

Consider families F containing disconnected graphs.

20/21

What’s next about F -Deletion?

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still far from it.

Dichotomy for {H}-TM-Deletion when H planar + connected.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Conjecture For every connected family F , the F-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

Consider families F containing disconnected graphs.

20/21

What’s next about F -Deletion?

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still far from it.

Dichotomy for {H}-TM-Deletion when H planar + connected.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Conjecture For every connected family F , the F-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

Consider families F containing disconnected graphs.

20/21

What’s next about F -Deletion?

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still far from it.

Dichotomy for {H}-TM-Deletion when H planar + connected.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Conjecture For every connected family F , the F-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

Consider families F containing disconnected graphs.

20/21

What’s next about F -Deletion?

Ultimate goal: classify the (asymptotically) tight complexity of
F-Deletion for every family F ... we are still far from it.

Dichotomy for {H}-TM-Deletion when H planar + connected.

Only “missing” connected graph on at most 5 vertices: K5.
We think that {K5}-Deletion is solvable in time 2Θ(tw·log tw) · nO(1).

We do not even know if there exists some F such that F-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Conjecture For every connected family F , the F-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).

Consider families F containing disconnected graphs.

20/21

Gràcies!

FREEDOM FOR ALL CATALAN POLITICAL PRISONERS IN SPAIN
21/21

	Motivation
	Further research

