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Graph modification problems

Let C be a target graph class (planar graphs, bounded degree, ...).

LetM be a set of allowed graph modification operations
(vertex deletion, edge deletion/addition/contraction, ...).

M-Modification to C
Input: A graph G and an integer k.
Question: Can we transform G to a graph in C by applying
spaceeeeeerrrat most k operations fromM?

This meta-problem has a huge expressive power.
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Particular case: blocker problems

Let π be a graph parameter
(independence number, domination number, size of longest path, ...).
LetM be a set of allowed graph modification operations
(vertex deletion, edge deletion/addition/contraction, ...).

M-Blocker(π)
Input: A graph G and two integers k, d .
Question: Can G can be modified into a graph G ′, via at most k
aaaaaaaaaaaoperations fromM, such that π(G ′) ≤ π(G)− d?

M = {vertex deletion}, π = length of a longest path/cycle, d = 1:
aatransversal of longest paths/cycles
[Rautenbach, Sereni. 2014] [Cerioli et al. 2019, 2020] [Chen et al. 2017]

π = chromatic/independence/clique/matching/domination number
[Bentz et al. 2010] [Costa et al. 2011] [Bazgan et al. 2011, 2015]
[Diner et al. 2018] [Paulusma et al. 2019] [Fomin et al. 2020]
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More particular case: edge contractions
We focus onM = {edge contraction}.

Contraction(π)
Input: A graph G and two integers k, d .
Question: Can G can be k-edge-contracted into a graph
aaaaaaaaaaaG ′ such that π(G ′) ≤ π(G)− d?

π = chromatic/independence/clique/domination number
[Diner et al. 2018] [Paulusma et al. 2019] [Galby et al. 2019]

Address the problem mainly from the viewpoint of graph classes.

Proposition (Galby, Lima, Ries. 2019)
Let π be a graph parameter such that
(i) it is NP-hard to compute the π-number of a graph and
(ii) contracting an edge reduces π by at most one.
Unless P=NP, there exists no polynomial-time algorithm deciding whether
contracting one given edge decreases the π-number of a graph.
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Even more particular case: graph transversals

Let ≺ be a fixed graph containment relation
(subgraph, induced subgraph, minor, topological minor).

Let H be a fixed (finite or infinite) graph collection.

For a graph G , let τ≺H(G): minimum size of a set S ⊆ V (G) hitting all
For a graph G , let τ≺H(G): occurrences of graphs in H according to ≺ in G .

Examples:
≺ = subgraph, H = {K2}:
some spaceeeτ≺H = vc (size of a minimum vertex cover).
≺ = subgraph, H = {all cycles}:
some spaceeeτ≺H = fvs (size of a minimum feedback vertex set).
≺ = subgraph, H = {odd cycles}:
some spaceeeτ≺H = oct (size of a minimum odd cycle transversal).

These three parameters satisfy the conditions of the previous Proposition.
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Theorem
Let H be a collection of 2-connected graphs containing at least one
non-complete graph,

and let ≺ be any of the subgraph, induced subgraph,
minor, or topological minor containment relations.

The Contraction(τ≺H) problem is co-NP-hard for fixed k = d = 1.

Corollary
Contraction(fvs) and Contraction(oct) co-NP-hard for k = d = 1.

Theorem
Let H be a collection of cliques, each having at least three vertices, and
let ≺ be the minor or topological minor containment relations.

The Contraction(τ≺H) problem is co-NP-hard for fixed k = d = 1.

Theorem
Let H = Pi with i ≥ 4, and let H contain H and any collection of
2-connected graphs. Let ≺ be any of the (induced) subgraph or
(topological) minor containment relations.

The Contraction(τ≺H) problem is co-NP-hard for fixed k = d = 1.
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Corollary
Contraction(fvs) and Contraction(oct) co-NP-hard for k = d = 1.

Is the Contraction(π) problem always hard for natural parameters π?

Theorem
The Contraction(vc) problem can be solved on n-vertex graphs in time
f (d) · n2d for some computable function f .

In particular, polynomial-time solvable for every fixed d ≥ 1.

Parameterized complexity: Contraction(vc) in XP parameterized by d .

Corollary
The Contraction(vc) problem can be 2-approximated (in k) on
n-vertex graphs in time f (d) · nO(1) for some computable function f .

Contraction(vc) can be 2-approximated in FPT time param. by d .
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Theorem
The Contraction(vc) problem can be solved on n-vertex graphs in time
f (d) · n2d for some computable function f .

Contraction(vc)
Input: A graph G and two integers k, d .
Question: Can G can be k-edge-contracted into a graph
aaaaaaaaaaaG ′ such that vc(G ′) ≤ vc(G)− d?

Contraction(vc) is NP-hard, even if vc(G) is given with the input:

The case d = vc(G)− 1 ≡ Star Contraction.

Star Contraction ≡ Connected Vertex Cover.
[Krithika et al. 2016]

Connected Vertex Cover is NP-hard even if vc is polynomial
(bipartite graphs). [Escoffier et al. 2010]
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Basic insight: polynomial-time algorithm for k = d = 1.

X

minimum
vertex cover

independent
set
independent

Given G , consider a minimum vertex cover X of G .

If G is not bipartite, then G [X ] contains some edge ⇒ Yes-instance!

Otherwise, G is bipartite:

We first compute vc(G) in polynomial time.

For every edge e ∈ E (G), we compute vc(G/e) in polynomial time.

We check whether vc(G/e) < vc(G) for some edge e ∈ E (G).
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Let us generalize this idea to arbitrary k, d ≥ 1

bc(G): minimum size of a set F ⊆ E (G) such that G/F is bipartite.

Deciding if bc(G) ≤ k is FPT parameterized by k. [Heggernes et al. 2013]

1 We may assume that k ≥ d , otherwise we have a No-instance.

2 Check if bc(G) ≤ d − 1 in time f (d) · nO(1):

If bc(G) ≥ d , consider a minimum vertex cover X of G .
Then G [X ] contains at least d “good” edges ⇒ Yes-instance!

We have bc(G) ≤ d − 1. Let C1, . . . ,Cp be the conn. comp. of G :

If vc(Ci ) ≤ d for every i ∈ {1, . . . , p}, then tw(G) ≤ d + 1.

We solve the problem in time f (d) · nO(1) by expressing it with an MSO
formula (Courcelle), and then using a simple dynamic programming
algorithm to combine the solutions for the connected components.

There exists a connected component C of G such that vc(C) ≥ d + 1.
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There exists a connected component C of G such that vc(C) ≥ d + 1.

Claim ∃ F ⊆ E (G) with |F | ≤ 2d such that vc(G/F ) ≤ vc(G)− d .

Sufficient: H connected, X minimum vertex cover of H, |X | ≥ 2:
Sufficient: there exist u, v ∈ X such that distH(u, v) ≤ 2.

Since vc(C) ≥ d + 1, iteratively contracting such pairs of vertices u, v ∈ X
gives the desired set F ⊆ E (G) with |F | ≤ 2d s.t. vc(G/F ) ≤ vc(G)− d .
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There exists a connected component C of G such that vc(C) ≥ d + 1.

Claim ∃ F ⊆ E (G) with |F | ≤ 2d such that vc(G/F ) ≤ vc(G)− d .

If k ≥ 2d ⇒ Yes-instance!

We have k ≤ 2d − 1:

Enumerate all candidate sets F ⊆ E (G) with |F | ≤ k ≤ 2d − 1.
We have nO(d) choices (only step that takes XP time).

For each F ⊆ E (G), compute vc(G/F ) in time 2O(d) · nO(1):

Goal: find B ⊆ V (G/F ) with |B| = O(d) s.t. (G/F ) \ B is bipartite.

Given B, compute vc(G/F ) in time 2O(d) · nO(1) by branching on B.

To obtain B, recall that bc(G) ≤ d − 1, certified by L ⊆ E(G).
Set B := V (L) ∪ VF (vertices resulting from the contraction of F ).

Finally, check whether vc(G/F ) < vc(G)− d for some set F ⊆ E (G).
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We proved that Contraction(τ≺H) is co-NP-hard for fixed k = d = 1 if:
H = 2-connected graphs containing at least one non-complete graph,
≺ = (induced) subgraph or (topological) minor.
H = cliques with at least three vertices, ≺ = (topological) minor.
H = {Pi} with i ≥ 4, ≺ = (induced) subgraph or (topological) minor.

Polynomial-time solvable for any fixed d ≥ 1 if H = {K2}, for any ≺.
Open cases:
H = {Kh} with h ≥ 3 for ≺ = (induced) subgraph.
H = {P3} for any ≺.
H = {T} for a tree T , for any ≺.
What about if H contains disconnected graphs?

Contraction(τ≺K2
) in time f (d) · n2d .spaceFPT or W[1]-hard by d?

co-NP-hard cases: natural to parameterize Contraction(τ≺H) by τ≺H .
If ≺ = minor and H contains a planar graph, FPT param. by τ≺H + k.
In particular, Contraction(fvs) is FPT param. by fvs + k.
What about non-planar collections H?

18
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