Introduction to Parameterized Complexity

Ignasi Sau

CNRS, LIRMM, Montpellier, France

UFMG
Belo Horizonte, February 2018
Outline of the talk

1. Why parameterized complexity?
2. Basic definitions
3. Kernelization
4. Some techniques
Why parameterized complexity?

Basic definitions

Kernelization

Some techniques
Some history of complexity: NP-completeness

- **Cook-Levin Theorem (1971):** the SAT problem is NP-complete.

 Unless P = NP, they cannot be solved in polynomial time.
Some history of complexity: NP-completeness

- Cook-Levin Theorem (1971): the SAT problem is NP-complete.

- Karp (1972): list of 21 important NP-complete problems.
Some history of complexity: NP-completeness

- Cook-Levin Theorem (1971): the SAT problem is **NP-complete**.

- Karp (1972): list of 21 *important* NP-complete problems.

- Nowadays, literally **thousands** of problems are known to be NP-hard: unless $P = NP$, they cannot be solved in **polynomial** time.
Some history of complexity: NP-completeness

- Cook-Levin Theorem (1971): the SAT problem is **NP-complete**.

- Karp (1972): list of 21 *important* NP-complete problems.

- Nowadays, literally **thousands** of problems are known to be NP-hard: unless \(P = NP \), they cannot be solved in **polynomial** time.

- But what does it mean for a problem to be **NP-hard**?

 No algorithm solves all instances **optimally** in polynomial time.
Some history of complexity: NP-completeness

- Cook-Levin Theorem (1971): the SAT problem is NP-complete.

- Karp (1972): list of 21 important NP-complete problems.

- Nowadays, literally thousands of problems are known to be NP-hard: unless \(P = NP \), they cannot be solved in polynomial time.

- But what does it mean for a problem to be NP-hard?

 No algorithm solves all instances optimally in polynomial time.
Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.
Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

- **VLSI design**: the number of circuit layers is usually \(\leq 10 \). The problem is NP-complete, but if we fix the number of layers, it is tractable.
Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

- **VLSI design:** the number of circuit layers is usually \(\leq 10 \). The problem is NP-complete, but if we fix the number of layers, it is tractable.

- **Computational biology:** Real instances of DNA chain reconstruction have special properties (treewidth \(\leq 11 \)) that allow for efficient algorithms.

- **Robotics:** The number of degrees of freedom in motion planning problems is \(\leq 10 \). These problems become tractable under this restriction.

- **Compilers:** Checking compatibility of type declarations is hard, but usually the depth of type declarations is \(\leq 10 \): the problem becomes tractable.

Summary

In many applications, not only the total size of the instance matters, but also the value of an additional parameter.
Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

- **VLSI design:** the number of circuit layers is usually ≤ 10. The problem is NP-complete, but if we fix the number of layers, it is tractable.

- **Computational biology:** Real instances of DNA chain reconstruction have special properties (treewidth ≤ 11) that allow for efficient algorithms.

- **Robotics:** The number of degrees of freedom in motion planning problems is ≤ 10. These problems become tractable under this restriction.

Summary: In many applications, not only the total size of the instance matters, but also the value of an additional parameter.
Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

- **VLSI design**: the number of circuit layers is usually ≤ 10. The problem is NP-complete, but if we fix the number of layers, it is tractable.

- **Computational biology**: Real instances of DNA chain reconstruction have special properties (treewidth ≤ 11) that allow for efficient algorithms.

- **Robotics**: The number of degrees of freedom in motion planning problems is ≤ 10. These problems become tractable under this restriction.

- **Compilers**: Checking compatibility of type declarations is hard, but usually the depth of type declarations is ≤ 10: the problem becomes tractable.
Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

- **VLSI design**: the number of circuit layers is usually ≤ 10. The problem is NP-complete, but if we fix the number of layers, it is tractable.

- **Computational biology**: Real instances of DNA chain reconstruction have special properties (treewidth ≤ 11) that allow for efficient algorithms.

- **Robotics**: The number of degrees of freedom in motion planning problems is ≤ 10. These problems become tractable under this restriction.

- **Compilers**: Checking compatibility of type declarations is hard, but usually the depth of type declarations is ≤ 10: the problem becomes tractable.

Summary In many applications, not only the total size of the instance matters, but also the value of an additional parameter.
Three famous NP-hard problems

Let us focus on the following three problems by considering a parameter k:

- **k-Vertex Cover**: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, covering $E(G)$?

- **k-Independent Set**: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \geq k$, of pairwise non-adjacent vertices?

- **k-Coloring**: Can the vertices of a graph be colored with at most k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?
Three famous NP-hard problems

Let us focus on the following three problems by considering a parameter k:

- **k-Vertex Cover**: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, covering $E(G)$?

- **k-Independent Set**: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \geq k$, of pairwise non-adjacent vertices?

- **k-Coloring**: Can the vertices of a graph be colored with at most k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?
Let us focus on the following three problems by considering a parameter k:

- **k-Vertex Cover**: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, covering $E(G)$?

- **k-Independent Set**: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \geq k$, of pairwise non-adjacent vertices?
Three famous NP-hard problems

Let us focus on the following three problems by considering a parameter k:

- **k-Vertex Cover**: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, covering $E(G)$?

- **k-Independent Set**: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \geq k$, of pairwise non-adjacent vertices?

- **Vertex k-Coloring**: Can the vertices of a graph be colored with at most k colors, so that any two adjacent vertices get different colors?
Three famous NP-hard problems

Let us focus on the following three problems by considering a parameter k:

- **k-Vertex Cover**: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, covering $E(G)$?

- **k-Independent Set**: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \geq k$, of pairwise non-adjacent vertices?

- **Vertex k-Coloring**: Can the vertices of a graph be colored with at most k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?
Vertex k-Coloring

Vertex k-Coloring: Can the vertices of a graph be colored with at most k colors, so that any two adjacent vertices get different colors?

The problem is already NP-hard for fixed $k = 3$. For fixed k, there is no poly-time algorithm (unless $P = NP$).
Vertex k-Coloring: Can the vertices of a graph be colored with at most k colors, so that any two adjacent vertices get different colors?

The problem is already NP-hard for fixed $k = 3$.
Vertex k-Coloring

Vertex k-Coloring: Can the vertices of a graph be colored with at most k colors, so that any two adjacent vertices get different colors?

The problem is already **NP-hard** for fixed $k = 3$.

For fixed k, there is no poly-time algorithm (unless $P = NP$).
k-Independent Set

k-Independent Set: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \geq k$, of pairwise non-adjacent vertices?
k-Independent Set

k-Independent Set: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \geq k$, of pairwise non-adjacent vertices?

We can generate all subsets of k vertices, and check whether they induce an independent set or not.
k-Independent Set

k-Independent Set: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \geq k$, of pairwise non-adjacent vertices?

We can generate all subsets of k vertices, and check whether they induce an independent set or not.

Running time: $O\left(\binom{n}{k} \cdot k^2\right) = O(n^k \cdot k^2)$
\textbf{\textit{k-Vertex Cover}}: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, covering all the edges of G?
k-Vertex Cover

k-Vertex Cover: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, covering all the edges of G?

Easy branching rule: Let (G, k) be an instance and let $e = \{u, v\}$ be an edge of G.
k-Vertex Cover

k-Vertex Cover: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, covering all the edges of G?

Easy branching rule: Let (G, k) be an instance and let $e = \{u, v\}$ be an edge of G. Then branch into the two smaller instances

$$(G - u, k - 1) \text{ and } (G - v, k - 1)$$
k-Vertex Cover

k-Vertex Cover: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, covering all the edges of G?

Easy branching rule: Let (G, k) be an instance and let $e = \{u, v\}$ be an edge of G. Then branch into the two smaller instances $(G - u, k - 1)$ and $(G - v, k - 1)$

$$< k+1$$

\[\begin{array}{c}
 \emptyset \\
 u \quad v \\
 s \quad t \quad e'=(s,t) \quad u \quad w \quad e''=(u,w) \\
 x \quad y \\
 \end{array} \]
k-Vertex Cover

k-Vertex Cover: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, covering all the edges of G?

Easy branching rule: Let (G, k) be an instance and let $e = \{u, v\}$ be an edge of G. Then branch into the two smaller instances

$$(G - u, k - 1) \text{ and } (G - v, k - 1)$$

Running time: $O(2^k \cdot (m + n))$

Here, $n = |V(G)|$ and $m = |E(G)|$
We get three very different running times

Summarizing:

- **Vertex k-Coloring**: NP-hard for fixed $k = 3$.
- **k-Independent Set**: Solvable in time $O(k^2 \cdot n^k)$
- **k-Vertex Cover**: Solvable in time $O(2^k \cdot (m + n))$
We get three very different running times

Summarizing:

- **Vertex k-Coloring**: NP-hard for fixed \(k = 3 \).

- **k-Independent Set**: Solvable in time \(O(k^2 \cdot n^k) = f(k) \cdot n^{g(k)} \).

- **k-Vertex Cover**: Solvable in time \(O(2^k \cdot (m + n)) = f(k) \cdot n^{O(1)} \).
We get three very different running times

Summarizing:

- **Vertex k-Coloring**: NP-hard for fixed $k = 3$.
- **k-Independent Set**: Solvable in time $O(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.
- **k-Vertex Cover**: Solvable in time $O(2^k \cdot (m + n)) = f(k) \cdot n^{O(1)}$.

The behavior of these three NP-hard problems is very different.
Comparison between $O(2^k \cdot n)$ and $O(n^{k+1})$

The behavior of these two types of functions is dramatically different:

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th>$n = 100$</th>
<th>$n = 150$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 2$</td>
<td>625</td>
<td>2.500</td>
<td>5.625</td>
</tr>
<tr>
<td>$k = 3$</td>
<td>15.625</td>
<td>125.000</td>
<td>421.875</td>
</tr>
<tr>
<td>$k = 5$</td>
<td>390.625</td>
<td>6.250.000</td>
<td>31.640.623</td>
</tr>
<tr>
<td>$k = 10$</td>
<td>1.9×10^{12}</td>
<td>9.8×10^{14}</td>
<td>3.7×10^{16}</td>
</tr>
<tr>
<td>$k = 20$</td>
<td>1.8×10^{26}</td>
<td>9.5×10^{31}</td>
<td>2.1×10^{35}</td>
</tr>
</tbody>
</table>

The ratio $\frac{n^{k+1}}{2^k \cdot n}$ for several values of n and k.
1. Why parameterized complexity?

2. Basic definitions

3. Kernelization

4. Some techniques
The area of parameterized complexity

Idea Measure the complexity of an algorithm in terms of the input size and an additional parameter.
The area of parameterized complexity

Idea Measure the complexity of an algorithm in terms of the input size and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established area with hundreds of articles published every year in the most prestigious TCS journals and conferences.
Parameterized problems

A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

Examples:
- Decide whether a graph G has an independent set (or clique) of size at least k.
- Decide whether a graph G has a vertex cover of size at most k.
- Decide whether a graph G has a clique of size at least k, parameterized by the maximum degree Δ of G.
- Decide whether a graph G has a clique of size at least k, parameterized by the treewidth $tw(G)$ of G.
A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.
Parameterized problems

A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

For an instance $(x, k) \in \Sigma^* \times \mathbb{N},$ k is called the parameter.

Examples:

- Decide whether a graph G has an independent set (or clique) of size at least k.
- Decide whether a graph G has a vertex cover of size at most k.
A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.

Examples:

- Decide whether a graph G has an independent set (or clique) of size at least k.
- Decide whether a graph G has a vertex cover of size at most k.
- Decide whether a graph G has a clique of size at least k, parameterized by the maximum degree Δ of G.
- Decide whether a graph G has a clique of size at least k, parameterized by the treewidth $tw(G)$ of G.
A parameterized problem \(L \subseteq \Sigma^* \times \mathbb{N} \) is **fixed-parameter tractable (FPT)** if there exists an algorithm \(\mathcal{A} \) (**FPT algorithm**), a computable function \(f : \mathbb{N} \to \mathbb{N} \), and a constant \(c \) such that, given \((x, k) \in \Sigma^* \times \mathbb{N}\), the algorithm \(\mathcal{A} \) decides whether \((x, k) \in L\) in time bounded by

\[
f(k) \cdot |(x, k)|^c.
\]
Classes FPT and XP

A parameterized problem \(L \subseteq \Sigma^* \times \mathbb{N} \) is **fixed-parameter tractable (FPT)** if there exists an algorithm \(\mathcal{A} \) (FPT algorithm), a computable function \(f : \mathbb{N} \rightarrow \mathbb{N} \), and a constant \(c \) such that, given \((x, k) \in \Sigma^* \times \mathbb{N} \), the algorithm \(\mathcal{A} \) decides whether \((x, k) \in L \) in time bounded by

\[
f(k) \cdot |(x, k)|^c.
\]

A parameterized problem \(L \subseteq \Sigma^* \times \mathbb{N} \) is **slice-wise polynomial (XP)** if there exists an algorithm \(\mathcal{A} \) (XP algorithm) and two computable functions \(f, g : \mathbb{N} \rightarrow \mathbb{N} \) such that, given \((x, k) \in \Sigma^* \times \mathbb{N} \), the algorithm \(\mathcal{A} \) decides whether \((x, k) \in L \) in time bounded by

\[
f(k) \cdot |(x, k)|^{g(k)}.
\]
Now we can classify the previous problems

- **k-Vertex Cover**: Solvable in time $O(2^k \cdot (m + n)) = f(k) \cdot n^{O(1)}$.

 The problem is FPT.

- **k-Independent Set**: Solvable in time $O(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.

 The problem is XP.

- **Vertex k-Coloring**: NP-hard for fixed $k = 3$.

Now we can classify the previous problems

- **k-Vertex Cover**: Solvable in time $O(2^k \cdot (m + n)) = f(k) \cdot n^{O(1)}$.

 The problem is FPT.

- **k-Independent Set**: Solvable in time $O(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.

 The problem is XP.

- **Vertex k-Coloring**: NP-hard for fixed $k = 3$.

 Such problems are called para-NP-hard.
Summary: FPT, XP, and para-NP
Are all parameterized problems FPT?

k-Independent Set: Solvable in time $O(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.

k-Clique: So far, nobody has managed to find an FPT algorithm.

(Also, nobody has found a poly-time algorithm for 3-SAT.)

Working hypothesis of parameterized complexity: k-Clique is not FPT (in classical complexity: 3-SAT cannot be solved in poly-time).
Are all parameterized problems FPT?

\(k\)-CLIQUE: Solvable in time \(O(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}\).
Are all parameterized problems FPT?

\(k\text{-CLIQUE} \): Solvable in time \(O(k^2 \cdot n^k) = f(k) \cdot n^{g(k)} \).

Why \(k\text{-CLIQUE} \) may not be FPT?
Are all parameterized problems FPT?

\textbf{k-Clique}: Solvable in time \(O(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}\).

Why \textbf{k-Clique} may not be FPT?

So far, nobody has managed to find an FPT algorithm.
(Also, nobody has found a poly-time algorithm for 3-SAT)
Are all parameterized problems FPT?

\[k\text{-CLIQUE}: \text{Solvable in time } O(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}. \]

Why \(k\text{-CLIQUE} \) may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: \textbf{\(k\text{-CLIQUE} \) is not FPT}
Are all parameterized problems FPT?

\(k\text{-CLIQUE} \): Solvable in time \(O(k^2 \cdot n^k) = f(k) \cdot n^{g(k)} \).

Why \(k\text{-CLIQUE} \) may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: \(k\text{-CLIQUE} \) is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)
How to transfer the hardness among parameterized problems?

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems. A parameterized reduction from A to B is an algorithm that, given an instance (x, k) of A, outputs an instance (x', k') of B such that

1. (x, k) is a Yes-instance of A ⇔ (x', k') is a Yes-instance of B, and
2. $k' \leq g(k)$ for some computable function g, and
3. the running time is $f(k) \cdot |x|^{O(1)}$ for some computable function f.

$W[1]$-hard problem: \exists parameterized reduction from k-Clique to it.

Being $W[i]$-hard is a strong evidence of not being FPT.
How to transfer the hardness among parameterized problems?

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems. A parameterized reduction from A to B is an algorithm that, given an instance (x, k) of A, outputs an instance (x', k') of B such that

1. (x, k) is a Yes-instance of A if and only if (x', k') is a Yes-instance of B,
2. $k' \leq g(k)$ for some computable function g,
3. the running time is $f(k) \cdot |x|^{O(1)}$ for some computable function f.

$W[1]$-hard problem: \exists parameterized reduction from k-Clique to it.

Being $W[i]$-hard is a strong evidence of not being FPT.
How to transfer the hardness among parameterized problems?

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems. A parameterized reduction from A to B is an algorithm that, given an instance (x, k) of A, outputs an instance (x', k') of B such that

1. (x, k) is a YES-instance of A \iff (x', k') is a YES-instance of B,

2. $k' \leq g(k)$ for some computable function g, and

3. the running time is $f(k) \cdot |x|^{O(1)}$ for some computable function f.

$W[1]$-hard problem: \exists parameterized reduction from k-Clique to it.

Being $W[i]$-hard is a strong evidence of not being FPT.
How to transfer the hardness among parameterized problems?

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems. A parameterized reduction from A to B is an algorithm that, given an instance (x, k) of A, outputs an instance (x', k') of B such that

1. (x, k) is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of B, and
2. $k' \leq g(k)$ for some computable function g, and
How to transfer the hardness among parameterized problems?

Let \(A, B \subseteq \Sigma^* \times \mathbb{N} \) be two parameterized problems. A \textit{parameterized reduction} from \(A \) to \(B \) is an algorithm that, given an instance \((x, k)\) of \(A \), outputs an instance \((x', k')\) of \(B \) such that

1. \((x, k)\) is a \textit{Yes}-instance of \(A \) \(\Leftrightarrow\) \((x', k')\) is a \textit{Yes}-instance of \(B \),
2. \(k' \leq g(k)\) for some computable function \(g \), and
3. the running time is \(f(k) \cdot |x|^{O(1)} \) for some computable function \(f \).
How to transfer the hardness among parameterized problems?

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems. A parameterized reduction from A to B is an algorithm that, given an instance (x, k) of A, outputs an instance (x', k') of B such that

1. (x, k) is a YES-instance of A \iff (x', k') is a YES-instance of B,
2. $k' \leq g(k)$ for some computable function g, and
3. the running time is $f(k) \cdot |x|^{O(1)}$ for some computable function f.

$W[1]$-hard problem: \exists parameterized reduction from k-CLIQUE to it.
How to transfer the hardness among parameterized problems?

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems. A parameterized reduction from A to B is an algorithm that, given an instance (x, k) of A, outputs an instance (x', k') of B such that

1. (x, k) is a YES-instance of $A \iff (x', k')$ is a YES-instance of B,
2. $k' \leq g(k)$ for some computable function g, and
3. the running time is $f(k) \cdot |x|^O(1)$ for some computable function f.

$W[1]$-hard problem: \exists parameterized reduction from k-CLIQUE to it.

$W[2]$-hard problem: \exists param. reduction from k-DOMINATING SET to it.
How to transfer the hardness among parameterized problems?

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems. A parameterized reduction from A to B is an algorithm that, given an instance (x, k) of A, outputs an instance (x', k') of B such that

1. (x, k) is a YES-instance of A \iff (x', k') is a YES-instance of B,
2. $k' \leq g(k)$ for some computable function g, and
3. the running time is $f(k) \cdot |x|^{O(1)}$ for some computable function f.

$W[1]$-hard problem: \exists parameterized reduction from k-CLIQUE to it.

$W[2]$-hard problem: \exists param. reduction from k-DOMINATING SET to it.

Being $W[i]$-hard is a strong evidence of not being FPT.
Hierarchy of classes of parameterized problems

para-NP

W[1]

W[2]

W[SAT]

W[P]

FPT

XP
Next section is...

1. Why parameterized complexity?

2. Basic definitions

3. **Kernelization**

4. Some techniques
Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem L is an algorithm A that, given an instance (x, k) of L, works in polynomial time and returns an equivalent instance (x', k') of L such that $|x'| + k' \leq g(k)$ for some computable function $g: \mathbb{N} \rightarrow \mathbb{N}$. The function g is called the size of the kernel. If g is a polynomial, then we speak about a polynomial kernel. Folklore: A problem is FPT \iff it admits a kernel.
A kernel for a parameterized problem L is an algorithm A that, given an instance (x, k) of L, works in polynomial time and returns an equivalent instance (x', k') of L such that $|x'| + k' \leq g(k)$ for some computable function $g : \mathbb{N} \to \mathbb{N}$.
A kernel for a parameterized problem L is an algorithm A that, given an instance (x, k) of L, works in polynomial time and returns an equivalent instance (x', k') of L such that $|x'| + k' \leq g(k)$ for some computable function $g : \mathbb{N} \rightarrow \mathbb{N}$.

The function g is called the size of the kernel.
Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem L is an algorithm A that, given an instance (x, k) of L, works in polynomial time and returns an equivalent instance (x', k') of L such that $|x'| + k' \leq g(k)$ for some computable function $g : \mathbb{N} \to \mathbb{N}$.

The function g is called the size of the kernel.

If g is a polynomial, then we speak about a polynomial kernel.
Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem L is an algorithm A that, given an instance (x, k) of L, works in polynomial time and returns an equivalent instance (x', k') of L such that $|x'| + k' \leq g(k)$ for some computable function $g : \mathbb{N} \rightarrow \mathbb{N}$.

The function g is called the size of the kernel.

If g is a polynomial, then we speak about a polynomial kernel.

Folklore: A problem is FPT \iff it admits a kernel
Can a given set S of points in the plane be covered by at most k lines?
Can a given set S of points in the plane be covered by at most k lines?

Observation 1: We can just consider the lines generated by pairs of points in S.
Example of kernel for a geometric problem

Can a given set S of points in the plane be covered by at most k lines?

Observation 2: If a line L contains at least $k + 1$ points, then it necessarily belongs to the solution (if it exists)

$⇒$ delete L and update $k \rightarrow k - 1$
Can a given set S of points in the plane be covered by at most k lines?

Observation 2: If a line L contains at least $k + 1$ points, then it necessarily belongs to the solution (if it exists) (in the example, $k = 3$)

\Rightarrow delete L and update $k \rightarrow k - 1$

\Rightarrow The reduced instance must contain at most k^2 points (if more, answer is "No")
Do all FPT problems admit polynomial kernels?

Folklore: A problem is FPT \iff it admits a kernel

Theorem: Deciding whether a graph has a Path with $\geq k$ vertices is FPT but does not admit a polynomial kernel, unless $\text{NP} \subseteq \text{coNP}/\text{poly}$.
Do all FPT problems admit polynomial kernels?

Folklore: A problem is FPT \Leftrightarrow it admits a kernel

Do all FPT problems admit polynomial kernels?

Theorem

Deciding whether a graph has a Path with $\geq k$ vertices is FPT but does not admit a polynomial kernel, unless $\text{NP} \subseteq \text{coNP}/\text{poly}$.
Do all FPT problems admit polynomial kernels?

Folklore: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels? NO!

Theorem

Deciding whether a graph has a Path with ≥ k vertices is FPT but does not admit a polynomial kernel,
Do all FPT problems admit polynomial kernels?

Folklore: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels? NO!

Theorem

Deciding whether a graph has a Path with \(\geq k \) vertices is FPT but does not admit a polynomial kernel, unless NP ⊆ coNP/poly.
1. Why parameterized complexity?

2. Basic definitions

3. Kernelization

4. Some techniques
Typical approach to deal with a parameterized problem

Parameterized problem L

k-Clique
k-Vertex Cover
k-Path
Vertex k-Coloring
Typical approach to deal with a parameterized problem

Parameterized problem L

- k-Clique
- k-Vertex Cover
- k-Path
- Vertex k-Coloring

XP

para-NP-hard
Typical approach to deal with a parameterized problem

Parameterized problem L

- k-Clique
- k-Vertex Cover
- k-Path
- Vertex k-Coloring

para-NP-hard

XP

k-Clique
k-Vertex Cover
k-Path
Vertex k-Coloring
Typical approach to deal with a parameterized problem

Parameterized problem L

- k-CLIQUE
- k-VERTEX COVER
- k-PATH
- VERTEX k-COLORING

XP

- k-CLIQUE
- k-VERTEX COVER
- k-PATH
- VERTEX k-COLORING

W[1]-hard

- k-CLIQUE
- k-VERTEX COVER
- k-PATH

FPT

- k-CLIQUE
- k-VERTEX COVER
- k-PATH
Typical approach to deal with a parameterized problem

Parameterized problem L

- k-Clique
- k-Vertex Cover
- k-Path
- Vertex k-Coloring

- $\mathcal{W}[1]$-hard
 - k-Clique

- FPT
 - k-Vertex Cover
 - k-Path
Typical approach to deal with a parameterized problem

Parameterized problem L

- k-Clique
- k-Vertex Cover
- k-Path
- Vertex k-Coloring

XP

- k-Clique
- k-Vertex Cover
- k-Path

$W[1]$-hard

- poly kernel

FPT

- k-Vertex Cover
- k-Path

para-NP-hard

- no poly kernel
Typical approach to deal with a parameterized problem

Parameterized problem L

- k-Clique
- k-Vertex Cover
- k-Path
- Vertex k-Coloring

XP

- k-Clique
- k-Vertex Cover
- k-Path

para-NP-hard

- Vertex k-Coloring

W[1]-hard

FPT

- k-Vertex Cover
- k-Path

poly kernel

no poly kernel

- k-Vertex Cover
- k-Path
How to prove that a problem is FPT?

There exist a bunch of techniques to obtain FPT algorithms:
- Bounded search trees
- Iterative compression
- Randomized methods (color coding, etc.)
- Tree decompositions and dynamic programming
- Important separators
- Representative sets (matroids)
How to prove that a problem is FPT?

There exist a bunch of techniques to obtain FPT algorithms:

- Bounded search trees
- Iterative compression
- Randomized methods (color coding, etc.)
- Tree decompositions and dynamic programming
- Important separators
- Representative sets (matroids)
There also exist meta-theorems to prove that whole families of problems are FPT.
Meta-techniques

There also exist meta-theorems to prove that whole families of problems are FPT.

Typical statement:

Every parameterized problem that satisfies property Π is FPT.
Meta-techniques

There also exist meta-theorems to prove that whole families of problems are FPT.

Typical statement:

Every parameterized problem that satisfies property Π is FPT on the class of graphs \mathcal{G}.
There also exist meta-theorems to prove that whole families of problems are FPT.

Typical statement:

Every parameterized problem that satisfies property Π is FPT on the class of graphs \mathcal{G}.

Let us see two examples of famous meta-theorems.
Meta-theorem 1: Courcelle’s theorem

Monadic Second Order Logic (MSOL): Graph logic that allows quantification over sets of vertices and edges. Example:

\[
\text{DomSet}(S) : \forall v \in V(G) \exists u \in S: \{u, v\} \in E(G)
\]

Treewidth: Invariant that measures the topological resemblance of a graph to a tree.

Theorem (Courcelle): Every problem expressible in MSOL can be solved in time \(f(tw) \cdot n \) on graphs on \(n \) vertices and treewidth at most \(tw \).

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle.
Meta-theorem 1: Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.
Meta-theorem 1: Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: \(\text{DomSet}(S) : \ \left[\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G) \right] \)
Meta-theorem 1: Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: \(\text{DomSet}(S) : [\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G)] \)

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.
Meta-theorem 1: Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: \(\text{DomSet}(S) : \ [\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G)] \)

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

Theorem (Courcelle)
Every problem expressible in MSOL can be solved in time \(f(tw) \cdot n \) on graphs on \(n \) vertices and treewidth at most \(tw \).
Meta-theorem 1: Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: \(\text{DomSet}(S) : \left[\forall v \in V(G) \setminus S, \exists u \in S : \{u, v\} \in E(G) \right] \)

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

Theorem (Courcelle)
Every problem expressible in MSOL can be solved in time \(f(tw) \cdot n \) on graphs on \(n \) vertices and treewidth at most \(tw \).

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle.
Meta-theorem 2: Graph minors

A parameterized problem is minor-closed if \(H \) is a minor of \(G \) implies \(\text{param}(H) \leq \text{param}(G) \).

Theorem (Robertson and Seymour)

Every minor-closed graph problem is FPT.
Meta-theorem 2: Graph minors

\[G \xrightarrow{\text{contracting edges}} H \]

\(H \) is a **minor** of a graph \(G \) if \(H \) can be obtained from a subgraph of \(G \) by contracting edges.

Theorem (Robertson and Seymour)

Every minor-closed graph problem is **FPT**.

Examples: Vertex Cover, Feedback Vertex Set, Longest Path.
Meta-theorem 2: Graph minors

\(H \) is a minor of a graph \(G \) if \(H \) can be obtained from a subgraph of \(G \) by contracting edges.

A parameterized problem is minor-closed if

\[
H \text{ is a minor of } G \implies \text{param}(H) \leq \text{param}(G).
\]
Meta-theorem 2: Graph minors

H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.

A parameterized problem is minor-closed if

$$H \text{ is a minor of } G \Rightarrow \text{param}(H) \leq \text{param}(G).$$

Theorem (Robertson and Seymour)

Every minor-closed graph problem is FPT.
Meta-theorem 2: Graph minors

A parameterized problem is **minor-closed** if

\[H \text{ is a minor of } G \implies \text{param}(H) \leq \text{param}(G). \]

Theorem (Robertson and Seymour)

Every **minor-closed** graph problem is FPT.

Examples: Vertex Cover, Feedback Vertex Set, Longest Path.
Is it enough to prove that a problem is FPT?

Typically, these meta-theorems allow to prove that a problem is FPT...
Typically, these meta-theorems allow to prove that a problem is FPT... but the running time can be huge!
Typically, these meta-theorems allow to prove that a problem is **FPT**... but the *running time* can be huge!

\[
f(k) \cdot n^{O(1)}
\]
Typically, these meta-theorems allow to prove that a problem is FPT... but the running time can be huge!

\[f(k) \cdot n^{O(1)} = 2^{345678k} \cdot n^{O(1)} \]
Is it enough to prove that a problem is FPT?

Typically, these meta-theorems allow to prove that a problem is FPT...
but the running time can be huge!

\[f(k) \cdot n^{O(1)} = 2^{345678k} \cdot n^{O(1)} \]

Major goal: find the smallest possible function \(f(k) \).
Is it enough to prove that a problem is FPT?

Typically, these meta-theorems allow to prove that a problem is FPT...

but the running time can be huge!

\[f(k) \cdot n^{O(1)} = 2^{3^{678^k}} \cdot n^{O(1)} \]

Major goal: find the smallest possible function \(f(k) \).

This is one of the most active areas in parameterized complexity.
Lower bounds on the running times of FPT algorithms

- Suppose that we have an FPT algorithm in time $k^{O(k)} \cdot n^{O(1)}$.
Lower bounds on the running times of FPT algorithms

- Suppose that we have an FPT algorithm in time $k^{O(k)} \cdot n^{O(1)}$.
- Is it possible to obtain an FPT algorithm in time $2^{O(k)} \cdot n^{O(1)}$?
Lower bounds on the running times of FPT algorithms

- Suppose that we have an FPT algorithm in time $k^{O(k)} \cdot n^{O(1)}$.
- Is it possible to obtain an FPT algorithm in time $2^{O(k)} \cdot n^{O(1)}$?
- Is it possible to obtain an FPT algorithm in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

Very helpful tool: (Strong) Exponential Time Hypothesis (S)ETH

- ETH: The 3-SAT problem on n variables cannot be solved in time $2^{o(n)}$.
- SETH: The SAT problem on n variables cannot be solved in time $(2 - \varepsilon)^n$.

SETH \Rightarrow ETH \Rightarrow FPT \neq W[1] \Rightarrow P \neq NP

Typical statements:
- ETH \Rightarrow k-Vertex Cover cannot be solved in time $2^{o(k)} \cdot n^{O(1)}$.
- ETH \Rightarrow Planar k-Vertex Cover cannot be solved in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

32/37
Lower bounds on the running times of FPT algorithms

- Suppose that we have an FPT algorithm in time $k^{O(k)} \cdot n^{O(1)}$.
- Is it possible to obtain an FPT algorithm in time $2^{O(k)} \cdot n^{O(1)}$?
- Is it possible to obtain an FPT algorithm in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

Very helpful tool: (Strong) Exponential Time Hypothesis
Lower bounds on the running times of FPT algorithms

- Suppose that we have an FPT algorithm in time $k^{O(k)} \cdot n^{O(1)}$.
- Is it possible to obtain an FPT algorithm in time $2^{O(k)} \cdot n^{O(1)}$?
- Is it possible to obtain an FPT algorithm in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH
Lower bounds on the running times of FPT algorithms

- Suppose that we have an FPT algorithm in time $k^{O(k)} \cdot n^{O(1)}$.
- Is it possible to obtain an FPT algorithm in time $2^{O(k)} \cdot n^{O(1)}$?
- Is it possible to obtain an FPT algorithm in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time $2^{o(n)}$
Lower bounds on the running times of FPT algorithms

- Suppose that we have an FPT algorithm in time $k^{O(k)} \cdot n^{O(1)}$.
- Is it possible to obtain an FPT algorithm in time $2^{O(k)} \cdot n^{O(1)}$?
- Is it possible to obtain an FPT algorithm in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time $2^{o(n)}$.

SETH: The SAT problem on n variables cannot be solved in time $(2 - \varepsilon)^n$.
Lower bounds on the running times of FPT algorithms

- Suppose that we have an FPT algorithm in time $k^{O(k)} \cdot n^{O(1)}$.
- Is it possible to obtain an FPT algorithm in time $2^{O(k)} \cdot n^{O(1)}$?
- Is it possible to obtain an FPT algorithm in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time $2^{o(n)}$.

SETH: The SAT problem on n variables cannot be solved in time $(2 - \varepsilon)^n$.

SETH \Rightarrow ETH
Lower bounds on the running times of FPT algorithms

- Suppose that we have an FPT algorithm in time $k^{O(k)} \cdot n^{O(1)}$.
- Is it possible to obtain an FPT algorithm in time $2^{O(k)} \cdot n^{O(1)}$?
- Is it possible to obtain an FPT algorithm in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time $2^{o(n)}$.

SETH: The SAT problem on n variables cannot be solved in time $(2 - \varepsilon)^n$.

SETH \Rightarrow ETH \Rightarrow FPT \neq W[1]
Suppose that we have an FPT algorithm in time $k^{O(k)} \cdot n^{O(1)}$.

Is it possible to obtain an FPT algorithm in time $2^{O(k)} \cdot n^{O(1)}$?

Is it possible to obtain an FPT algorithm in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time $2^{o(n)}$.

SETH: The SAT problem on n variables cannot be solved in time $(2 - \varepsilon)^n$.

SETH \Rightarrow ETH \Rightarrow FPT \neq W[1] \Rightarrow P \neq NP
Lower bounds on the running times of FPT algorithms

- Suppose that we have an FPT algorithm in time $k^{O(k)} \cdot n^{O(1)}$.
- Is it possible to obtain an FPT algorithm in time $2^{O(k)} \cdot n^{O(1)}$?
- Is it possible to obtain an FPT algorithm in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time $2^{o(n)}$.

SETH: The SAT problem on n variables cannot be solved in time $(2 - \varepsilon)^n$.

SETH \Rightarrow ETH \Rightarrow FPT $\not\equiv$ W[1] \Rightarrow P $\not\equiv$ NP

Typical statements:

ETH \Rightarrow k-VERTEX COVER cannot be solved in time $2^{o(k)} \cdot n^{O(1)}$.
Lower bounds on the running times of FPT algorithms

- Suppose that we have an FPT algorithm in time $k^{O(k)} \cdot n^{O(1)}$.
- Is it possible to obtain an FPT algorithm in time $2^{O(k)} \cdot n^{O(1)}$?
- Is it possible to obtain an FPT algorithm in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time $2^{o(n)}$.

SETH: The SAT problem on n variables cannot be solved in time $(2 - \varepsilon)^n$.

| SETH | ⇒ | ETH | ⇒ | FPT ≠ W[1] | ⇒ | P ≠ NP |

Typical statements:

ETH ⇒ **k-Vertex Cover** cannot be solved in time $2^{o(k)} \cdot n^{O(1)}$.

ETH ⇒ **Planar k-Vertex Cover** cannot be solved in time $2^{o(\sqrt{k})} \cdot n^{O(1)}$.
How to prove that a problem admits a (polynomial) kernel?

There exist a bunch of techniques to obtain (polynomial) kernels:

- Sunflower lemma
- Crown decomposition
- Linear programming
- Protrusion decomposition
- Matroids
How to prove that a problem admits a (polynomial) kernel?

There exist a bunch of techniques to obtain (polynomial) kernels:

- Sunflower lemma
- Crown decomposition
- Linear programming
- Protrusion decomposition
- Matroids
As in the case of FPT algorithms, there exist meta-kernelization results.
As in the case of FPT algorithms, there exist meta-kernelization results.

Typical statement:

Every parameterized problem that satisfies property Π is admits a linear/polynomial kernel on the class of graphs \mathcal{G}.
As in the case of FPT algorithms, there exist meta-kernelization results.

Typical statement:

Every parameterized problem that satisfies property Π is admits a linear/polynomial kernel on the class of graphs \mathcal{G}.

This has been also a very active area in parameterized complexity, specially on sparse graphs: planar graphs, graphs on surfaces, minor-free graphs, ...
Meta-kernelization results on sparse graphs

\[\bigcup \begin{align*}
\{H\text{-topological-minor-free}, & \quad \text{treewidth-bounding} \\
\{H\text{-minor-free}, & \quad \text{bidimensional, separation property} \\
\text{bounded genus}, & \quad \text{quasi-compact} \\
\text{planar}, & \quad \text{“distance-property”} \end{align*} \]
Bibliography

Gràcies!