
Introduction to Parameterized Complexity

Ignasi Sau
CNRS, LIRMM, Montpellier, France

UFMG
Belo Horizonte, February 2018

1/37

Outline of the talk

1 Why parameterized complexity?

2 Basic definitions

3 Kernelization

4 Some techniques

2/37

Next section is...

1 Why parameterized complexity?

2 Basic definitions

3 Kernelization

4 Some techniques

3/37

Some history of complexity: NP-completeness

Cook-Levin Theorem (1971): the SAT problem is NP-complete.

Karp (1972): list of 21 important NP-complete problems.

Nowadays, literally thousands of problems are known to be NP-hard:
unless P = NP, they cannot be solved in polynomial time.

But what does it mean for a problem to be NP-hard?

No algorithm solves all instances optimally in polynomial time.

4/37

Some history of complexity: NP-completeness

Cook-Levin Theorem (1971): the SAT problem is NP-complete.

Karp (1972): list of 21 important NP-complete problems.

Nowadays, literally thousands of problems are known to be NP-hard:
unless P = NP, they cannot be solved in polynomial time.

But what does it mean for a problem to be NP-hard?

No algorithm solves all instances optimally in polynomial time.

4/37

Some history of complexity: NP-completeness

Cook-Levin Theorem (1971): the SAT problem is NP-complete.

Karp (1972): list of 21 important NP-complete problems.

Nowadays, literally thousands of problems are known to be NP-hard:
unless P = NP, they cannot be solved in polynomial time.

But what does it mean for a problem to be NP-hard?

No algorithm solves all instances optimally in polynomial time.

4/37

Some history of complexity: NP-completeness

Cook-Levin Theorem (1971): the SAT problem is NP-complete.

Karp (1972): list of 21 important NP-complete problems.

Nowadays, literally thousands of problems are known to be NP-hard:
unless P = NP, they cannot be solved in polynomial time.

But what does it mean for a problem to be NP-hard?

No algorithm solves all instances optimally in polynomial time.

4/37

Some history of complexity: NP-completeness

Cook-Levin Theorem (1971): the SAT problem is NP-complete.

Karp (1972): list of 21 important NP-complete problems.

Nowadays, literally thousands of problems are known to be NP-hard:
unless P = NP, they cannot be solved in polynomial time.

But what does it mean for a problem to be NP-hard?

No algorithm solves all instances optimally in polynomial time.

4/37

Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

VLSI design: the number of circuit layers is usually ≤ 10. The problem is
NP-complete, but if we fix the number of layers, it is tractable.

Computational biology: Real instances of DNA chain reconstruction have
special properties (treewidth ≤ 11) that allow for efficient algorithms.

Robotics: The number of degrees of freedom in motion planning problems
is ≤ 10. These problems become tractable under this restriction.

Compilers: Checking compatibility of type declarations is hard, but usually
the depth of type declarations is ≤ 10: the problem becomes tractable.

Summary In many applications, not only the total size of the instance
matters, but also the value of an additional parameter.

5/37

Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

VLSI design: the number of circuit layers is usually ≤ 10. The problem is
NP-complete, but if we fix the number of layers, it is tractable.

Computational biology: Real instances of DNA chain reconstruction have
special properties (treewidth ≤ 11) that allow for efficient algorithms.

Robotics: The number of degrees of freedom in motion planning problems
is ≤ 10. These problems become tractable under this restriction.

Compilers: Checking compatibility of type declarations is hard, but usually
the depth of type declarations is ≤ 10: the problem becomes tractable.

Summary In many applications, not only the total size of the instance
matters, but also the value of an additional parameter.

5/37

Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

VLSI design: the number of circuit layers is usually ≤ 10. The problem is
NP-complete, but if we fix the number of layers, it is tractable.

Computational biology: Real instances of DNA chain reconstruction have
special properties (treewidth ≤ 11) that allow for efficient algorithms.

Robotics: The number of degrees of freedom in motion planning problems
is ≤ 10. These problems become tractable under this restriction.

Compilers: Checking compatibility of type declarations is hard, but usually
the depth of type declarations is ≤ 10: the problem becomes tractable.

Summary In many applications, not only the total size of the instance
matters, but also the value of an additional parameter.

5/37

Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

VLSI design: the number of circuit layers is usually ≤ 10. The problem is
NP-complete, but if we fix the number of layers, it is tractable.

Computational biology: Real instances of DNA chain reconstruction have
special properties (treewidth ≤ 11) that allow for efficient algorithms.

Robotics: The number of degrees of freedom in motion planning problems
is ≤ 10. These problems become tractable under this restriction.

Compilers: Checking compatibility of type declarations is hard, but usually
the depth of type declarations is ≤ 10: the problem becomes tractable.

Summary In many applications, not only the total size of the instance
matters, but also the value of an additional parameter.

5/37

Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

VLSI design: the number of circuit layers is usually ≤ 10. The problem is
NP-complete, but if we fix the number of layers, it is tractable.

Computational biology: Real instances of DNA chain reconstruction have
special properties (treewidth ≤ 11) that allow for efficient algorithms.

Robotics: The number of degrees of freedom in motion planning problems
is ≤ 10. These problems become tractable under this restriction.

Compilers: Checking compatibility of type declarations is hard, but usually
the depth of type declarations is ≤ 10: the problem becomes tractable.

Summary In many applications, not only the total size of the instance
matters, but also the value of an additional parameter.

5/37

Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

VLSI design: the number of circuit layers is usually ≤ 10. The problem is
NP-complete, but if we fix the number of layers, it is tractable.

Computational biology: Real instances of DNA chain reconstruction have
special properties (treewidth ≤ 11) that allow for efficient algorithms.

Robotics: The number of degrees of freedom in motion planning problems
is ≤ 10. These problems become tractable under this restriction.

Compilers: Checking compatibility of type declarations is hard, but usually
the depth of type declarations is ≤ 10: the problem becomes tractable.

Summary In many applications, not only the total size of the instance
matters, but also the value of an additional parameter.

5/37

Three famous NP-hard problems

Let us focus on the following three problems by considering a parameter k:

k-Vertex Cover: Does a graph G contain a set
S ⊆ V (G), with |S| ≤ k, covering E (G)?

vu

k-Independent Set: Does a graph G contain a set S ⊆ V (G),
with |S| ≥ k, of pairwise non-adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
at most k colors, so that any two adjacent vertices get different
colors?

These three problems are NP-hard, but are they equally hard?

6/37

Three famous NP-hard problems

Let us focus on the following three problems by considering a parameter k:

k-Vertex Cover: Does a graph G contain a set
S ⊆ V (G), with |S| ≤ k, covering E (G)?

vu

k-Independent Set: Does a graph G contain a set S ⊆ V (G),
with |S| ≥ k, of pairwise non-adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
at most k colors, so that any two adjacent vertices get different
colors?

These three problems are NP-hard, but are they equally hard?

6/37

Three famous NP-hard problems

Let us focus on the following three problems by considering a parameter k:

k-Vertex Cover: Does a graph G contain a set
S ⊆ V (G), with |S| ≤ k, covering E (G)?

vu

k-Independent Set: Does a graph G contain a set S ⊆ V (G),
with |S| ≥ k, of pairwise non-adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
at most k colors, so that any two adjacent vertices get different
colors?

These three problems are NP-hard, but are they equally hard?

6/37

Three famous NP-hard problems

Let us focus on the following three problems by considering a parameter k:

k-Vertex Cover: Does a graph G contain a set
S ⊆ V (G), with |S| ≤ k, covering E (G)?

vu

k-Independent Set: Does a graph G contain a set S ⊆ V (G),
with |S| ≥ k, of pairwise non-adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
at most k colors, so that any two adjacent vertices get different
colors?

These three problems are NP-hard, but are they equally hard?

6/37

Three famous NP-hard problems

Let us focus on the following three problems by considering a parameter k:

k-Vertex Cover: Does a graph G contain a set
S ⊆ V (G), with |S| ≤ k, covering E (G)?

vu

k-Independent Set: Does a graph G contain a set S ⊆ V (G),
with |S| ≥ k, of pairwise non-adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
at most k colors, so that any two adjacent vertices get different
colors?

These three problems are NP-hard, but are they equally hard?

6/37

Vertex k-Coloring

Vertex k-Coloring: Can the vertices of a graph be colored with at
most k colors, so that any two adjacent vertices get different colors?

The problem is already NP-hard for fixed k = 3.

For fixed k, there is no poly-time algorithm (unless P = NP).

7/37

Vertex k-Coloring

Vertex k-Coloring: Can the vertices of a graph be colored with at
most k colors, so that any two adjacent vertices get different colors?

The problem is already NP-hard for fixed k = 3.

For fixed k, there is no poly-time algorithm (unless P = NP).

7/37

Vertex k-Coloring

Vertex k-Coloring: Can the vertices of a graph be colored with at
most k colors, so that any two adjacent vertices get different colors?

The problem is already NP-hard for fixed k = 3.

For fixed k, there is no poly-time algorithm (unless P = NP).

7/37

k-Independent Set

k-Independent Set: Does a graph G contain a set S ⊆ V (G), with
|S| ≥ k, of pairwise non-adjacent vertices?

We can generate all subsets of k vertices, and check whether they induce
an independent set or not.

Running time: O
((n

k
)
· k2)

= O(nk · k2)

8/37

k-Independent Set

k-Independent Set: Does a graph G contain a set S ⊆ V (G), with
|S| ≥ k, of pairwise non-adjacent vertices?

We can generate all subsets of k vertices, and check whether they induce
an independent set or not.

Running time: O
((n

k
)
· k2)

= O(nk · k2)

8/37

k-Independent Set

k-Independent Set: Does a graph G contain a set S ⊆ V (G), with
|S| ≥ k, of pairwise non-adjacent vertices?

We can generate all subsets of k vertices, and check whether they induce
an independent set or not.

Running time: O
((n

k
)
· k2)

= O(nk · k2)

8/37

k-Vertex Cover

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, covering all the edges of G?

Easy branching rule: Let (G , k) be an instance and let e = {u, v} be an
edge of G . Then branch into the two smaller instances

(G − u, k − 1) and (G − v , k − 1)

< k+1

u v

s t u w

x y t z

e"=(u,w)

e=(u,v)

e’=(s,t)

Running time: O(2k · (m + n))

Here, n = |V (G)| and m = |E (G)|

9/37

k-Vertex Cover

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, covering all the edges of G?

Easy branching rule: Let (G , k) be an instance and let e = {u, v} be an
edge of G .

Then branch into the two smaller instances

(G − u, k − 1) and (G − v , k − 1)

< k+1

u v

s t u w

x y t z

e"=(u,w)

e=(u,v)

e’=(s,t)

Running time: O(2k · (m + n))

Here, n = |V (G)| and m = |E (G)|

9/37

k-Vertex Cover

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, covering all the edges of G?

Easy branching rule: Let (G , k) be an instance and let e = {u, v} be an
edge of G . Then branch into the two smaller instances

(G − u, k − 1) and (G − v , k − 1)

< k+1

u v

s t u w

x y t z

e"=(u,w)

e=(u,v)

e’=(s,t)

Running time: O(2k · (m + n))

Here, n = |V (G)| and m = |E (G)|

9/37

k-Vertex Cover

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, covering all the edges of G?

Easy branching rule: Let (G , k) be an instance and let e = {u, v} be an
edge of G . Then branch into the two smaller instances

(G − u, k − 1) and (G − v , k − 1)

< k+1

u v

s t u w

x y t z

e"=(u,w)

e=(u,v)

e’=(s,t)

Running time: O(2k · (m + n))

Here, n = |V (G)| and m = |E (G)|

9/37

k-Vertex Cover

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, covering all the edges of G?

Easy branching rule: Let (G , k) be an instance and let e = {u, v} be an
edge of G . Then branch into the two smaller instances

(G − u, k − 1) and (G − v , k − 1)

< k+1

u v

s t u w

x y t z

e"=(u,w)

e=(u,v)

e’=(s,t)

Running time: O(2k · (m + n))

Here, n = |V (G)| and m = |E (G)|

9/37

We get three very different running times

Summarizing:

Vertex k-Coloring: NP-hard for fixed k = 3.

k-Independent Set: Solvable in time O(k2 · nk)

k-Vertex Cover: Solvable in time O(2k · (m + n))

The behavior of these three NP-hard problems is very different.

10/37

We get three very different running times

Summarizing:

Vertex k-Coloring: NP-hard for fixed k = 3.

k-Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The behavior of these three NP-hard problems is very different.

10/37

We get three very different running times

Summarizing:

Vertex k-Coloring: NP-hard for fixed k = 3.

k-Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The behavior of these three NP-hard problems is very different.

10/37

Comparison between O(2k · n) and O(nk+1)

The behavior of these two types of functions is dramatically different:

n = 50 n = 100 n = 150
k = 2 625 2.500 5.625
k = 3 15.625 125.000 421.875
k = 5 390.625 6.250.000 31.640.623
k = 10 1, 9× 1012 9, 8× 1014 3, 7× 1016

k = 20 1, 8× 1026 9, 5× 1031 2, 1× 1035

The ratio nk+1

2k ·n for several values of n and k.

11/37

Next section is...

1 Why parameterized complexity?

2 Basic definitions

3 Kernelization

4 Some techniques

12/37

The area of parameterized complexity

Idea Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established area with hundreds of articles published
every year in the most prestigious TCS journals and conferences.

13/37

The area of parameterized complexity

Idea Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established area with hundreds of articles published
every year in the most prestigious TCS journals and conferences.

13/37

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

Examples:

Decide whether a graph G has an independent set (or clique) of size
at least k.

Decide whether a graph G has a vertex cover of size at most k.

Decide whether a graph G has a clique of size at least k,
parameterized by the maximum degree ∆ of G .

Decide whether a graph G has a clique of size at least k,
parameterized by the treewidth tw(G) of G .

14/37

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

Examples:

Decide whether a graph G has an independent set (or clique) of size
at least k.

Decide whether a graph G has a vertex cover of size at most k.

Decide whether a graph G has a clique of size at least k,
parameterized by the maximum degree ∆ of G .

Decide whether a graph G has a clique of size at least k,
parameterized by the treewidth tw(G) of G .

14/37

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

Examples:

Decide whether a graph G has an independent set (or clique) of size
at least k.

Decide whether a graph G has a vertex cover of size at most k.

Decide whether a graph G has a clique of size at least k,
parameterized by the maximum degree ∆ of G .

Decide whether a graph G has a clique of size at least k,
parameterized by the treewidth tw(G) of G .

14/37

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

Examples:

Decide whether a graph G has an independent set (or clique) of size
at least k.

Decide whether a graph G has a vertex cover of size at most k.

Decide whether a graph G has a clique of size at least k,
parameterized by the maximum degree ∆ of G .

Decide whether a graph G has a clique of size at least k,
parameterized by the treewidth tw(G) of G .

14/37

Classes FPT and XP

A parameterized problem L ⊆ Σ∗ ×N is fixed-parameter tractable (FPT)
if there exists an algorithm A (FPT algorithm), a computable function
f : N→ N, and a constant c such that, given (x , k) ∈ Σ∗ ×N, the
algorithm A decides whether (x , k) ∈ L in time bounded by

f (k) · |(x , k)|c .

A parameterized problem L ⊆ Σ∗ ×N is slice-wise polynomial (XP) if
there exists an algorithm A (XP algorithm) and two computable functions
f , g : N→ N such that, given (x , k) ∈ Σ∗ ×N, the algorithm A decides
whether (x , k) ∈ L in time bounded by

f (k) · |(x , k)|g(k).

15/37

Classes FPT and XP

A parameterized problem L ⊆ Σ∗ ×N is fixed-parameter tractable (FPT)
if there exists an algorithm A (FPT algorithm), a computable function
f : N→ N, and a constant c such that, given (x , k) ∈ Σ∗ ×N, the
algorithm A decides whether (x , k) ∈ L in time bounded by

f (k) · |(x , k)|c .

A parameterized problem L ⊆ Σ∗ ×N is slice-wise polynomial (XP) if
there exists an algorithm A (XP algorithm) and two computable functions
f , g : N→ N such that, given (x , k) ∈ Σ∗ ×N, the algorithm A decides
whether (x , k) ∈ L in time bounded by

f (k) · |(x , k)|g(k).

15/37

Now we can classify the previous problems

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT.

k-Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP.

Vertex k-Coloring: NP-hard for fixed k = 3.

Such problems are called para-NP-hard.

16/37

Now we can classify the previous problems

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT.

k-Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP.

Vertex k-Coloring: NP-hard for fixed k = 3.

Such problems are called para-NP-hard.

16/37

Summary: FPT, XP, and para-NP

para-NP XP

FPT

17/37

Are all parameterized problems FPT?

k-Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

18/37

Are all parameterized problems FPT?

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

18/37

Are all parameterized problems FPT?

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

18/37

Are all parameterized problems FPT?

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

18/37

Are all parameterized problems FPT?

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

18/37

Are all parameterized problems FPT?

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

18/37

How to transfer the hardness among parameterized
problems?

Let A, B ⊆ Σ∗ ×N be two parameterized problems. A parameterized
reduction from A to B is an algorithm that, given an instance (x , k) of A,
outputs an instance (x ′, k ′) of B such that

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B,
2 k ′ ≤ g(k) for some computable function g , and
3 the running time is f (k) · |x |O(1) for some computable function f .

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

Being W[i]-hard is a strong evidence of not being FPT.

19/37

How to transfer the hardness among parameterized
problems?

Let A, B ⊆ Σ∗ ×N be two parameterized problems. A parameterized
reduction from A to B is an algorithm that, given an instance (x , k) of A,
outputs an instance (x ′, k ′) of B such that

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B,
2 k ′ ≤ g(k) for some computable function g , and
3 the running time is f (k) · |x |O(1) for some computable function f .

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

Being W[i]-hard is a strong evidence of not being FPT.

19/37

How to transfer the hardness among parameterized
problems?

Let A, B ⊆ Σ∗ ×N be two parameterized problems. A parameterized
reduction from A to B is an algorithm that, given an instance (x , k) of A,
outputs an instance (x ′, k ′) of B such that

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B,

2 k ′ ≤ g(k) for some computable function g , and
3 the running time is f (k) · |x |O(1) for some computable function f .

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

Being W[i]-hard is a strong evidence of not being FPT.

19/37

How to transfer the hardness among parameterized
problems?

Let A, B ⊆ Σ∗ ×N be two parameterized problems. A parameterized
reduction from A to B is an algorithm that, given an instance (x , k) of A,
outputs an instance (x ′, k ′) of B such that

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B,
2 k ′ ≤ g(k) for some computable function g , and

3 the running time is f (k) · |x |O(1) for some computable function f .

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

Being W[i]-hard is a strong evidence of not being FPT.

19/37

How to transfer the hardness among parameterized
problems?

Let A, B ⊆ Σ∗ ×N be two parameterized problems. A parameterized
reduction from A to B is an algorithm that, given an instance (x , k) of A,
outputs an instance (x ′, k ′) of B such that

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B,
2 k ′ ≤ g(k) for some computable function g , and
3 the running time is f (k) · |x |O(1) for some computable function f .

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

Being W[i]-hard is a strong evidence of not being FPT.

19/37

How to transfer the hardness among parameterized
problems?

Let A, B ⊆ Σ∗ ×N be two parameterized problems. A parameterized
reduction from A to B is an algorithm that, given an instance (x , k) of A,
outputs an instance (x ′, k ′) of B such that

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B,
2 k ′ ≤ g(k) for some computable function g , and
3 the running time is f (k) · |x |O(1) for some computable function f .

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

Being W[i]-hard is a strong evidence of not being FPT.

19/37

How to transfer the hardness among parameterized
problems?

Let A, B ⊆ Σ∗ ×N be two parameterized problems. A parameterized
reduction from A to B is an algorithm that, given an instance (x , k) of A,
outputs an instance (x ′, k ′) of B such that

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B,
2 k ′ ≤ g(k) for some computable function g , and
3 the running time is f (k) · |x |O(1) for some computable function f .

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

Being W[i]-hard is a strong evidence of not being FPT.

19/37

How to transfer the hardness among parameterized
problems?

Let A, B ⊆ Σ∗ ×N be two parameterized problems. A parameterized
reduction from A to B is an algorithm that, given an instance (x , k) of A,
outputs an instance (x ′, k ′) of B such that

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B,
2 k ′ ≤ g(k) for some computable function g , and
3 the running time is f (k) · |x |O(1) for some computable function f .

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

Being W[i]-hard is a strong evidence of not being FPT.

19/37

Hierarchy of classes of parameterized problems

W[SAT]

para-NP XP

W[P]

W[2]

W[1]

FPT

··
·

20/37

Next section is...

1 Why parameterized complexity?

2 Basic definitions

3 Kernelization

4 Some techniques

21/37

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem L is an algorithm A that, given an
instance (x , k) of L, works in polynomial time and returns an equivalent
instance (x ′, k ′) of L such that |x ′|+ k ′ ≤ g(k) for some computable
function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial, then we speak about a polynomial kernel.

Folklore: A problem is FPT ⇔ it admits a kernel

22/37

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem L is an algorithm A that, given an
instance (x , k) of L, works in polynomial time and returns an equivalent
instance (x ′, k ′) of L such that |x ′|+ k ′ ≤ g(k) for some computable
function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial, then we speak about a polynomial kernel.

Folklore: A problem is FPT ⇔ it admits a kernel

22/37

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem L is an algorithm A that, given an
instance (x , k) of L, works in polynomial time and returns an equivalent
instance (x ′, k ′) of L such that |x ′|+ k ′ ≤ g(k) for some computable
function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial, then we speak about a polynomial kernel.

Folklore: A problem is FPT ⇔ it admits a kernel

22/37

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem L is an algorithm A that, given an
instance (x , k) of L, works in polynomial time and returns an equivalent
instance (x ′, k ′) of L such that |x ′|+ k ′ ≤ g(k) for some computable
function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial, then we speak about a polynomial kernel.

Folklore: A problem is FPT ⇔ it admits a kernel

22/37

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem L is an algorithm A that, given an
instance (x , k) of L, works in polynomial time and returns an equivalent
instance (x ′, k ′) of L such that |x ′|+ k ′ ≤ g(k) for some computable
function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial, then we speak about a polynomial kernel.

Folklore: A problem is FPT ⇔ it admits a kernel

22/37

Example of kernel for a geometric problem

Can a given set S of points in the plane be covered by at most k lines?

23/37

Example of kernel for a geometric problem

Can a given set S of points in the plane be covered by at most k lines?

Observation 1: We can just consider the lines generated by pairs of points in S

23/37

Example of kernel for a geometric problem

Can a given set S of points in the plane be covered by at most k lines?

Observation 2: If a line L contains at least k + 1 points, then it necessarily
belongs to the solution (if it exists) (in the example, k = 3)

⇒ delete L and update k → k − 1

23/37

Example of kernel for a geometric problem

Can a given set S of points in the plane be covered by at most k lines?

Observation 2: If a line L contains at least k + 1 points, then it necessarily
belongs to the solution (if it exists) (in the example, k = 3)

⇒ delete L and update k → k − 1

⇒ The reduced instance must contain at most k2 points (if more, answer is “No”)

23/37

Do all FPT problems admit polynomial kernels?

Folklore: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels? NO!

Theorem
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.

24/37

Do all FPT problems admit polynomial kernels?

Folklore: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels?

NO!

Theorem
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.

24/37

Do all FPT problems admit polynomial kernels?

Folklore: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels? NO!

Theorem
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel,

unless NP ⊆ coNP/poly.

24/37

Do all FPT problems admit polynomial kernels?

Folklore: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels? NO!

Theorem
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.

24/37

Next section is...

1 Why parameterized complexity?

2 Basic definitions

3 Kernelization

4 Some techniques

25/37

Typical approach to deal with a parameterized problem

Parameterized problem L
k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

26/37

Typical approach to deal with a parameterized problem

Parameterized problem L

para-NP-hardXP

k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

26/37

Typical approach to deal with a parameterized problem

Parameterized problem L

para-NP-hardXP
Vertex k-Coloring

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

26/37

Typical approach to deal with a parameterized problem

Parameterized problem L

para-NP-hardXP

W[1]-hard FPT

Vertex k-Coloring

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

26/37

Typical approach to deal with a parameterized problem

Parameterized problem L

para-NP-hardXP

W[1]-hard FPT

Vertex k-Coloring

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

26/37

Typical approach to deal with a parameterized problem

Parameterized problem L

para-NP-hardXP

W[1]-hard FPT

poly kernel no poly kernel

Vertex k-Coloring

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

26/37

Typical approach to deal with a parameterized problem

Parameterized problem L

para-NP-hardXP

W[1]-hard FPT

poly kernel no poly kernel

Vertex k-Coloring

k-Clique

k-Vertex Cover

k-Path

k-Clique

k-Vertex Cover

k-Path

k-Pathk-Vertex Cover

k-Clique

k-Vertex Cover

k-Path

Vertex k-Coloring

26/37

How to prove that a problem is FPT?

There exist a bunch of techniques to obtain FPT algorithms:

Bounded search trees

Iterative compression

Randomized methods (color coding, etc.)

Tree decompositions and dynamic programming

Important separators

Representative sets (matroids)

27/37

How to prove that a problem is FPT?

There exist a bunch of techniques to obtain FPT algorithms:

Bounded search trees

Iterative compression

Randomized methods (color coding, etc.)

Tree decompositions and dynamic programming

Important separators

Representative sets (matroids)

27/37

Meta-techniques

There also exist meta-theorems to prove that whole families of problems
are FPT.

Typical statement:

Every parameterized problem that satisfies property Π is FPT
on the class of graphs G.

Let us see two examples of famous meta-theorems.

28/37

Meta-techniques

There also exist meta-theorems to prove that whole families of problems
are FPT.

Typical statement:

Every parameterized problem that satisfies property Π is FPT

on the class of graphs G.

Let us see two examples of famous meta-theorems.

28/37

Meta-techniques

There also exist meta-theorems to prove that whole families of problems
are FPT.

Typical statement:

Every parameterized problem that satisfies property Π is FPT
on the class of graphs G.

Let us see two examples of famous meta-theorems.

28/37

Meta-techniques

There also exist meta-theorems to prove that whole families of problems
are FPT.

Typical statement:

Every parameterized problem that satisfies property Π is FPT
on the class of graphs G.

Let us see two examples of famous meta-theorems.

28/37

Meta-theorem 1: Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

Theorem (Courcelle)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle.

29/37

Meta-theorem 1: Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

Theorem (Courcelle)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle.

29/37

Meta-theorem 1: Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

Theorem (Courcelle)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle.

29/37

Meta-theorem 1: Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

Theorem (Courcelle)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle.

29/37

Meta-theorem 1: Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

Theorem (Courcelle)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle.

29/37

Meta-theorem 1: Courcelle’s theorem

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G)]

Treewidth:
Invariant that measures the topological resemblance of a graph to a tree.

Theorem (Courcelle)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle.

29/37

Meta-theorem 2: Graph minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges.

A parameterized problem is minor-closed if

H is a minor of G ⇒ param(H) ≤ param(G).

Theorem (Robertson and Seymour)
Every minor-closed graph problem is FPT.

Examples: Vertex Cover, Feedback Vertex Set, Longest Path.

30/37

Meta-theorem 2: Graph minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges.

A parameterized problem is minor-closed if

H is a minor of G ⇒ param(H) ≤ param(G).

Theorem (Robertson and Seymour)
Every minor-closed graph problem is FPT.

Examples: Vertex Cover, Feedback Vertex Set, Longest Path.

30/37

Meta-theorem 2: Graph minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges.

A parameterized problem is minor-closed if

H is a minor of G ⇒ param(H) ≤ param(G).

Theorem (Robertson and Seymour)
Every minor-closed graph problem is FPT.

Examples: Vertex Cover, Feedback Vertex Set, Longest Path.

30/37

Meta-theorem 2: Graph minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges.

A parameterized problem is minor-closed if

H is a minor of G ⇒ param(H) ≤ param(G).

Theorem (Robertson and Seymour)
Every minor-closed graph problem is FPT.

Examples: Vertex Cover, Feedback Vertex Set, Longest Path.

30/37

Meta-theorem 2: Graph minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges.

A parameterized problem is minor-closed if

H is a minor of G ⇒ param(H) ≤ param(G).

Theorem (Robertson and Seymour)
Every minor-closed graph problem is FPT.

Examples: Vertex Cover, Feedback Vertex Set, Longest Path.
30/37

Is it enough to prove that a problem is FPT?

Typically, these meta-theorems allow to prove that a problem is FPT...

but the running time can be huge!

f (k) · nO(1) = 2345678k

· nO(1)

Major goal: find the smallest possible function f (k).

This is one of the most active areas in parameterized complexity.

31/37

Is it enough to prove that a problem is FPT?

Typically, these meta-theorems allow to prove that a problem is FPT...

but the running time can be huge!

f (k) · nO(1) = 2345678k

· nO(1)

Major goal: find the smallest possible function f (k).

This is one of the most active areas in parameterized complexity.

31/37

Is it enough to prove that a problem is FPT?

Typically, these meta-theorems allow to prove that a problem is FPT...

but the running time can be huge!

f (k) · nO(1)

= 2345678k

· nO(1)

Major goal: find the smallest possible function f (k).

This is one of the most active areas in parameterized complexity.

31/37

Is it enough to prove that a problem is FPT?

Typically, these meta-theorems allow to prove that a problem is FPT...

but the running time can be huge!

f (k) · nO(1) = 2345678k

· nO(1)

Major goal: find the smallest possible function f (k).

This is one of the most active areas in parameterized complexity.

31/37

Is it enough to prove that a problem is FPT?

Typically, these meta-theorems allow to prove that a problem is FPT...

but the running time can be huge!

f (k) · nO(1) = 2345678k

· nO(1)

Major goal: find the smallest possible function f (k).

This is one of the most active areas in parameterized complexity.

31/37

Is it enough to prove that a problem is FPT?

Typically, these meta-theorems allow to prove that a problem is FPT...

but the running time can be huge!

f (k) · nO(1) = 2345678k

· nO(1)

Major goal: find the smallest possible function f (k).

This is one of the most active areas in parameterized complexity.

31/37

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).

Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

32/37

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?

Is it possible to obtain an FPT algorithm in time 2O(
√

k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

32/37

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

32/37

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis

– (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

32/37

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

32/37

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

32/37

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

32/37

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH

⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

32/37

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1]

⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

32/37

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

32/37

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).

ETH ⇒ Planar k-Vertex Cover cannot in time 2o(
√

k) · nO(1).

32/37

Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).
Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).

32/37

How to prove that a problem admits a (polynomial) kernel?

There exist a bunch of techniques to obtain (polynomial) kernels:

Sunflower lemma

Crown decomposition

Linear programming

Protrusion decomposition

Matroids

33/37

How to prove that a problem admits a (polynomial) kernel?

There exist a bunch of techniques to obtain (polynomial) kernels:

Sunflower lemma

Crown decomposition

Linear programming

Protrusion decomposition

Matroids

33/37

Meta-kernelization

As in the case of FPT algorithms, there exist meta-kernelization results.

Typical statement:

Every parameterized problem that satisfies property Π is admits a
linear/polynomial kernel on the class of graphs G.

This has been also a very active area in parameterized complexity, specially
on sparse graphs: planar graphs, graphs on surfaces, minor-free graphs, ...

34/37

Meta-kernelization

As in the case of FPT algorithms, there exist meta-kernelization results.

Typical statement:

Every parameterized problem that satisfies property Π is admits a
linear/polynomial kernel on the class of graphs G.

This has been also a very active area in parameterized complexity, specially
on sparse graphs: planar graphs, graphs on surfaces, minor-free graphs, ...

34/37

Meta-kernelization

As in the case of FPT algorithms, there exist meta-kernelization results.

Typical statement:

Every parameterized problem that satisfies property Π is admits a
linear/polynomial kernel on the class of graphs G.

This has been also a very active area in parameterized complexity, specially
on sparse graphs: planar graphs, graphs on surfaces, minor-free graphs, ...

34/37

Meta-kernelization results on sparse graphs

[Figure by Felix Reidl]
35/37

Bibliography

Parameterized Complexity, R. G. Downey and M. R. Fellows, 1999.

Invitation to Fixed-Parameter Algorithms, R. Niedermeier, 2006.

Parameterized Complexity Theory, J. Flum and M. Grohe, 2006.

Fundamentals of Parameterized Complexity, R. G. Downey, M. R.
Fellows, 2013.

Parameterized Algorithms, M. Cygan, F. V. Fomin, L. Kowalik, D.
Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, 2015.

36/37

Bibliography

Parameterized Complexity, R. G. Downey and M. R. Fellows, 1999.

Invitation to Fixed-Parameter Algorithms, R. Niedermeier, 2006.

Parameterized Complexity Theory, J. Flum and M. Grohe, 2006.

Fundamentals of Parameterized Complexity, R. G. Downey, M. R.
Fellows, 2013.

Parameterized Algorithms, M. Cygan, F. V. Fomin, L. Kowalik, D.
Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, 2015.

36/37

Gràcies!

37/37

	Why parameterized complexity?
	Basic definitions
	Kernelization
	Some techniques

