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Outline of the talk

0 Introduction, part Il
@ Treewidth
@ Dynamic programming on tree decompositions
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9 Bidimensionality
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Parameterized complexity in one slide

° given an NP-hard problem, fix one parameter of the input to
see if the problem gets more “tractable”.

Example: the size of a VERTEX COVER.

@ Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in

f(k)-n°Y for some function f.

Examples: k-VERTEX COVER, k-LONGEST PATH.
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Example: the size of a VERTEX COVER.

@ Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in

f(k)-n°Y for some function f.

Examples: k-VERTEX COVER, k-LONGEST PATH.

o Single-exponential FPT algorithm:  |20(K) . ,O(1)

@ Subexponential FPT algorithm: 20(k) . nO(1)
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Next subsection is...

e Introduction, part Il
@ Treewidth
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Tree decompositions and treewidth

A tree decomposition of a graph G is a pair D = (T, X) such that T is a

tree and X = {X; | t € V(T)} is a collection of subsets of V(G) such
that:

(each X; € X corresponds to a vertex t € V(T): we call X; node of D)
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A tree decomposition of a graph G is a pair D = (T, X) such that T is a
tree and X = {X; | t € V(T)} is a collection of subsets of V(G) such
that:

(each X; € X corresponds to a vertex t € V(T): we call X; node of D)

@ Any vertex v € V(G) and the endpoints of any edge e € E(G)
belong to some node X; of D; and

e Forany v € V(G), theset {t € V(T) | v € X;} is a subtree of T.

The width of a tree decomposition is max{|X;| | t € V(T)} — 1.

The treewidth of a graph G, denoted tw(G), is the minimum width over
all tree decompositions of G.

Invariant that measures the topological complexity of a graph.
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Tree decompositions: example
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About computing treewidth: a global picture

o ‘ Comput|ng treerdth |S NP—hard ‘ [Arnborg, Corneil, Proskurowski. 1987]
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(5 ) ‘Approximation algorithms on sparse graphs‘

e 3/2-approximation on planar graphs. [Seymour and Thomas.
e cy-approximation on H-minor-free graphs. [Demaine and Hajiaghayi.
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Next subsection is...

@ Introduction, part II

@ Dynamic programming on tree decompositions
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Example: MAX. INDEPENDENT SET

@ For each node X, let G; = G[Xj], and let
G! be the subgraph of G induced by node X; and its descendants.
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children as follows. For each S; independent set of G;:
o If X; is a child of X;, an independent set S; of G; is feasible for S; if
XinS =XN§s;.
o For each children X; of X;, let 5; be feasible for §; s.t.
(5j, aj) is defined and a; is maximized.
o Weset a; := |5+ > _:(a; — |5 N §).

@ Running time for each node X;: O(22X).

o Overall running time: 20(tw(G)) . .
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Courcelle's Theorem - algorithmic importance of treewidth

What we have seen with MAX. INDEPENDENT SET can be generalized to
a wide family of problems:

Theorem (Courcelle. 1988)

Graph problems expressible in Monadic Second Order Logic (MSOL) can
be solved in time f(k) - n®1) in graphs with n vertices and tw < k.
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Theorem (Courcelle. 1988)

Graph problems expressible in Monadic Second Order Logic (MSOL) can
be solved in time f(k) - n®1) in graphs with n vertices and tw < k.

@ In other words, all these problems are fixed -parameter tractable
(FPT) when parameterized by the treewidth of their input graphs.

@ Running time (tight):

22.“2k o(1)
2 -n .
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Next subsection is...

@ Introduction, part II

@ Structure of H-minor-free graphs
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Structure of H-minor-free graphs: roughly “bidimensional”

@ Some (simplified) preliminaries:

e h-clique-sum of two graphs G; and Gy:
choose cliques K1 C Gy and K, C G with |V(Ky)| = |V(K2)| = h,
identify them, and possibly remove some edges of that clique.
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@ Structure Theorem [Robertson and Seymour]:

Fix a graph H. There exists a constant h = f(|V/(H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs:

obtained from graphs of genus at most h by adding at most h apices
and at most h vortices of depth at most h.
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Next subsection is...

@ Introduction, part II

@ Some algorithmic issues
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Some algorithmic issues of graph minors

¢ Wi esing

Theorem (Robertson and Seymour)

Fix a graph H. Given an n-vertex graph G, one can test whether H <, G
in time O(n3).
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in time O(n3).

o Improved algorithm running in time O(n?).  [Kawarabayashi, Kobayashi, Reed. 2012]
o Even faster algorithms have been claimed... [Reed 77]

* ‘Membership in a minor-closed graph class‘

Theorem (Robertson and Seymour)

Let G be a minor-closed graph class. Given an n-vertex graph G, one can
test whether G € G in time O(n?).

Proof. By the Graph Minors Theorem, there exists a finite list of minimal
excluded minors {Fy,..., F;} for the class G. Then we can do minor testing

and check whether F; <., G in time O(n?) for each 1 < i < /.
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Some algorithmic issues of graph minors (I1)

@ Let us recall the Structure Theorem of H-minor-free graphs:

Fix a graph H. There exists a constant h = f(|V/(H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs.
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any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs.

Using this tree-like structure, a number of hard optimization problems
can be solved efficiently in H-minor-free graphs using DP.

e But... what about the constant ’ h = f(|V(H)\)‘ 77

Roughly the same constant appears in the Minor Testing algorithms.

The proofs say “there exists a constant h such that...”

% Very recently, this constant has been made explicit and “reasonable™!

[Geelen, Huynh, and Richter. 2013]
[Mazoit. 2013]
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Next subsection is...

@ Introduction, part II

@ A few words on other containment relations
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Minor: H =<,, G if H can be obtained from a subgraph of G by
contracting edges.
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Topological minor: H <, G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree < 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!

2. TOPOLOGICAL MINOR TESTING is FPT when param. by [V/(H)|?

YESI [Grohe, Kawarabayashi, Marx, Wollan. 2011]
3. Nice structure? YES! [Grohe and Marx. 2012]
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Structure of sparse graphs - a nice picture by Felix Reidl
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9 Bidimensionality
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Next subsection is...

9 Bidimensionality
@ Some ingredients
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A few representative problems

VERTEX COVER
Input: A graph and a positive integers
Parameter:

Question: Does there exist a subset

of size at most k such that
is an independent set?
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VERTEX COVER

Input: A graph and a positive integers
Parameter:
Question: Does there exist a subset of size at most k such that

is an independent set?

LoNG PATH

Input: A graph and a positive integers
Parameter:

Question: Does there exist a path /7 in G of length at least k?
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A few representative problems (II)

FEEDBACK VERTEX SET

Input: A graph and a positive integers

Parameter:

Question: Does there exist a subset of size at most k such that
for is a forest?
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A few representative problems (II)

FEEDBACK VERTEX SET

Input: A graph and a positive integers

Parameter:

Question: Does there exist a subset of size at most k such that
for is a forest?

DOMINATING SET

Input: A graph and a positive integers
Parameter:
Question: Does there exist a subset of size at most & such that

for all ?
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Minor closed parameters

e A graph class G is minor (contraction) closed if any minor
(contraction) of a graph in G is also in G.
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Minor closed parameters

e A graph class G is minor (contraction) closed if any minor
(contraction) of a graph in G is also in G.

@ A parameter P is any function mapping graphs to nonnegative
integers.

@ The parameterized problem associated with PP asks, for some fixed k,
whether for a given graph G, (for minimization) or
(for maximization problem).

@ We say that a parameter / is closed under taking of
minors/contractions (or, briefly, minor/contraction closed) if for every
graph H, / implies that
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Examples of minor/contraction closed parameters

@ Minor closed parameters:

VERTEX COVER, FEEDBACK VERTEX SET, LONG PATH,
TREEWIDTH, ...
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Examples of minor/contraction closed parameters

@ Minor closed parameters:

VERTEX COVER, FEEDBACK VERTEX SET, LONG PATH,
TREEWIDTH, ...

@ Contraction closed parameters:

DOMINATING SET, CONNECTED VERTEX COVER, r-DOMINATING
SET, ...
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Grid Exclusion Theorem

o Let Hyy be the (¢ x /)-grid: %g
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Grid Exclusion Theorem

o Let Hyy be the (¢ x /)-grid: %g We have tw (Hy /) = /.

@ As TREEWIDTH is minor closed, if @g =<m G, then
tW(G) > tW(Hgyg) =/
Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer { > 0, there is an integer c({) such that every graph of

treewidth > c(¢) contains %g as a minor.

@ Smallest possible function ¢(¢)? Q(Plogl) < c(f) < 202°
@ Some improvement: c(¢) = 20(¢log?), [Leaf and Seymour. 2012]
@ Recent breakthrough: C(E) = poly(ﬁ). [Chekuri and Chuzhoy. 2013]

Important message‘ grid-minors are the certificate of large treewidth.
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Grid Exclusion Theorems on sparse graphs

Theorem (Robertson, Seymour, Thomas. 1994)

Every planar graph of treewidth > 6 - { contains %g as a minor.
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Theorem (Robertson, Seymour, Thomas. 1994)

Every planar graph of treewidth > 6 - { contains %K as a minor.

Theorem (Demaine, Fomin, Hajiaghayi, Thilikos. 2005)

For every fixed g, there is a constant c, such that every graph of genus g

and of treewidth > cg - { contains @g as a minor.

Theorem (Demaine and Hajiaghayi. 2008)

For every fixed graph H, there is a constant cy such that every

H-minor-free graph of treewidth > cy - ¢ contains %g as a minor.

v

BeSt constant in the abOVe theorem |S by [Kawarabayashi and Kobayashi. 2012]
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Grid Exclusion Theorems on sparse graphs

Theorem (Robertson, Seymour, Thomas. 1994)

Every planar graph of treewidth > 6 - { contains %K as a minor.

Theorem (Demaine, Fomin, Hajiaghayi, Thilikos. 2005)

For every fixed g, there is a constant c, such that every graph of genus g

and of treewidth > cg - { contains @g as a minor.

Theorem (Demaine and Hajiaghayi. 2008)

For every fixed graph H, there is a constant cy such that every

H-minor-free graph of treewidth > cy - ¢ contains %g as a minor.

v

BeSt constant in the abOVe theorem |S by [Kawarabayashi and Kobayashi. 2012]

In sparse graphs: linear dependency between treewidth and grid-minors
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How to use Grid Theorems algorithmically?
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Next subsection is...

9 Bidimensionality

@ An illustrative example
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Example: FPT algorithm for Planar Vertex Cover

A vertex cover C of a graph G, vc(G), is a set of vertices such that
every edge of G has at least one endpoint in C.
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Example: FPT algorithm for Planar Vertex Cover

INPUT: Planar graph G on n vertices, and an integer k.

OUTPUT: Either a vertex cover of G of size < k, or a proof
that G has no such a vertex cover.

RUNNING TIME: 20(Vk) . ,0(1).

Objective | subexponential FPT algorithm for PLANAR VERTEX COVER.
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Example: FPT algorithm for Planar Vertex Cover

Let G be a planar graph of
treewidth > 6 - ¢
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Example: FPT algorithm for Planar Vertex Cover

Let G be a planar graph of G contains the (¢ x £)-grid
treewidth > 6 -/ Hy.¢ as a minor

@ The size of any vertex cover of Hy is at least 2)2.

@ Recall that VERTEX COVER is a minor closed parameter.

e Since Hyy = G, it holds that ve(G) = ve(Hy) = £2/2.
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We are already very close to an algorithm...

Recall:
@ k is the parameter of the problem.
o We have that tw(G) =6 -/ and ¢ is the size of a grid-minor of G.
e Therefore, vc(G) > ¢2/2.
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We are already very close to an algorithm...

Recall:
@ k is the parameter of the problem.
o We have that tw(G) =6 -/ and ¢ is the size of a grid-minor of G.
e Therefore, vc(G) > ¢2/2.

WIN/WIN approach:

o If k < (?/2, we can safely answer “NO".

o If k > (?/2, then tw(G) = O(¢) = O(Vk), and we can solve the
problem by standard DP in time 20(tw(G)) . ,O(1) — 20(Vk) . nO(1)

This gives a subexponential FPT algorithm!
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Was Vertex Cover really just an example...?

‘What is so special in VERTEX COVER?‘

Where did we use planarity?
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Was Vertex Cover really just an example...?

‘What is so special in VERTEX COVER?‘

% Nothing special! It is just a minor bidimensional parameter:

minor-closed + vc(%k)zﬂ(kz).

Where did we use planarity?‘

% Only the linear Grid Theorem!

Arguments go through up to H-minor-free graphs.

39/57



Next subsection is...

9 Bidimensionality

@ Meta-algorithms
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Minor Bidimensionality:
[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition
A parameter p is minor bidimensional if

@ p is closed under taking of minors (minor closed), and

Qp (@0 = Q(K2).
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VERTEX COVER OF A GRID

H, , for r =10
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FEEDBACK VERTEX SET OF A GRID
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How to obtain subexponential algorithms for BP?

@ First we must restrict ourselves to special graph classes, like planar or
H-minor-free graphs.
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YES (or NO) immediately.
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How to obtain subexponential algorithms for BP?

@ First we must restrict ourselves to special graph classes, like planar or
H-minor-free graphs.

o Show that if the graph has large treewidth (> cv/k) then it has a
(Vk x v/k)-grid as a minor, and hence the answer to the problem is
YES (or NO) immediately.

o Otherwise, the treewidth is bounded by cvV'k, and hence we can use a
dynamic programming (DP) algorithm on graphs of bounded treewidth.

o If we have a DP algorithm for bounded treewidth running in time ct
or tt, then it implies 20(VK) or 20(Vklogk) 4jaorithm.
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Piecing everything together

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 2°(tw(G)) . ,O(1)
Then deciding “p(G) = k" can be done in time 20(VK) . o),
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Piecing everything together

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 2°(tw(G)) . ,O(1)

Then deciding “p(G) = k" can be done in time 20(VK) . o),

Compute (or approximate) tw(G).

We can use a fast FPT algorithm or a constant-factor approx.
If tw(G) = Q(Vk), then answer NO.

This follows because of the linear Grid Exclusion Theorems.
Otherwise tw(G) = O(v/k), and we solve the problem by DP.

Doing DP in time 20((G)) . ,O(1) is 3 whole area of research:

e Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]
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Piecing everything together

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 2°(tw(G)) . ,O(1)

Then deciding “p(G) = k" can be done in time 20(VK) . o),

Compute (or approximate) tw(G).
We can use a fast FPT algorithm or a constant-factor approx.

If tw(G) = Q(Vk), then answer NO.

This follows because of the linear Grid Exclusion Theorems.

Otherwise tw(G) = O(v/k), and we solve the problem by DP.
Doing DP in time 20((G)) . ,O(1) is 3 whole area of research:

e Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]
e Randomized algorithms using Cut&Count.

o Deterministic algorithms based on rank of matrices.
o Deterministic algorithms based on matroids.

[Cygan et al. 2011]
[Boadlaender et al. 2012]

[Fomin et al. 2013]
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Minor Bidimensionality provides a meta-algorithm

@ This result applies to all parameters:

VERTEX COVER, FEEDBACK VERTEX SET, LONG PATH,
CyYCLE COVER, ...
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Minor Bidimensionality provides a meta-algorithm

@ This result applies to all parameters:

VERTEX COVER, FEEDBACK VERTEX SET, LONG PATH,
CyYCLE COVER, ...

e What about ‘contraction closed | parameters??

DOMINATING SET, CONNECTED VERTEX COVER,
r-DOMINATING SET, ...
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Next subsection is...

9 Bidimensionality

@ Further extensions
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Contraction bidimensionality

@ DOMINATING SET is NOT minor closed,
so we cannot use Grid Exclusion Theorems!!
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@ But it is contraction closed...

Contraction Bidimensionality:
[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition

A parameter p is contraction bidimensional if
@ p is closed under taking of contractions (contraction closed), and

Q for a “(k x k)-grid-like graph” T, p(I') = Q(k?).
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Contraction bidimensionality

@ DOMINATING SET is NOT minor closed,
so we cannot use Grid Exclusion Theorems!!

@ But it is contraction closed...

Contraction Bidimensionality:
[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition

A parameter p is contraction bidimensional if
@ p is closed under taking of contractions (contraction closed), and

Q for a “(k x k)-grid-like graph” T, p(I') = Q(k?).

What is a (k x k)-grid-like graph...?
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Contraction bidimensionality: old setting

A “(k x k)-grid-like graph” was different for each graph class:
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Contraction bidimensionality: old setting

A “(k x k)-grid-like graph” was different for each graph class:

% For planar graphs this is a partially triangulated (k x k)-grid.
[Demaine, Fomin, Hajiaghayi, Thilikos. 2006]

% For graphs of Euler genus +, this is a partially triangulated (k x k)-grid with
up to -y additional handles.

[Demaine, Hajiaghayi, Thilikos. 2006]

% For apex-minor-free graphs, this is a (k X k)-augmented grid, i.e., partially
triangulated grid augmented with additional edges such that each vertex is
incident to O(1) edges to non-boundary vertices of the grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

H is an apex graph if 3v € V(H): H — v is planar
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Contraction bidimensionality: new definition

Finally, the right “(k x k)-grid-like graph” was found:
[Fomin, Golovach, Thilikos. 2009]
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Contraction bidimensionality: new definition

Finally, the right “(k x k)-grid-like graph” was found:
[Fomin, Golovach, Thilikos. 2009]

Definition

|

A parameter p is contraction bidimensional if the following hold:

© p is contraction closed, and

9 p( k) = Q(K?).
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Meta-algorithms for contraction bidimensional parameters

Let H be a fixed graph, let G be an H-minor free graph, and let p

be a contraction bidimensional parameter computable in 20(tw(G)) . nO(1)
Then deciding p(G) = k can be done in time 20K . n0(1)
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Meta-algorithms for contraction bidimensional parameters

Let H be a fixed graph, let G be an H-minor free graph, and let p
be a contraction bidimensional parameter computable in 20(tw(G)) . nO(1)
Then deciding p(G) = k can be done in time 20K . n0(1)

As for minor bidimensionality, we need to prove that

» If tw(G) = Q(k) then G contains k as a contraction.
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Two important grid-like graphs

Two pattern graphs ', and I:

Myx = I+ a new universal vertex Vpey.
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The “contraction-certificates” for large treewidth

Theorem (Fomin, Golovach, Thilikos. 2009)

For any integer ¢ > 0, there is ¢; such that every connected graph of
treewidth at least ¢y, contains Ky, [y, or I, as a contraction.
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The “contraction-certificates” for large treewidth

Theorem (Fomin, Golovach, Thilikos. 2009)

For any integer ¢ > 0, there is ¢; such that every connected graph of
treewidth at least ¢y, contains Ky, [y, or I, as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For every graph H, there is cy > 0 such that every connected H-minor-free
graph of treewidth at least cyy - #? contains I, or I, as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For every apex graph H, there is c;y > 0 such that every connected
H-minor-free graph of treewidth at least cy - £ contains [, as a contraction.
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Further applications of Bidimensionality

© Bidimensionality + DP = ‘ Subexponential FPT algorithms‘

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]
[Fomin, Golovach, Thilikos. 2009]
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Further applications of Bidimensionality

© Bidimensionality + DP = ’Subexponential FPT algorithms‘

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]
[Fomin, Golovach, Thilikos. 2009]

@ Bidimensionality + separation properties = | (E)PTAS

[Demaine and Hajiaghayi. 2005]
[Fomin, Lokshtanov, Raman, Saurabh. 2011]

© Bidimensionality 4 separation properties =

[Fomin, Lokshtanov, Saurabh, Thilikos. 2009-2010]

@ Bidimensionality 4+ new Grid Theorems = ‘ Geometric graphs‘

[Fomin, Lokshtanov, Saurabh. 2012]
[Grigoriev, Koutsonas, Thilikos. 2013]
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Gracies!
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