
Introduction + Bidimensionality Theory

Ignasi Sau

CNRS, LIRMM, Montpellier (France)

Many thanks to Dimitrios M. Thilikos!!

14èmes JCALM. October 2013. UPC, Barcelona, Catalunya

1/57

Outline of the talk

1 Introduction, part II
Treewidth
Dynamic programming on tree decompositions
Structure of H-minor-free graphs
Some algorithmic issues
A few words on other containment relations

2 Bidimensionality
Some ingredients
An illustrative example
Meta-algorithms
Further extensions

2/57

Next section is...

1 Introduction, part II
Treewidth
Dynamic programming on tree decompositions
Structure of H-minor-free graphs
Some algorithmic issues
A few words on other containment relations

2 Bidimensionality
Some ingredients
An illustrative example
Meta-algorithms
Further extensions

3/57

Parameterized complexity in one slide

Idea given an NP-hard problem, fix one parameter of the input to
see if the problem gets more “tractable”.

Example: the size of a Vertex Cover.

Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in

f (k) · nO(1), for some function f .

Examples: k-Vertex Cover, k-Longest Path.

Single-exponential FPT algorithm: 2O(k) · nO(1)

Subexponential FPT algorithm: 2o(k) · nO(1)

4/57

Parameterized complexity in one slide

Idea given an NP-hard problem, fix one parameter of the input to
see if the problem gets more “tractable”.

Example: the size of a Vertex Cover.

Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in

f (k) · nO(1), for some function f .

Examples: k-Vertex Cover, k-Longest Path.

Single-exponential FPT algorithm: 2O(k) · nO(1)

Subexponential FPT algorithm: 2o(k) · nO(1)

4/57

Parameterized complexity in one slide

Idea given an NP-hard problem, fix one parameter of the input to
see if the problem gets more “tractable”.

Example: the size of a Vertex Cover.

Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in

f (k) · nO(1), for some function f .

Examples: k-Vertex Cover, k-Longest Path.

Single-exponential FPT algorithm: 2O(k) · nO(1)

Subexponential FPT algorithm: 2o(k) · nO(1)

4/57

Next subsection is...

1 Introduction, part II
Treewidth
Dynamic programming on tree decompositions
Structure of H-minor-free graphs
Some algorithmic issues
A few words on other containment relations

2 Bidimensionality
Some ingredients
An illustrative example
Meta-algorithms
Further extensions

5/57

Tree decompositions and treewidth

A tree decomposition of a graph G is a pair D = (T ,X) such that T is a
tree and X = {Xt | t ∈ V (T)} is a collection of subsets of V (G) such
that:

(each Xt ∈ X corresponds to a vertex t ∈ V (T): we call Xt node of D)

Any vertex v ∈ V (G) and the endpoints of any edge e ∈ E (G)
belong to some node Xt of D; and

For any v ∈ V (G), the set {t ∈ V (T) | v ∈ Xt} is a subtree of T .

The width of a tree decomposition is max{|Xt | | t ∈ V (T)} − 1.

The treewidth of a graph G , denoted tw(G), is the minimum width over
all tree decompositions of G .

Invariant that measures the topological complexity of a graph.

6/57

Tree decompositions and treewidth

A tree decomposition of a graph G is a pair D = (T ,X) such that T is a
tree and X = {Xt | t ∈ V (T)} is a collection of subsets of V (G) such
that:

(each Xt ∈ X corresponds to a vertex t ∈ V (T): we call Xt node of D)

Any vertex v ∈ V (G) and the endpoints of any edge e ∈ E (G)
belong to some node Xt of D; and

For any v ∈ V (G), the set {t ∈ V (T) | v ∈ Xt} is a subtree of T .

The width of a tree decomposition is max{|Xt | | t ∈ V (T)} − 1.

The treewidth of a graph G , denoted tw(G), is the minimum width over
all tree decompositions of G .

Invariant that measures the topological complexity of a graph.

6/57

Tree decompositions and treewidth

A tree decomposition of a graph G is a pair D = (T ,X) such that T is a
tree and X = {Xt | t ∈ V (T)} is a collection of subsets of V (G) such
that:

(each Xt ∈ X corresponds to a vertex t ∈ V (T): we call Xt node of D)

Any vertex v ∈ V (G) and the endpoints of any edge e ∈ E (G)
belong to some node Xt of D; and

For any v ∈ V (G), the set {t ∈ V (T) | v ∈ Xt} is a subtree of T .

The width of a tree decomposition is max{|Xt | | t ∈ V (T)} − 1.

The treewidth of a graph G , denoted tw(G), is the minimum width over
all tree decompositions of G .

Invariant that measures the topological complexity of a graph.

6/57

Tree decompositions and treewidth

A tree decomposition of a graph G is a pair D = (T ,X) such that T is a
tree and X = {Xt | t ∈ V (T)} is a collection of subsets of V (G) such
that:

(each Xt ∈ X corresponds to a vertex t ∈ V (T): we call Xt node of D)

Any vertex v ∈ V (G) and the endpoints of any edge e ∈ E (G)
belong to some node Xt of D; and

For any v ∈ V (G), the set {t ∈ V (T) | v ∈ Xt} is a subtree of T .

The width of a tree decomposition is max{|Xt | | t ∈ V (T)} − 1.

The treewidth of a graph G , denoted tw(G), is the minimum width over
all tree decompositions of G .

Invariant that measures the topological complexity of a graph.

6/57

Tree decompositions and treewidth

A tree decomposition of a graph G is a pair D = (T ,X) such that T is a
tree and X = {Xt | t ∈ V (T)} is a collection of subsets of V (G) such
that:

(each Xt ∈ X corresponds to a vertex t ∈ V (T): we call Xt node of D)

Any vertex v ∈ V (G) and the endpoints of any edge e ∈ E (G)
belong to some node Xt of D; and

For any v ∈ V (G), the set {t ∈ V (T) | v ∈ Xt} is a subtree of T .

The width of a tree decomposition is max{|Xt | | t ∈ V (T)} − 1.

The treewidth of a graph G , denoted tw(G), is the minimum width over
all tree decompositions of G .

Invariant that measures the topological complexity of a graph.

6/57

Tree decompositions: example

7/57

Tree decompositions: example

8/57

Tree decompositions: example

9/57

Tree decompositions: example

10/57

Tree decompositions: example

11/57

About computing treewidth: a global picture

1 Computing treewidth is NP-hard [Arnborg, Corneil, Proskurowski. 1987]

2 Approximation algorithms on general graphs

O(Opt ·
√
Opt)-approximation. [Feige, Hajiaghayi, Lee. 2008]

3 (Exact) FPT algorithms on general graphs (tw 6 k?)

In time O(nk+2). [Arnborg, Corneil, Proskurowski. 1987]

In time kO(k3) · n. [Bodlaender. 1996]

4 FPT approximation algorithms on general graphs

4.5-approximation in time 2O(k) · n2. [Amir. 2010]

5-approx. in 2O(k) · n. [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk. 2013]

5 Approximation algorithms on sparse graphs

3/2-approximation on planar graphs. [Seymour and Thomas. 1994]

cH -approximation on H-minor-free graphs. [Demaine and Hajiaghayi. 2008]

Open Compute the treewidth of a planar graph.

12/57

About computing treewidth: a global picture

1 Computing treewidth is NP-hard [Arnborg, Corneil, Proskurowski. 1987]

2 Approximation algorithms on general graphs

O(Opt ·
√
Opt)-approximation. [Feige, Hajiaghayi, Lee. 2008]

3 (Exact) FPT algorithms on general graphs (tw 6 k?)

In time O(nk+2). [Arnborg, Corneil, Proskurowski. 1987]

In time kO(k3) · n. [Bodlaender. 1996]

4 FPT approximation algorithms on general graphs

4.5-approximation in time 2O(k) · n2. [Amir. 2010]

5-approx. in 2O(k) · n. [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk. 2013]

5 Approximation algorithms on sparse graphs

3/2-approximation on planar graphs. [Seymour and Thomas. 1994]

cH -approximation on H-minor-free graphs. [Demaine and Hajiaghayi. 2008]

Open Compute the treewidth of a planar graph.

12/57

About computing treewidth: a global picture

1 Computing treewidth is NP-hard [Arnborg, Corneil, Proskurowski. 1987]

2 Approximation algorithms on general graphs

O(Opt ·
√
Opt)-approximation. [Feige, Hajiaghayi, Lee. 2008]

3 (Exact) FPT algorithms on general graphs (tw 6 k?)

In time O(nk+2). [Arnborg, Corneil, Proskurowski. 1987]

In time kO(k3) · n. [Bodlaender. 1996]

4 FPT approximation algorithms on general graphs

4.5-approximation in time 2O(k) · n2. [Amir. 2010]

5-approx. in 2O(k) · n. [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk. 2013]

5 Approximation algorithms on sparse graphs

3/2-approximation on planar graphs. [Seymour and Thomas. 1994]

cH -approximation on H-minor-free graphs. [Demaine and Hajiaghayi. 2008]

Open Compute the treewidth of a planar graph.

12/57

About computing treewidth: a global picture

1 Computing treewidth is NP-hard [Arnborg, Corneil, Proskurowski. 1987]

2 Approximation algorithms on general graphs

O(Opt ·
√
Opt)-approximation. [Feige, Hajiaghayi, Lee. 2008]

3 (Exact) FPT algorithms on general graphs (tw 6 k?)

In time O(nk+2). [Arnborg, Corneil, Proskurowski. 1987]

In time kO(k3) · n. [Bodlaender. 1996]

4 FPT approximation algorithms on general graphs

4.5-approximation in time 2O(k) · n2. [Amir. 2010]

5-approx. in 2O(k) · n. [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk. 2013]

5 Approximation algorithms on sparse graphs

3/2-approximation on planar graphs. [Seymour and Thomas. 1994]

cH -approximation on H-minor-free graphs. [Demaine and Hajiaghayi. 2008]

Open Compute the treewidth of a planar graph.

12/57

About computing treewidth: a global picture

1 Computing treewidth is NP-hard [Arnborg, Corneil, Proskurowski. 1987]

2 Approximation algorithms on general graphs

O(Opt ·
√
Opt)-approximation. [Feige, Hajiaghayi, Lee. 2008]

3 (Exact) FPT algorithms on general graphs (tw 6 k?)

In time O(nk+2). [Arnborg, Corneil, Proskurowski. 1987]

In time kO(k3) · n. [Bodlaender. 1996]

4 FPT approximation algorithms on general graphs

4.5-approximation in time 2O(k) · n2. [Amir. 2010]

5-approx. in 2O(k) · n. [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk. 2013]

5 Approximation algorithms on sparse graphs

3/2-approximation on planar graphs. [Seymour and Thomas. 1994]

cH -approximation on H-minor-free graphs. [Demaine and Hajiaghayi. 2008]

Open Compute the treewidth of a planar graph.

12/57

About computing treewidth: a global picture

1 Computing treewidth is NP-hard [Arnborg, Corneil, Proskurowski. 1987]

2 Approximation algorithms on general graphs

O(Opt ·
√
Opt)-approximation. [Feige, Hajiaghayi, Lee. 2008]

3 (Exact) FPT algorithms on general graphs (tw 6 k?)

In time O(nk+2). [Arnborg, Corneil, Proskurowski. 1987]

In time kO(k3) · n. [Bodlaender. 1996]

4 FPT approximation algorithms on general graphs

4.5-approximation in time 2O(k) · n2. [Amir. 2010]

5-approx. in 2O(k) · n. [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk. 2013]

5 Approximation algorithms on sparse graphs

3/2-approximation on planar graphs. [Seymour and Thomas. 1994]

cH -approximation on H-minor-free graphs. [Demaine and Hajiaghayi. 2008]

Open Compute the treewidth of a planar graph.

12/57

About computing treewidth: a global picture

1 Computing treewidth is NP-hard [Arnborg, Corneil, Proskurowski. 1987]

2 Approximation algorithms on general graphs

O(Opt ·
√
Opt)-approximation. [Feige, Hajiaghayi, Lee. 2008]

3 (Exact) FPT algorithms on general graphs (tw 6 k?)

In time O(nk+2). [Arnborg, Corneil, Proskurowski. 1987]

In time kO(k3) · n. [Bodlaender. 1996]

4 FPT approximation algorithms on general graphs

4.5-approximation in time 2O(k) · n2. [Amir. 2010]

5-approx. in 2O(k) · n. [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk. 2013]

5 Approximation algorithms on sparse graphs

3/2-approximation on planar graphs. [Seymour and Thomas. 1994]

cH -approximation on H-minor-free graphs. [Demaine and Hajiaghayi. 2008]

Open Compute the treewidth of a planar graph.

12/57

About computing treewidth: a global picture

1 Computing treewidth is NP-hard [Arnborg, Corneil, Proskurowski. 1987]

2 Approximation algorithms on general graphs

O(Opt ·
√
Opt)-approximation. [Feige, Hajiaghayi, Lee. 2008]

3 (Exact) FPT algorithms on general graphs (tw 6 k?)

In time O(nk+2). [Arnborg, Corneil, Proskurowski. 1987]

In time kO(k3) · n. [Bodlaender. 1996]

4 FPT approximation algorithms on general graphs

4.5-approximation in time 2O(k) · n2. [Amir. 2010]

5-approx. in 2O(k) · n. [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk. 2013]

5 Approximation algorithms on sparse graphs

3/2-approximation on planar graphs. [Seymour and Thomas. 1994]

cH -approximation on H-minor-free graphs. [Demaine and Hajiaghayi. 2008]

Open Compute the treewidth of a planar graph.

12/57

About computing treewidth: a global picture

1 Computing treewidth is NP-hard [Arnborg, Corneil, Proskurowski. 1987]

2 Approximation algorithms on general graphs

O(Opt ·
√
Opt)-approximation. [Feige, Hajiaghayi, Lee. 2008]

3 (Exact) FPT algorithms on general graphs (tw 6 k?)

In time O(nk+2). [Arnborg, Corneil, Proskurowski. 1987]

In time kO(k3) · n. [Bodlaender. 1996]

4 FPT approximation algorithms on general graphs

4.5-approximation in time 2O(k) · n2. [Amir. 2010]

5-approx. in 2O(k) · n. [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk. 2013]

5 Approximation algorithms on sparse graphs

3/2-approximation on planar graphs. [Seymour and Thomas. 1994]

cH -approximation on H-minor-free graphs. [Demaine and Hajiaghayi. 2008]

Open Compute the treewidth of a planar graph.

12/57

About computing treewidth: a global picture

1 Computing treewidth is NP-hard [Arnborg, Corneil, Proskurowski. 1987]

2 Approximation algorithms on general graphs

O(Opt ·
√
Opt)-approximation. [Feige, Hajiaghayi, Lee. 2008]

3 (Exact) FPT algorithms on general graphs (tw 6 k?)

In time O(nk+2). [Arnborg, Corneil, Proskurowski. 1987]

In time kO(k3) · n. [Bodlaender. 1996]

4 FPT approximation algorithms on general graphs

4.5-approximation in time 2O(k) · n2. [Amir. 2010]

5-approx. in 2O(k) · n. [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, Pilipczuk. 2013]

5 Approximation algorithms on sparse graphs

3/2-approximation on planar graphs. [Seymour and Thomas. 1994]

cH -approximation on H-minor-free graphs. [Demaine and Hajiaghayi. 2008]

Open Compute the treewidth of a planar graph.

12/57

Next subsection is...

1 Introduction, part II
Treewidth
Dynamic programming on tree decompositions
Structure of H-minor-free graphs
Some algorithmic issues
A few words on other containment relations

2 Bidimensionality
Some ingredients
An illustrative example
Meta-algorithms
Further extensions

13/57

Example: Max. Independent Set

For each node Xi , let Gi = G [Xi], and let
G ′
i be the subgraph of G induced by node Xi and its descendants.

Tables of dynamic programming (DP) at each node Xi : (Si , ai),
where Si is an independent set in Gi , and ai is the maximum size of
an independent set in G ′

i which coincides with Si in Xi .

The tables (Si , ai) at node Xi can be computed from the tables of its
children as follows. For each Si independent set of Gi :

If Xj is a child of Xi , an independent set Sj of Gj is feasible for Si if

Xj ∩ Si = Xi ∩ Sj .

For each children Xj of Xi , let Sj be feasible for Si s.t.
(Sj , aj) is defined and aj is maximized.

We set ai := |Si |+
∑

j(aj − |Si ∩ Sj |).

Running time for each node Xi : O(22|Xi |).
Overall running time: 2O(tw(G)) · n.

14/57

Example: Max. Independent Set

For each node Xi , let Gi = G [Xi], and let
G ′
i be the subgraph of G induced by node Xi and its descendants.

Tables of dynamic programming (DP) at each node Xi : (Si , ai),
where Si is an independent set in Gi , and ai is the maximum size of
an independent set in G ′

i which coincides with Si in Xi .

The tables (Si , ai) at node Xi can be computed from the tables of its
children as follows. For each Si independent set of Gi :

If Xj is a child of Xi , an independent set Sj of Gj is feasible for Si if

Xj ∩ Si = Xi ∩ Sj .

For each children Xj of Xi , let Sj be feasible for Si s.t.
(Sj , aj) is defined and aj is maximized.

We set ai := |Si |+
∑

j(aj − |Si ∩ Sj |).

Running time for each node Xi : O(22|Xi |).
Overall running time: 2O(tw(G)) · n.

14/57

Example: Max. Independent Set

For each node Xi , let Gi = G [Xi], and let
G ′
i be the subgraph of G induced by node Xi and its descendants.

Tables of dynamic programming (DP) at each node Xi : (Si , ai),
where Si is an independent set in Gi , and ai is the maximum size of
an independent set in G ′

i which coincides with Si in Xi .

The tables (Si , ai) at node Xi can be computed from the tables of its
children as follows. For each Si independent set of Gi :

If Xj is a child of Xi , an independent set Sj of Gj is feasible for Si if

Xj ∩ Si = Xi ∩ Sj .

For each children Xj of Xi , let Sj be feasible for Si s.t.
(Sj , aj) is defined and aj is maximized.

We set ai := |Si |+
∑

j(aj − |Si ∩ Sj |).

Running time for each node Xi : O(22|Xi |).
Overall running time: 2O(tw(G)) · n.

14/57

Example: Max. Independent Set

For each node Xi , let Gi = G [Xi], and let
G ′
i be the subgraph of G induced by node Xi and its descendants.

Tables of dynamic programming (DP) at each node Xi : (Si , ai),
where Si is an independent set in Gi , and ai is the maximum size of
an independent set in G ′

i which coincides with Si in Xi .

The tables (Si , ai) at node Xi can be computed from the tables of its
children as follows. For each Si independent set of Gi :

If Xj is a child of Xi , an independent set Sj of Gj is feasible for Si if

Xj ∩ Si = Xi ∩ Sj .

For each children Xj of Xi , let Sj be feasible for Si s.t.
(Sj , aj) is defined and aj is maximized.

We set ai := |Si |+
∑

j(aj − |Si ∩ Sj |).

Running time for each node Xi : O(22|Xi |).
Overall running time: 2O(tw(G)) · n.

14/57

Courcelle’s Theorem - algorithmic importance of treewidth

What we have seen with Max. Independent Set can be generalized to
a wide family of problems:

Theorem (Courcelle. 1988)

Graph problems expressible in Monadic Second Order Logic (MSOL) can
be solved in time f (k) · nO(1) in graphs with n vertices and tw 6 k.

In other words, all these problems are fixed -parameter tractable
(FPT) when parameterized by the treewidth of their input graphs.

Running time (tight):

222...2
k

· nO(1).

15/57

Courcelle’s Theorem - algorithmic importance of treewidth

What we have seen with Max. Independent Set can be generalized to
a wide family of problems:

Theorem (Courcelle. 1988)

Graph problems expressible in Monadic Second Order Logic (MSOL) can
be solved in time f (k) · nO(1) in graphs with n vertices and tw 6 k.

In other words, all these problems are fixed -parameter tractable
(FPT) when parameterized by the treewidth of their input graphs.

Running time (tight):

222...2
k

· nO(1).

15/57

Courcelle’s Theorem - algorithmic importance of treewidth

What we have seen with Max. Independent Set can be generalized to
a wide family of problems:

Theorem (Courcelle. 1988)

Graph problems expressible in Monadic Second Order Logic (MSOL) can
be solved in time f (k) · nO(1) in graphs with n vertices and tw 6 k.

In other words, all these problems are fixed -parameter tractable
(FPT) when parameterized by the treewidth of their input graphs.

Running time (tight):

222...2
k

· nO(1).

15/57

Next subsection is...

1 Introduction, part II
Treewidth
Dynamic programming on tree decompositions
Structure of H-minor-free graphs
Some algorithmic issues
A few words on other containment relations

2 Bidimensionality
Some ingredients
An illustrative example
Meta-algorithms
Further extensions

16/57

Structure of H-minor-free graphs: roughly “bidimensional”

Some (simplified) preliminaries:

h-clique-sum of two graphs G1 and G2:
choose cliques K1 ⊆ G1 and K2 ⊆ G2 with |V (K1)| = |V (K2)| = h,
identify them, and possibly remove some edges of that clique.

Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

Vortex of depth h in an embedded graph:
paste a graph of pathwidth at most h in a face of the embedding.

Structure Theorem [Robertson and Seymour]:

Fix a graph H. There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs:

obtained from graphs of genus at most h by adding at most h apices
and at most h vortices of depth at most h.

17/57

Structure of H-minor-free graphs: roughly “bidimensional”

Some (simplified) preliminaries:

h-clique-sum of two graphs G1 and G2:
choose cliques K1 ⊆ G1 and K2 ⊆ G2 with |V (K1)| = |V (K2)| = h,
identify them, and possibly remove some edges of that clique.

Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

Vortex of depth h in an embedded graph:
paste a graph of pathwidth at most h in a face of the embedding.

Structure Theorem [Robertson and Seymour]:

Fix a graph H. There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs:

obtained from graphs of genus at most h by adding at most h apices
and at most h vortices of depth at most h.

17/57

Structure of H-minor-free graphs: roughly “bidimensional”

Some (simplified) preliminaries:

h-clique-sum of two graphs G1 and G2:
choose cliques K1 ⊆ G1 and K2 ⊆ G2 with |V (K1)| = |V (K2)| = h,
identify them, and possibly remove some edges of that clique.

Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

Vortex of depth h in an embedded graph:
paste a graph of pathwidth at most h in a face of the embedding.

Structure Theorem [Robertson and Seymour]:

Fix a graph H. There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs:

obtained from graphs of genus at most h by adding at most h apices
and at most h vortices of depth at most h.

17/57

Structure of H-minor-free graphs: roughly “bidimensional”

Some (simplified) preliminaries:

h-clique-sum of two graphs G1 and G2:
choose cliques K1 ⊆ G1 and K2 ⊆ G2 with |V (K1)| = |V (K2)| = h,
identify them, and possibly remove some edges of that clique.

Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

Vortex of depth h in an embedded graph:
paste a graph of pathwidth at most h in a face of the embedding.

Structure Theorem [Robertson and Seymour]:

Fix a graph H.

There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs:

obtained from graphs of genus at most h by adding at most h apices
and at most h vortices of depth at most h.

17/57

Structure of H-minor-free graphs: roughly “bidimensional”

Some (simplified) preliminaries:

h-clique-sum of two graphs G1 and G2:
choose cliques K1 ⊆ G1 and K2 ⊆ G2 with |V (K1)| = |V (K2)| = h,
identify them, and possibly remove some edges of that clique.

Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

Vortex of depth h in an embedded graph:
paste a graph of pathwidth at most h in a face of the embedding.

Structure Theorem [Robertson and Seymour]:

Fix a graph H. There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs:

obtained from graphs of genus at most h by adding at most h apices
and at most h vortices of depth at most h.

17/57

Structure of H-minor-free graphs: roughly “bidimensional”

Some (simplified) preliminaries:

h-clique-sum of two graphs G1 and G2:
choose cliques K1 ⊆ G1 and K2 ⊆ G2 with |V (K1)| = |V (K2)| = h,
identify them, and possibly remove some edges of that clique.

Apex in an embedded graph:
add a vertex with any neighbors in the embedded graph.

Vortex of depth h in an embedded graph:
paste a graph of pathwidth at most h in a face of the embedding.

Structure Theorem [Robertson and Seymour]:

Fix a graph H. There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs:

obtained from graphs of genus at most h by adding at most h apices
and at most h vortices of depth at most h.

17/57

Next subsection is...

1 Introduction, part II
Treewidth
Dynamic programming on tree decompositions
Structure of H-minor-free graphs
Some algorithmic issues
A few words on other containment relations

2 Bidimensionality
Some ingredients
An illustrative example
Meta-algorithms
Further extensions

18/57

Some algorithmic issues of graph minors

F Minor testing

Theorem (Robertson and Seymour)

Fix a graph H. Given an n-vertex graph G , one can test whether H �m G
in time O(n3).

Improved algorithm running in time O(n2). [Kawarabayashi, Kobayashi, Reed. 2012]

Even faster algorithms have been claimed... [Reed ??]

F Membership in a minor-closed graph class

Theorem (Robertson and Seymour)

Let G be a minor-closed graph class. Given an n-vertex graph G , one can
test whether G ∈ G in time O(n2).

Proof. By the Graph Minors Theorem, there exists a finite list of minimal

excluded minors {F1, . . . ,F`} for the class G. Then we can do minor testing

and check whether Fi �m G in time O(n2) for each 1 6 i 6 `.

19/57

Some algorithmic issues of graph minors

F Minor testing

Theorem (Robertson and Seymour)

Fix a graph H. Given an n-vertex graph G , one can test whether H �m G
in time O(n3).

Improved algorithm running in time O(n2). [Kawarabayashi, Kobayashi, Reed. 2012]

Even faster algorithms have been claimed... [Reed ??]

F Membership in a minor-closed graph class

Theorem (Robertson and Seymour)

Let G be a minor-closed graph class. Given an n-vertex graph G , one can
test whether G ∈ G in time O(n2).

Proof. By the Graph Minors Theorem, there exists a finite list of minimal

excluded minors {F1, . . . ,F`} for the class G. Then we can do minor testing

and check whether Fi �m G in time O(n2) for each 1 6 i 6 `.

19/57

Some algorithmic issues of graph minors

F Minor testing

Theorem (Robertson and Seymour)

Fix a graph H. Given an n-vertex graph G , one can test whether H �m G
in time O(n3).

Improved algorithm running in time O(n2). [Kawarabayashi, Kobayashi, Reed. 2012]

Even faster algorithms have been claimed... [Reed ??]

F Membership in a minor-closed graph class

Theorem (Robertson and Seymour)

Let G be a minor-closed graph class. Given an n-vertex graph G , one can
test whether G ∈ G in time O(n2).

Proof. By the Graph Minors Theorem, there exists a finite list of minimal

excluded minors {F1, . . . ,F`} for the class G. Then we can do minor testing

and check whether Fi �m G in time O(n2) for each 1 6 i 6 `.

19/57

Some algorithmic issues of graph minors

F Minor testing

Theorem (Robertson and Seymour)

Fix a graph H. Given an n-vertex graph G , one can test whether H �m G
in time O(n3).

Improved algorithm running in time O(n2). [Kawarabayashi, Kobayashi, Reed. 2012]

Even faster algorithms have been claimed... [Reed ??]

F Membership in a minor-closed graph class

Theorem (Robertson and Seymour)

Let G be a minor-closed graph class. Given an n-vertex graph G , one can
test whether G ∈ G in time O(n2).

Proof. By the Graph Minors Theorem, there exists a finite list of minimal

excluded minors {F1, . . . ,F`} for the class G. Then we can do minor testing

and check whether Fi �m G in time O(n2) for each 1 6 i 6 `.

19/57

Some algorithmic issues of graph minors

F Minor testing

Theorem (Robertson and Seymour)

Fix a graph H. Given an n-vertex graph G , one can test whether H �m G
in time O(n3).

Improved algorithm running in time O(n2). [Kawarabayashi, Kobayashi, Reed. 2012]

Even faster algorithms have been claimed... [Reed ??]

F Membership in a minor-closed graph class

Theorem (Robertson and Seymour)

Let G be a minor-closed graph class. Given an n-vertex graph G , one can
test whether G ∈ G in time O(n2).

Proof. By the Graph Minors Theorem, there exists a finite list of minimal

excluded minors {F1, . . . ,F`} for the class G. Then we can do minor testing

and check whether Fi �m G in time O(n2) for each 1 6 i 6 `.
19/57

Some algorithmic issues of graph minors (II)

Let us recall the Structure Theorem of H-minor-free graphs:

Fix a graph H. There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs.

Using this tree-like structure, a number of hard optimization problems
can be solved efficiently in H-minor-free graphs using DP.

But... what about the constant h = f (|V (H)|) ??

Roughly the same constant appears in the Minor Testing algorithms.

The proofs say “there exists a constant h such that...”

F Very recently, this constant has been made explicit and “reasonable”!
[Geelen, Huynh, and Richter. 2013]

[Mazoit. 2013]

20/57

Some algorithmic issues of graph minors (II)

Let us recall the Structure Theorem of H-minor-free graphs:

Fix a graph H. There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs.

Using this tree-like structure, a number of hard optimization problems
can be solved efficiently in H-minor-free graphs using DP.

But... what about the constant h = f (|V (H)|) ??

Roughly the same constant appears in the Minor Testing algorithms.

The proofs say “there exists a constant h such that...”

F Very recently, this constant has been made explicit and “reasonable”!
[Geelen, Huynh, and Richter. 2013]

[Mazoit. 2013]

20/57

Some algorithmic issues of graph minors (II)

Let us recall the Structure Theorem of H-minor-free graphs:

Fix a graph H. There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs.

Using this tree-like structure, a number of hard optimization problems
can be solved efficiently in H-minor-free graphs using DP.

But... what about the constant h = f (|V (H)|) ??

Roughly the same constant appears in the Minor Testing algorithms.

The proofs say “there exists a constant h such that...”

F Very recently, this constant has been made explicit and “reasonable”!
[Geelen, Huynh, and Richter. 2013]

[Mazoit. 2013]

20/57

Some algorithmic issues of graph minors (II)

Let us recall the Structure Theorem of H-minor-free graphs:

Fix a graph H. There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs.

Using this tree-like structure, a number of hard optimization problems
can be solved efficiently in H-minor-free graphs using DP.

But... what about the constant h = f (|V (H)|) ??

Roughly the same constant appears in the Minor Testing algorithms.

The proofs say “there exists a constant h such that...”

F Very recently, this constant has been made explicit and “reasonable”!
[Geelen, Huynh, and Richter. 2013]

[Mazoit. 2013]

20/57

Some algorithmic issues of graph minors (II)

Let us recall the Structure Theorem of H-minor-free graphs:

Fix a graph H. There exists a constant h = f (|V (H)|) such that
any H-minor-free graph G can be decomposed (in a tree-like way)
into h-clique-sums from h-almost-embeddable graphs.

Using this tree-like structure, a number of hard optimization problems
can be solved efficiently in H-minor-free graphs using DP.

But... what about the constant h = f (|V (H)|) ??

Roughly the same constant appears in the Minor Testing algorithms.

The proofs say “there exists a constant h such that...”

F Very recently, this constant has been made explicit and “reasonable”!
[Geelen, Huynh, and Richter. 2013]

[Mazoit. 2013]

20/57

Next subsection is...

1 Introduction, part II
Treewidth
Dynamic programming on tree decompositions
Structure of H-minor-free graphs
Some algorithmic issues
A few words on other containment relations

2 Bidimensionality
Some ingredients
An illustrative example
Meta-algorithms
Further extensions

21/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation?

NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!

2. Contraction Minor Testing is FPT when param. by |V (H)|?
NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure?

Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation?

NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!

2. Topological Minor Testing is FPT when param. by |V (H)|?
YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure?

YES! [Grohe and Marx. 2012]

22/57

F
Minor: H �m G if H can be obtained from a subgraph of G by
contracting edges.

1. Graphs are WQO w.r.t. the minor relation.
2. Minor Testing is FPT when parameterized by |V (H)|.
3. H-minor-free graphs have a nice structure.

F
Contraction minor: H �cm G if H can be obtained from G by
contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!
2. Contraction Minor Testing is FPT when param. by |V (H)|?

NO! NP-hard already for |V (H)| 6 4. [Brouwer and Veldman. 1987]

3. Nice structure? Not really: They contain cliques, chordal graphs...

F
Topological minor: H �tp G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of degree 6 2.

1. Graphs are WQO w.r.t. the topological minor relation? NO!
2. Topological Minor Testing is FPT when param. by |V (H)|?

YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

3. Nice structure? YES! [Grohe and Marx. 2012]

22/57

Structure of sparse graphs - a nice picture by Felix Reidl

23/57

Next section is...

1 Introduction, part II
Treewidth
Dynamic programming on tree decompositions
Structure of H-minor-free graphs
Some algorithmic issues
A few words on other containment relations

2 Bidimensionality
Some ingredients
An illustrative example
Meta-algorithms
Further extensions

24/57

Next subsection is...

1 Introduction, part II
Treewidth
Dynamic programming on tree decompositions
Structure of H-minor-free graphs
Some algorithmic issues
A few words on other containment relations

2 Bidimensionality
Some ingredients
An illustrative example
Meta-algorithms
Further extensions

25/57

A few representative problems

Vertex Cover
Input: A graph G = (V ,E) and a positive integers k.
Parameter: k.
Question: Does there exist a subset C ⊆ V of size at most k such that
G [V \ C] is an independent set?

Long Path
Input: A graph G = (V ,E) and a positive integers k.
Parameter: k.
Question: Does there exist a path P in G of length at least k?

26/57

A few representative problems

Vertex Cover
Input: A graph G = (V ,E) and a positive integers k.
Parameter: k.
Question: Does there exist a subset C ⊆ V of size at most k such that
G [V \ C] is an independent set?

Long Path
Input: A graph G = (V ,E) and a positive integers k.
Parameter: k.
Question: Does there exist a path P in G of length at least k?

26/57

A few representative problems (II)

Feedback Vertex Set
Input: A graph G = (V ,E) and a positive integers k.
Parameter: k.
Question: Does there exist a subset F ⊆ V of size at most k such that
for G [V \ F] is a forest?

Dominating Set
Input: A graph G = (V ,E) and a positive integers k.
Parameter: k.
Question: Does there exist a subset D ⊆ V of size at most k such that
for all v ∈ V , N[v] ∩ D 6= ∅?

27/57

A few representative problems (II)

Feedback Vertex Set
Input: A graph G = (V ,E) and a positive integers k.
Parameter: k.
Question: Does there exist a subset F ⊆ V of size at most k such that
for G [V \ F] is a forest?

Dominating Set
Input: A graph G = (V ,E) and a positive integers k.
Parameter: k.
Question: Does there exist a subset D ⊆ V of size at most k such that
for all v ∈ V , N[v] ∩ D 6= ∅?

27/57

Minor closed parameters

A graph class G is minor (contraction) closed if any minor
(contraction) of a graph in G is also in G.

A parameter P is any function mapping graphs to nonnegative
integers.

The parameterized problem associated with P asks, for some fixed k,
whether for a given graph G , P(G) 6 k (for minimization) or
P(G) > k (for maximization problem).

We say that a parameter P is closed under taking of
minors/contractions (or, briefly, minor/contraction closed) if for every
graph H, H �m G / H �cm G implies that P(H) 6 P(G).

28/57

Minor closed parameters

A graph class G is minor (contraction) closed if any minor
(contraction) of a graph in G is also in G.

A parameter P is any function mapping graphs to nonnegative
integers.

The parameterized problem associated with P asks, for some fixed k,
whether for a given graph G , P(G) 6 k (for minimization) or
P(G) > k (for maximization problem).

We say that a parameter P is closed under taking of
minors/contractions (or, briefly, minor/contraction closed) if for every
graph H, H �m G / H �cm G implies that P(H) 6 P(G).

28/57

Minor closed parameters

A graph class G is minor (contraction) closed if any minor
(contraction) of a graph in G is also in G.

A parameter P is any function mapping graphs to nonnegative
integers.

The parameterized problem associated with P asks, for some fixed k,
whether for a given graph G , P(G) 6 k (for minimization) or
P(G) > k (for maximization problem).

We say that a parameter P is closed under taking of
minors/contractions (or, briefly, minor/contraction closed) if for every
graph H, H �m G / H �cm G implies that P(H) 6 P(G).

28/57

Minor closed parameters

A graph class G is minor (contraction) closed if any minor
(contraction) of a graph in G is also in G.

A parameter P is any function mapping graphs to nonnegative
integers.

The parameterized problem associated with P asks, for some fixed k,
whether for a given graph G , P(G) 6 k (for minimization) or
P(G) > k (for maximization problem).

We say that a parameter P is closed under taking of
minors/contractions (or, briefly, minor/contraction closed) if for every
graph H, H �m G / H �cm G implies that P(H) 6 P(G).

28/57

Examples of minor/contraction closed parameters

Minor closed parameters:

Vertex Cover, Feedback Vertex Set, Long Path,
Treewidth, . . .

Contraction closed parameters:

Dominating Set, Connected Vertex Cover, r-Dominating
Set, . . .

29/57

Examples of minor/contraction closed parameters

Minor closed parameters:

Vertex Cover, Feedback Vertex Set, Long Path,
Treewidth, . . .

Contraction closed parameters:

Dominating Set, Connected Vertex Cover, r-Dominating
Set, . . .

29/57

Grid Exclusion Theorem

Let H`,` be the (`× `)-grid: `

We have tw (H`,`) = `.

As Treewidth is minor closed, if ` �m G , then
tw(G) > tw(H`,`) = `.
Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer ` > 0, there is an integer c(`) such that every graph of

treewidth > c(`) contains ` as a minor.

Smallest possible function c(`)? Ω(`2 log `) 6 c(`) 6 202`5

Some improvement: c(`) = 2O(` log `). [Leaf and Seymour. 2012]

Recent breakthrough: c(`) = poly(`). [Chekuri and Chuzhoy. 2013]

Important message grid-minors are the certificate of large treewidth.

30/57

Grid Exclusion Theorem

Let H`,` be the (`× `)-grid: ` We have tw (H`,`) = `.

As Treewidth is minor closed, if ` �m G , then
tw(G) > tw(H`,`) = `.
Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer ` > 0, there is an integer c(`) such that every graph of

treewidth > c(`) contains ` as a minor.

Smallest possible function c(`)? Ω(`2 log `) 6 c(`) 6 202`5

Some improvement: c(`) = 2O(` log `). [Leaf and Seymour. 2012]

Recent breakthrough: c(`) = poly(`). [Chekuri and Chuzhoy. 2013]

Important message grid-minors are the certificate of large treewidth.

30/57

Grid Exclusion Theorem

Let H`,` be the (`× `)-grid: ` We have tw (H`,`) = `.

As Treewidth is minor closed, if ` �m G , then
tw(G) > tw(H`,`) = `.

Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer ` > 0, there is an integer c(`) such that every graph of

treewidth > c(`) contains ` as a minor.

Smallest possible function c(`)? Ω(`2 log `) 6 c(`) 6 202`5

Some improvement: c(`) = 2O(` log `). [Leaf and Seymour. 2012]

Recent breakthrough: c(`) = poly(`). [Chekuri and Chuzhoy. 2013]

Important message grid-minors are the certificate of large treewidth.

30/57

Grid Exclusion Theorem

Let H`,` be the (`× `)-grid: ` We have tw (H`,`) = `.

As Treewidth is minor closed, if ` �m G , then
tw(G) > tw(H`,`) = `.
Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer ` > 0, there is an integer c(`) such that every graph of

treewidth > c(`) contains ` as a minor.

Smallest possible function c(`)? Ω(`2 log `) 6 c(`) 6 202`5

Some improvement: c(`) = 2O(` log `). [Leaf and Seymour. 2012]

Recent breakthrough: c(`) = poly(`). [Chekuri and Chuzhoy. 2013]

Important message grid-minors are the certificate of large treewidth.

30/57

Grid Exclusion Theorem

Let H`,` be the (`× `)-grid: ` We have tw (H`,`) = `.

As Treewidth is minor closed, if ` �m G , then
tw(G) > tw(H`,`) = `.
Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer ` > 0, there is an integer c(`) such that every graph of

treewidth > c(`) contains ` as a minor.

Smallest possible function c(`)? Ω(`2 log `) 6 c(`) 6 202`5

Some improvement: c(`) = 2O(` log `). [Leaf and Seymour. 2012]

Recent breakthrough: c(`) = poly(`). [Chekuri and Chuzhoy. 2013]

Important message grid-minors are the certificate of large treewidth.

30/57

Grid Exclusion Theorem

Let H`,` be the (`× `)-grid: ` We have tw (H`,`) = `.

As Treewidth is minor closed, if ` �m G , then
tw(G) > tw(H`,`) = `.
Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer ` > 0, there is an integer c(`) such that every graph of

treewidth > c(`) contains ` as a minor.

Smallest possible function c(`)?

Ω(`2 log `) 6 c(`) 6 202`5

Some improvement: c(`) = 2O(` log `). [Leaf and Seymour. 2012]

Recent breakthrough: c(`) = poly(`). [Chekuri and Chuzhoy. 2013]

Important message grid-minors are the certificate of large treewidth.

30/57

Grid Exclusion Theorem

Let H`,` be the (`× `)-grid: ` We have tw (H`,`) = `.

As Treewidth is minor closed, if ` �m G , then
tw(G) > tw(H`,`) = `.
Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer ` > 0, there is an integer c(`) such that every graph of

treewidth > c(`) contains ` as a minor.

Smallest possible function c(`)? Ω(`2 log `) 6 c(`) 6 202`5

Some improvement: c(`) = 2O(` log `). [Leaf and Seymour. 2012]

Recent breakthrough: c(`) = poly(`). [Chekuri and Chuzhoy. 2013]

Important message grid-minors are the certificate of large treewidth.

30/57

Grid Exclusion Theorem

Let H`,` be the (`× `)-grid: ` We have tw (H`,`) = `.

As Treewidth is minor closed, if ` �m G , then
tw(G) > tw(H`,`) = `.
Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer ` > 0, there is an integer c(`) such that every graph of

treewidth > c(`) contains ` as a minor.

Smallest possible function c(`)? Ω(`2 log `) 6 c(`) 6 202`5

Some improvement: c(`) = 2O(` log `). [Leaf and Seymour. 2012]

Recent breakthrough: c(`) = poly(`). [Chekuri and Chuzhoy. 2013]

Important message grid-minors are the certificate of large treewidth.

30/57

Grid Exclusion Theorem

Let H`,` be the (`× `)-grid: ` We have tw (H`,`) = `.

As Treewidth is minor closed, if ` �m G , then
tw(G) > tw(H`,`) = `.
Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer ` > 0, there is an integer c(`) such that every graph of

treewidth > c(`) contains ` as a minor.

Smallest possible function c(`)? Ω(`2 log `) 6 c(`) 6 202`5

Some improvement: c(`) = 2O(` log `). [Leaf and Seymour. 2012]

Recent breakthrough: c(`) = poly(`). [Chekuri and Chuzhoy. 2013]

Important message grid-minors are the certificate of large treewidth.

30/57

Grid Exclusion Theorem

Let H`,` be the (`× `)-grid: ` We have tw (H`,`) = `.

As Treewidth is minor closed, if ` �m G , then
tw(G) > tw(H`,`) = `.
Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer ` > 0, there is an integer c(`) such that every graph of

treewidth > c(`) contains ` as a minor.

Smallest possible function c(`)? Ω(`2 log `) 6 c(`) 6 202`5

Some improvement: c(`) = 2O(` log `). [Leaf and Seymour. 2012]

Recent breakthrough: c(`) = poly(`). [Chekuri and Chuzhoy. 2013]

Important message grid-minors are the certificate of large treewidth.
30/57

Grid Exclusion Theorems on sparse graphs

Theorem (Robertson, Seymour, Thomas. 1994)

Every planar graph of treewidth > 6 · ` contains ` as a minor.

Theorem (Demaine, Fomin, Hajiaghayi, Thilikos. 2005)

For every fixed g, there is a constant cg such that every graph of genus g

and of treewidth > cg · ` contains ` as a minor.

Theorem (Demaine and Hajiaghayi. 2008)

For every fixed graph H, there is a constant cH such that every

H-minor-free graph of treewidth > cH · ` contains ` as a minor.

Best constant in the above theorem is by [Kawarabayashi and Kobayashi. 2012]

In sparse graphs: linear dependency between treewidth and grid-minors

31/57

Grid Exclusion Theorems on sparse graphs

Theorem (Robertson, Seymour, Thomas. 1994)

Every planar graph of treewidth > 6 · ` contains ` as a minor.

Theorem (Demaine, Fomin, Hajiaghayi, Thilikos. 2005)

For every fixed g, there is a constant cg such that every graph of genus g

and of treewidth > cg · ` contains ` as a minor.

Theorem (Demaine and Hajiaghayi. 2008)

For every fixed graph H, there is a constant cH such that every

H-minor-free graph of treewidth > cH · ` contains ` as a minor.

Best constant in the above theorem is by [Kawarabayashi and Kobayashi. 2012]

In sparse graphs: linear dependency between treewidth and grid-minors

31/57

Grid Exclusion Theorems on sparse graphs

Theorem (Robertson, Seymour, Thomas. 1994)

Every planar graph of treewidth > 6 · ` contains ` as a minor.

Theorem (Demaine, Fomin, Hajiaghayi, Thilikos. 2005)

For every fixed g, there is a constant cg such that every graph of genus g

and of treewidth > cg · ` contains ` as a minor.

Theorem (Demaine and Hajiaghayi. 2008)

For every fixed graph H, there is a constant cH such that every

H-minor-free graph of treewidth > cH · ` contains ` as a minor.

Best constant in the above theorem is by [Kawarabayashi and Kobayashi. 2012]

In sparse graphs: linear dependency between treewidth and grid-minors

31/57

Grid Exclusion Theorems on sparse graphs

Theorem (Robertson, Seymour, Thomas. 1994)

Every planar graph of treewidth > 6 · ` contains ` as a minor.

Theorem (Demaine, Fomin, Hajiaghayi, Thilikos. 2005)

For every fixed g, there is a constant cg such that every graph of genus g

and of treewidth > cg · ` contains ` as a minor.

Theorem (Demaine and Hajiaghayi. 2008)

For every fixed graph H, there is a constant cH such that every

H-minor-free graph of treewidth > cH · ` contains ` as a minor.

Best constant in the above theorem is by [Kawarabayashi and Kobayashi. 2012]

In sparse graphs: linear dependency between treewidth and grid-minors

31/57

How to use Grid Theorems algorithmically?

32/57

Next subsection is...

1 Introduction, part II
Treewidth
Dynamic programming on tree decompositions
Structure of H-minor-free graphs
Some algorithmic issues
A few words on other containment relations

2 Bidimensionality
Some ingredients
An illustrative example
Meta-algorithms
Further extensions

33/57

Example: FPT algorithm for Planar Vertex Cover

A vertex cover C of a graph G , vc(G), is a set of vertices such that
every edge of G has at least one endpoint in C .

34/57

Example: FPT algorithm for Planar Vertex Cover

INPUT: Planar graph G on n vertices, and an integer k.

OUTPUT: Either a vertex cover of G of size 6 k, or a proof
that G has no such a vertex cover.

RUNNING TIME: 2O(
√
k) · nO(1).

Objective subexponential FPT algorithm for Planar Vertex Cover.

35/57

Example: FPT algorithm for Planar Vertex Cover

vc(H`,`) >
`2

2

36/57

Example: FPT algorithm for Planar Vertex Cover

Let G be a planar graph of
treewidth > 6 · `

=⇒ G contains the (`× `)-grid
H`,` as a minor

The size of any vertex cover of H`,` is at least `2/2.

Recall that Vertex Cover is a minor closed parameter.

Since H`,` �m G , it holds that vc(G) > vc(H`,`) > `2/2.

37/57

Example: FPT algorithm for Planar Vertex Cover

Let G be a planar graph of
treewidth > 6 · `

=⇒ G contains the (`× `)-grid
H`,` as a minor

The size of any vertex cover of H`,` is at least `2/2.

Recall that Vertex Cover is a minor closed parameter.

Since H`,` �m G , it holds that vc(G) > vc(H`,`) > `2/2.

37/57

Example: FPT algorithm for Planar Vertex Cover

Let G be a planar graph of
treewidth > 6 · `

=⇒ G contains the (`× `)-grid
H`,` as a minor

The size of any vertex cover of H`,` is at least `2/2.

Recall that Vertex Cover is a minor closed parameter.

Since H`,` �m G , it holds that vc(G) > vc(H`,`) > `2/2.

37/57

We are already very close to an algorithm...

Recall:

k is the parameter of the problem.

We have that tw(G) = 6 · ` and ` is the size of a grid-minor of G .

Therefore, vc(G) > `2/2.

WIN/WIN approach:

If k < `2/2, we can safely answer “NO”.

If k > `2/2, then tw(G) = O(`) = O(
√

k), and we can solve the

problem by standard DP in time 2O(tw(G)) · nO(1) = 2O(
√
k) · nO(1).

This gives a subexponential FPT algorithm!

38/57

We are already very close to an algorithm...

Recall:

k is the parameter of the problem.

We have that tw(G) = 6 · ` and ` is the size of a grid-minor of G .

Therefore, vc(G) > `2/2.

WIN/WIN approach:

If k < `2/2, we can safely answer “NO”.

If k > `2/2, then tw(G) = O(`) = O(
√

k), and we can solve the

problem by standard DP in time 2O(tw(G)) · nO(1) = 2O(
√
k) · nO(1).

This gives a subexponential FPT algorithm!

38/57

We are already very close to an algorithm...

Recall:

k is the parameter of the problem.

We have that tw(G) = 6 · ` and ` is the size of a grid-minor of G .

Therefore, vc(G) > `2/2.

WIN/WIN approach:

If k < `2/2, we can safely answer “NO”.

If k > `2/2, then tw(G) = O(`) = O(
√

k),

and we can solve the

problem by standard DP in time 2O(tw(G)) · nO(1) = 2O(
√
k) · nO(1).

This gives a subexponential FPT algorithm!

38/57

We are already very close to an algorithm...

Recall:

k is the parameter of the problem.

We have that tw(G) = 6 · ` and ` is the size of a grid-minor of G .

Therefore, vc(G) > `2/2.

WIN/WIN approach:

If k < `2/2, we can safely answer “NO”.

If k > `2/2, then tw(G) = O(`) = O(
√

k), and we can solve the

problem by standard DP in time 2O(tw(G)) · nO(1)

= 2O(
√
k) · nO(1).

This gives a subexponential FPT algorithm!

38/57

We are already very close to an algorithm...

Recall:

k is the parameter of the problem.

We have that tw(G) = 6 · ` and ` is the size of a grid-minor of G .

Therefore, vc(G) > `2/2.

WIN/WIN approach:

If k < `2/2, we can safely answer “NO”.

If k > `2/2, then tw(G) = O(`) = O(
√

k), and we can solve the

problem by standard DP in time 2O(tw(G)) · nO(1) = 2O(
√
k) · nO(1).

This gives a subexponential FPT algorithm!

38/57

We are already very close to an algorithm...

Recall:

k is the parameter of the problem.

We have that tw(G) = 6 · ` and ` is the size of a grid-minor of G .

Therefore, vc(G) > `2/2.

WIN/WIN approach:

If k < `2/2, we can safely answer “NO”.

If k > `2/2, then tw(G) = O(`) = O(
√

k), and we can solve the

problem by standard DP in time 2O(tw(G)) · nO(1) = 2O(
√
k) · nO(1).

This gives a subexponential FPT algorithm!

38/57

Was Vertex Cover really just an example...?

What is so special in Vertex Cover?

F Nothing special! It is just a minor bidimensional parameter:

minor-closed + vc(k) = Ω(k2).

Where did we use planarity?

F Only the linear Grid Theorem!

Arguments go through up to H-minor-free graphs.

39/57

Was Vertex Cover really just an example...?

What is so special in Vertex Cover?

F Nothing special! It is just a minor bidimensional parameter:

minor-closed + vc(k) = Ω(k2).

Where did we use planarity?

F Only the linear Grid Theorem!

Arguments go through up to H-minor-free graphs.

39/57

Was Vertex Cover really just an example...?

What is so special in Vertex Cover?

F Nothing special! It is just a minor bidimensional parameter:

minor-closed + vc(k) = Ω(k2).

Where did we use planarity?

F Only the linear Grid Theorem!

Arguments go through up to H-minor-free graphs.

39/57

Next subsection is...

1 Introduction, part II
Treewidth
Dynamic programming on tree decompositions
Structure of H-minor-free graphs
Some algorithmic issues
A few words on other containment relations

2 Bidimensionality
Some ingredients
An illustrative example
Meta-algorithms
Further extensions

40/57

Minor Bidimensionality:
[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition

A parameter p is minor bidimensional if

1 p is closed under taking of minors (minor closed), and

2 p

(
k

)
= Ω(k2).

41/57

Vertex Cover of a Grid

Hr ,r for r = 10

42/57

Vertex Cover of a Grid

vc(Hr ,r) > r 2/2

43/57

Feedback Vertex Set of a Grid

44/57

Feedback Vertex Set of a Grid

fvs(Hr ,r) > r 2/4

45/57

How to obtain subexponential algorithms for BP?

First we must restrict ourselves to special graph classes, like planar or
H-minor-free graphs.

Show that if the graph has large treewidth (> c
√

k) then it has a
(
√

k ×
√

k)-grid as a minor, and hence the answer to the problem is
YES (or NO) immediately.

Otherwise, the treewidth is bounded by c
√

k, and hence we can use a
dynamic programming (DP) algorithm on graphs of bounded treewidth.

If we have a DP algorithm for bounded treewidth running in time ct

or tt , then it implies 2O(
√
k) or 2O(

√
k log k) algorithm.

46/57

How to obtain subexponential algorithms for BP?

First we must restrict ourselves to special graph classes, like planar or
H-minor-free graphs.

Show that if the graph has large treewidth (> c
√

k) then it has a
(
√

k ×
√

k)-grid as a minor, and hence the answer to the problem is
YES (or NO) immediately.

Otherwise, the treewidth is bounded by c
√

k, and hence we can use a
dynamic programming (DP) algorithm on graphs of bounded treewidth.

If we have a DP algorithm for bounded treewidth running in time ct

or tt , then it implies 2O(
√
k) or 2O(

√
k log k) algorithm.

46/57

How to obtain subexponential algorithms for BP?

First we must restrict ourselves to special graph classes, like planar or
H-minor-free graphs.

Show that if the graph has large treewidth (> c
√

k) then it has a
(
√

k ×
√

k)-grid as a minor, and hence the answer to the problem is
YES (or NO) immediately.

Otherwise, the treewidth is bounded by c
√

k , and hence we can use a
dynamic programming (DP) algorithm on graphs of bounded treewidth.

If we have a DP algorithm for bounded treewidth running in time ct

or tt , then it implies 2O(
√
k) or 2O(

√
k log k) algorithm.

46/57

How to obtain subexponential algorithms for BP?

First we must restrict ourselves to special graph classes, like planar or
H-minor-free graphs.

Show that if the graph has large treewidth (> c
√

k) then it has a
(
√

k ×
√

k)-grid as a minor, and hence the answer to the problem is
YES (or NO) immediately.

Otherwise, the treewidth is bounded by c
√

k , and hence we can use a
dynamic programming (DP) algorithm on graphs of bounded treewidth.

If we have a DP algorithm for bounded treewidth running in time ct

or tt , then it implies 2O(
√
k) or 2O(

√
k log k) algorithm.

46/57

Piecing everything together

Theorem

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 2O(tw(G)) · nO(1).

Then deciding “ p(G) = k” can be done in time 2O(
√
k) · nO(1).

1 Compute (or approximate) tw(G).

We can use a fast FPT algorithm or a constant-factor approx.

2 If tw(G) = Ω(
√

k), then answer NO.

This follows because of the linear Grid Exclusion Theorems.

3 Otherwise tw(G) = O(
√

k), and we solve the problem by DP.

Doing DP in time 2O(tw(G)) · nO(1) is a whole area of research:
Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]

Randomized algorithms using Cut&Count. [Cygan et al. 2011]

Deterministic algorithms based on rank of matrices. [Boadlaender et al. 2012]

Deterministic algorithms based on matroids. [Fomin et al. 2013]

47/57

Piecing everything together

Theorem

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 2O(tw(G)) · nO(1).

Then deciding “ p(G) = k” can be done in time 2O(
√
k) · nO(1).

1 Compute (or approximate) tw(G).

We can use a fast FPT algorithm or a constant-factor approx.

2 If tw(G) = Ω(
√

k), then answer NO.

This follows because of the linear Grid Exclusion Theorems.

3 Otherwise tw(G) = O(
√

k), and we solve the problem by DP.

Doing DP in time 2O(tw(G)) · nO(1) is a whole area of research:
Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]

Randomized algorithms using Cut&Count. [Cygan et al. 2011]

Deterministic algorithms based on rank of matrices. [Boadlaender et al. 2012]

Deterministic algorithms based on matroids. [Fomin et al. 2013]

47/57

Piecing everything together

Theorem

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 2O(tw(G)) · nO(1).

Then deciding “ p(G) = k” can be done in time 2O(
√
k) · nO(1).

1 Compute (or approximate) tw(G).
We can use a fast FPT algorithm or a constant-factor approx.

2 If tw(G) = Ω(
√

k), then answer NO.

This follows because of the linear Grid Exclusion Theorems.

3 Otherwise tw(G) = O(
√

k), and we solve the problem by DP.

Doing DP in time 2O(tw(G)) · nO(1) is a whole area of research:
Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]

Randomized algorithms using Cut&Count. [Cygan et al. 2011]

Deterministic algorithms based on rank of matrices. [Boadlaender et al. 2012]

Deterministic algorithms based on matroids. [Fomin et al. 2013]

47/57

Piecing everything together

Theorem

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 2O(tw(G)) · nO(1).

Then deciding “ p(G) = k” can be done in time 2O(
√
k) · nO(1).

1 Compute (or approximate) tw(G).
We can use a fast FPT algorithm or a constant-factor approx.

2 If tw(G) = Ω(
√

k), then answer NO.
This follows because of the linear Grid Exclusion Theorems.

3 Otherwise tw(G) = O(
√

k), and we solve the problem by DP.

Doing DP in time 2O(tw(G)) · nO(1) is a whole area of research:
Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]

Randomized algorithms using Cut&Count. [Cygan et al. 2011]

Deterministic algorithms based on rank of matrices. [Boadlaender et al. 2012]

Deterministic algorithms based on matroids. [Fomin et al. 2013]

47/57

Piecing everything together

Theorem

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 2O(tw(G)) · nO(1).

Then deciding “ p(G) = k” can be done in time 2O(
√
k) · nO(1).

1 Compute (or approximate) tw(G).
We can use a fast FPT algorithm or a constant-factor approx.

2 If tw(G) = Ω(
√

k), then answer NO.
This follows because of the linear Grid Exclusion Theorems.

3 Otherwise tw(G) = O(
√

k), and we solve the problem by DP.

Doing DP in time 2O(tw(G)) · nO(1) is a whole area of research:

Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]

Randomized algorithms using Cut&Count. [Cygan et al. 2011]

Deterministic algorithms based on rank of matrices. [Boadlaender et al. 2012]

Deterministic algorithms based on matroids. [Fomin et al. 2013]

47/57

Piecing everything together

Theorem

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 2O(tw(G)) · nO(1).

Then deciding “ p(G) = k” can be done in time 2O(
√
k) · nO(1).

1 Compute (or approximate) tw(G).
We can use a fast FPT algorithm or a constant-factor approx.

2 If tw(G) = Ω(
√

k), then answer NO.
This follows because of the linear Grid Exclusion Theorems.

3 Otherwise tw(G) = O(
√

k), and we solve the problem by DP.

Doing DP in time 2O(tw(G)) · nO(1) is a whole area of research:
Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]

Randomized algorithms using Cut&Count. [Cygan et al. 2011]

Deterministic algorithms based on rank of matrices. [Boadlaender et al. 2012]

Deterministic algorithms based on matroids. [Fomin et al. 2013]

47/57

Piecing everything together

Theorem

Let G be an H-minor-free graph, and let p be a minor bidimensional graph
parameter computable in time 2O(tw(G)) · nO(1).

Then deciding “ p(G) = k” can be done in time 2O(
√
k) · nO(1).

1 Compute (or approximate) tw(G).
We can use a fast FPT algorithm or a constant-factor approx.

2 If tw(G) = Ω(
√

k), then answer NO.
This follows because of the linear Grid Exclusion Theorems.

3 Otherwise tw(G) = O(
√

k), and we solve the problem by DP.

Doing DP in time 2O(tw(G)) · nO(1) is a whole area of research:
Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008]

[Rué, S., Thilikos. 2010]

Randomized algorithms using Cut&Count. [Cygan et al. 2011]

Deterministic algorithms based on rank of matrices. [Boadlaender et al. 2012]

Deterministic algorithms based on matroids. [Fomin et al. 2013]

47/57

Minor Bidimensionality provides a meta-algorithm

This result applies to all minor closed parameters:

Vertex Cover, Feedback Vertex Set, Long Path,
Cycle Cover, . . .

What about contraction closed parameters??

Dominating Set, Connected Vertex Cover,
r-Dominating Set, . . .

48/57

Minor Bidimensionality provides a meta-algorithm

This result applies to all minor closed parameters:

Vertex Cover, Feedback Vertex Set, Long Path,
Cycle Cover, . . .

What about contraction closed parameters??

Dominating Set, Connected Vertex Cover,
r-Dominating Set, . . .

48/57

Next subsection is...

1 Introduction, part II
Treewidth
Dynamic programming on tree decompositions
Structure of H-minor-free graphs
Some algorithmic issues
A few words on other containment relations

2 Bidimensionality
Some ingredients
An illustrative example
Meta-algorithms
Further extensions

49/57

Contraction bidimensionality

Dominating Set is NOT minor closed,
so we cannot use Grid Exclusion Theorems!!

But it is contraction closed...

Contraction Bidimensionality:
[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition

A parameter p is contraction bidimensional if

1 p is closed under taking of contractions (contraction closed), and

2 for a “(k × k)-grid-like graph” Γ, p(Γ) = Ω(k2).

What is a (k × k)-grid-like graph...?

50/57

Contraction bidimensionality

Dominating Set is NOT minor closed,
so we cannot use Grid Exclusion Theorems!!

But it is contraction closed...

Contraction Bidimensionality:
[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition

A parameter p is contraction bidimensional if

1 p is closed under taking of contractions (contraction closed), and

2 for a “(k × k)-grid-like graph” Γ, p(Γ) = Ω(k2).

What is a (k × k)-grid-like graph...?

50/57

Contraction bidimensionality

Dominating Set is NOT minor closed,
so we cannot use Grid Exclusion Theorems!!

But it is contraction closed...

Contraction Bidimensionality:
[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition

A parameter p is contraction bidimensional if

1 p is closed under taking of contractions (contraction closed), and

2 for a “(k × k)-grid-like graph” Γ, p(Γ) = Ω(k2).

What is a (k × k)-grid-like graph...?

50/57

Contraction bidimensionality

Dominating Set is NOT minor closed,
so we cannot use Grid Exclusion Theorems!!

But it is contraction closed...

Contraction Bidimensionality:
[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition

A parameter p is contraction bidimensional if

1 p is closed under taking of contractions (contraction closed), and

2 for a “(k × k)-grid-like graph” Γ, p(Γ) = Ω(k2).

What is a (k × k)-grid-like graph...?

50/57

Contraction bidimensionality: old setting

A “(k × k)-grid-like graph” was different for each graph class:

F For planar graphs this is a partially triangulated (k × k)-grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2006]

F For graphs of Euler genus γ, this is a partially triangulated (k × k)-grid with
up to γ additional handles.

[Demaine, Hajiaghayi, Thilikos. 2006]

F For apex-minor-free graphs, this is a (k × k)-augmented grid, i.e., partially
triangulated grid augmented with additional edges such that each vertex is
incident to O(1) edges to non-boundary vertices of the grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

H is an apex graph if ∃v ∈ V (H): H − v is planar

51/57

Contraction bidimensionality: old setting

A “(k × k)-grid-like graph” was different for each graph class:

F For planar graphs this is a partially triangulated (k × k)-grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2006]

F For graphs of Euler genus γ, this is a partially triangulated (k × k)-grid with
up to γ additional handles.

[Demaine, Hajiaghayi, Thilikos. 2006]

F For apex-minor-free graphs, this is a (k × k)-augmented grid, i.e., partially
triangulated grid augmented with additional edges such that each vertex is
incident to O(1) edges to non-boundary vertices of the grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

H is an apex graph if ∃v ∈ V (H): H − v is planar

51/57

Contraction bidimensionality: old setting

A “(k × k)-grid-like graph” was different for each graph class:

F For planar graphs this is a partially triangulated (k × k)-grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2006]

F For graphs of Euler genus γ, this is a partially triangulated (k × k)-grid with
up to γ additional handles.

[Demaine, Hajiaghayi, Thilikos. 2006]

F For apex-minor-free graphs, this is a (k × k)-augmented grid, i.e., partially
triangulated grid augmented with additional edges such that each vertex is
incident to O(1) edges to non-boundary vertices of the grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

H is an apex graph if ∃v ∈ V (H): H − v is planar

51/57

Contraction bidimensionality: old setting

A “(k × k)-grid-like graph” was different for each graph class:

F For planar graphs this is a partially triangulated (k × k)-grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2006]

F For graphs of Euler genus γ, this is a partially triangulated (k × k)-grid with
up to γ additional handles.

[Demaine, Hajiaghayi, Thilikos. 2006]

F For apex-minor-free graphs, this is a (k × k)-augmented grid, i.e., partially
triangulated grid augmented with additional edges such that each vertex is
incident to O(1) edges to non-boundary vertices of the grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

H is an apex graph if ∃v ∈ V (H): H − v is planar
51/57

Contraction bidimensionality: new definition

Finally, the right “(k × k)-grid-like graph” was found:
[Fomin, Golovach, Thilikos. 2009]

k

Definition

A parameter p is contraction bidimensional if the following hold:

1 p is contraction closed, and

2 p(k) = Ω(k2).

52/57

Contraction bidimensionality: new definition

Finally, the right “(k × k)-grid-like graph” was found:
[Fomin, Golovach, Thilikos. 2009]

k

Definition

A parameter p is contraction bidimensional if the following hold:

1 p is contraction closed, and

2 p(k) = Ω(k2).
52/57

Meta-algorithms for contraction bidimensional parameters

Theorem

Let H be a fixed apex graph, let G be an H-minor free graph, and let p

be a contraction bidimensional parameter computable in 2O(tw(G)) · nO(1).

Then deciding p(G) = k can be done in time 2O(
√
k) · nO(1).

As for minor bidimensionality, we need to prove that

I If tw(G) = Ω(k) then G contains k as a contraction.

53/57

Meta-algorithms for contraction bidimensional parameters

Theorem

Let H be a fixed apex graph, let G be an H-minor free graph, and let p

be a contraction bidimensional parameter computable in 2O(tw(G)) · nO(1).

Then deciding p(G) = k can be done in time 2O(
√
k) · nO(1).

As for minor bidimensionality, we need to prove that

I If tw(G) = Ω(k) then G contains k as a contraction.

53/57

Two important grid-like graphs

Two pattern graphs Γk and Πk :

Bidimensionality for minors and contractions The irrelevant vertex technique

Limits of bidimensionality

What about contraction-closed parameters?

We define the following two pattern graphs Γk and Πk:

Πk =Γk =

vnew

Πk = Γk+ a new vertex vnew, connected to all the vertices in V (Γk).

Dimitrios M. Thilikos ΕΚΠΑ-NKUA

Algorithmic Graph Minor Theory Part 2 77

Πk = Γk+ a new universal vertex vnew.

54/57

The “contraction-certificates” for large treewidth

Theorem (Fomin, Golovach, Thilikos. 2009)

For any integer ` > 0, there is c` such that every connected graph of
treewidth at least c`, contains K`, Γ`, or Π` as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For every graph H, there is cH > 0 such that every connected H-minor-free
graph of treewidth at least cH · `2 contains Γ` or Π` as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For every apex graph H, there is cH > 0 such that every connected
H-minor-free graph of treewidth at least cH · ` contains Γ` as a contraction.

55/57

The “contraction-certificates” for large treewidth

Theorem (Fomin, Golovach, Thilikos. 2009)

For any integer ` > 0, there is c` such that every connected graph of
treewidth at least c`, contains K`, Γ`, or Π` as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For every graph H, there is cH > 0 such that every connected H-minor-free
graph of treewidth at least cH · `2 contains Γ` or Π` as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For every apex graph H, there is cH > 0 such that every connected
H-minor-free graph of treewidth at least cH · ` contains Γ` as a contraction.

55/57

The “contraction-certificates” for large treewidth

Theorem (Fomin, Golovach, Thilikos. 2009)

For any integer ` > 0, there is c` such that every connected graph of
treewidth at least c`, contains K`, Γ`, or Π` as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For every graph H, there is cH > 0 such that every connected H-minor-free
graph of treewidth at least cH · `2 contains Γ` or Π` as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For every apex graph H, there is cH > 0 such that every connected
H-minor-free graph of treewidth at least cH · ` contains Γ` as a contraction.

55/57

Further applications of Bidimensionality

1 Bidimensionality + DP ⇒ Subexponential FPT algorithms

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]

[Fomin, Golovach, Thilikos. 2009]

2 Bidimensionality + separation properties ⇒ (E)PTAS

[Demaine and Hajiaghayi. 2005]

[Fomin, Lokshtanov, Raman, Saurabh. 2011]

3 Bidimensionality + separation properties ⇒ Kernelization

[Fomin, Lokshtanov, Saurabh, Thilikos. 2009-2010]

4 Bidimensionality + new Grid Theorems ⇒ Geometric graphs

[Fomin, Lokshtanov, Saurabh. 2012]

[Grigoriev, Koutsonas, Thilikos. 2013]

56/57

Further applications of Bidimensionality

1 Bidimensionality + DP ⇒ Subexponential FPT algorithms

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]

[Fomin, Golovach, Thilikos. 2009]

2 Bidimensionality + separation properties ⇒ (E)PTAS

[Demaine and Hajiaghayi. 2005]

[Fomin, Lokshtanov, Raman, Saurabh. 2011]

3 Bidimensionality + separation properties ⇒ Kernelization

[Fomin, Lokshtanov, Saurabh, Thilikos. 2009-2010]

4 Bidimensionality + new Grid Theorems ⇒ Geometric graphs

[Fomin, Lokshtanov, Saurabh. 2012]

[Grigoriev, Koutsonas, Thilikos. 2013]

56/57

Further applications of Bidimensionality

1 Bidimensionality + DP ⇒ Subexponential FPT algorithms

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]

[Fomin, Golovach, Thilikos. 2009]

2 Bidimensionality + separation properties ⇒ (E)PTAS

[Demaine and Hajiaghayi. 2005]

[Fomin, Lokshtanov, Raman, Saurabh. 2011]

3 Bidimensionality + separation properties ⇒ Kernelization

[Fomin, Lokshtanov, Saurabh, Thilikos. 2009-2010]

4 Bidimensionality + new Grid Theorems ⇒ Geometric graphs

[Fomin, Lokshtanov, Saurabh. 2012]

[Grigoriev, Koutsonas, Thilikos. 2013]

56/57

Further applications of Bidimensionality

1 Bidimensionality + DP ⇒ Subexponential FPT algorithms

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]

[Fomin, Golovach, Thilikos. 2009]

2 Bidimensionality + separation properties ⇒ (E)PTAS

[Demaine and Hajiaghayi. 2005]

[Fomin, Lokshtanov, Raman, Saurabh. 2011]

3 Bidimensionality + separation properties ⇒ Kernelization

[Fomin, Lokshtanov, Saurabh, Thilikos. 2009-2010]

4 Bidimensionality + new Grid Theorems ⇒ Geometric graphs

[Fomin, Lokshtanov, Saurabh. 2012]

[Grigoriev, Koutsonas, Thilikos. 2013]

56/57

Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE

57/57

	Introduction, part II
	Treewidth
	Dynamic programming on tree decompositions
	Structure of H-minor-free graphs
	Some algorithmic issues
	A few words on other containment relations

	Bidimensionality
	Some ingredients
	An illustrative example
	Meta-algorithms
	Further extensions

