Introduction + Bidimensionality Theory

Ignasi Sau

CNRS, LIRMM, Montpellier (France)

Many thanks to Dimitrios M. Thilikos!!

14èmes JCALM. October 2013. UPC, Barcelona, Catalunya

Outline of the talk

Introduction, part II

- Treewidth
- Dynamic programming on tree decompositions
- Structure of *H*-minor-free graphs
- Some algorithmic issues
- A few words on other containment relations

Bidimensionality

- Some ingredients
- An illustrative example
- Meta-algorithms
- Further extensions

Introduction, part II

- Treewidth
- Dynamic programming on tree decompositions
- Structure of *H*-minor-free graphs
- Some algorithmic issues
- A few words on other containment relations

2 Bidimensionality

- Some ingredients
- An illustrative example
- Meta-algorithms
- Further extensions

Parameterized complexity in one slide

• Idea given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a VERTEX COVER.

• Given a (NP-hard) problem with input of size *n* and a parameter *k*, a fixed-parameter tractable (FPT) algorithm runs in

 $f(k) \cdot \mathbf{n}^{\mathcal{O}(1)}$, for some function f.

Examples: *k*-VERTEX COVER, *k*-LONGEST PATH.

Parameterized complexity in one slide

• Idea given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a VERTEX COVER.

• Given a (NP-hard) problem with input of size *n* and a parameter *k*, a fixed-parameter tractable (FPT) algorithm runs in

 $f(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)}$, for some function f.

Examples: *k*-VERTEX COVER, *k*-LONGEST PATH.

• Single-exponential FPT algorithm:

 $2^{O(k)} \cdot n^{O(1)}$

Parameterized complexity in one slide

• Idea given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

Example: the size of a VERTEX COVER.

• Given a (NP-hard) problem with input of size *n* and a parameter *k*, a fixed-parameter tractable (FPT) algorithm runs in

 $f(k) \cdot \mathbf{n}^{\mathcal{O}(1)}$, for some function f.

Examples: *k*-VERTEX COVER, *k*-LONGEST PATH.

• Single-exponential FPT algorithm:

$$2^{O(k)} \cdot n^{O(1)}$$

• Subexponential FPT algorithm:

$$2^{o(k)} \cdot n^{O(1)}$$

Introduction, part II

Treewidth

- Dynamic programming on tree decompositions
- Structure of *H*-minor-free graphs
- Some algorithmic issues
- A few words on other containment relations

2 Bidimensionality

- Some ingredients
- An illustrative example
- Meta-algorithms
- Further extensions

A tree decomposition of a graph G is a pair $D = (T, \mathcal{X})$ such that T is a tree and $\mathcal{X} = \{X_t \mid t \in V(T)\}$ is a collection of subsets of V(G) such that:

(each $X_t \in \mathcal{X}$ corresponds to a vertex $t \in V(T)$: we call X_t node of D)

A tree decomposition of a graph G is a pair $D = (T, \mathcal{X})$ such that T is a tree and $\mathcal{X} = \{X_t \mid t \in V(T)\}$ is a collection of subsets of V(G) such that:

(each $X_t \in \mathcal{X}$ corresponds to a vertex $t \in V(T)$: we call X_t node of D)

- Any vertex v ∈ V(G) and the endpoints of any edge e ∈ E(G) belong to some node X_t of D; and
- For any $v \in V(G)$, the set $\{t \in V(T) \mid v \in X_t\}$ is a subtree of T.

A tree decomposition of a graph G is a pair $D = (T, \mathcal{X})$ such that T is a tree and $\mathcal{X} = \{X_t \mid t \in V(T)\}$ is a collection of subsets of V(G) such that:

(each $X_t \in \mathcal{X}$ corresponds to a vertex $t \in V(T)$: we call X_t node of D)

- Any vertex v ∈ V(G) and the endpoints of any edge e ∈ E(G) belong to some node X_t of D; and
- For any $v \in V(G)$, the set $\{t \in V(T) \mid v \in X_t\}$ is a subtree of T.

The width of a tree decomposition is $\max\{|X_t| \mid t \in V(T)\} - 1$.

A tree decomposition of a graph G is a pair $D = (T, \mathcal{X})$ such that T is a tree and $\mathcal{X} = \{X_t \mid t \in V(T)\}$ is a collection of subsets of V(G) such that:

(each $X_t \in \mathcal{X}$ corresponds to a vertex $t \in V(T)$: we call X_t node of D)

- Any vertex v ∈ V(G) and the endpoints of any edge e ∈ E(G) belong to some node X_t of D; and
- For any $v \in V(G)$, the set $\{t \in V(T) \mid v \in X_t\}$ is a subtree of T.

The *width* of a tree decomposition is $\max\{|X_t| \mid t \in V(T)\} - 1$.

The *treewidth* of a graph G, denoted tw(G), is the minimum width over all tree decompositions of G.

A tree decomposition of a graph G is a pair $D = (T, \mathcal{X})$ such that T is a tree and $\mathcal{X} = \{X_t \mid t \in V(T)\}$ is a collection of subsets of V(G) such that:

(each $X_t \in \mathcal{X}$ corresponds to a vertex $t \in V(\mathcal{T})$: we call X_t node of D)

- Any vertex v ∈ V(G) and the endpoints of any edge e ∈ E(G) belong to some node X_t of D; and
- For any $v \in V(G)$, the set $\{t \in V(T) \mid v \in X_t\}$ is a subtree of T.

The *width* of a tree decomposition is $\max\{|X_t| \mid t \in V(T)\} - 1$.

The *treewidth* of a graph G, denoted tw(G), is the minimum width over all tree decompositions of G.

Invariant that measures the topological complexity of a graph.

< □ > < @ > < E > < E > E のへで 11/57

Computing treewidth is NP-hard

[Arnborg, Corneil, Proskurowski. 1987]

2

Computing treewidth is NP-hard

[Arnborg, Corneil, Proskurowski. 1987]

Approximation algorithms on general graphs

• $O(OPT \cdot \sqrt{OPT})$ -approximation.

[Feige, Hajiaghayi, Lee. 2008]

1	Computing	treewidth is	s NP-hard
---	-----------	--------------	-----------

[Arnborg, Corneil, Proskurowski. 1987]

Approximation algorithms on general graphs

• $O(OPT \cdot \sqrt{OPT})$ -approximation.

[Feige, Hajiaghayi, Lee. 2008]

 $(Exact) FPT algorithms on general graphs (tw \leq k?)$

[Arnborg, Corneil, Proskurowski. 1987]

Approximation algorithms on general graphs

• $O(OPT \cdot \sqrt{OPT})$ -approximation.

[Feige, Hajiaghayi, Lee. 2008]

 $(Exact) FPT algorithms on general graphs (tw \leq k?)$

• In time $O(n^{k+2})$.

[Arnborg, Corneil, Proskurowski. 1987]

[Arnborg, Corneil, Proskurowski. 1987]

Approximation algorithms on general graphs

• $O(OPT \cdot \sqrt{OPT})$ -approximation.

[Feige, Hajiaghayi, Lee. 2008]

(Exact) FPT algorithms on general graphs (tw $\leq k$?)

• In time $O(n^{k+2})$.

3

• In time $k^{O(k^3)} \cdot n$.

[Arnborg, Corneil, Proskurowski. 1987]

[Bodlaender. 1996]

Introduction, part II

Treewidth

• Dynamic programming on tree decompositions

- Structure of *H*-minor-free graphs
- Some algorithmic issues
- A few words on other containment relations

2 Bidimensionality

- Some ingredients
- An illustrative example
- Meta-algorithms
- Further extensions

• For each node X_i , let $G_i = G[X_i]$, and let

 G'_i be the subgraph of G induced by node X_i and its descendants.

- For each node X_i , let $G_i = G[X_i]$, and let G'_i be the subgraph of G induced by node X_i and its descendants.
- Tables of dynamic programming (DP) at each node X_i : (S_i, a_i) , where S_i is an independent set in G_i , and a_i is the maximum size of an independent set in G'_i which coincides with S_i in X_i .

- For each node X_i , let $G_i = G[X_i]$, and let G'_i be the subgraph of G induced by node X_i and its descendants.
- Tables of dynamic programming (DP) at each node X_i : (S_i, a_i) , where S_i is an independent set in G_i , and a_i is the maximum size of an independent set in G'_i which coincides with S_i in X_i .
- The tables (*S_i*, *a_i*) at node *X_i* can be computed from the tables of its children as follows. For each *S_i* independent set of *G_i*:
 - If X_j is a child of X_i , an independent set S_j of G_j is feasible for S_i if $X_j \cap S_i = X_i \cap S_j$.
 - For each children X_j of X_i , let S_j be feasible for S_i s.t. (S_j, a_j) is defined and a_j is maximized.
 - We set $a_i := |S_i| + \sum_j (a_j |S_i \cap S_j|).$

- For each node X_i , let $G_i = G[X_i]$, and let G'_i be the subgraph of G induced by node X_i and its descendants.
- Tables of dynamic programming (DP) at each node X_i : (S_i, a_i) , where S_i is an independent set in G_i , and a_i is the maximum size of an independent set in G'_i which coincides with S_i in X_i .
- The tables (*S_i*, *a_i*) at node *X_i* can be computed from the tables of its children as follows. For each *S_i* independent set of *G_i*:
 - If X_j is a child of X_i , an independent set S_j of G_j is feasible for S_i if $X_j \cap S_i = X_i \cap S_j$.
 - For each children X_j of X_i , let S_j be feasible for S_i s.t. (S_j, a_j) is defined and a_j is maximized.
 - We set $a_i := |S_i| + \sum_j (a_j |S_i \cap S_j|).$
- Running time for each node X_i : $O(2^{2|X_i|})$.
- Overall running time: $2^{O(tw(G))} \cdot n$.

・ロト ・四ト ・ヨト ・ヨト ・ヨー

What we have seen with MAX. INDEPENDENT SET can be generalized to a wide family of problems:

Theorem (Courcelle. 1988)

Graph problems expressible in Monadic Second Order Logic (MSOL) can be solved in time $f(k) \cdot n^{O(1)}$ in graphs with n vertices and tw $\leq k$.

What we have seen with MAX. INDEPENDENT SET can be generalized to a wide family of problems:

Theorem (Courcelle. 1988)

Graph problems expressible in Monadic Second Order Logic (MSOL) can be solved in time $f(k) \cdot n^{O(1)}$ in graphs with n vertices and tw $\leq k$.

 In other words, all these problems are fixed -parameter tractable (FPT) when parameterized by the treewidth of their input graphs. What we have seen with MAX. INDEPENDENT SET can be generalized to a wide family of problems:

Theorem (Courcelle. 1988)

Graph problems expressible in Monadic Second Order Logic (MSOL) can be solved in time $f(k) \cdot n^{O(1)}$ in graphs with n vertices and tw $\leq k$.

- In other words, all these problems are fixed -parameter tractable (FPT) when parameterized by the treewidth of their input graphs.
- Running time (tight):

$$2^{2^{2\cdots 2^{k}}} \cdot n^{O(1)}$$

Introduction, part II

- Treewidth
- Dynamic programming on tree decompositions

• Structure of *H*-minor-free graphs

- Some algorithmic issues
- A few words on other containment relations

Bidimensionality

- Some ingredients
- An illustrative example
- Meta-algorithms
- Further extensions
- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.

- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.
 - Apex in an embedded graph: add a vertex with any neighbors in the embedded graph.

- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.
 - Apex in an embedded graph: add a vertex with any neighbors in the embedded graph.
 - Vortex of depth h in an embedded graph:
 paste a graph of pathwidth at most h in a face of the embedding.

- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.
 - Apex in an embedded graph: add a vertex with any neighbors in the embedded graph.
 - Vortex of depth *h* in an embedded graph: paste a graph of pathwidth at most *h* in a face of the embedding.
- Structure Theorem [Robertson and Seymour]:

Fix a graph H.

- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.
 - Apex in an embedded graph: add a vertex with any neighbors in the embedded graph.
 - Vortex of depth *h* in an embedded graph: paste a graph of pathwidth at most *h* in a face of the embedding.
- Structure Theorem [Robertson and Seymour]:

Fix a graph *H*. There exists a constant h = f(|V(H)|) such that any *H*-minor-free graph *G* can be decomposed (in a tree-like way) into *h*-clique-sums from *h*-almost-embeddable graphs:

- Some (simplified) preliminaries:
 - *h*-clique-sum of two graphs G_1 and G_2 : choose cliques $K_1 \subseteq G_1$ and $K_2 \subseteq G_2$ with $|V(K_1)| = |V(K_2)| = h$, identify them, and possibly remove some edges of that clique.
 - Apex in an embedded graph: add a vertex with any neighbors in the embedded graph.
 - Vortex of depth *h* in an embedded graph: paste a graph of pathwidth at most *h* in a face of the embedding.
- Structure Theorem [Robertson and Seymour]:

Fix a graph *H*. There exists a constant h = f(|V(H)|) such that any *H*-minor-free graph *G* can be decomposed (in a tree-like way) into *h*-clique-sums from *h*-almost-embeddable graphs:

obtained from graphs of genus at most h by adding at most h apices and at most h vortices of depth at most h.

Introduction, part II

- Treewidth
- Dynamic programming on tree decompositions
- Structure of *H*-minor-free graphs

• Some algorithmic issues

• A few words on other containment relations

2 Bidimensionality

- Some ingredients
- An illustrative example
- Meta-algorithms
- Further extensions

★ Minor testing

Theorem (Robertson and Seymour)

Fix a graph *H*. Given an *n*-vertex graph *G*, one can test whether $H \leq_m G$ in time $O(n^3)$.

★ Minor testing

Theorem (Robertson and Seymour)

Fix a graph *H*. Given an *n*-vertex graph *G*, one can test whether $H \leq_m G$ in time $O(n^3)$.

• Improved algorithm running in time $O(n^2)$. [Kawarabayashi, Kobayashi, Reed. 2012]

★ Minor testing

Theorem (Robertson and Seymour)

Fix a graph *H*. Given an *n*-vertex graph *G*, one can test whether $H \leq_m G$ in time $O(n^3)$.

- Improved algorithm running in time $O(n^2)$. [Kawarabayashi, Kobayashi, Reed. 2012]
- Even faster algorithms have been claimed...

[Reed ??]

★ Minor testing

Theorem (Robertson and Seymour)

Fix a graph *H*. Given an *n*-vertex graph *G*, one can test whether $H \leq_m G$ in time $O(n^3)$.

- Improved algorithm running in time $O(n^2)$. [Kawarabayashi,
- Even faster algorithms have been claimed...

[Kawarabayashi, Kobayashi, Reed. 2012] [Reed ??]

Membership in a minor-closed graph class

Theorem (Robertson and Seymour)

Let \mathcal{G} be a minor-closed graph class. Given an *n*-vertex graph G, one can test whether $G \in \mathcal{G}$ in time $O(n^2)$.

★ Minor testing

Theorem (Robertson and Seymour)

Fix a graph *H*. Given an *n*-vertex graph *G*, one can test whether $H \leq_m G$ in time $O(n^3)$.

- Improved algorithm running in time $O(n^2)$. [Kawarabayashi, Kobayashi
- Even faster algorithms have been claimed...

[Kawarabayashi, Kobayashi, Reed. 2012] [Reed ??]

Membership in a minor-closed graph class

Theorem (Robertson and Seymour)

Let \mathcal{G} be a minor-closed graph class. Given an *n*-vertex graph G, one can test whether $G \in \mathcal{G}$ in time $O(n^2)$.

Proof. By the Graph Minors Theorem, there exists a finite list of minimal excluded minors $\{F_1, \ldots, F_\ell\}$ for the class \mathcal{G} . Then we can do minor testing and check whether $F_i \leq_m G$ in time $O(n^2)$ for each $1 \leq i \leq_\ell \ell$.

• Let us recall the Structure Theorem of H-minor-free graphs:

Fix a graph *H*. There exists a constant h = f(|V(H)|) such that any *H*-minor-free graph *G* can be decomposed (in a tree-like way) into *h*-clique-sums from *h*-almost-embeddable graphs.

Let us recall the Structure Theorem of H-minor-free graphs:
 Fix a graph H. There exists a constant h = f(|V(H)|) such that any H-minor-free graph G can be decomposed (in a tree-like way)

into *h*-clique-sums from *h*-almost-embeddable graphs.

• Using this tree-like structure, a number of hard optimization problems can be solved efficiently in *H*-minor-free graphs using DP.

Let us recall the Structure Theorem of H-minor-free graphs:
 Fix a graph H. There exists a constant h = f(|V(H)|) such that any H-minor-free graph G can be decomposed (in a tree-like way)

into *h*-clique-sums from *h*-almost-embeddable graphs.

- Using this tree-like structure, a number of hard optimization problems can be solved efficiently in *H*-minor-free graphs using DP.
- But... what about the constant h = f(|V(H)|) ??

• Let us recall the Structure Theorem of *H*-minor-free graphs:

Fix a graph *H*. There exists a constant h = f(|V(H)|) such that any *H*-minor-free graph *G* can be decomposed (in a tree-like way) into *h*-clique-sums from *h*-almost-embeddable graphs.

- Using this tree-like structure, a number of hard optimization problems can be solved efficiently in *H*-minor-free graphs using DP.
- But... what about the constant h = f(|V(H)|) ??
- Roughly the same constant appears in the Minor Testing algorithms.
- The proofs say "there exists a constant h such that..."

• Let us recall the Structure Theorem of *H*-minor-free graphs:

Fix a graph *H*. There exists a constant h = f(|V(H)|) such that any *H*-minor-free graph *G* can be decomposed (in a tree-like way) into *h*-clique-sums from *h*-almost-embeddable graphs.

- Using this tree-like structure, a number of hard optimization problems can be solved efficiently in *H*-minor-free graphs using DP.
- But... what about the constant h = f(|V(H)|) ??
- Roughly the same constant appears in the Minor Testing algorithms.
- The proofs say "there exists a constant h such that..."
- ★ Very recently, this constant has been made explicit and "reasonable"! [Geelen, Huynh, and Richter. 2013] [Mazoit, 2013]

Introduction, part II

- Treewidth
- Dynamic programming on tree decompositions
- Structure of *H*-minor-free graphs
- Some algorithmic issues
- A few words on other containment relations

Bidimensionality

- Some ingredients
- An illustrative example
- Meta-algorithms
- Further extensions

1. Graphs are WQO w.r.t. the minor relation.

 \star

- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

- 1. Graphs are WQO w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \preceq_{cm} G$ if H can be obtained from G by contracting edges.

22/57

- 1. Graphs are WQO w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \preceq_{cm} G$ if H can be obtained from G by contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation?

- 1. Graphs are WQO w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \preceq_{cm} G$ if H can be obtained from G by contracting edges.

1. Graphs are WQO w.r.t. the contraction minor relation? NO!

- 1. Graphs are WQO w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \preceq_{cm} G$ if H can be obtained from G by contracting edges.

- 1. Graphs are WQO w.r.t. the contraction minor relation? NO!
- 2. CONTRACTION MINOR TESTING is FPT when param. by |V(H)|?

Minor: $H \leq_m G$ if H can be obtained from a subgraph of G by contracting edges.

- 1. Graphs are WQO w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \leq_{cm} G$ if H can be obtained from G by contracting edges.

- 1. Graphs are WQO w.r.t. the contraction minor relation? NO!
- 2. CONTRACTION MINOR TESTING is FPT when param. by |V(H)|? NO! NP-hard already for $|V(H)| \leq 4$. [Brouwer and Veldman. 1987]

Minor: $H \leq_m G$ if H can be obtained from a subgraph of G by contracting edges.

- 1. Graphs are $\ensuremath{\mathsf{WQO}}$ w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \leq_{cm} G$ if H can be obtained from G by contracting edges.

- 1. Graphs are WQO w.r.t. the contraction minor relation? NO!
- 2. CONTRACTION MINOR TESTING is FPT when param. by |V(H)|? NO! NP-hard already for $|V(H)| \leq 4$. [Brouwer and Veldman. 1987]
- 3. Nice structure?

Minor: $H \leq_m G$ if H can be obtained from a subgraph of G by contracting edges.

- 1. Graphs are WQO w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \leq_{cm} G$ if H can be obtained from G by contracting edges.

- 1. Graphs are WQO w.r.t. the contraction minor relation? NO!
- 2. CONTRACTION MINOR TESTING is FPT when param. by |V(H)|? NO! NP-hard already for $|V(H)| \leq 4$. [Brouwer and Veldman. 1987]
- 3. Nice structure? Not really: They contain cliques, chordal graphs...

Minor: $H \leq_m G$ if H can be obtained from a subgraph of G by contracting edges.

- 1. Graphs are $\ensuremath{\mathsf{WQO}}$ w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \leq_{cm} G$ if H can be obtained from G by contracting edges.

- 1. Graphs are WQO w.r.t. the contraction minor relation? NO!
- 2. CONTRACTION MINOR TESTING is FPT when param. by |V(H)|? NO! NP-hard already for $|V(H)| \leq 4$. [Brouwer and Veldman. 1987]
- 3. Nice structure? Not really: They contain cliques, chordal graphs...

Topological minor: $H \leq_{tp} G$ if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of degree ≤ 2 .

*

Minor: $H \leq_m G$ if H can be obtained from a subgraph of G by contracting edges.

- 1. Graphs are WQO w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \leq_{cm} G$ if H can be obtained from G by contracting edges.

- 1. Graphs are WQO w.r.t. the contraction minor relation? NO!
- 2. CONTRACTION MINOR TESTING is FPT when param. by |V(H)|? NO! NP-hard already for $|V(H)| \leq 4$. [Brouwer and Veldman. 1987]
- 3. Nice structure? Not really: They contain cliques, chordal graphs...

Topological minor: $H \preceq_{tp} G$ if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of degree ≤ 2 .

1. Graphs are WQO w.r.t. the topological minor relation?

- 1. Graphs are WQO w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \leq_{cm} G$ if H can be obtained from G by contracting edges.

- 1. Graphs are WQO w.r.t. the contraction minor relation? NO!
- 2. CONTRACTION MINOR TESTING is FPT when param. by |V(H)|? NO! NP-hard already for $|V(H)| \leq 4$. [Brouwer and Veldman. 1987]
- 3. Nice structure? Not really: They contain cliques, chordal graphs...

1. Graphs are WQO w.r.t. the topological minor relation? NO!

- 1. Graphs are WQO w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \leq_{cm} G$ if H can be obtained from G by contracting edges.

- 1. Graphs are WQO w.r.t. the contraction minor relation? NO!
- 2. CONTRACTION MINOR TESTING is FPT when param. by |V(H)|? NP-hard already for $|V(H)| \leq 4$. NO! [Brouwer and Veldman. 1987]
- 3. Nice structure? Not really: They contain cliques, chordal graphs...

- 1. Graphs are WQO w.r.t. the topological minor relation? NO!
- 2. TOPOLOGICAL MINOR TESTING is FPT when param. by |V(H)|?

*

Minor: $H \leq_m G$ if H can be obtained from a subgraph of G by contracting edges.

- 1. Graphs are $\ensuremath{\mathsf{WQO}}$ w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \leq_{cm} G$ if H can be obtained from G by contracting edges.

- 1. Graphs are WQO w.r.t. the contraction minor relation? NO!
- 2. CONTRACTION MINOR TESTING is FPT when param. by |V(H)|? NO! NP-hard already for $|V(H)| \leq 4$. [Brouwer and Veldman. 1987]
- 3. Nice structure? Not really: They contain cliques, chordal graphs...

Topological minor: $H \leq_{tp} G$ if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of degree ≤ 2 .

- 1. Graphs are WQO w.r.t. the topological minor relation? NO!
- 2. TOPOLOGICAL MINOR TESTING is FPT when param. by |V(H)|? YES! [Grohe, Kawarabayashi, Marx, Wollan. 2011]

- 1. Graphs are WQO w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \leq_{cm} G$ if H can be obtained from G by contracting edges.

- 1. Graphs are WQO w.r.t. the contraction minor relation? NO!
- 2. CONTRACTION MINOR TESTING is FPT when param. by |V(H)|? NP-hard already for $|V(H)| \leq 4$. NO! [Brouwer and Veldman. 1987]
- 3. Nice structure? Not really: They contain cliques, chordal graphs...

Topological minor: $H \leq_{tp} G$ if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of degree ≤ 2 .

- 1. Graphs are WQO w.r.t. the topological minor relation? NO!
- 2. TOPOLOGICAL MINOR TESTING is FPT when param. by |V(H)|? YESI
- Nice structure?

[Grohe, Kawarabayashi, Marx, Wollan. 2011]

- 1. Graphs are WQO w.r.t. the minor relation.
- 2. MINOR TESTING is FPT when parameterized by |V(H)|.
- 3. *H*-minor-free graphs have a nice structure.

Contraction minor: $H \leq_{cm} G$ if H can be obtained from G by contracting edges.

- 1. Graphs are WQO w.r.t. the contraction minor relation? NO!
- 2. CONTRACTION MINOR TESTING is FPT when param. by |V(H)|? NP-hard already for $|V(H)| \leq 4$. NO! [Brouwer and Veldman. 1987]
- 3. Nice structure? Not really: They contain cliques, chordal graphs...

Topological minor: $H \leq_{tp} G$ if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of degree ≤ 2 .

- 1. Graphs are WQO w.r.t. the topological minor relation? NO!
- 2. TOPOLOGICAL MINOR TESTING is FPT when param. by |V(H)|? YESI
- 3. Nice structure? YESI

[Grohe, Kawarabayashi, Marx, Wollan. 2011] [Grohe and Marx. 2012]

22/57

Structure of sparse graphs - a nice picture by Felix Reidl

Introduction, part II

- Treewidth
- Dynamic programming on tree decompositions
- Structure of *H*-minor-free graphs
- Some algorithmic issues
- A few words on other containment relations

Bidimensionality

- Some ingredients
- An illustrative example
- Meta-algorithms
- Further extensions
Introduction, part II

- Treewidth
- Dynamic programming on tree decompositions
- Structure of *H*-minor-free graphs
- Some algorithmic issues
- A few words on other containment relations

Bidimensionality

- Some ingredients
- An illustrative example
- Meta-algorithms
- Further extensions

VERTEX COVER Input: A graph G = (V, E) and a positive integers k. Parameter: k. Question: Does there exist a subset $C \subseteq V$ of size at most k such that $G[V \setminus C]$ is an independent set? VERTEX COVER Input: A graph G = (V, E) and a positive integers k. Parameter: k. Question: Does there exist a subset $C \subseteq V$ of size at most k such that $G[V \setminus C]$ is an independent set?

LONG PATH Input: A graph G = (V, E) and a positive integers k. Parameter: k. Question: Does there exist a path P in G of length at least k?

```
FEEDBACK VERTEX SET

Input: A graph G = (V, E) and a positive integers k.

Parameter: k.

Question: Does there exist a subset F \subseteq V of size at most k such that

for G[V \setminus F] is a forest?
```

```
FEEDBACK VERTEX SET

Input: A graph G = (V, E) and a positive integers k.

Parameter: k.

Question: Does there exist a subset F \subseteq V of size at most k such that for G[V \setminus F] is a forest?
```

```
DOMINATING SET

Input: A graph G = (V, E) and a positive integers k.

Parameter: k.

Question: Does there exist a subset D \subseteq V of size at most k such that for all v \in V, N[v] \cap D \neq \emptyset?
```

Minor closed parameters

• A graph class G is *minor* (*contraction*) *closed* if any minor (contraction) of a graph in G is also in G.

Minor closed parameters

- A graph class G is *minor* (*contraction*) *closed* if any minor (contraction) of a graph in G is also in G.
- A parameter *P* is any function mapping graphs to nonnegative integers.

- A graph class G is *minor (contraction) closed* if any minor (contraction) of a graph in G is also in G.
- A parameter *P* is any function mapping graphs to nonnegative integers.
- The parameterized problem associated with P asks, for some fixed k, whether for a given graph G, $P(G) \leq k$ (for minimization) or $P(G) \geq k$ (for maximization problem).

- A graph class G is *minor (contraction) closed* if any minor (contraction) of a graph in G is also in G.
- A parameter *P* is any function mapping graphs to nonnegative integers.
- The parameterized problem associated with P asks, for some fixed k, whether for a given graph G, $P(G) \leq k$ (for minimization) or $P(G) \geq k$ (for maximization problem).
- We say that a parameter P is closed under taking of minors/contractions (or, briefly, minor/contraction closed) if for every graph H, H ≤_m G / H ≤_{cm} G implies that P(H) ≤ P(G).

Examples of minor/contraction closed parameters

• Minor closed parameters:

VERTEX COVER, FEEDBACK VERTEX SET, LONG PATH, TREEWIDTH, ...

• Minor closed parameters:

VERTEX COVER, FEEDBACK VERTEX SET, LONG PATH, TREEWIDTH, ...

• Contraction closed parameters:

Dominating Set, Connected Vertex Cover, *r*-Dominating Set, ...

• Let $H_{\ell,\ell}$ be the $(\ell \times \ell)$ -grid:

• Let $H_{\ell,\ell}$ be the $(\ell \times \ell)$ -grid:

- Let $H_{\ell,\ell}$ be the $(\ell \times \ell)$ -grid:
- As TREEWIDTH is minor closed, if $\amalg_{\ell} \leq_{m} G$, then $\operatorname{tw}(G) \geq \operatorname{tw}(H_{\ell,\ell}) = \ell$.

- Let $H_{\ell,\ell}$ be the $(\ell \times \ell)$ -grid:
- As TREEWIDTH is minor closed, if $f_{\ell} \leq_m G$, then $\operatorname{tw}(G) \geq \operatorname{tw}(H_{\ell,\ell}) = \ell$. Does the reverse implication hold?

- Let $H_{\ell,\ell}$ be the $(\ell \times \ell)$ -grid:
- As TREEWIDTH is minor closed, if $\underset{\ell}{\coprod}_{\ell} \leq_{m} G$, then $\operatorname{tw}(G) \geq \operatorname{tw}(H_{\ell,\ell}) = \ell$. Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer $\ell > 0$, there is an integer $c(\ell)$ such that every graph of treewidth $\ge c(\ell)$ contains $\blacksquare \ell_{\ell}$ as a minor.

We have tw $(H_{\ell,\ell}) = \ell$.

- Let $H_{\ell,\ell}$ be the $(\ell \times \ell)$ -grid:
- As TREEWIDTH is minor closed, if $\underset{\ell}{\coprod} \leq_m G$, then $\operatorname{tw}(G) \ge \operatorname{tw}(H_{\ell,\ell}) = \ell$. Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer $\ell > 0$, there is an integer $c(\ell)$ such that every graph of treewidth $\ge c(\ell)$ contains $\blacksquare \ell_{\ell}$ as a minor.

We have tw $(H_{\ell,\ell}) = \ell$.

30/57

• Smallest possible function $c(\ell)$?

- Let $H_{\ell,\ell}$ be the $(\ell \times \ell)$ -grid:
- As TREEWIDTH is minor closed, if $\underset{\ell}{\coprod}_{\ell} \leq_{m} G$, then $\operatorname{tw}(G) \geq \operatorname{tw}(H_{\ell,\ell}) = \ell$. Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer $\ell > 0$, there is an integer $c(\ell)$ such that every graph of treewidth $\ge c(\ell)$ contains $\blacksquare \ell_{\ell}$ as a minor.

• Smallest possible function $c(\ell)$?

 $\Omega(\ell^2 \log \ell) \leqslant c(\ell) \leqslant 20^{2\ell^5}$

We have tw $(H_{\ell,\ell}) = \ell$.

- Let $H_{\ell,\ell}$ be the $(\ell \times \ell)$ -grid:
- As TREEWIDTH is minor closed, if $\underset{\ell}{\overset{\text{def}}{=}} \preceq_m G$, then $\underset{\text{tw}(G) \ge \underset{\ell}{=} \underset{\ell}{\overset{\text{def}}{=}} \underset{\ell}{\overset{\text{def}}{=}} \ell$. Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer $\ell > 0$, there is an integer $c(\ell)$ such that every graph of treewidth $\ge c(\ell)$ contains $\blacksquare \ell_{\ell}$ as a minor.

- Smallest possible function $c(\ell)$?
- Some improvement: $c(\ell) = 2^{O(\ell \log \ell)}$.

 $\Omega(\ell^2 \log \ell) \leqslant \boldsymbol{c}(\ell) \leqslant 20^{2\ell^5}$

```
[Leaf and Seymour. 2012]
```

- Let $H_{\ell,\ell}$ be the $(\ell \times \ell)$ -grid:
- As TREEWIDTH is minor closed, if $\underset{\ell}{\overset{\text{def}}{=}} \preceq_m G$, then $\underset{\text{tw}(G) \ge \underset{\ell}{=} \underset{\ell}{\overset{\text{def}}{=}} \underset{\ell}{\overset{\text{def}}{=}} \ell$. Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer $\ell > 0$, there is an integer $c(\ell)$ such that every graph of treewidth $\ge c(\ell)$ contains $\blacksquare \ell_{\ell}$ as a minor.

- Smallest possible function $c(\ell)$?
- Some improvement: $c(\ell) = 2^{O(\ell \log \ell)}$.
- Recent breakthrough: $c(\ell) = poly(\ell)$.

$$\Omega(\ell^2 \log \ell) \leqslant c(\ell) \leqslant 20^{2\ell^5}$$

We have $\operatorname{tw}(H_{\ell,\ell}) = \ell$.

[Leaf and Seymour. 2012]

[Chekuri and Chuzhoy. 2013]

- Let $H_{\ell,\ell}$ be the $(\ell \times \ell)$ -grid:
- As TREEWIDTH is minor closed, if $\underset{\ell}{\coprod}_{\ell} \leq_{m} G$, then $\operatorname{tw}(G) \geq \operatorname{tw}(H_{\ell,\ell}) = \ell$. Does the reverse implication hold?

Theorem (Robertson and Seymour. 1986)

For every integer $\ell > 0$, there is an integer $c(\ell)$ such that every graph of treewidth $\ge c(\ell)$ contains $\blacksquare \ell_{\ell}$ as a minor.

- Smallest possible function $c(\ell)$?
- Some improvement: c(l) = 2^{O(l log l)}.
 Recent breakthrough: c(l) = poly(l).
- $\Omega(\ell^2 \log \ell) \leqslant c(\ell) \leqslant 20^{2\ell^5}$

We have $\operatorname{tw}(H_{\ell,\ell}) = \ell$.

[Leaf and Seymour. 2012]

[Chekuri and Chuzhoy. 2013]

30/57

Important message grid-minors are the certificate of large treewidth

For every fixed g, there is a constant c_g such that every graph of genus g and of treewidth $\ge c_g \cdot \ell$ contains $\blacksquare \ell_\ell$ as a minor.

Theorem (Demaine and Hajiaghayi. 2008)

For every fixed graph H, there is a constant c_H such that every

H-minor-free graph of treewidth $\geq c_H \cdot \ell$ contains \boxplus_{ℓ} as a minor.

Best constant in the above theorem is by

[Kawarabayashi and Kobayashi. 2012]

31/57

Theorem (Demaine, Fomin, Hajiaghayi, Thilikos. 2005)

For every fixed g, there is a constant c_g such that every graph of genus g and of treewidth $\ge c_g \cdot \ell$ contains $\blacksquare \ell_{\ell}$ as a minor.

Theorem (Demaine and Hajiaghayi. 2008)

For every fixed graph H, there is a constant c_H such that every

H-minor-free graph of treewidth $\geq c_H \cdot \ell$ contains $\boxplus \ell_\ell$ as a minor.

Best constant in the above theorem is by

[Kawarabayashi and Kobayashi. 2012]

In sparse graphs: linear dependency between treewidth_and_grid_minors

How to use Grid Theorems algorithmically?

Introduction, part II

- Treewidth
- Dynamic programming on tree decompositions
- Structure of *H*-minor-free graphs
- Some algorithmic issues
- A few words on other containment relations

Bidimensionality

- Some ingredients
- An illustrative example
- Meta-algorithms
- Further extensions

INPUT: Planar graph G on n vertices, and an integer k. OUTPUT: Either a vertex cover of G of size $\leq k$, or a proof that G has no such a vertex cover. RUNNING TIME: $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Objective subexponential FPT algorithm for **PLANAR VERTEX COVER**.

Let G be a planar graph of treewidth $\ge 6 \cdot \ell$

Let G be a planar graph of treewidth $\ge 6 \cdot \ell$

 \implies

G contains the $(\ell \times \ell)$ -grid $H_{\ell,\ell}$ as a minor

Let G be a planar graph of treewidth $\geq 6 \cdot \ell$ \implies G contains the $(\ell \times \ell)$ -grid $H_{\ell,\ell}$ as a minor

- The size of any vertex cover of $H_{\ell,\ell}$ is at least $\ell^2/2$.
- Recall that VERTEX COVER is a minor closed parameter.
- Since $H_{\ell,\ell} \leq_m G$, it holds that $\mathbf{vc}(G) \ge \mathbf{vc}(H_{\ell,\ell}) \ge \ell^2/2$.

We are already very close to an algorithm...

Recall:

- k is the parameter of the problem.
- We have that $tw(G) = 6 \cdot \ell$ and ℓ is the size of a grid-minor of G.
- Therefore, $\mathbf{vc}(G) \ge \ell^2/2$.

We are already very close to an algorithm...

Recall:

- k is the parameter of the problem.
- We have that $tw(G) = 6 \cdot \ell$ and ℓ is the size of a grid-minor of G.
- Therefore, $\mathbf{vc}(G) \ge \ell^2/2$.

```
WIN/WIN approach:

• If k < \ell^2/2, we can safely answer "NO".
```

We are already very close to an algorithm...

Recall:

- k is the parameter of the problem.
- We have that $tw(G) = 6 \cdot \ell$ and ℓ is the size of a grid-minor of G.
- Therefore, $\mathbf{vc}(G) \ge \ell^2/2$.

```
WIN/WIN approach:
```

- If $k < \ell^2/2$, we can safely answer "NO".
- If $k \ge \ell^2/2$, then $\operatorname{tw}(G) = O(\ell) = O(\sqrt{k})$,
We are already very close to an algorithm...

Recall:

- k is the parameter of the problem.
- We have that $tw(G) = 6 \cdot \ell$ and ℓ is the size of a grid-minor of G.
- Therefore, $\mathbf{vc}(G) \ge \ell^2/2$.

WIN/WIN approach:

- If $k < \ell^2/2$, we can safely answer "NO".
- If k ≥ l²/2, then tw(G) = O(l) = O(√k), and we can solve the problem by standard DP in time 2^{O(tw(G))} · n^{O(1)}

We are already very close to an algorithm...

Recall:

- k is the parameter of the problem.
- We have that $tw(G) = 6 \cdot \ell$ and ℓ is the size of a grid-minor of G.
- Therefore, $\mathbf{vc}(G) \ge \ell^2/2$.

WIN/WIN approach:

- If $k < \ell^2/2$, we can safely answer "NO".
- If $k \ge \ell^2/2$, then $\operatorname{tw}(G) = O(\ell) = O(\sqrt{k})$, and we can solve the problem by standard DP in time $2^{O(\operatorname{tw}(G))} \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$.

We are already very close to an algorithm...

Recall:

- k is the parameter of the problem.
- We have that $tw(G) = 6 \cdot \ell$ and ℓ is the size of a grid-minor of G.
- Therefore, $\mathbf{vc}(G) \ge \ell^2/2$.

WIN/WIN approach:

- If $k < \ell^2/2$, we can safely answer "NO".
- If $k \ge \ell^2/2$, then $\operatorname{tw}(G) = O(\ell) = O(\sqrt{k})$, and we can solve the problem by standard DP in time $2^{O(\operatorname{tw}(G))} \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$.

This gives a subexponential FPT algorithm!

What is so special in VERTEX COVER?

Where did we use planarity?

What is so special in VERTEX COVER?

★ Nothing special! It is just a minor bidimensional parameter:

minor-closed + $\mathbf{vc}(\mathbf{k}^2) = \Omega(\mathbf{k}^2)$.

Where did we use planarity?

What is so special in VERTEX COVER?

★ Nothing special! It is just a minor bidimensional parameter:

minor-closed + $\mathbf{vc}(\mathbf{k}^2) = \Omega(\mathbf{k}^2)$.

Where did we use planarity?

★ Only the linear Grid Theorem!

Arguments go through up to *H*-minor-free graphs.

39/57

Introduction, part II

- Treewidth
- Dynamic programming on tree decompositions
- Structure of *H*-minor-free graphs
- Some algorithmic issues
- A few words on other containment relations

Bidimensionality

- Some ingredients
- An illustrative example
- Meta-algorithms
- Further extensions

Minor Bidimensionality:

[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition

A parameter **p** is *minor bidimensional* if

0 p is closed under taking of minors (minor closed), and

41/57

$$p\left(\blacksquare _{k} \right) = \Omega(k^{2}).$$

VERTEX COVER OF A GRID

VERTEX COVER OF A GRID

FEEDBACK VERTEX SET OF A GRID

FEEDBACK VERTEX SET OF A GRID

• First we must restrict ourselves to special graph classes, like planar or *H*-minor-free graphs.

- First we must restrict ourselves to special graph classes, like planar or *H*-minor-free graphs.
 - Show that if the graph has large treewidth $(> c\sqrt{k})$ then it has a $(\sqrt{k} \times \sqrt{k})$ -grid as a minor, and hence the answer to the problem is YES (or NO) immediately.

- First we must restrict ourselves to special graph classes, like planar or *H*-minor-free graphs.
 - Show that if the graph has large treewidth $(> c\sqrt{k})$ then it has a $(\sqrt{k} \times \sqrt{k})$ -grid as a minor, and hence the answer to the problem is YES (or NO) immediately.
 - Otherwise, the treewidth is bounded by $c\sqrt{k}$, and hence we can use a dynamic programming (DP) algorithm on graphs of bounded treewidth.

- First we must restrict ourselves to special graph classes, like planar or *H*-minor-free graphs.
 - Show that if the graph has large treewidth $(> c\sqrt{k})$ then it has a $(\sqrt{k} \times \sqrt{k})$ -grid as a minor, and hence the answer to the problem is YES (or NO) immediately.
 - Otherwise, the treewidth is bounded by $c\sqrt{k}$, and hence we can use a dynamic programming (DP) algorithm on graphs of bounded treewidth.
- If we have a DP algorithm for bounded treewidth running in time c^t or t^t, then it implies 2^{O(√k)} or 2^{O(√k log k)} algorithm.

Piecing everything together

Theorem

Let G be an H-minor-free graph, and let **p** be a minor bidimensional graph parameter computable in time $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$. Then deciding " $\mathbf{p}(G) = \mathbf{k}$ " can be done in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Piecing everything together

Theorem

Let G be an H-minor-free graph, and let **p** be a minor bidimensional graph parameter computable in time $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$. Then deciding " $\mathbf{p}(G) = k$ " can be done in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

1 Compute (or approximate) $\mathbf{tw}(G)$.

2 If
$$\mathbf{tw}(G) = \Omega(\sqrt{k})$$
, then answer NO.

3 Otherwise $\mathbf{tw}(G) = O(\sqrt{k})$, and we solve the problem by DP.

Piecing everything together

Theorem

Let G be an H-minor-free graph, and let **p** be a minor bidimensional graph parameter computable in time $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$. Then deciding " $\mathbf{p}(G) = k$ " can be done in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

 Compute (or approximate) tw(G). We can use a fast FPT algorithm or a constant-factor approx.
 If tw(G) = Ω(√k), then answer NO.

3 Otherwise $\mathbf{tw}(G) = O(\sqrt{k})$, and we solve the problem by DP.

Let G be an H-minor-free graph, and let **p** be a minor bidimensional graph parameter computable in time $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$. Then deciding " $\mathbf{p}(G) = k$ " can be done in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

- Compute (or approximate) tw(G). We can use a fast FPT algorithm or a constant-factor approx.
 If tw(G) = Ω(√k), then answer NO. This follows because of the linear Grid Exclusion Theorems.
- 3 Otherwise $\mathbf{tw}(G) = O(\sqrt{k})$, and we solve the problem by DP.

Let G be an H-minor-free graph, and let **p** be a minor bidimensional graph parameter computable in time $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$. Then deciding " $\mathbf{p}(G) = k$ " can be done in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

- Compute (or approximate) tw(G). We can use a fast FPT algorithm or a constant-factor approx.
 If tw(G) = Ω(√k), then answer NO. This follows because of the linear Grid Exclusion Theorems.
- 3 Otherwise $\mathbf{tw}(G) = O(\sqrt{k})$, and we solve the problem by DP. Doing DP in time $2^{O(\mathbf{tw}(G))} \cdot n^{O(1)}$ is a whole area of research:

Let G be an H-minor-free graph, and let **p** be a minor bidimensional graph parameter computable in time $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$. Then deciding " $\mathbf{p}(G) = k$ " can be done in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

 Compute (or approximate) tw(G). We can use a fast FPT algorithm or a constant-factor approx.
 If tw(G) = Ω(√k), then answer NO. This follows because of the linear Grid Exclusion Theorems.
 Otherwise tw(G) = O(√k), and we solve the problem by DP. Doing DP in time 2^{O(tw(G))} · n^{O(1)} is a whole area of research:

 Exploiting Catalan structures on sparse graphs.

[Dorn *et al.* 2005-2008]

[Rué, S., Thilikos. 2010]

Let G be an H-minor-free graph, and let **p** be a minor bidimensional graph parameter computable in time $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$. Then deciding " $\mathbf{p}(G) = k$ " can be done in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Compute (or approximate) $\mathbf{tw}(G)$. We can use a fast FPT algorithm or a constant-factor approx. 2 If $\mathbf{tw}(G) = \Omega(\sqrt{k})$, then answer NO. This follows because of the linear Grid Exclusion Theorems. 3 Otherwise $\mathbf{tw}(G) = O(\sqrt{k})$, and we solve the problem by DP. Doing DP in time $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$ is a whole area of research: • Exploiting Catalan structures on sparse graphs. [Dorn et al. 2005-2008] [Rué, S., Thilikos, 2010] Randomized algorithms using Cut&Count. [Cygan et al. 2011] • Deterministic algorithms based on rank of matrices. [Boadlaender et al. 2012] Deterministic algorithms based on matroids. [Fomin et al. 2013]

Minor Bidimensionality provides a meta-algorithm

• This result applies to all <u>minor closed</u> parameters: VERTEX COVER, FEEDBACK VERTEX SET, LONG PATH, CYCLE COVER, ...

Minor Bidimensionality provides a meta-algorithm

• This result applies to all <u>minor closed</u> parameters: VERTEX COVER, FEEDBACK VERTEX SET, LONG PATH, CYCLE COVER, ...

• What about contraction closed parameters??

DOMINATING SET, CONNECTED VERTEX COVER, *r*-DOMINATING SET, ...

Introduction, part II

- Treewidth
- Dynamic programming on tree decompositions
- Structure of *H*-minor-free graphs
- Some algorithmic issues
- A few words on other containment relations

Bidimensionality

- Some ingredients
- An illustrative example
- Meta-algorithms
- Further extensions

• DOMINATING SET is NOT minor closed, so we cannot use Grid Exclusion Theorems!!

- DOMINATING SET is NOT minor closed, so we cannot use Grid Exclusion Theorems!!
- But it is contraction closed...

- DOMINATING SET is NOT minor closed, so we cannot use Grid Exclusion Theorems!!
- But it is contraction closed...

Contraction Bidimensionality:

[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition

A parameter **p** is *contraction bidimensional* if

9 p is closed under taking of contractions (contraction closed), and

2 for a " $(\mathbf{k} \times \mathbf{k})$ -grid-like graph" Γ , $\mathbf{p}(\Gamma) = \Omega(\mathbf{k}^2)$.

- DOMINATING SET is NOT minor closed, so we cannot use Grid Exclusion Theorems!!
- But it is contraction closed...

Contraction Bidimensionality:

[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

Definition

A parameter **p** is *contraction bidimensional* if

- **9 p** is closed under taking of contractions (contraction closed), and
- **2** for a " $(\mathbf{k} \times \mathbf{k})$ -grid-like graph" Γ , $\mathbf{p}(\Gamma) = \Omega(\mathbf{k}^2)$.

What is a $(k \times k)$ -grid-like graph...?

A " $(k \times k)$ -grid-like graph" was different for each graph class:

- A " $(k \times k)$ -grid-like graph" was different for each graph class:
 - **★** For planar graphs this is a partially triangulated $(k \times k)$ -grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2006]

- A " $(k \times k)$ -grid-like graph" was different for each graph class:
 - ★ For planar graphs this is a partially triangulated $(k \times k)$ -grid. [Demaine, Fomin, Hajiaghayi, Thilikos. 2006]
 - ★ For graphs of Euler genus γ , this is a partially triangulated $(k \times k)$ -grid with up to γ additional handles.

[Demaine, Hajiaghayi, Thilikos. 2006]

- A " $(k \times k)$ -grid-like graph" was different for each graph class:
 - ★ For planar graphs this is a partially triangulated (k × k)-grid.
 [Demaine, Fomin, Hajiaghayi, Thilikos. 2006]
 - ★ For graphs of Euler genus γ , this is a partially triangulated $(k \times k)$ -grid with up to γ additional handles.

[Demaine, Hajiaghayi, Thilikos. 2006]

★ For apex-minor-free graphs, this is a (k × k)-augmented grid, i.e., partially triangulated grid augmented with additional edges such that each vertex is incident to O(1) edges to non-boundary vertices of the grid.

[Demaine, Fomin, Hajiaghayi, Thilikos. 2005]

H is an *apex graph* if $\exists v \in V(H)$: H - v is planar $a \in V(H)$:

Contraction bidimensionality: new definition

Finally, the right " $(k \times k)$ -grid-like graph" was found: [Fomin, Golovach, Thilikos. 2009]

Contraction bidimensionality: new definition

Finally, the right " $(k \times k)$ -grid-like graph" was found: [Fomin, Golovach, Thilikos. 2009]

Definition

A parameter **p** is *contraction bidimensional* if the following hold:

0 p is contraction closed, and

$$p(\underline{k}) = \Omega(\underline{k}^2).$$
Theorem

Let H be a fixed apex graph, let G be an H-minor free graph, and let **p** be a contraction bidimensional parameter computable in $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$. Then deciding $\mathbf{p}(G) = \mathbf{k}$ can be done in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Theorem

Let H be a fixed apex graph, let G be an H-minor free graph, and let **p** be a contraction bidimensional parameter computable in $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$. Then deciding $\mathbf{p}(G) = \mathbf{k}$ can be done in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

As for minor bidimensionality, we need to prove that

• If
$$\mathbf{tw}(G) = \Omega(k)$$
 then G contains k as a contraction

Two important grid-like graphs

Two pattern graphs Γ_k and Π_k :

 $\Pi_{\mathbf{k}} = \Gamma_{\mathbf{k}} + a$ new universal vertex v_{new} .

Theorem (Fomin, Golovach, Thilikos. 2009)

For any integer $\ell > 0$, there is c_{ℓ} such that every connected graph of treewidth at least c_{ℓ} , contains K_{ℓ} , Γ_{ℓ} , or Π_{ℓ} as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For any integer $\ell > 0$, there is c_{ℓ} such that every connected graph of treewidth at least c_{ℓ} , contains K_{ℓ} , Γ_{ℓ} , or Π_{ℓ} as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For every graph H, there is $c_H > 0$ such that every connected H-minor-free graph of treewidth at least $c_H \cdot \ell^2$ contains Γ_ℓ or Π_ℓ as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For any integer $\ell > 0$, there is c_{ℓ} such that every connected graph of treewidth at least c_{ℓ} , contains K_{ℓ} , Γ_{ℓ} , or Π_{ℓ} as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For every graph H, there is $c_H > 0$ such that every connected H-minor-free graph of treewidth at least $c_H \cdot \ell^2$ contains Γ_ℓ or Π_ℓ as a contraction.

Theorem (Fomin, Golovach, Thilikos. 2009)

For every apex graph H, there is $c_H > 0$ such that every connected H-minor-free graph of treewidth at least $c_H \cdot \ell$ contains Γ_{ℓ} as a contraction.

3 Bidimensionality + DP \Rightarrow Subexponential FPT algorithms

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005] [Fomin, Golovach, Thilikos. 2009]

• Bidimensionality + $DP \Rightarrow$ Subexponential FPT algorithms

[Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005] [Fomin, Golovach, Thilikos. 2009]

2 Bidimensionality + separation properties \Rightarrow (E)PTAS

[Demaine and Hajiaghayi. 2005] [Fomin, Lokshtanov, Raman, Saurabh. 2011]

- Bidimensionality + DP ⇒ Subexponential FPT algorithms
 [Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]
 [Fomin, Golovach, Thilikos. 2009]
- Bidimensionality + separation properties ⇒ (E)PTAS
 [Demaine and Hajiaghayi. 2005]

[Fomin, Lokshtanov, Raman, Saurabh. 2011]

Bidimensionality + separation properties ⇒ Kernelization
 [Fomin, Lokshtanov, Saurabh, Thilikos. 2009-2010]

- Bidimensionality + DP ⇒ Subexponential FPT algorithms
 [Demaine, Fomin, Hajiaghayi, Thilikos. 2004-2005]
 [Fomin, Golovach, Thilikos. 2009]
- Bidimensionality + separation properties ⇒ (E)PTAS
 [Demaine and Hajiaghayi. 2005]
 [Fomin, Lokshtanov, Raman, Saurabh. 2011]
- Bidimensionality + separation properties ⇒ Kernelization
 [Fomin, Lokshtanov, Saurabh, Thilikos. 2009-2010]
- Bidimensionality + new Grid Theorems ⇒ Geometric graphs
 [Fomin, Lokshtanov, Saurabh. 2012]
 [Grigoriev, Koutsonas, Thilikos. 2013]

56/57

Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <