Introduction to logic in graphs

and algorithmic meta-theorems

Ignasi Sau

LIRMM, Université de Montpellier, CNRS, France

20th JCALM
LIRMM, Montpellier, December 13-14, 2023

@ OLIRMM

20&émes JCALM

JCALM: Journées de Combinatoire et d'Algorithmes du Littoral Méditerranéen.
Take place once or twice a year since 2006.

Involved research teams:

@ DALGO and ACRO teams at LIS in Marseille.

@ AIGCo team (among others) at LIRMM in Montpellier.

@ COATI common project at 13S and INRIA Sophia-Antipolis.
o GAPCOMB team at UPC in Barcelona.

Current JC

‘ Topic: Logic and graph algorithms

Programme

Wednesday December 13th

® 09:30-10:20:
e 10:20-11:20:
e 11:30-12:30:
e 12:30-14:00:
® 14:00-15:00:

e 15:10-16:10

® 16:40-17:30

Café+croissants et accueil des participant-e-s (cafétéria du LIRMM, batiment 4)
Ignasi Sau, Introduction to logic in graphs and algorithmic meta-theorems
Hugo Jacob, First-order model-checking on sparse graph classes

Repas (cafétéria du LIRMM, batiment 4)

Eunjung Kim, First-order model-checking on graphs of bounded twin-width

: Dimitrios Thilikos, Logic and algorithms for graph minors
® 16:10-16:40:

Café+croissants

: Open problems

e Soirée: diner en centre ville de Montpellier

Thursday December 14th

® 09:30-10:20:
e 10:20-11:20:
e 11:30-12:30:
e 12:00-14:00:

Café+croissants (cafétéria du LIRMM, batiment 4)

Matthieu Rosenfeld, Monadic second-order logic and treewidth
Giannos Stamoulis, Elementary first-order model-checking
Repas (cafétéria du LIRMM, batiment 4)

Algorithmic meta-theorems

Typical statement of an algorithmic meta-theorem (AMT):

Every computational problem that can be formalized
in a given logic £ can be solved efficiently on ev-
ery class C of structures (typically, graphs) satisfying
certain (typically, combinatorial) conditions.

Algorithmic meta-theorems

Typical statement of an algorithmic meta-theorem (AMT):

Every computational problem that can be formalized
in a given logic £ can be solved efficiently on ev-
ery class C of structures (typically, graphs) satisfying
certain (typically, combinatorial) conditions.

@ Logical component: given by a
logic £ (such as first-order or
second-order logic).

@ Structural (combinatorial)
component: given by a class C
(such as planar graphs, or
graphs of bounded degree).

Qutline of this introductory talk

* ‘ Strongly inspired from the survey of Stephan Kreutzer (2011) ‘:

“Algorithmic Meta-Theorems”

@ Introduction to logic (in graphs)
© AMTs for monadic second-order logic

© AMTs for first-order logic

@ Introduction to logic (in graphs)

Basics on logic

Signature 0 = {R1,..., Rk, c1,...,cq}: finite set of relation symbols R;
and constant symbols ¢;.

Example of a relation symbol: “edge” relation in graphs, with arity 2.

Basics on logic

Signature 0 = {R1,..., Rk, c1,...,cq}: finite set of relation symbols R;

and constant symbols ¢;.

Example of a relation symbol: “edge” relation in graphs, with arity 2.

Sometimes a signature is also called a vocabulary.

Basics on logic

Signature 0 = {R1,..., Rk, c1,...,cq}: finite set of relation symbols R;
and constant symbols ¢;.

Example of a relation symbol: “edge” relation in graphs, with arity 2.

Sometimes a signature is also called a vocabulary.

o-structure A = (V(A), Ri(A), ..., Rc(A), c1(A), ..., cg(A)), such that:

e V/(A) is the universe (in graphs: vertex set).

Basics on logic

Signature 0 = {R1,..., Rk, c1,...,cq}: finite set of relation symbols R;
and constant symbols ¢;.

Example of a relation symbol: “edge” relation in graphs, with arity 2.

Sometimes a signature is also called a vocabulary.

o-structure A = (V(A), Ri(A), ..., Rc(A), c1(A), ..., cg(A)), such that:
e V/(A) is the universe (in graphs: vertex set).

e For each R; € o of arity r, we have R;(A) C V(A)" (example: edges).

Basics on logic

Signature 0 = {R1,..., Rk, c1,...,cq}: finite set of relation symbols R;
and constant symbols ¢;.

Example of a relation symbol: “edge” relation in graphs, with arity 2.

Sometimes a signature is also called a vocabulary.

o-structure A = (V(A), Ri(A), ..., Rc(A), c1(A), ..., cg(A)), such that:
e V/(A) is the universe (in graphs: vertex set).
e For each R; € o of arity r, we have R;(A) C V(A)" (example: edges).

@ For each ¢; € o, we have a constant ¢;(A) € V(A) (i.e., a vertex)

First-order and monadic second-order logic

> Let o be a signature (example: edges, for graphs).

> We assume a countably infinite set of first-order variables x, y, ...
(elements) and second-order variables X, Y, ... (sets of elements).

> o-term: first-order variable or constant symbol ¢ € o.

First-order and monadic second-order logic

> Let o be a signature (example: edges, for graphs).

> We assume a countably infinite set of first-order variables x, y, ...
(elements) and second-order variables X, Y, ... (sets of elements).

> o-term: first-order variable or constant symbol ¢ € o.

> FO[o]: class of formulas of first-order logic over o:

First-order and monadic second-order logic

> Let o be a signature (example: edges, for graphs).

> We assume a countably infinite set of first-order variables x, y, ...
(elements) and second-order variables X, Y, ... (sets of elements).

> o-term: first-order variable or constant symbol ¢ € o.
> FO[o]: class of formulas of first-order logic over o:

o If R € 0 and X is a tuple of o-terms of length ar(R), then
Rx € FO[o] (in graphs, for the edge relation: adjacency).

First-order and monadic second-order logic

> Let o be a signature (example: edges, for graphs).

> We assume a countably infinite set of first-order variables x, y, ...
(elements) and second-order variables X, Y, ... (sets of elements).

> o-term: first-order variable or constant symbol ¢ € o.

> FO[o]: class of formulas of first-order logic over o:

o If R € 0 and X is a tuple of o-terms of length ar(R), then
Rx € FO[o] (in graphs, for the edge relation: adjacency).
o If t and s are o-terms then t = s € FO[o].

First-order and monadic second-order logic

> Let o be a signature (example: edges, for graphs).

> We assume a countably infinite set of first-order variables x, y, ...
(elements) and second-order variables X, Y, ... (sets of elements).

> o-term: first-order variable or constant symbol ¢ € o.

> FO[o]: class of formulas of first-order logic over o:

o If R € 0 and X is a tuple of o-terms of length ar(R), then
Rx € FO[o] (in graphs, for the edge relation: adjacency).

o If t and s are o-terms then t = s € FO[o].

o If ¢,9 € FO[o], then so are Vi), A, —p.

First-order and monadic second-order logic

> Let o be a signature (example: edges, for graphs).

> We assume a countably infinite set of first-order variables x, y, ...
(elements) and second-order variables X, Y, ... (sets of elements).

> o-term: first-order variable or constant symbol ¢ € o.

> FO[o]: class of formulas of first-order logic over o:

o If R € 0 and X is a tuple of o-terms of length ar(R), then
Rx € FO[o] (in graphs, for the edge relation: adjacency).
o If t and s are o-terms then t = s € FO[o].
o If ¢,9 € FO[o], then so are Vi), A, —p.
e If ¢ € FO[o] and x is a first-order variable, then
dxp € FO[o] and Vxp € FO[o].

First-order and monadic second-order logic

> Let o be a signature (example: edges, for graphs).

> We assume a countably infinite set of first-order variables x, y, ...
(elements) and second-order variables X, Y, ... (sets of elements).

> o-term: first-order variable or constant symbol ¢ € o.

> FO[o]: class of formulas of first-order logic over o:

o If R € 0 and X is a tuple of o-terms of length ar(R), then
Rx € FO[o] (in graphs, for the edge relation: adjacency).
o If t and s are o-terms then t = s € FO[o].
o If ¢,9 € FO[o], then so are Vi), A, —p.
e If ¢ € FO[o] and x is a first-order variable, then
dxp € FO[o] and Vxp € FO[o].

> MSO[c]: class of formulas of monadic second-order logic over o:

e Additional rule: if X is a second-order variable and ¢ € MSO[o], then
dXyp € MSOJ[o] and VX¢ € MSO[g].

Some more notation

> We define:
e FO =J, FO[o]
e MSO = J, MSOJo]

Some more notation

> We define:
e FO =J, FO[o]
e MSO = J, MSOJo]

> Usual notation:
e Connectors: = (equality), V (conjunction), A (disjunction),
— (negation).
e If X is a tuple and R a relation, Rx denotes containment (€,C) in R,

e Quantifiers: 3 (existential) and ¥V (universal).

Some more notation

> We define:
e FO =J, FO[o]
e MSO = J, MSOJo]

> Usual notation:
e Connectors: = (equality), V (conjunction), A (disjunction),
— (negation).
e If X is a tuple and R a relation, Rx denotes containment (€,C) in R,

e Quantifiers: 3 (existential) and ¥V (universal).

> Abbreviations:
@ x#y, instead of —x = y.
@ p—1) instead of (—p V 7).

Free variables and models

> Free variables of a formula: those that are not involved in any quantifier.
Denoted p(x).

10

Free variables and models

> Free variables of a formula: those that are not involved in any quantifier.
Denoted p(x).

> Sentence: formula with no free variables.

10

Free variables and models

> Free variables of a formula: those that are not involved in any quantifier.
Denoted p(x).

> Sentence: formula with no free variables.

> Notation A = ¢: “A satisfies ¢” or “A is a model of ¢".

10

Free variables and models

> Free variables of a formula: those that are not involved in any quantifier.
Denoted p(x).

> Sentence: formula with no free variables.
> Notation A = ¢: “A satisfies ¢” or “A is a model of ¢".

> If ©(X) has free variables X, and 3 is a tuple of the same length as X, we
write A |= ¢(3) or (A,3) = ¢ if ¢ is true when X is interpreted as a.

10

Free variables and models

> Free variables of a formula: those that are not involved in any quantifier.
Denoted p(x).

> Sentence: formula with no free variables.
> Notation A = ¢: “A satisfies ¢” or “A is a model of ¢".

> If ©(X) has free variables X, and 3 is a tuple of the same length as X, we
write A |= ¢(3) or (A,3) = ¢ if ¢ is true when X is interpreted as a.

> If we deal with (non-annotated) graphs: o = E (i.e., the edge relation).

10

Examples of FO formulas in graphs

T =" /\ (xl # i A —'Efmﬂfj)
1<i<j<k

11

Examples of FO formulas in graphs

Yk = Jdry ... Jxg /\ (xl # i A —'Exiilfj)
1<i<j<k

A graph G = ¢y if and only if G contains an independent set
(set of pairwise non-adjacent vertices) of size k.

11

Examples of FO formulas in graphs

Yk = Jdry ... Jxg /\ (xl # i A —'Exiilfj)

1<i<j<k

A graph G = ¢y if and only if G contains an independent set
(set of pairwise non-adjacent vertices) of size k.

©(X) == ¥x(Xx vV 3z(Exz A Xz))
In this formula, X is a free variable.

11

Examples of FO formulas in graphs

Yk = Jdry ... Jxg /\ (xl # i A —'Exiilfj)
1<i<j<k

A graph G = ¢y if and only if G contains an independent set
(set of pairwise non-adjacent vertices) of size k.

©(X) == ¥x(Xx vV 3z(Exz A Xz))

In this formula, X is a free variable.
A pair (G, U), where U C V(G), satisfies (G, U) |= ¢ if and only if U is a
dominating set in G (every vertex not in U has a neighbor in U).

11

Examples of FO formulas in graphs

Yk = Jdry ... Jxg /\ (xl # i A —'Exiilfj)
1<i<j<k

A graph G = ¢y if and only if G contains an independent set
(set of pairwise non-adjacent vertices) of size k.

©(X) == ¥x(Xx vV 3z(Exz A Xz))
In this formula, X is a free variable.
A pair (G, U), where U C V(G), satisfies (G, U) |= ¢ if and only if U is a
dominating set in G (every vertex not in U has a neighbor in U).

K
I ... Iy /(v =x V Exiy)
i=1

11

Examples of FO formulas in graphs

Yk = Jdry ... Jxg /\ (xl # i A _‘Exi-Tj)
1<i<j<k

A graph G = ¢y if and only if G contains an independent set
(set of pairwise non-adjacent vertices) of size k.

©(X) == ¥x(Xx vV 3z(Exz A Xz))
In this formula, X is a free variable.
A pair (G, U), where U C V(G), satisfies (G, U) |= ¢ if and only if U is a
dominating set in G (every vertex not in U has a neighbor in U).

K
I ... Iy /(v =x V Exiy)
i=1

Expresses that a graph contains a dominating set of size k. 4

Independent set versus dominating set

@ Independent set of size k:

dxq ... Ixk /\ (xi # xj N ~Exix;)

1<i<j<k

@ Dominating set of size k:

k
dxq ... IxkVy \/(y = x; V Exjy)
i=1

12

Independent set versus dominating set

@ Independent set of size k:

dxq ... Ixk /\ (xi # xj N ~Exix;)

1<i<j<k

@ Dominating set of size k:

k
dxg ... IxkVy \/(y = x; V Exjy)
i=1

12

Independent set versus dominating set

@ Independent set of size k:

dxq ... Ixk /\ (xi # xj N ~Exix;)

1<i<j<k

@ Dominating set of size k:

k
dxg ... IxkVy \/(y = x; V Exjy)
i=1

The second formula has an alternation of quantifiers.

12

Independent set versus dominating set

@ Independent set of size k:

dxq ... Ixk /\ (xi # xj N ~Exix;)

1<i<j<k

@ Dominating set of size k:

k
dxg ... IxkVy \/(y = x; V Exjy)
i=1

The second formula has an alternation of quantifiers.

This suggests that the DOMINATING SET problem might be harder than
the INDEPENDENT SET problem, as we shall see later...

12

Examples of MSO formulas in graphs

13

Examples of MSO formulas in graphs

©(X1, X2) 1= Vx(Xix V Xox) A (X1x — = Xox) A (Xox — = X1x)

13

Examples of MSO formulas in graphs

©(X1, X2) 1= Vx(Xix V Xox) A (X1x — = Xox) A (Xox — = X1x)

(G, Uy, Us) = ¢ if and only if (Ui, Uy) is a bipartition of V(G).

13

Examples of MSO formulas in graphs

©(X1, X2) 1= Vx(Xix V Xox) A (X1x — = Xox) A (Xox — = X1x)

(G, Uy, Us) = ¢ if and only if (Ui, Uy) is a bipartition of V(G).

VX1VX2((QD(X1, Xz)) A\ (Hylﬂyz(lel A\ Xzyg)) — (3X13X2(X1X1 A Xoxo A\ EX1X2)))

13

Examples of MSO formulas in graphs

©(X1, X2) 1= Vx(Xix V Xox) A (X1x — = Xox) A (Xox — = X1x)

(G, Uy, Us) = ¢ if and only if (Ui, Uy) is a bipartition of V(G).

VX1VX2((QD(X1, Xz)) A\ (Hylﬂyz(lel A\ Xzyg)) — (3X13X2(X1X1 A Xoxo A\ EX1X2)))

If 7/ is this formula, a graph G = ¢ if and only if G is connected.

13

Examples of MSO formulas in graphs

©(X1, X2) 1= Vx(Xix V Xox) A (X1x — = Xox) A (Xox — = X1x)

(G, Uy, Us) = ¢ if and only if (Ui, Uy) is a bipartition of V(G).

VX1VX2((QD(X1, Xz)) A\ (Hylﬂyz(lel A\ Xzyg)) — (3X13X2(X1X1 A Xoxo A\ EX1X2)))

If 7/ is this formula, a graph G = ¢ if and only if G is connected.

3 3
7:=3G3GIG(Vx \/ Gx) AVxVy(Exy — /\ ~(Cix V Giy))
i=1 i=1

13

Examples of MSO formulas in graphs

©(X1, X2) 1= Vx(Xix V Xox) A (X1x — = Xox) A (Xox — = X1x)

(G, Uy, Us) = ¢ if and only if (Ui, Uy) is a bipartition of V(G).

VX1VX2((QD(X1, Xz)) A\ (Hylﬂyz(lel A\ Xzyg)) — (3X13X2(X1X1 A Xoxo A\ EX1X2)))

If 7/ is this formula, a graph G = ¢ if and only if G is connected.

3 3
7:=3G3GIG(Vx \/ Gx) AVxVy(Exy — /\ ~(Cix V Giy))
i=1 i=1

A graph G |= 7 if and only if G is 3-colorable.

13

The model-checking problem

Let £ be a fixed logic. We define the MODEL-CHECKING problem of L:

MC(L)
Input: A structure A and a sentence ¢ € L.
Question: A |= ¢?

14

The model-checking problem

Let £ be a fixed logic. We define the MODEL-CHECKING problem of L:

MC(L)
Input: A structure A and a sentence ¢ € L.
Question: A |= ¢?

Related problem:

SATISFIABILITY (L)
Input: A sentence p € L.
Question: Does there exist a structure A such that A = ¢?

14

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ¢ € FO.
Question: A = 7

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ¢ € FO.
Question: A = 7

e Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ¢ € FO.
Question: A = 7

e Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from QUANTIFIED BOOLEAN SATISFIABILITY, using
two different elements of the structure to simulate the assignments
“true” and "false”.

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ¢ € FO.
Question: A = 7

e Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from QUANTIFIED BOOLEAN SATISFIABILITY, using
two different elements of the structure to simulate the assignments
“true” and "false”.

@ Good news: Solvable in polynomial time for every fixed formula.

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ¢ € FO.
Question: A = 7

e Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from QUANTIFIED BOOLEAN SATISFIABILITY, using
two different elements of the structure to simulate the assignments
“true” and "false”.

@ Good news: Solvable in polynomial time for every fixed formula.

Idea: try all possible choices for the first-order variables appearing in
the formula, and check whether it is satisfied. Running time: |A|T(¥).

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ¢ € FO.
Question: A = 7

e Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from QUANTIFIED BOOLEAN SATISFIABILITY, using
two different elements of the structure to simulate the assignments
“true” and "false”.

@ Good news: Solvable in polynomial time for every fixed formula.

Idea: try all possible choices for the first-order variables appearing in
the formula, and check whether it is satisfied. Running time: |A|T(¥).

The hardness depends on whether the formula is part of the input or not.

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ¢ € FO.
Question: A = 7

e Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from QUANTIFIED BOOLEAN SATISFIABILITY, using
two different elements of the structure to simulate the assignments
“true” and "false”.

@ Good news: Solvable in polynomial time for every fixed formula.
Idea: try all possible choices for the first-order variables appearing in

the formula, and check whether it is satisfied. Running time: |A|T(¥).

The hardness depends on whether the formula is part of the input or not.

Is it the end of the story?

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ¢ € FO.
Question: A = 7

e Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from QUANTIFIED BOOLEAN SATISFIABILITY, using
two different elements of the structure to simulate the assignments
“true” and "false”.

@ Good news: Solvable in polynomial time for every fixed formula.
Idea: try all possible choices for the first-order variables appearing in

the formula, and check whether it is satisfied. Running time: |A|T(¥).

The hardness depends on whether the formula is part of the input or not.

Is it the end of the story?| We need to parameterize the problem!

15

The area of parameterized complexity

Measure the complexity of an algorithm in terms of the input size
and an additional integer parameter.

This theory started in the late 80's, by Downey and Fellows:

Today, it is a well-established area with hundreds of articles published
every year in the most prestigious TCS journals and conferences.

16

Parameterized problems

A parameterized problem is a language L C >* x IN,
where % is a fixed, finite alphabet.

For an instance (x, k) € £* x N, k is called the parameter.

17

Parameterized problems

A parameterized problem is a language L C >* x IN,
where % is a fixed, finite alphabet.

For an instance (x, k) € £* x N, k is called the parameter.

@ k-VERTEX COVER: Does a graph G contain a set S C V(G), with
|S| < k, containing at least an endpoint of every edge?

o INDEPENDENT SET: Does a graph G contain a set S C V/(G), with
|S| > k, of pairwise non-adjacent vertices?

@ VERTEX k-COLORING: Can the vertices of a graph be colored with
< k colors, so that any two adjacent vertices get different colors?

17

Parameterized problems

A parameterized problem is a language L C >* x IN,
where % is a fixed, finite alphabet.

For an instance (x, k) € £* x N, k is called the parameter.

@ k-VERTEX COVER: Does a graph G contain a set S C V(G), with
|S| < k, containing at least an endpoint of every edge?

o INDEPENDENT SET: Does a graph G contain a set S C V/(G), with
|S| > k, of pairwise non-adjacent vertices?

@ VERTEX k-COLORING: Can the vertices of a graph be colored with
< k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they hard?

17

They behave quite differently...

o k-VERTEX COVER: Solvable in time O(2% - (m + n))

o INDEPENDENT SET: Solvable in time O(k? - n)

@ VERTEX k-COLORING: NP-hard for fixed k = 3.

18

They behave quite differently...

o k-VERTEX COVER: Solvable in time O(2% - (m + n)) = f(k) - n®1).

o INDEPENDENT SET: Solvable in time O(k? - n%) = f(k) - n8(K).

@ VERTEX k-COLORING: NP-hard for fixed k = 3.

18

They behave quite differently...

o k-VERTEX COVER: Solvable in time O(2% - (m + n)) = f(k) - n®1).

The problem is FPT‘ (fixed-parameter tractable)

o INDEPENDENT SET: Solvable in time O(k? - n%) = f(k) - n8(K).

@ VERTEX k-COLORING: NP-hard for fixed k = 3.

18

They behave quite differently...

o k-VERTEX COVER: Solvable in time O(2% - (m + n)) = f(k) - n®1).

‘The problem is FPT‘ (fixed-parameter tractable)

o INDEPENDENT SET: Solvable in time O(k? - n%) = f(k) - n8(K).

‘The problem is XP‘ (slice-wise polynomial)

@ VERTEX k-COLORING: NP-hard for fixed k = 3.

18

They behave quite differently...

o k-VERTEX COVER: Solvable in time O(2% - (m + n)) = f(k) - n®1).

‘The problem is FPT‘ (fixed-parameter tractable)

o INDEPENDENT SET: Solvable in time O(k? - n%) = f(k) - n8(K).

‘The problem is XP‘ (slice-wise polynomial)

@ VERTEX k-COLORING: NP-hard for fixed k = 3.

‘The problem is para—NP—hard‘

18

Why k-INDEPENDENT SET may not be FPT?

k-INDEPENDENT SET: Solvable in time k2 - nk = | f(k) - n8(k)

19

Why k-INDEPENDENT SET may not be FPT?

k-INDEPENDENT SET: Solvable in time k2 - nk = | f(k) - n8(k)

Why k-INDEPENDENT SET may not be FPT?

19

Why k-INDEPENDENT SET may not be FPT?

k-INDEPENDENT SET: Solvable in time k2 - nk = | f(k) - n8(k)

Why k-INDEPENDENT SET may not be FPT?

So far, nobody has managed to find an FPT algorithm for k-INDEP. SET.

(also, nobody has found a poly-time algorithm for SAT)

19

Why k-INDEPENDENT SET may not be FPT?

k-INDEPENDENT SET: Solvable in time k2 - nk = | f(k) - n8(k)

Why k-INDEPENDENT SET may not be FPT?

So far, nobody has managed to find an FPT algorithm for k-INDEP. SET.

(also, nobody has found a poly-time algorithm for SAT)

Working hypothesis of paramet. complexity: ‘ k-INDEP. SET is not FPT

(in classical complexity: SAT cannot be solved in poly-time)

19

How to transfer hardness among parameterized problems?

Let A, B be two parameterized problems.

20

How to transfer hardness among parameterized problems?

Let A, B be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x', k') of B

Instance (x, k) of A‘

20

How to transfer hardness among parameterized problems?

Let A, B be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x', k') of B

Instance (x, k) of A‘

@ (x, k) is a YEs-instance of A < (x/, k") is a YEs-instance of B.
@ k' < g(k) for some computable function g : IN — IN.

20

How to transfer hardness among parameterized problems?

Let A, B be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A‘ Instance (x', k') of B

@ (x, k) is a YEs-instance of A < (x/, k") is a YEs-instance of B.
@ k' < g(k) for some computable function g : IN — IN.

W(1]-hard problem: 3 parameterized reduction from k-INDEP. SET to it.

WI[2]-hard problem: 3 param. reduction from k-DOMINATING SET to it.

20

How to transfer hardness among parameterized problems?

Let A, B be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A‘ Instance (x', k') of B

@ (x, k) is a YEs-instance of A < (x/, k") is a YEs-instance of B.
@ k' < g(k) for some computable function g : IN — IN.

W(1]-hard problem: 3 parameterized reduction from k-INDEP. SET to it.
WI[2]-hard problem: 3 param. reduction from k-DOMINATING SET to it.

W][i]-hard: strong evidence of not being FPT.

20

How to transfer hardness among parameterized problems?

Let A, B be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x, k) of A‘ Instance (x', k') of B

@ (x, k) is a YEs-instance of A < (x/, k") is a YEs-instance of B.
@ k' < g(k) for some computable function g : IN — IN.

W(1]-hard problem: 3 parameterized reduction from k-INDEP. SET to it.

WI[2]-hard problem: 3 param. reduction from k-DOMINATING SET to it.

W(i]-hard: strong evidence of not being FPT. Hypothesis: |[FPT £ W[1]

20

Parameterized model-checking

21

Parameterized model-checking

The “right” problem to consider is the following :

MC(L)

Input: A structure A and a sentence ¢ € L.
Parameter: |¢|.

Question: A = 7

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)

Input: A graph G and a sentence ¢ € L.
Parameter: |¢|.

Question: G | ¢?

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)

Input: A graph G and a sentence ¢ € L.
Parameter: |¢|.

Question: G | ¢?

k-INDEP. SET is W[1]-hard

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)

Input: A graph G and a sentence ¢ € L.
Parameter: |¢|.

Question: G | ¢?

k-INDEP. SET is W[1]-hard = MC(FO) is W[1]-hard (and XP).

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)

Input: A graph G and a sentence ¢ € L.
Parameter: |¢|.

Question: G = ¢?

We restrict the input graph G to belong to some particular graph class C.

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)

Input: A graph G and a sentence ¢ € L.
Parameter: |¢|.

Question: G = ¢?

We restrict the input graph G to belong to some particular graph class C.

MC(L,C)

Input: A graph G € C and a sentence p € L.
Parameter: |¢|.

Question: G = ¢?

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)

Input: A graph G and a sentence ¢ € L.
Parameter: |¢|.

Question: G = ¢?

We restrict the input graph G to belong to some particular graph class C.

MC(L,C)

Input: A graph G € C and a sentence p € L.
Parameter: |¢|.

Question: G = ¢?

Holy grail: for which £ and C is MC(L,C) FPT?

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)

Input: A graph G and a sentence ¢ € L.
Parameter: |¢|.

Question: G = ¢?

We restrict the input graph G to belong to some particular graph class C.

MC(L,C)

Input: A graph G € C and a sentence p € L.
Parameter: |¢|.

Question: G = ¢?

Holy grail: for which £ and C is MC(£,C) FPT? | f(|¢]) - |G|°W

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)

Input: A graph G and a sentence ¢ € L.
Parameter: |¢|.

Question: G = ¢?

We restrict the input graph G to belong to some particular graph class C.

MC(L,p)

Input: A graph G and a sentence ¢ € L.
Parameter: |¢| + p(G).

Question: G = ¢?

Holy grail: for which £ and C is MC(L,C) FPT? | f(|¢|,p(G)) - |G|°M)

21

© AMTs for monadic second-order logic

22

MSO model-checking

MC(MSO)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |y|.

Question: G = ¢?

23

MSO model-checking

MC(MSO)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |y|.

Question: G = ¢?

3-COLORABILITY is MSO-definable and NP-complete.

23

MSO model-checking

MC(MSO)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |y|.

Question: G = ¢?

3-COLORABILITY is MSO-definable and NP-complete.
MC(MSO) is para-NP-hard.

23

MSO model-checking

MC(MSO)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |y|.

Question: G = ¢?

3-COLORABILITY is MSO-definable and NP-complete.
MC(MSO) is para-NP-hard.

MC(MSO, p)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |¢| + p(G).

Question: G | ¢?

23

MSO model-checking

MC(MSO)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |y|.

Question: G = ¢?

3-COLORABILITY is MSO-definable and NP-complete.
MC(MSO) is para-NP-hard.

MC(MSO, p)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |¢| + p(G).

Question: G | ¢?

As some of you may imagine: we take p = treewidth.

23

Crucial notion: treewidth

@ 1972: Bertelé and Brioschi (dimension).

1976: Halin (S-functions of graphs).
@ 1984: Arnborg and Proskurowski (partial k-trees).

@ 1984: Robertson and Seymour (treewidth).

24

Crucial notion: treewidth

@ 1972: Bertelé and Brioschi (dimension).

1976: Halin (S-functions of graphs).
@ 1984: Arnborg and Proskurowski (partial k-trees).

@ 1984: Robertson and Seymour (treewidth).

Treewidth measures the (topological) similarity of a graph with a forest.

24

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.
.\

[Figure by Julien Baste]

25

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.
.\

[Figure by Julien Baste]

25

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.
.\.
o—©0

[Figure by Julien Baste]

25

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.

N

[Figure by Julien Baste]

25

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.

N

[Figure by Julien Baste]

25

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
Example of a 2-tree: and then iteratively adding a vertex

connected to a k-clique.

[Figure by Julien Baste]

25

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

/. connected to a k-clique.

N

[Figure by Julien Baste]

25

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be

built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

/. connected to a k-clique.
N
o—o 0

[Figure by Julien Baste]

25

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

/. connected to a k-clique.

N
\

[Figure by Julien Baste]

25

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

/. connected to a k-clique.

N

1%

[Figure by Julien Baste]

25

Treewidth via k-trees

Example of a 2-tree:

A

N

1%

[Figure by Julien Baste]

For k > 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

25

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

/. connected to a k-clique.

o——0—9©0
‘\‘/‘ A partial k-tree is a subgraph of a k-tree.
o—0—©0
./ Treewidth of a graph G, denoted tw(G):

smallest integer k such that G is a partial k-tree.

[Figure by Julien Baste]

25

Treewidth via k-trees

For k > 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique

Example of a 2-tree: and then iteratively adding a vertex

/. connected to a k-clique.

o——0—9©0
‘\‘/‘ A partial k-tree is a subgraph of a k-tree.
o—0—©0
./ Treewidth of a graph G, denoted tw(G):

smallest integer k such that G is a partial k-tree.

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:
° UteV(T) Xe = V(G),

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:
° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o Y{u,v} € E(G), It € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o Y{u,v} € E(G), It € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.

@ Width of a tree decomposition:
maxeev(T) [Xe| — 1.

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),
o Y{u,v} € E(G), It € V(T)
with {u, v} C X;.
e Vv € V(G), bags containing v
define a connected subtree of T.
@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree

decomposition of G. 2

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and G
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.
@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.
@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.
@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.
@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.
@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.
@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.
@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.
@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

26

An equivalent (and more common) definition of treewidth

@ Tree decomposition of a graph G:

pair (T,{X; |t € V(T)}), where
T is a tree, and
Xe CV(G) Vte V(T) (bags),

satisfying the following:

° UteV(T) Xe = V(G),

o W{u, v} € E(G), 3t € V(T)
with {u, v} C X;.

e Vv € V(G), bags containing v
define a connected subtree of T.
@ Width of a tree decomposition:
maxzev(T) [Xe| — 1.
e Treewidth of a graph G, tw(G):
minimum width of a tree
decomposition of G.

26

Treewidth measures the tree-likeness of a graph

27

Treewidth measures the tree-likeness of a graph

27

Treewidth measures the tree-likeness of a graph

27

Treewidth measures the tree-likeness of a graph

27

Treewidth measures the tree-likeness of a graph

27

Treewidth measures the tree-likeness of a graph

27

Treewidth measures the tree-likeness of a graph

27

Courcelle's theorem

(Credit also goes to Arnborg, Lagergreen, and Seese.)

28

Courcelle's theorem

Theorem (Courcelle. 1990)

The following problem is fixed-parameter tractable:

MC(MSO, tw)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |¢| + tw(G).

Question: G = ¢7?

Courcelle's theorem

Theorem (Courcelle. 1990)

The following problem is fixed-parameter tractable:

MC(MSO, tw)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |¢| + tw(G).

Question: G = ¢7?

@ Can be seen as an abstraction of the notion of dynamic programming.

Courcelle's theorem and its extensions

Theorem (Courcelle. 1990)

The following problem is fixed-parameter tractable:

MC(MSO, tw)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |¢| + tw(G).

Question: G = ¢7?

@ Can be seen as an abstraction of the notion of dynamic programming.

@ Also applies to the extension of MSO by modular counting: CMSO.
[Courcelle. 1990]

Courcelle's theorem and its extensions

Theorem (Courcelle. 1990)

The following problem is fixed-parameter tractable:

MC(MSO, tw)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |¢| + tw(G).

Question: G = ¢7?

@ Can be seen as an abstraction of the notion of dynamic programming.

@ Also applies to the extension of MSO by modular counting: CMSO.
[Courcelle. 1990]

@ Can be generalized to optimize a linear function of free second-order
variables. [Arnborg, Lagergreen, Seese._1991]
28

Interpretations (transductions)

One of the proofs of Courcelle’s theorem uses interpretations:

29

Interpretations (transductions)

One of the proofs of Courcelle’s theorem uses interpretations:

Class D Class C
algorithmic encoding
G G’
interpretation
¢ € MSO[7] I'(p) € MSO[o]
interpretation
rGH=a G’

Suppose that MC(MSO, () is FPT

29

Interpretations (transductions)

One of the proofs of Courcelle’s theorem uses interpretations:

Class D Class C
algorithmic encoding
G G’
interpretation
¢ € MSO[7] I'(p) € MSO[o]
interpretation
rGH=a G’

Suppose that MC(MSO, () is FPT = then MC(MSO, D) is also FPT

29

Interpretations (transductions)

One of the proofs of Courcelle’s theorem uses interpretations:

Class D Class C
algorithmic encoding
G G’
interpretation
¢ € MSO[7] I'(p) € MSO[o]
interpretation
rGH=a G’

Suppose that MC(MSO, () is FPT = then MC(MSO, D) is also FPT

For Courcelle's theorem: interpret “tw < k" into the class of labeled trees.

29

Is treewidth the limit of tractability of MSO?

30

Is treewidth the limit of tractability of MSO? Cliquewidth!

Another crucial parameter: cliquewidth. [Courcelle, Olariu. 2000]

30

Is treewidth the limit of tractability of MSO?

Another crucial parameter: cliquewidth. [Courcelle, Olariu. 2000]

A graph G has cliquewidth at most k if it can be obtained by the following
operations, for i, j € [k], with i # j:

int(v,): introduce a new vertex v with color i.

pi—j: recolor vertices of color i to color j.

7n;j: add all edges between vertices colored i and j.

@: take the disjoint union of two colored graphs.

30

Is treewidth the limit of tractability of MSO?

Another crucial parameter: cliquewidth. [Courcelle, Olariu. 2000]

A graph G has cliquewidth at most k if it can be obtained by the following
operations, for i, j € [k], with i # j:

int(v,): introduce a new vertex v with color i.

pi—j: recolor vertices of color i to color j.

7n;j: add all edges between vertices colored i and j.

@: take the disjoint union of two colored graphs.

Cliques have cliquewidth 2.

Trees have cliquewidth 3.

30

Is treewidth the limit of tractability of MSO?

Another crucial parameter: cliquewidth. [Courcelle, Olariu. 2000]

A graph G has cliquewidth at most k if it can be obtained by the following
operations, for i, j € [k], with i # j:

int(v,): introduce a new vertex v with color i.

pi—j: recolor vertices of color i to color j.

7n;j: add all edges between vertices colored i and j.

@: take the disjoint union of two colored graphs.

Cliques have cliquewidth 2.

Trees have cliquewidth 3.

Small cliquewidth does not mean “being tree-like” (such as small
treewidth), but having a structure with a “tree-like decomposition”.

30

MSO is tractable on graphs of bounded cliquewidth

e Cliques have cliquewidth 2 (but unbounded treewidth).

@ Trees have cliquewidth 3.

31

MSO is tractable on graphs of bounded cliquewidth

e Cliques have cliquewidth 2 (but unbounded treewidth).

@ Trees have cliquewidth 3.

Every graph of treewidth at most k has cliquewidth at most 251 + 1.
[Wanke. 94 + Courcelle, Olariu. 00]

31

MSO is tractable on graphs of bounded cliquewidth

e Cliques have cliquewidth 2 (but unbounded treewidth).
@ Trees have cliquewidth 3.

Every graph of treewidth at most k has cliquewidth at most 251 + 1.
[Wanke. 94 + Courcelle, Olariu. 00]

Theorem (Courcelle, Makowski, Rotics. 1990)

The following problem is fixed-parameter tractable:

MC(MSO, cw)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |¢| + cw(G).

Question: G = ¢?

MSO is tractable on graphs of bounded cliquewidth

e Cliques have cliquewidth 2 (but unbounded treewidth).

@ Trees have cliquewidth 3.

Every graph of treewidth at most k has cliquewidth at most 251 + 1.
[Wanke. 94 + Courcelle, Olariu. 00]

Theorem (Courcelle, Makowski, Rotics. 1990)

The following problem is fixed-parameter tractable:

MC(MSO, cw)

Input: A graph G and a sentence ¢ € MSO.
Parameter: |¢| + cw(G).

Question: G = ¢?

Is the above theorem strictly more general than Courcelle’s theorem?

MSO; and MSO,

MSO in graphs: we allow quantification on sets of vertices.

32

MSO; and MSO,

MSOj in graphs: we allow quantification on sets of vertices.

32

MSO; and MSO,

MSOj in graphs: we allow quantification on sets of vertices.

MSO; in graphs: we allow quantification on sets of vertices and edges.

32

MSO; and MSO,

MSOj in graphs: we allow quantification on sets of vertices.

MSO; in graphs: we allow quantification on sets of vertices and edges.
Two typical ways to encode a graph G:

@ Standard encoding: universe = V/(G), with the binary “edge”
relation.

32

MSO; and MSO,

MSOj in graphs: we allow quantification on sets of vertices.

MSO; in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G:

@ Standard encoding: universe = V/(G), with the binary “edge”
relation.

@ Incidence encoding: universe = V(G) U E(G), with the unary
“vertex" and “edge" relations, and a binary “incidence” relation.

32

MSO; and MSO,

MSOj in graphs: we allow quantification on sets of vertices.

MSO; in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G:

@ Standard encoding: universe = V/(G), with the binary “edge”
relation.

@ Incidence encoding: universe = V(G) U E(G), with the unary
“vertex" and “edge" relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:

32

MSO; and MSO,

MSOj in graphs: we allow quantification on sets of vertices.

MSO; in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G:

@ Standard encoding: universe = V/(G), with the binary “edge”
relation.

@ Incidence encoding: universe = V(G) U E(G), with the unary
“vertex" and “edge" relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:
> Courcelle’s theorem directly generalizes to MSO».

32

MSO; and MSO,

MSOj in graphs: we allow quantification on sets of vertices.

MSO; in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G:

@ Standard encoding: universe = V/(G), with the binary “edge”
relation.

@ Incidence encoding: universe = V(G) U E(G), with the unary
“vertex" and “edge" relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:
> Courcelle’s theorem directly generalizes to MSO».

Edge subdivisions do not preserve cliquewidth:

32

MSO; and MSO,

MSOj in graphs: we allow quantification on sets of vertices.

MSO; in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G:
@ Standard encoding: universe = V/(G), with the binary “edge”
relation.

@ Incidence encoding: universe = V(G) U E(G), with the unary
“vertex" and “edge" relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:
> Courcelle’s theorem directly generalizes to MSO».

Edge subdivisions do not preserve cliquewidth:
> Is it possible that MC(MSO», cw) is FPT?

32

The limits of cliquewidth

EDGE DOMINATING SET, HAMILTONIAN CYCLE, and GRAPH
COLORING are MSO»-definable and W/[1]-hard parameterized by
cliquewidth. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

33

The limits of cliquewidth and MSO

EDGE DOMINATING SET, HAMILTONIAN CYCLE, and GRAPH
COLORING are MSO»-definable and W/[1]-hard parameterized by
cliquewidth. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

For MSO we cannot go really further than bounded treewidth /cliquewidth:

3-COLORABILITY is NP-complete on planar graphs of degree at most 4.
[Garey, Johnson, Stockmeyer. 1974]

33

© AMTs for first-order logic

34

FO model-checking

MC(FO)

Input: A graph G and a sentence ¢ € FO.
Parameter: |¢|.

Question: G = ¢?

As we said, this problem is in XP: solvable in time |G|f(1¥).

35

FO model-checking

MC(FO)

Input: A graph G and a sentence ¢ € FO.
Parameter: |¢|.

Question: G = ¢?

As we said, this problem is in XP: solvable in time |G|f(1¥).

MC(FO, ()

Input: A graph G € C and a sentence ¢ € FO.
Parameter: |o|.

Question: G | ¢?

Question: for which (parameterized) graph classes C is MC(FO,C) FPT?

35

Crucial property of FO: locality

36

Crucial property of FO: locality

> A first-order formula (x) on graphs is r-local if, for every graph G and
every v € V(G),
G E¢e(v) & GINIV]]],

where NV, [v]| denotes the set of vertices at distance at most r from v in G.

36

Crucial property of FO: locality

> A first-order formula (x) on graphs is r-local if, for every graph G and
every v € V(G),

Gl e(v) & GINV]] = ¢l

where NV, [v]| denotes the set of vertices at distance at most r from v in G.

> A first-order formula (x) on graphs is local if it is r-local for an r € IN.

36

Crucial property of FO: locality

> A first-order formula (x) on graphs is r-local if, for every graph G and
every v € V(G),

Gl e(v) & GINV]] = ¢l

where NV, [v]| denotes the set of vertices at distance at most r from v in G.
> A first-order formula (x) on graphs is local if it is r-local for an r € IN.

> A basic local sentence is a first-order sentence of the form

3x1 ... (/\ dist(xj, xj) > 2r A /\¢X,>,

1<i<j<k

where ¥(x;) is a local first-order formula.

36

Gaifman’s theorem

Theorem (Gaifman. 1982)

Every first-order sentence is equivalent to a Boolean combination of basic
local sentences, which can be effectively computed given the sentence.

37

Gaifman’s theorem

Theorem (Gaifman. 1982)

Every first-order sentence is equivalent to a Boolean combination of basic
local sentences, which can be effectively computed given the sentence.

This translation may involve a non-elementary blow-up in the size of the
sentence.
[Dawar, Grohe, Kreutzer, Schweikardt. 2007]

37

Example: k-DOMINATING SET

k
Pk = 3xq ... A Vy (\/(Xi =yV ny,-))
i=1

38

Example: k-DOMINATING SET

k
Pk = 3xq ... A Vy (\/(Xi =yV E}’Xi)>
i=1

To convert it into “Gaifman normal form”: if diameter > 3k +1 — ‘no’.

38

Example: k-DOMINATING SET

k
Pk = 3xq ... A Vy (\/(Xi =yV E}’Xi)>
i=1

To convert it into “Gaifman normal form”: if diameter > 3k +1 — ‘no’.

HMWF
u distuy) > 2ker)

38

Example: k-DOMINATING SET

k
Pk = 3xq ... A Vy (\/(Xi =yV E}’Xi)>
i=1

To convert it into “Gaifman normal form”: if diameter > 3k +1 — ‘no.

PP NPy

u distu,) > 2k

38

Example: k-DOMINATING SET

k
Pk = 3xq ... A Vy (\/(Xi =yV E}’Xi)>
i=1

To convert it into “Gaifman normal form”: if diameter > 3k +1 — ‘no’.

TN

u

distu,v) > 2ex)

38

Example: k-DOMINATING SET

k
Pk = 3xq ... A Vy (\/(Xi =yV E}’Xi)>
i=1

To convert it into “Gaifman normal form”: if diameter > 3k +1 — ‘no’.

TN

u

distu,v) > 2ex)

©k is equivalent to the conjunction of these two basic local sentences:

@ Diameter at most 3k: 1) := —=3IxyIxpdist(x1, x2) > 3k + 1.

38

Example: k-DOMINATING SET

k
Pk = 3xq ... A Vy (\/(Xi =yV E}’Xi)>
i=1

To convert it into “Gaifman normal form”: if diameter > 3k +1 — ‘no’.

TN

u

distu,v) > 2ex)

©k is equivalent to the conjunction of these two basic local sentences:

@ Diameter at most 3k: 1) := —=3IxyIxpdist(x1, x2) > 3k + 1.
@ Ixx(x), where x(x) is the (3k + 1)-local formula

k
Iy1 € Nakt1(x) - .. Tyk € Nar1(x)Vz € Napy1(x) (\/(}/i =zV EZ}’i)>
i=1

38

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)

Let d € N and let Cy be the class of graphs of degree bounded by d.
Then MC(FO,Cy) is FPT.

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)

Let d € N and let Cy be the class of graphs of degree bounded by d.
Then MC(FO,Cy) is FPT.

Proof:

e Given G € Cy and ¢ € FO, convert ¢ into “Gaifman normal form”.

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)

Let d € N and let Cy be the class of graphs of degree bounded by d.
Then MC(FO,Cy) is FPT.

Proof:

e Given G € Cy and ¢ € FO, convert ¢ into “Gaifman normal form”
@ We only need to consider basic local sentences of the form

dxq ... (/\ dist(x;, x;) > 2r A /\sz,).

1<i<j<k

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)

Let d € N and let Cy be the class of graphs of degree bounded by d.
Then MC(FO,Cy) is FPT.

Proof:

e Given G € Cy and ¢ € FO, convert ¢ into “Gaifman normal form”
@ We only need to consider basic local sentences of the form

dxq ... (/\ dist(x;, x;) > 2r A /\sz,).

1<i<j<k

e For every v € V(G), we test whether G[N,[v]] = .

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)

Let d € N and let Cy be the class of graphs of degree bounded by d.
Then MC(FO,Cy) is FPT.

Proof:

e Given G € Cy and ¢ € FO, convert ¢ into “Gaifman normal form”
@ We only need to consider basic local sentences of the form

dxq ... (/\ dist(x;, x;) > 2r A /\sz,).

1<i<j<k

o For every v € V(G), we test whether G[N,[v]] = .
Since G[N,[v]] has constant size, easy to do!

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)

Let d € N and let Cy be the class of graphs of degree bounded by d.
Then MC(FO,Cy) is FPT.

Proof:

e Given G € Cy and ¢ € FO, convert ¢ into “Gaifman normal form”
@ We only need to consider basic local sentences of the form

dxq ... (/\ dist(x;, x;) > 2r A /\z/)x,).

1<i<j<k -
o For every v € V(G), we test whether G[N,[v]] = .
Since G[N,[v]] has constant size, easy to do!

@ Finally, we greedily try to find k such “good" vertices far apart 0

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)

Let d € IN and let C, be the class of graphs of degree bounded by d.
Then MC(FO,Cy) is FPT.

Proof:

‘Crucial issue: test whether G[N,[v]| = ¢ in FPT time.

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)

Let d € IN and let C, be the class of graphs of degree bounded by d.
Then MC(FO,Cy) is FPT.

Proof:

‘Crucial issue: test whether G[N,[v]| = ¢ in FPT time.

o If G[N,[v]] has constant size, easy to do!

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)

Let d € IN and let C, be the class of graphs of degree bounded by d.
Then MC(FO,Cy) is FPT.

Proof:

‘Crucial issue: test whether G[N,[v]| = ¢ in FPT time.

o If G[N,[v]] has constant size, easy to do!

e But also if tw(G[N,[v]]) is bounded, by Courcelle's theorem.

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)

Let d € IN and let C, be the class of graphs of degree bounded by d.
Then MC(FO,Cy) is FPT.

Proof:

‘Crucial issue: test whether G[N,[v]| = ¢ in FPT time.

o If G[N,[v]] has constant size, easy to do!

e But also if tw(G[N,[v]]) is bounded, by Courcelle's theorem.
e But also if tw(G[N,[v]]) < f(r):

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)

Let d € IN and let C, be the class of graphs of degree bounded by d.
Then MC(FO,Cy) is FPT.

Proof:

‘Crucial issue: test whether G[N,[v]| = ¢ in FPT time.

o If G[N,[v]] has constant size, easy to do!

e But also if tw(G[N,[v]]) is bounded, by Courcelle's theorem.

e But also if tw(G[N,[v]]) < f(r): bounded local treewidth.

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)

Let d € IN and let C, be the class of graphs of degree bounded by d.
Then MC(FO,Cy) is FPT.

Proof:

‘Crucial issue: test whether G[N,[v]| = ¢ in FPT time.

o If G[N,[v]] has constant size, easy to do!

e But also if tw(G[N,[v]]) is bounded, by Courcelle's theorem.

e But also if tw(G[N,[v]]) < f(r): bounded local treewidth.

This has triggered a lot of research in the last 20 years...

39

AMTs for MSO and FO

bounded treewidth [Courcelle,1990] [Arnborg, Lagergren, Seese, 1991] [Borie, Parker, Tovey, 1992]
bounded cliquewidth. [Courcelle, Makowski, Rotics, 2000] [Oum & Seymour, 2006] MSO

bounded degree [Seese, 1996] FO
locally bounded treewidth [Frick & Grohe, 2001]

excluding a minor [Flum & Grohe, 2001]

locally excluding a minor [Dawar, Grohe, Kreutzer, 2007]

bounded expansion [Dvorék, Kral, Thomas, 2011]

nowhere dense [Grohe, Kreutzer, Siebertz, 2017

bounded twinwidth [Bonnet, Kim, Thomassé, Watrigant, 2022]

structurally bounded degree [Gajarsky, Hlingny, Lokshtanov, Obdrzslek, Ramanujan, 2016]

structural/y bounded expansion [Gajarsky, Kreutzer, Ne3et¥il, Ossona de Mendez, Mi. Pilipczuk, Siebertz, Toruriczyk, 2018]
structurally nowhere dense [Dreier, Mahimann, Siebertz, 2023

structurally bounded local cliquewidth [Bonnet, Dreier, Gajarsky, Kreutzer, Mahlmann, Simon, Toruriczyk, 2022]
monadically stable [Dreier, Eleftheriadis, Mahlmann, McCarty, Mi. Pilipczuk, Toruiczyk, 2023]

monadically NIP/dependent ?

40

FO model-checking on sparse graph classes

somewhere dense

bounded degeneracy

nowhere dense

41

Simplified picture for monotone graph classes

Structure

nowhere dense oo O [Grohe, Kreutzer, & Siebertz]

bounded treewidth |- 0 [Courcelle |

FO MSO Logic

42

Simplified picture for hereditary graph classes

Structure

bounded twinwidth - [I[Bonnet, Kim, Thomassé, & Watrigant]

bounded cliquewidth |- 0 [Courcelle et al.]

FO MSO Logic

42

A lot of interesting stuff between FO and MSO

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

,,,,,,,,,,,,,,,,, [1[Grohe, Kreutzer, & Siebertz]

[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruriczyk, & Vigny]

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny|

[Golovach, Stamoulis, & Thilikos]

[Fomin, Golovach, S., Stamoulis, & Thilikos]

o [Courcelle]

FO FO+conn FO+dp & MSO

43

A lot of interesting stuff between FO and MSO

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

,,,,,,,,,,,,,,,,, [1[Grohe, Kreutzer, & Siebertz]

[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruriczyk, & Vigny]

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny|

[Golovach, Stamoulis, & Thilikos]

[Fomin, Golovach, S., Stamoulis, & Thilikos]

o [Courcelle]

FO FO+conn FO+dp & MSO

43

Graph minors

A graph H is a minor of a graph G, denoted by H <, G, if H can be
obtained by a subgraph of G by contracting edges.

@RMM
BN
3 b

44

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

GelC = HeC forevery H<,, G.

45

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

GelC = HeC forevery H<,, G.

Examples of minor-closed graph classes:

@ Independent sets.

@ Forests.

Subgraphs of series-parallel graphs.
Planar graphs.

Graphs embeddable in a fixed surface.
Linklessly embeddable graphs.
Knotlessly embeddable graphs.

45

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

GelC = HeC forevery H<,, G.

Theorem (Robertson, Seymour. 1983-2004)

Every minor-closed graph class C can be characterized by a finite list of
excluded minors.

45

Missing axis: efficiency dimension

nowhere dense |- L1 [Grohe, Kreutzer, & Siebertz]

ilipczul chirrmacher, Siebertz, Toruniczyk, ign:

Mi. Pilipczuk, Schirrmacher, Siebertz, Toruficzyk, & Vigny]
excluding a top. minor |-~
[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny]

Stamoulis, & Thilikos]

(Golovacl
excluding a minor -
[Fomin, Golovach, S., Stamoulis, & Thilikos]

bounded treewidth - [Courcelle]

FO FO-+conn FO-+dp & MSO

Structures

Efficiency Logic

f(l¢l, p(G)) - 1G|°W

46

Gracies!

47

	Introduction to logic (in graphs)
	AMTs for monadic second-order logic
	AMTs for first-order logic

