
Introduction to logic in graphs
and algorithmic meta-theorems

Ignasi Sau

LIRMM, Université de Montpellier, CNRS, France

20th JCALM
LIRMM, Montpellier, December 13-14, 2023

1

20èmes JCALM

JCALM: Journées de Combinatoire et d’Algorithmes du Littoral Méditerranéen.

Take place once or twice a year since 2006.

Involved research teams:

DALGO and ACRO teams at LIS in Marseille.
AlGCo team (among others) at LIRMM in Montpellier.
COATI common project at I3S and INRIA Sophia-Antipolis.
GAPCOMB team at UPC in Barcelona.

2

Current JCALM
Topic: Logic and graph algorithms

JCALM23
20th Days of Combinatorics and Algorithms of the Mediterranean Coast
13-14 Dec 2023 Montpellier (France)

FR EN
 Login

Lost password ? Create account
Main menu
Home
Map
Previous
JCALM
Contacts
Abstracts
Registration
HELP
@ Contact

Objective

The aim of these days is to bring together people from the Mediterranean coast, in a very broad sense, working in algorithms, combinatorics, and graph
theory.

The main involved teams are the DALGO team at LIS in Marseille, AlGCo team (among others) at LIRMM in Montpellier, the COATI common project at
I3S and INRIA Sophia-Antipolis, and the GAPCOMB team at Universitat Politècnica de Catalunya (UPC) in Barcelona. Researchers from other teams
(from the region or elsewhere) are also welcome to attend JCALM.

Each day will have a theme around which introductory and advanced research talks will be given. There will also be a problem-solving session.

Organizers of this edition: Ignasi Sau and Dimitrios M. Thilikos.

Subject

The 20th Days of Combinatorics and Algorithms of the Mediterranean Coast (JCALM) will take place at LIRMM (Laboratoire d'Informatique, de Robotique
et de Microélectronique de Montpellier), on December 13th and 14th, 2023.

The theme of this year's event is "Logic and graph algorithms". All presentations will be in english and will take place in the "salle séminaire" in buiding 4
of the LIRMM, just behind the reception.

Programme

Wednesday December 13th

09:30–10:20: Café+croissants et accueil des participant-e-s (cafétéria du LIRMM, bâtiment 4)
10:20–11:20: Ignasi Sau, Introduction to logic in graphs and algorithmic meta-theorems
11:30–12:30: Hugo Jacob, First-order model-checking on sparse graph classes
12:30–14:00: Repas (cafétéria du LIRMM, bâtiment 4)
14:00–15:00: Eunjung Kim, First-order model-checking on graphs of bounded twin-width
15:10–16:10: Dimitrios Thilikos, Logic and algorithms for graph minors
16:10–16:40: Café+croissants
16:40–17:30: Open problems
Soirée: dîner en centre ville de Montpellier

Thursday December 14th

09:30–10:20: Café+croissants (cafétéria du LIRMM, bâtiment 4)
10:20–11:20: Matthieu Rosenfeld, Monadic second-order logic and treewidth
11:30–12:30: Giannos Stamoulis, Elementary first-order model-checking
12:00–14:00: Repas (cafétéria du LIRMM, bâtiment 4)

List of participants

1. Frédéric Havet
2. Clément Rambaud
3. Ignasi Sau
4. Lilian Fortas
5. Davide Ferré
6. Amadeus Reinald
7. Alexandre Pinlou

3

Algorithmic meta-theorems

Typical statement of an algorithmic meta-theorem (AMT):

Every computational problem that can be formalized
in a given logic L can be solved efficiently on ev-
ery class C of structures (typically, graphs) satisfying
certain (typically, combinatorial) conditions.

Logical component: given by a
logic L (such as first-order or
second-order logic).

Structural (combinatorial)
component: given by a class C
(such as planar graphs, or
graphs of bounded degree).

4

Algorithmic meta-theorems

Typical statement of an algorithmic meta-theorem (AMT):

Every computational problem that can be formalized
in a given logic L can be solved efficiently on ev-
ery class C of structures (typically, graphs) satisfying
certain (typically, combinatorial) conditions.

Logical component: given by a
logic L (such as first-order or
second-order logic).

Structural (combinatorial)
component: given by a class C
(such as planar graphs, or
graphs of bounded degree).

4

Outline of this introductory talk

F Strongly inspired from the survey of Stephan Kreutzer (2011) :

“Algorithmic Meta-Theorems”

1 Introduction to logic (in graphs)

2 AMTs for monadic second-order logic

3 AMTs for first-order logic

5

Next section is...

1 Introduction to logic (in graphs)

2 AMTs for monadic second-order logic

3 AMTs for first-order logic

6

Basics on logic

Signature σ = {R1, . . . ,Rk , c1, . . . , cq}: finite set of relation symbols Ri
and constant symbols ci .

Example of a relation symbol: “edge” relation in graphs, with arity 2.

Sometimes a signature is also called a vocabulary.

σ-structure A = (V (A),R1(A), . . . ,Rk(A), c1(A), . . . , cq(A)), such that:

V (A) is the universe (in graphs: vertex set).

For each Ri ∈ σ of arity r , we have Ri (A) ⊆ V (A)r (example: edges).

For each ci ∈ σ, we have a constant ci (A) ∈ V (A) (i.e., a vertex)

7

Basics on logic

Signature σ = {R1, . . . ,Rk , c1, . . . , cq}: finite set of relation symbols Ri
and constant symbols ci .

Example of a relation symbol: “edge” relation in graphs, with arity 2.

Sometimes a signature is also called a vocabulary.

σ-structure A = (V (A),R1(A), . . . ,Rk(A), c1(A), . . . , cq(A)), such that:

V (A) is the universe (in graphs: vertex set).

For each Ri ∈ σ of arity r , we have Ri (A) ⊆ V (A)r (example: edges).

For each ci ∈ σ, we have a constant ci (A) ∈ V (A) (i.e., a vertex)

7

Basics on logic

Signature σ = {R1, . . . ,Rk , c1, . . . , cq}: finite set of relation symbols Ri
and constant symbols ci .

Example of a relation symbol: “edge” relation in graphs, with arity 2.

Sometimes a signature is also called a vocabulary.

σ-structure A = (V (A),R1(A), . . . ,Rk(A), c1(A), . . . , cq(A)), such that:

V (A) is the universe (in graphs: vertex set).

For each Ri ∈ σ of arity r , we have Ri (A) ⊆ V (A)r (example: edges).

For each ci ∈ σ, we have a constant ci (A) ∈ V (A) (i.e., a vertex)

7

Basics on logic

Signature σ = {R1, . . . ,Rk , c1, . . . , cq}: finite set of relation symbols Ri
and constant symbols ci .

Example of a relation symbol: “edge” relation in graphs, with arity 2.

Sometimes a signature is also called a vocabulary.

σ-structure A = (V (A),R1(A), . . . ,Rk(A), c1(A), . . . , cq(A)), such that:

V (A) is the universe (in graphs: vertex set).

For each Ri ∈ σ of arity r , we have Ri (A) ⊆ V (A)r (example: edges).

For each ci ∈ σ, we have a constant ci (A) ∈ V (A) (i.e., a vertex)

7

Basics on logic

Signature σ = {R1, . . . ,Rk , c1, . . . , cq}: finite set of relation symbols Ri
and constant symbols ci .

Example of a relation symbol: “edge” relation in graphs, with arity 2.

Sometimes a signature is also called a vocabulary.

σ-structure A = (V (A),R1(A), . . . ,Rk(A), c1(A), . . . , cq(A)), such that:

V (A) is the universe (in graphs: vertex set).

For each Ri ∈ σ of arity r , we have Ri (A) ⊆ V (A)r (example: edges).

For each ci ∈ σ, we have a constant ci (A) ∈ V (A) (i.e., a vertex)

7

First-order and monadic second-order logic
. Let σ be a signature (example: edges, for graphs).
. We assume a countably infinite set of first-order variables x , y , . . .
(elements) and second-order variables X ,Y , . . . (sets of elements).
. σ-term: first-order variable or constant symbol c ∈ σ.

. FO[σ]: class of formulas of first-order logic over σ:

If R ∈ σ and x is a tuple of σ-terms of length ar(R), then
Rx ∈ FO[σ] (in graphs, for the edge relation: adjacency).
If t and s are σ-terms then t = s ∈ FO[σ].
If ϕ,ψ ∈ FO[σ], then so are ϕ∨ψ, ϕ∧ψ, ¬ϕ.
If ϕ ∈ FO[σ] and x is a first-order variable, then
∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

. MSO[σ]: class of formulas of monadic second-order logic over σ:
Additional rule: if X is a second-order variable and ϕ ∈ MSO[σ], then

∃Xϕ ∈ MSO[σ] and ∀Xϕ ∈ MSO[σ].

8

First-order and monadic second-order logic
. Let σ be a signature (example: edges, for graphs).
. We assume a countably infinite set of first-order variables x , y , . . .
(elements) and second-order variables X ,Y , . . . (sets of elements).
. σ-term: first-order variable or constant symbol c ∈ σ.

. FO[σ]: class of formulas of first-order logic over σ:

If R ∈ σ and x is a tuple of σ-terms of length ar(R), then
Rx ∈ FO[σ] (in graphs, for the edge relation: adjacency).
If t and s are σ-terms then t = s ∈ FO[σ].
If ϕ,ψ ∈ FO[σ], then so are ϕ∨ψ, ϕ∧ψ, ¬ϕ.
If ϕ ∈ FO[σ] and x is a first-order variable, then
∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

. MSO[σ]: class of formulas of monadic second-order logic over σ:
Additional rule: if X is a second-order variable and ϕ ∈ MSO[σ], then

∃Xϕ ∈ MSO[σ] and ∀Xϕ ∈ MSO[σ].

8

First-order and monadic second-order logic
. Let σ be a signature (example: edges, for graphs).
. We assume a countably infinite set of first-order variables x , y , . . .
(elements) and second-order variables X ,Y , . . . (sets of elements).
. σ-term: first-order variable or constant symbol c ∈ σ.

. FO[σ]: class of formulas of first-order logic over σ:

If R ∈ σ and x is a tuple of σ-terms of length ar(R), then
Rx ∈ FO[σ] (in graphs, for the edge relation: adjacency).

If t and s are σ-terms then t = s ∈ FO[σ].
If ϕ,ψ ∈ FO[σ], then so are ϕ∨ψ, ϕ∧ψ, ¬ϕ.
If ϕ ∈ FO[σ] and x is a first-order variable, then
∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

. MSO[σ]: class of formulas of monadic second-order logic over σ:
Additional rule: if X is a second-order variable and ϕ ∈ MSO[σ], then

∃Xϕ ∈ MSO[σ] and ∀Xϕ ∈ MSO[σ].

8

First-order and monadic second-order logic
. Let σ be a signature (example: edges, for graphs).
. We assume a countably infinite set of first-order variables x , y , . . .
(elements) and second-order variables X ,Y , . . . (sets of elements).
. σ-term: first-order variable or constant symbol c ∈ σ.

. FO[σ]: class of formulas of first-order logic over σ:

If R ∈ σ and x is a tuple of σ-terms of length ar(R), then
Rx ∈ FO[σ] (in graphs, for the edge relation: adjacency).
If t and s are σ-terms then t = s ∈ FO[σ].

If ϕ,ψ ∈ FO[σ], then so are ϕ∨ψ, ϕ∧ψ, ¬ϕ.
If ϕ ∈ FO[σ] and x is a first-order variable, then
∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

. MSO[σ]: class of formulas of monadic second-order logic over σ:
Additional rule: if X is a second-order variable and ϕ ∈ MSO[σ], then

∃Xϕ ∈ MSO[σ] and ∀Xϕ ∈ MSO[σ].

8

First-order and monadic second-order logic
. Let σ be a signature (example: edges, for graphs).
. We assume a countably infinite set of first-order variables x , y , . . .
(elements) and second-order variables X ,Y , . . . (sets of elements).
. σ-term: first-order variable or constant symbol c ∈ σ.

. FO[σ]: class of formulas of first-order logic over σ:

If R ∈ σ and x is a tuple of σ-terms of length ar(R), then
Rx ∈ FO[σ] (in graphs, for the edge relation: adjacency).
If t and s are σ-terms then t = s ∈ FO[σ].
If ϕ,ψ ∈ FO[σ], then so are ϕ∨ψ, ϕ∧ψ, ¬ϕ.

If ϕ ∈ FO[σ] and x is a first-order variable, then
∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

. MSO[σ]: class of formulas of monadic second-order logic over σ:
Additional rule: if X is a second-order variable and ϕ ∈ MSO[σ], then

∃Xϕ ∈ MSO[σ] and ∀Xϕ ∈ MSO[σ].

8

First-order and monadic second-order logic
. Let σ be a signature (example: edges, for graphs).
. We assume a countably infinite set of first-order variables x , y , . . .
(elements) and second-order variables X ,Y , . . . (sets of elements).
. σ-term: first-order variable or constant symbol c ∈ σ.

. FO[σ]: class of formulas of first-order logic over σ:

If R ∈ σ and x is a tuple of σ-terms of length ar(R), then
Rx ∈ FO[σ] (in graphs, for the edge relation: adjacency).
If t and s are σ-terms then t = s ∈ FO[σ].
If ϕ,ψ ∈ FO[σ], then so are ϕ∨ψ, ϕ∧ψ, ¬ϕ.
If ϕ ∈ FO[σ] and x is a first-order variable, then
∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

. MSO[σ]: class of formulas of monadic second-order logic over σ:
Additional rule: if X is a second-order variable and ϕ ∈ MSO[σ], then

∃Xϕ ∈ MSO[σ] and ∀Xϕ ∈ MSO[σ].

8

First-order and monadic second-order logic
. Let σ be a signature (example: edges, for graphs).
. We assume a countably infinite set of first-order variables x , y , . . .
(elements) and second-order variables X ,Y , . . . (sets of elements).
. σ-term: first-order variable or constant symbol c ∈ σ.

. FO[σ]: class of formulas of first-order logic over σ:

If R ∈ σ and x is a tuple of σ-terms of length ar(R), then
Rx ∈ FO[σ] (in graphs, for the edge relation: adjacency).
If t and s are σ-terms then t = s ∈ FO[σ].
If ϕ,ψ ∈ FO[σ], then so are ϕ∨ψ, ϕ∧ψ, ¬ϕ.
If ϕ ∈ FO[σ] and x is a first-order variable, then
∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

. MSO[σ]: class of formulas of monadic second-order logic over σ:
Additional rule: if X is a second-order variable and ϕ ∈ MSO[σ], then

∃Xϕ ∈ MSO[σ] and ∀Xϕ ∈ MSO[σ].
8

Some more notation

. We define:
FO =

⋃
σ FO[σ]

MSO =
⋃
σMSO[σ]

. Usual notation:
Connectors: = (equality), ∨ (conjunction), ∧ (disjunction),

¬ (negation).
If x is a tuple and R a relation, Rx denotes containment (∈,⊆) in R.
Quantifiers: ∃ (existential) and ∀ (universal).

. Abbreviations:
x 6=y , instead of ¬x = y .
ϕ→ψ instead of (¬ϕ ∨ ψ).

9

Some more notation

. We define:
FO =

⋃
σ FO[σ]

MSO =
⋃
σMSO[σ]

. Usual notation:
Connectors: = (equality), ∨ (conjunction), ∧ (disjunction),

¬ (negation).
If x is a tuple and R a relation, Rx denotes containment (∈,⊆) in R.
Quantifiers: ∃ (existential) and ∀ (universal).

. Abbreviations:
x 6=y , instead of ¬x = y .
ϕ→ψ instead of (¬ϕ ∨ ψ).

9

Some more notation

. We define:
FO =

⋃
σ FO[σ]

MSO =
⋃
σMSO[σ]

. Usual notation:
Connectors: = (equality), ∨ (conjunction), ∧ (disjunction),

¬ (negation).
If x is a tuple and R a relation, Rx denotes containment (∈,⊆) in R.
Quantifiers: ∃ (existential) and ∀ (universal).

. Abbreviations:
x 6=y , instead of ¬x = y .
ϕ→ψ instead of (¬ϕ ∨ ψ).

9

Free variables and models

. Free variables of a formula: those that are not involved in any quantifier.
Denoted ϕ(x).

. Sentence: formula with no free variables.

. Notation A |= ϕ: “A satisfies ϕ” or “A is a model of ϕ”.

. If ϕ(x) has free variables x , and a is a tuple of the same length as x , we
write A |= ϕ(a) or (A, a) |= ϕ if ϕ is true when x is interpreted as a.

. If we deal with (non-annotated) graphs: σ = E (i.e., the edge relation).

10

Free variables and models

. Free variables of a formula: those that are not involved in any quantifier.
Denoted ϕ(x).

. Sentence: formula with no free variables.

. Notation A |= ϕ: “A satisfies ϕ” or “A is a model of ϕ”.

. If ϕ(x) has free variables x , and a is a tuple of the same length as x , we
write A |= ϕ(a) or (A, a) |= ϕ if ϕ is true when x is interpreted as a.

. If we deal with (non-annotated) graphs: σ = E (i.e., the edge relation).

10

Free variables and models

. Free variables of a formula: those that are not involved in any quantifier.
Denoted ϕ(x).

. Sentence: formula with no free variables.

. Notation A |= ϕ: “A satisfies ϕ” or “A is a model of ϕ”.

. If ϕ(x) has free variables x , and a is a tuple of the same length as x , we
write A |= ϕ(a) or (A, a) |= ϕ if ϕ is true when x is interpreted as a.

. If we deal with (non-annotated) graphs: σ = E (i.e., the edge relation).

10

Free variables and models

. Free variables of a formula: those that are not involved in any quantifier.
Denoted ϕ(x).

. Sentence: formula with no free variables.

. Notation A |= ϕ: “A satisfies ϕ” or “A is a model of ϕ”.

. If ϕ(x) has free variables x , and a is a tuple of the same length as x , we
write A |= ϕ(a) or (A, a) |= ϕ if ϕ is true when x is interpreted as a.

. If we deal with (non-annotated) graphs: σ = E (i.e., the edge relation).

10

Free variables and models

. Free variables of a formula: those that are not involved in any quantifier.
Denoted ϕ(x).

. Sentence: formula with no free variables.

. Notation A |= ϕ: “A satisfies ϕ” or “A is a model of ϕ”.

. If ϕ(x) has free variables x , and a is a tuple of the same length as x , we
write A |= ϕ(a) or (A, a) |= ϕ if ϕ is true when x is interpreted as a.

. If we deal with (non-annotated) graphs: σ = E (i.e., the edge relation).

10

Examples of FO formulas in graphs

relevant. Abusing notation, we will treat tuples sometimes as sets and write
a ∈ a, with the obvious meaning, and also a ⊆ b to denote that every element
in a also occurs in b.

Two σ-structures A, B are isomorphic, denoted A ∼= B, if there is a bijectionA ∼= B

π : V (A) → V (B) such that

– for all relation symbols R ∈ σ of arity r := ar(R) and all a ∈ V (A)r ,
a ∈ R(A) if, and only if, (π(a1), . . . , π(ar)) ∈ R(B) and

– for all constant symbols c ∈ σ, c(B) = π(c(A)).

Let σ be a signature. We assume a countably infinite set of first-order vari-
ables x, y, ... and second-order variablesX,Y, A σ-term is a first-order variable
or a constant symbol c ∈ σ. The class of formulas of first-order logic over σ, de-
noted FO[σ], is inductively defined as follows. If R ∈ σ and x is a tuple of σ-terms
of length ar(R), then Rx ∈ FO[σ] and if t and s are terms then t = s ∈ FO[σ].
Further, if ϕ, ψ ∈ FO[σ], then so are (ϕ∧ψ), (ϕ∨ψ) and ¬ϕ. Finally, if ϕ ∈ FO[σ]
and x is a first-order variable, then ∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

The class of formulas of monadic second-order logic over σ, denoted MSO[σ],
is defined by the rules for first-order logic with the following additional rules: if
X is a second-order variable and ϕ ∈ MSO[σ∪̇{X}], then ∃Xϕ ∈ MSO[σ] and
∀Xϕ ∈ MSO[σ]. Finally, we define FO :=

⋃
σ signature FO[σ] and likewise for MSO.

First-order variables range over elements of σ-structures and monadic second-
order variablesX range over sets of elements. Formulas ϕ ∈ FO[σ] are interpreted
in σ-structures A in the obvious way, where atoms Rx denote containment in
the relation R(A), = denotes equality of elements, ∨,∧,¬ denote disjunction,
conjunction and negation and ∃xϕ is true in A if there is an element a ∈ V (A)
such that ϕ is true in A if x is interpreted by a. Analogously, ∀xϕ is true in A
if ϕ is true in A for all interpretations of x by elements a ∈ V (A).

For MSO[σ]-formulas, ∃Xϕ is true in A if there is a set U ⊆ V (A) such that
ϕ is true if X is interpreted by U and analogously for ∀Xϕ.

The set of free variables of a formula is defined in the usual way. We will write
ϕ(x) to indicate that the variables in x occur free in ϕ. Formulas without free
variables are called sentences. If ϕ is a sentence we write A |= ϕ if ϕ is true inA |= ϕ

A. If ϕ(x) has free variables x and a is a tuple of the same length as x, we write
A |= ϕ(a) or (A, a) |= ϕ if ϕ is true in A where the free variables x are interpretedA |= ϕ(a)

(A,a) |= ϕ by the elements in a in the obvious way. We will sometimes consider formulas
ϕ(X) with a free second-order variable X . The notation extends naturally to
free second-order variables.

We will use obvious abbreviations in formulas, such as→ (implication), x 6= y

instead of ¬x = y and
∨k

i=1 ϕi and
∧k

i=1 ϕi for disjunctions and conjunctions
over a range of formulas.

Example 2.1 1. An independent set, or stable set, in a graph G is a setindependent set

X ⊆ V (G) such that {u, v} 6∈ E for all u, v ∈ X. The first-order sentence

ϕk := ∃x1 . . . ∃xk
∧

1≤i<j≤k

(
xi 6= xj ∧ ¬Exixj

)

6

A graph G |= ϕk if and only if G contains an independent set
(set of pairwise non-adjacent vertices) of size k.

ϕ(X) := ∀x(Xx ∨ ∃z(Exz ∧ Xz))
In this formula, X is a free variable.
A pair (G ,U), where U ⊆ V (G), satisfies (G ,U) |= ϕ if and only if U is a
dominating set in G (every vertex not in U has a neighbor in U).

∃x1 . . . ∃xk∀y
k∨

i=1
(y = xi ∨ Exiy)

Expresses that a graph contains a dominating set of size k.

11

Examples of FO formulas in graphs

relevant. Abusing notation, we will treat tuples sometimes as sets and write
a ∈ a, with the obvious meaning, and also a ⊆ b to denote that every element
in a also occurs in b.

Two σ-structures A, B are isomorphic, denoted A ∼= B, if there is a bijectionA ∼= B

π : V (A) → V (B) such that

– for all relation symbols R ∈ σ of arity r := ar(R) and all a ∈ V (A)r ,
a ∈ R(A) if, and only if, (π(a1), . . . , π(ar)) ∈ R(B) and

– for all constant symbols c ∈ σ, c(B) = π(c(A)).

Let σ be a signature. We assume a countably infinite set of first-order vari-
ables x, y, ... and second-order variablesX,Y, A σ-term is a first-order variable
or a constant symbol c ∈ σ. The class of formulas of first-order logic over σ, de-
noted FO[σ], is inductively defined as follows. If R ∈ σ and x is a tuple of σ-terms
of length ar(R), then Rx ∈ FO[σ] and if t and s are terms then t = s ∈ FO[σ].
Further, if ϕ, ψ ∈ FO[σ], then so are (ϕ∧ψ), (ϕ∨ψ) and ¬ϕ. Finally, if ϕ ∈ FO[σ]
and x is a first-order variable, then ∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

The class of formulas of monadic second-order logic over σ, denoted MSO[σ],
is defined by the rules for first-order logic with the following additional rules: if
X is a second-order variable and ϕ ∈ MSO[σ∪̇{X}], then ∃Xϕ ∈ MSO[σ] and
∀Xϕ ∈ MSO[σ]. Finally, we define FO :=

⋃
σ signature FO[σ] and likewise for MSO.

First-order variables range over elements of σ-structures and monadic second-
order variablesX range over sets of elements. Formulas ϕ ∈ FO[σ] are interpreted
in σ-structures A in the obvious way, where atoms Rx denote containment in
the relation R(A), = denotes equality of elements, ∨,∧,¬ denote disjunction,
conjunction and negation and ∃xϕ is true in A if there is an element a ∈ V (A)
such that ϕ is true in A if x is interpreted by a. Analogously, ∀xϕ is true in A
if ϕ is true in A for all interpretations of x by elements a ∈ V (A).

For MSO[σ]-formulas, ∃Xϕ is true in A if there is a set U ⊆ V (A) such that
ϕ is true if X is interpreted by U and analogously for ∀Xϕ.

The set of free variables of a formula is defined in the usual way. We will write
ϕ(x) to indicate that the variables in x occur free in ϕ. Formulas without free
variables are called sentences. If ϕ is a sentence we write A |= ϕ if ϕ is true inA |= ϕ

A. If ϕ(x) has free variables x and a is a tuple of the same length as x, we write
A |= ϕ(a) or (A, a) |= ϕ if ϕ is true in A where the free variables x are interpretedA |= ϕ(a)

(A,a) |= ϕ by the elements in a in the obvious way. We will sometimes consider formulas
ϕ(X) with a free second-order variable X . The notation extends naturally to
free second-order variables.

We will use obvious abbreviations in formulas, such as→ (implication), x 6= y

instead of ¬x = y and
∨k

i=1 ϕi and
∧k

i=1 ϕi for disjunctions and conjunctions
over a range of formulas.

Example 2.1 1. An independent set, or stable set, in a graph G is a setindependent set

X ⊆ V (G) such that {u, v} 6∈ E for all u, v ∈ X. The first-order sentence

ϕk := ∃x1 . . . ∃xk
∧

1≤i<j≤k

(
xi 6= xj ∧ ¬Exixj

)

6
A graph G |= ϕk if and only if G contains an independent set
(set of pairwise non-adjacent vertices) of size k.

ϕ(X) := ∀x(Xx ∨ ∃z(Exz ∧ Xz))
In this formula, X is a free variable.
A pair (G ,U), where U ⊆ V (G), satisfies (G ,U) |= ϕ if and only if U is a
dominating set in G (every vertex not in U has a neighbor in U).

∃x1 . . . ∃xk∀y
k∨

i=1
(y = xi ∨ Exiy)

Expresses that a graph contains a dominating set of size k.

11

Examples of FO formulas in graphs

relevant. Abusing notation, we will treat tuples sometimes as sets and write
a ∈ a, with the obvious meaning, and also a ⊆ b to denote that every element
in a also occurs in b.

Two σ-structures A, B are isomorphic, denoted A ∼= B, if there is a bijectionA ∼= B

π : V (A) → V (B) such that

– for all relation symbols R ∈ σ of arity r := ar(R) and all a ∈ V (A)r ,
a ∈ R(A) if, and only if, (π(a1), . . . , π(ar)) ∈ R(B) and

– for all constant symbols c ∈ σ, c(B) = π(c(A)).

Let σ be a signature. We assume a countably infinite set of first-order vari-
ables x, y, ... and second-order variablesX,Y, A σ-term is a first-order variable
or a constant symbol c ∈ σ. The class of formulas of first-order logic over σ, de-
noted FO[σ], is inductively defined as follows. If R ∈ σ and x is a tuple of σ-terms
of length ar(R), then Rx ∈ FO[σ] and if t and s are terms then t = s ∈ FO[σ].
Further, if ϕ, ψ ∈ FO[σ], then so are (ϕ∧ψ), (ϕ∨ψ) and ¬ϕ. Finally, if ϕ ∈ FO[σ]
and x is a first-order variable, then ∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

The class of formulas of monadic second-order logic over σ, denoted MSO[σ],
is defined by the rules for first-order logic with the following additional rules: if
X is a second-order variable and ϕ ∈ MSO[σ∪̇{X}], then ∃Xϕ ∈ MSO[σ] and
∀Xϕ ∈ MSO[σ]. Finally, we define FO :=

⋃
σ signature FO[σ] and likewise for MSO.

First-order variables range over elements of σ-structures and monadic second-
order variablesX range over sets of elements. Formulas ϕ ∈ FO[σ] are interpreted
in σ-structures A in the obvious way, where atoms Rx denote containment in
the relation R(A), = denotes equality of elements, ∨,∧,¬ denote disjunction,
conjunction and negation and ∃xϕ is true in A if there is an element a ∈ V (A)
such that ϕ is true in A if x is interpreted by a. Analogously, ∀xϕ is true in A
if ϕ is true in A for all interpretations of x by elements a ∈ V (A).

For MSO[σ]-formulas, ∃Xϕ is true in A if there is a set U ⊆ V (A) such that
ϕ is true if X is interpreted by U and analogously for ∀Xϕ.

The set of free variables of a formula is defined in the usual way. We will write
ϕ(x) to indicate that the variables in x occur free in ϕ. Formulas without free
variables are called sentences. If ϕ is a sentence we write A |= ϕ if ϕ is true inA |= ϕ

A. If ϕ(x) has free variables x and a is a tuple of the same length as x, we write
A |= ϕ(a) or (A, a) |= ϕ if ϕ is true in A where the free variables x are interpretedA |= ϕ(a)

(A,a) |= ϕ by the elements in a in the obvious way. We will sometimes consider formulas
ϕ(X) with a free second-order variable X . The notation extends naturally to
free second-order variables.

We will use obvious abbreviations in formulas, such as→ (implication), x 6= y

instead of ¬x = y and
∨k

i=1 ϕi and
∧k

i=1 ϕi for disjunctions and conjunctions
over a range of formulas.

Example 2.1 1. An independent set, or stable set, in a graph G is a setindependent set

X ⊆ V (G) such that {u, v} 6∈ E for all u, v ∈ X. The first-order sentence

ϕk := ∃x1 . . . ∃xk
∧

1≤i<j≤k

(
xi 6= xj ∧ ¬Exixj

)

6
A graph G |= ϕk if and only if G contains an independent set
(set of pairwise non-adjacent vertices) of size k.

ϕ(X) := ∀x(Xx ∨ ∃z(Exz ∧ Xz))
In this formula, X is a free variable.

A pair (G ,U), where U ⊆ V (G), satisfies (G ,U) |= ϕ if and only if U is a
dominating set in G (every vertex not in U has a neighbor in U).

∃x1 . . . ∃xk∀y
k∨

i=1
(y = xi ∨ Exiy)

Expresses that a graph contains a dominating set of size k.

11

Examples of FO formulas in graphs

relevant. Abusing notation, we will treat tuples sometimes as sets and write
a ∈ a, with the obvious meaning, and also a ⊆ b to denote that every element
in a also occurs in b.

Two σ-structures A, B are isomorphic, denoted A ∼= B, if there is a bijectionA ∼= B

π : V (A) → V (B) such that

– for all relation symbols R ∈ σ of arity r := ar(R) and all a ∈ V (A)r ,
a ∈ R(A) if, and only if, (π(a1), . . . , π(ar)) ∈ R(B) and

– for all constant symbols c ∈ σ, c(B) = π(c(A)).

Let σ be a signature. We assume a countably infinite set of first-order vari-
ables x, y, ... and second-order variablesX,Y, A σ-term is a first-order variable
or a constant symbol c ∈ σ. The class of formulas of first-order logic over σ, de-
noted FO[σ], is inductively defined as follows. If R ∈ σ and x is a tuple of σ-terms
of length ar(R), then Rx ∈ FO[σ] and if t and s are terms then t = s ∈ FO[σ].
Further, if ϕ, ψ ∈ FO[σ], then so are (ϕ∧ψ), (ϕ∨ψ) and ¬ϕ. Finally, if ϕ ∈ FO[σ]
and x is a first-order variable, then ∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

The class of formulas of monadic second-order logic over σ, denoted MSO[σ],
is defined by the rules for first-order logic with the following additional rules: if
X is a second-order variable and ϕ ∈ MSO[σ∪̇{X}], then ∃Xϕ ∈ MSO[σ] and
∀Xϕ ∈ MSO[σ]. Finally, we define FO :=

⋃
σ signature FO[σ] and likewise for MSO.

First-order variables range over elements of σ-structures and monadic second-
order variablesX range over sets of elements. Formulas ϕ ∈ FO[σ] are interpreted
in σ-structures A in the obvious way, where atoms Rx denote containment in
the relation R(A), = denotes equality of elements, ∨,∧,¬ denote disjunction,
conjunction and negation and ∃xϕ is true in A if there is an element a ∈ V (A)
such that ϕ is true in A if x is interpreted by a. Analogously, ∀xϕ is true in A
if ϕ is true in A for all interpretations of x by elements a ∈ V (A).

For MSO[σ]-formulas, ∃Xϕ is true in A if there is a set U ⊆ V (A) such that
ϕ is true if X is interpreted by U and analogously for ∀Xϕ.

The set of free variables of a formula is defined in the usual way. We will write
ϕ(x) to indicate that the variables in x occur free in ϕ. Formulas without free
variables are called sentences. If ϕ is a sentence we write A |= ϕ if ϕ is true inA |= ϕ

A. If ϕ(x) has free variables x and a is a tuple of the same length as x, we write
A |= ϕ(a) or (A, a) |= ϕ if ϕ is true in A where the free variables x are interpretedA |= ϕ(a)

(A,a) |= ϕ by the elements in a in the obvious way. We will sometimes consider formulas
ϕ(X) with a free second-order variable X . The notation extends naturally to
free second-order variables.

We will use obvious abbreviations in formulas, such as→ (implication), x 6= y

instead of ¬x = y and
∨k

i=1 ϕi and
∧k

i=1 ϕi for disjunctions and conjunctions
over a range of formulas.

Example 2.1 1. An independent set, or stable set, in a graph G is a setindependent set

X ⊆ V (G) such that {u, v} 6∈ E for all u, v ∈ X. The first-order sentence

ϕk := ∃x1 . . . ∃xk
∧

1≤i<j≤k

(
xi 6= xj ∧ ¬Exixj

)

6
A graph G |= ϕk if and only if G contains an independent set
(set of pairwise non-adjacent vertices) of size k.

ϕ(X) := ∀x(Xx ∨ ∃z(Exz ∧ Xz))
In this formula, X is a free variable.
A pair (G ,U), where U ⊆ V (G), satisfies (G ,U) |= ϕ if and only if U is a
dominating set in G (every vertex not in U has a neighbor in U).

∃x1 . . . ∃xk∀y
k∨

i=1
(y = xi ∨ Exiy)

Expresses that a graph contains a dominating set of size k.

11

Examples of FO formulas in graphs

relevant. Abusing notation, we will treat tuples sometimes as sets and write
a ∈ a, with the obvious meaning, and also a ⊆ b to denote that every element
in a also occurs in b.

Two σ-structures A, B are isomorphic, denoted A ∼= B, if there is a bijectionA ∼= B

π : V (A) → V (B) such that

– for all relation symbols R ∈ σ of arity r := ar(R) and all a ∈ V (A)r ,
a ∈ R(A) if, and only if, (π(a1), . . . , π(ar)) ∈ R(B) and

– for all constant symbols c ∈ σ, c(B) = π(c(A)).

Let σ be a signature. We assume a countably infinite set of first-order vari-
ables x, y, ... and second-order variablesX,Y, A σ-term is a first-order variable
or a constant symbol c ∈ σ. The class of formulas of first-order logic over σ, de-
noted FO[σ], is inductively defined as follows. If R ∈ σ and x is a tuple of σ-terms
of length ar(R), then Rx ∈ FO[σ] and if t and s are terms then t = s ∈ FO[σ].
Further, if ϕ, ψ ∈ FO[σ], then so are (ϕ∧ψ), (ϕ∨ψ) and ¬ϕ. Finally, if ϕ ∈ FO[σ]
and x is a first-order variable, then ∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

The class of formulas of monadic second-order logic over σ, denoted MSO[σ],
is defined by the rules for first-order logic with the following additional rules: if
X is a second-order variable and ϕ ∈ MSO[σ∪̇{X}], then ∃Xϕ ∈ MSO[σ] and
∀Xϕ ∈ MSO[σ]. Finally, we define FO :=

⋃
σ signature FO[σ] and likewise for MSO.

First-order variables range over elements of σ-structures and monadic second-
order variablesX range over sets of elements. Formulas ϕ ∈ FO[σ] are interpreted
in σ-structures A in the obvious way, where atoms Rx denote containment in
the relation R(A), = denotes equality of elements, ∨,∧,¬ denote disjunction,
conjunction and negation and ∃xϕ is true in A if there is an element a ∈ V (A)
such that ϕ is true in A if x is interpreted by a. Analogously, ∀xϕ is true in A
if ϕ is true in A for all interpretations of x by elements a ∈ V (A).

For MSO[σ]-formulas, ∃Xϕ is true in A if there is a set U ⊆ V (A) such that
ϕ is true if X is interpreted by U and analogously for ∀Xϕ.

The set of free variables of a formula is defined in the usual way. We will write
ϕ(x) to indicate that the variables in x occur free in ϕ. Formulas without free
variables are called sentences. If ϕ is a sentence we write A |= ϕ if ϕ is true inA |= ϕ

A. If ϕ(x) has free variables x and a is a tuple of the same length as x, we write
A |= ϕ(a) or (A, a) |= ϕ if ϕ is true in A where the free variables x are interpretedA |= ϕ(a)

(A,a) |= ϕ by the elements in a in the obvious way. We will sometimes consider formulas
ϕ(X) with a free second-order variable X . The notation extends naturally to
free second-order variables.

We will use obvious abbreviations in formulas, such as→ (implication), x 6= y

instead of ¬x = y and
∨k

i=1 ϕi and
∧k

i=1 ϕi for disjunctions and conjunctions
over a range of formulas.

Example 2.1 1. An independent set, or stable set, in a graph G is a setindependent set

X ⊆ V (G) such that {u, v} 6∈ E for all u, v ∈ X. The first-order sentence

ϕk := ∃x1 . . . ∃xk
∧

1≤i<j≤k

(
xi 6= xj ∧ ¬Exixj

)

6
A graph G |= ϕk if and only if G contains an independent set
(set of pairwise non-adjacent vertices) of size k.

ϕ(X) := ∀x(Xx ∨ ∃z(Exz ∧ Xz))
In this formula, X is a free variable.
A pair (G ,U), where U ⊆ V (G), satisfies (G ,U) |= ϕ if and only if U is a
dominating set in G (every vertex not in U has a neighbor in U).

∃x1 . . . ∃xk∀y
k∨

i=1
(y = xi ∨ Exiy)

Expresses that a graph contains a dominating set of size k.

11

Examples of FO formulas in graphs

relevant. Abusing notation, we will treat tuples sometimes as sets and write
a ∈ a, with the obvious meaning, and also a ⊆ b to denote that every element
in a also occurs in b.

Two σ-structures A, B are isomorphic, denoted A ∼= B, if there is a bijectionA ∼= B

π : V (A) → V (B) such that

– for all relation symbols R ∈ σ of arity r := ar(R) and all a ∈ V (A)r ,
a ∈ R(A) if, and only if, (π(a1), . . . , π(ar)) ∈ R(B) and

– for all constant symbols c ∈ σ, c(B) = π(c(A)).

Let σ be a signature. We assume a countably infinite set of first-order vari-
ables x, y, ... and second-order variablesX,Y, A σ-term is a first-order variable
or a constant symbol c ∈ σ. The class of formulas of first-order logic over σ, de-
noted FO[σ], is inductively defined as follows. If R ∈ σ and x is a tuple of σ-terms
of length ar(R), then Rx ∈ FO[σ] and if t and s are terms then t = s ∈ FO[σ].
Further, if ϕ, ψ ∈ FO[σ], then so are (ϕ∧ψ), (ϕ∨ψ) and ¬ϕ. Finally, if ϕ ∈ FO[σ]
and x is a first-order variable, then ∃xϕ ∈ FO[σ] and ∀xϕ ∈ FO[σ].

The class of formulas of monadic second-order logic over σ, denoted MSO[σ],
is defined by the rules for first-order logic with the following additional rules: if
X is a second-order variable and ϕ ∈ MSO[σ∪̇{X}], then ∃Xϕ ∈ MSO[σ] and
∀Xϕ ∈ MSO[σ]. Finally, we define FO :=

⋃
σ signature FO[σ] and likewise for MSO.

First-order variables range over elements of σ-structures and monadic second-
order variablesX range over sets of elements. Formulas ϕ ∈ FO[σ] are interpreted
in σ-structures A in the obvious way, where atoms Rx denote containment in
the relation R(A), = denotes equality of elements, ∨,∧,¬ denote disjunction,
conjunction and negation and ∃xϕ is true in A if there is an element a ∈ V (A)
such that ϕ is true in A if x is interpreted by a. Analogously, ∀xϕ is true in A
if ϕ is true in A for all interpretations of x by elements a ∈ V (A).

For MSO[σ]-formulas, ∃Xϕ is true in A if there is a set U ⊆ V (A) such that
ϕ is true if X is interpreted by U and analogously for ∀Xϕ.

The set of free variables of a formula is defined in the usual way. We will write
ϕ(x) to indicate that the variables in x occur free in ϕ. Formulas without free
variables are called sentences. If ϕ is a sentence we write A |= ϕ if ϕ is true inA |= ϕ

A. If ϕ(x) has free variables x and a is a tuple of the same length as x, we write
A |= ϕ(a) or (A, a) |= ϕ if ϕ is true in A where the free variables x are interpretedA |= ϕ(a)

(A,a) |= ϕ by the elements in a in the obvious way. We will sometimes consider formulas
ϕ(X) with a free second-order variable X . The notation extends naturally to
free second-order variables.

We will use obvious abbreviations in formulas, such as→ (implication), x 6= y

instead of ¬x = y and
∨k

i=1 ϕi and
∧k

i=1 ϕi for disjunctions and conjunctions
over a range of formulas.

Example 2.1 1. An independent set, or stable set, in a graph G is a setindependent set

X ⊆ V (G) such that {u, v} 6∈ E for all u, v ∈ X. The first-order sentence

ϕk := ∃x1 . . . ∃xk
∧

1≤i<j≤k

(
xi 6= xj ∧ ¬Exixj

)

6
A graph G |= ϕk if and only if G contains an independent set
(set of pairwise non-adjacent vertices) of size k.

ϕ(X) := ∀x(Xx ∨ ∃z(Exz ∧ Xz))
In this formula, X is a free variable.
A pair (G ,U), where U ⊆ V (G), satisfies (G ,U) |= ϕ if and only if U is a
dominating set in G (every vertex not in U has a neighbor in U).

∃x1 . . . ∃xk∀y
k∨

i=1
(y = xi ∨ Exiy)

Expresses that a graph contains a dominating set of size k.
11

Independent set versus dominating set

Independent set of size k:

∃x1 . . . ∃xk
∧

1≤i<j≤k
(xi 6= xj ∧ ¬Exixj)

Dominating set of size k:

∃x1 . . . ∃xk∀y
k∨

i=1
(y = xi ∨ Exiy)

The second formula has an alternation of quantifiers.

This suggests that the Dominating Set problem might be harder than
the Independent Set problem, as we shall see later...

12

Independent set versus dominating set

Independent set of size k:

∃x1 . . . ∃xk
∧

1≤i<j≤k
(xi 6= xj ∧ ¬Exixj)

Dominating set of size k:

∃x1 . . . ∃xk∀y
k∨

i=1
(y = xi ∨ Exiy)

The second formula has an alternation of quantifiers.

This suggests that the Dominating Set problem might be harder than
the Independent Set problem, as we shall see later...

12

Independent set versus dominating set

Independent set of size k:

∃x1 . . . ∃xk
∧

1≤i<j≤k
(xi 6= xj ∧ ¬Exixj)

Dominating set of size k:

∃x1 . . . ∃xk∀y
k∨

i=1
(y = xi ∨ Exiy)

The second formula has an alternation of quantifiers.

This suggests that the Dominating Set problem might be harder than
the Independent Set problem, as we shall see later...

12

Independent set versus dominating set

Independent set of size k:

∃x1 . . . ∃xk
∧

1≤i<j≤k
(xi 6= xj ∧ ¬Exixj)

Dominating set of size k:

∃x1 . . . ∃xk∀y
k∨

i=1
(y = xi ∨ Exiy)

The second formula has an alternation of quantifiers.

This suggests that the Dominating Set problem might be harder than
the Independent Set problem, as we shall see later...

12

Examples of MSO formulas in graphs

ϕ(X1,X2) := ∀x(X1x ∨ X2x) ∧ (X1x → ¬X2x) ∧ (X2x → ¬X1x)

(G ,U1,U2) |= ϕ if and only if (U1,U2) is a bipartition of V (G).

∀X1∀X2((ϕ(X1,X2)) ∧ (∃y1∃y2(X1y1 ∧ X2y2))→ (∃x1∃x2(X1x1 ∧ X2x2 ∧ Ex1x2)))

If ψ is this formula, a graph G |= ψ if and only if G is connected.

τ := ∃C1∃C2∃C3(∀x
3∨

i=1
Cix) ∧ ∀x∀y(Exy →

3∧
i=1
¬(Cix ∨ Ciy))

A graph G |= τ if and only if G is 3-colorable.

13

Examples of MSO formulas in graphs

ϕ(X1,X2) := ∀x(X1x ∨ X2x) ∧ (X1x → ¬X2x) ∧ (X2x → ¬X1x)

(G ,U1,U2) |= ϕ if and only if (U1,U2) is a bipartition of V (G).

∀X1∀X2((ϕ(X1,X2)) ∧ (∃y1∃y2(X1y1 ∧ X2y2))→ (∃x1∃x2(X1x1 ∧ X2x2 ∧ Ex1x2)))

If ψ is this formula, a graph G |= ψ if and only if G is connected.

τ := ∃C1∃C2∃C3(∀x
3∨

i=1
Cix) ∧ ∀x∀y(Exy →

3∧
i=1
¬(Cix ∨ Ciy))

A graph G |= τ if and only if G is 3-colorable.

13

Examples of MSO formulas in graphs

ϕ(X1,X2) := ∀x(X1x ∨ X2x) ∧ (X1x → ¬X2x) ∧ (X2x → ¬X1x)

(G ,U1,U2) |= ϕ if and only if (U1,U2) is a bipartition of V (G).

∀X1∀X2((ϕ(X1,X2)) ∧ (∃y1∃y2(X1y1 ∧ X2y2))→ (∃x1∃x2(X1x1 ∧ X2x2 ∧ Ex1x2)))

If ψ is this formula, a graph G |= ψ if and only if G is connected.

τ := ∃C1∃C2∃C3(∀x
3∨

i=1
Cix) ∧ ∀x∀y(Exy →

3∧
i=1
¬(Cix ∨ Ciy))

A graph G |= τ if and only if G is 3-colorable.

13

Examples of MSO formulas in graphs

ϕ(X1,X2) := ∀x(X1x ∨ X2x) ∧ (X1x → ¬X2x) ∧ (X2x → ¬X1x)

(G ,U1,U2) |= ϕ if and only if (U1,U2) is a bipartition of V (G).

∀X1∀X2((ϕ(X1,X2)) ∧ (∃y1∃y2(X1y1 ∧ X2y2))→ (∃x1∃x2(X1x1 ∧ X2x2 ∧ Ex1x2)))

If ψ is this formula, a graph G |= ψ if and only if G is connected.

τ := ∃C1∃C2∃C3(∀x
3∨

i=1
Cix) ∧ ∀x∀y(Exy →

3∧
i=1
¬(Cix ∨ Ciy))

A graph G |= τ if and only if G is 3-colorable.

13

Examples of MSO formulas in graphs

ϕ(X1,X2) := ∀x(X1x ∨ X2x) ∧ (X1x → ¬X2x) ∧ (X2x → ¬X1x)

(G ,U1,U2) |= ϕ if and only if (U1,U2) is a bipartition of V (G).

∀X1∀X2((ϕ(X1,X2)) ∧ (∃y1∃y2(X1y1 ∧ X2y2))→ (∃x1∃x2(X1x1 ∧ X2x2 ∧ Ex1x2)))

If ψ is this formula, a graph G |= ψ if and only if G is connected.

τ := ∃C1∃C2∃C3(∀x
3∨

i=1
Cix) ∧ ∀x∀y(Exy →

3∧
i=1
¬(Cix ∨ Ciy))

A graph G |= τ if and only if G is 3-colorable.

13

Examples of MSO formulas in graphs

ϕ(X1,X2) := ∀x(X1x ∨ X2x) ∧ (X1x → ¬X2x) ∧ (X2x → ¬X1x)

(G ,U1,U2) |= ϕ if and only if (U1,U2) is a bipartition of V (G).

∀X1∀X2((ϕ(X1,X2)) ∧ (∃y1∃y2(X1y1 ∧ X2y2))→ (∃x1∃x2(X1x1 ∧ X2x2 ∧ Ex1x2)))

If ψ is this formula, a graph G |= ψ if and only if G is connected.

τ := ∃C1∃C2∃C3(∀x
3∨

i=1
Cix) ∧ ∀x∀y(Exy →

3∧
i=1
¬(Cix ∨ Ciy))

A graph G |= τ if and only if G is 3-colorable.

13

Examples of MSO formulas in graphs

ϕ(X1,X2) := ∀x(X1x ∨ X2x) ∧ (X1x → ¬X2x) ∧ (X2x → ¬X1x)

(G ,U1,U2) |= ϕ if and only if (U1,U2) is a bipartition of V (G).

∀X1∀X2((ϕ(X1,X2)) ∧ (∃y1∃y2(X1y1 ∧ X2y2))→ (∃x1∃x2(X1x1 ∧ X2x2 ∧ Ex1x2)))

If ψ is this formula, a graph G |= ψ if and only if G is connected.

τ := ∃C1∃C2∃C3(∀x
3∨

i=1
Cix) ∧ ∀x∀y(Exy →

3∧
i=1
¬(Cix ∨ Ciy))

A graph G |= τ if and only if G is 3-colorable.

13

The model-checking problem

Let L be a fixed logic. We define the Model-Checking problem of L:

MC(L)
Input: A structure A and a sentence ϕ ∈ L.
Question: A |= ϕ?

Related problem:

Satisfiability(L)
Input: A sentence ϕ ∈ L.
Question: Does there exist a structure A such that A |= ϕ?

14

The model-checking problem

Let L be a fixed logic. We define the Model-Checking problem of L:

MC(L)
Input: A structure A and a sentence ϕ ∈ L.
Question: A |= ϕ?

Related problem:

Satisfiability(L)
Input: A sentence ϕ ∈ L.
Question: Does there exist a structure A such that A |= ϕ?

14

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ϕ ∈ FO.
Question: A |= ϕ?

Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from Quantified Boolean Satisfiability, using
two different elements of the structure to simulate the assignments
“true” and “false”.
Good news: Solvable in polynomial time for every fixed formula.
Idea: try all possible choices for the first-order variables appearing in
the formula, and check whether it is satisfied. Running time: |A|f (ϕ).

The hardness depends on whether the formula is part of the input or not.

Is it the end of the story? We need to parameterize the problem!

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ϕ ∈ FO.
Question: A |= ϕ?

Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from Quantified Boolean Satisfiability, using
two different elements of the structure to simulate the assignments
“true” and “false”.
Good news: Solvable in polynomial time for every fixed formula.
Idea: try all possible choices for the first-order variables appearing in
the formula, and check whether it is satisfied. Running time: |A|f (ϕ).

The hardness depends on whether the formula is part of the input or not.

Is it the end of the story? We need to parameterize the problem!

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ϕ ∈ FO.
Question: A |= ϕ?

Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from Quantified Boolean Satisfiability, using
two different elements of the structure to simulate the assignments
“true” and “false”.

Good news: Solvable in polynomial time for every fixed formula.
Idea: try all possible choices for the first-order variables appearing in
the formula, and check whether it is satisfied. Running time: |A|f (ϕ).

The hardness depends on whether the formula is part of the input or not.

Is it the end of the story? We need to parameterize the problem!

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ϕ ∈ FO.
Question: A |= ϕ?

Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from Quantified Boolean Satisfiability, using
two different elements of the structure to simulate the assignments
“true” and “false”.
Good news: Solvable in polynomial time for every fixed formula.

Idea: try all possible choices for the first-order variables appearing in
the formula, and check whether it is satisfied. Running time: |A|f (ϕ).

The hardness depends on whether the formula is part of the input or not.

Is it the end of the story? We need to parameterize the problem!

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ϕ ∈ FO.
Question: A |= ϕ?

Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from Quantified Boolean Satisfiability, using
two different elements of the structure to simulate the assignments
“true” and “false”.
Good news: Solvable in polynomial time for every fixed formula.
Idea: try all possible choices for the first-order variables appearing in
the formula, and check whether it is satisfied. Running time: |A|f (ϕ).

The hardness depends on whether the formula is part of the input or not.

Is it the end of the story? We need to parameterize the problem!

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ϕ ∈ FO.
Question: A |= ϕ?

Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from Quantified Boolean Satisfiability, using
two different elements of the structure to simulate the assignments
“true” and “false”.
Good news: Solvable in polynomial time for every fixed formula.
Idea: try all possible choices for the first-order variables appearing in
the formula, and check whether it is satisfied. Running time: |A|f (ϕ).

The hardness depends on whether the formula is part of the input or not.

Is it the end of the story? We need to parameterize the problem!

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ϕ ∈ FO.
Question: A |= ϕ?

Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from Quantified Boolean Satisfiability, using
two different elements of the structure to simulate the assignments
“true” and “false”.
Good news: Solvable in polynomial time for every fixed formula.
Idea: try all possible choices for the first-order variables appearing in
the formula, and check whether it is satisfied. Running time: |A|f (ϕ).

The hardness depends on whether the formula is part of the input or not.

Is it the end of the story?

We need to parameterize the problem!

15

Particular case: FO model-checking

MC(FO)
Input: A structure A and a sentence ϕ ∈ FO.
Question: A |= ϕ?

Bad news: MC(FO) is PSPACE-complete, even restricted to
structures with only 2 elements. [Vardi. 1982]

Idea: reduction from Quantified Boolean Satisfiability, using
two different elements of the structure to simulate the assignments
“true” and “false”.
Good news: Solvable in polynomial time for every fixed formula.
Idea: try all possible choices for the first-order variables appearing in
the formula, and check whether it is satisfied. Running time: |A|f (ϕ).

The hardness depends on whether the formula is part of the input or not.

Is it the end of the story? We need to parameterize the problem!
15

The area of parameterized complexity

Idea Measure the complexity of an algorithm in terms of the input size
and an additional integer parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established area with hundreds of articles published
every year in the most prestigious TCS journals and conferences.

16

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

Independent Set: Does a graph G contain a set S ⊆ V (G), with
|S| ≥ k, of pairwise non-adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

17

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

Independent Set: Does a graph G contain a set S ⊆ V (G), with
|S| ≥ k, of pairwise non-adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

17

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

Independent Set: Does a graph G contain a set S ⊆ V (G), with
|S| ≥ k, of pairwise non-adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

17

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n))

= f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

Independent Set: Solvable in time O(k2 · nk)

= f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

18

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

18

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

18

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

18

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

Independent Set: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

18

Why k-Independent Set may not be FPT?

k-Independent Set: Solvable in time k2 · nk = f (k) · ng(k)

Why k-Independent Set may not be FPT?

So far, nobody has managed to find an FPT algorithm for k-Indep. Set.

(also, nobody has found a poly-time algorithm for SAT)

Working hypothesis of paramet. complexity: k-Indep. Set is not FPT

(in classical complexity: SAT cannot be solved in poly-time)

19

Why k-Independent Set may not be FPT?

k-Independent Set: Solvable in time k2 · nk = f (k) · ng(k)

Why k-Independent Set may not be FPT?

So far, nobody has managed to find an FPT algorithm for k-Indep. Set.

(also, nobody has found a poly-time algorithm for SAT)

Working hypothesis of paramet. complexity: k-Indep. Set is not FPT

(in classical complexity: SAT cannot be solved in poly-time)

19

Why k-Independent Set may not be FPT?

k-Independent Set: Solvable in time k2 · nk = f (k) · ng(k)

Why k-Independent Set may not be FPT?

So far, nobody has managed to find an FPT algorithm for k-Indep. Set.

(also, nobody has found a poly-time algorithm for SAT)

Working hypothesis of paramet. complexity: k-Indep. Set is not FPT

(in classical complexity: SAT cannot be solved in poly-time)

19

Why k-Independent Set may not be FPT?

k-Independent Set: Solvable in time k2 · nk = f (k) · ng(k)

Why k-Independent Set may not be FPT?

So far, nobody has managed to find an FPT algorithm for k-Indep. Set.

(also, nobody has found a poly-time algorithm for SAT)

Working hypothesis of paramet. complexity: k-Indep. Set is not FPT

(in classical complexity: SAT cannot be solved in poly-time)

19

How to transfer hardness among parameterized problems?

Let A,B be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Indep. Set to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]

20

How to transfer hardness among parameterized problems?

Let A,B be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Indep. Set to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]

20

How to transfer hardness among parameterized problems?

Let A,B be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Indep. Set to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]

20

How to transfer hardness among parameterized problems?

Let A,B be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Indep. Set to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]

20

How to transfer hardness among parameterized problems?

Let A,B be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Indep. Set to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT.

Hypothesis: FPT 6= W[1]

20

How to transfer hardness among parameterized problems?

Let A,B be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Indep. Set to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]

20

Parameterized model-checking

The “right” problem to consider is the following :

MC(L)
Input: A structure A and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: A |= ϕ?

k-Indep. Set is W[1]-hard ⇒ MC(FO) is W[1]-hard (and XP).We
restrict the input graph G to belong to some particular graph class C.

MC(L, C)
Input: A graph G ∈ C and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

Holy grail: for which L and C is MC(L, C) FPT? f (|ϕ|) · |G |O(1)

21

Parameterized model-checking

The “right” problem to consider is the following :

MC(L)
Input: A structure A and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: A |= ϕ?

k-Indep. Set is W[1]-hard ⇒ MC(FO) is W[1]-hard (and XP).We
restrict the input graph G to belong to some particular graph class C.

MC(L, C)
Input: A graph G ∈ C and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

Holy grail: for which L and C is MC(L, C) FPT? f (|ϕ|) · |G |O(1)

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)
Input: A graph G and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

k-Indep. Set is W[1]-hard ⇒ MC(FO) is W[1]-hard (and XP).We
restrict the input graph G to belong to some particular graph class C.

MC(L, C)
Input: A graph G ∈ C and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

Holy grail: for which L and C is MC(L, C) FPT? f (|ϕ|) · |G |O(1)

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)
Input: A graph G and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

k-Indep. Set is W[1]-hard

⇒ MC(FO) is W[1]-hard (and XP).We
restrict the input graph G to belong to some particular graph class C.

MC(L, C)
Input: A graph G ∈ C and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

Holy grail: for which L and C is MC(L, C) FPT? f (|ϕ|) · |G |O(1)

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)
Input: A graph G and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

k-Indep. Set is W[1]-hard ⇒ MC(FO) is W[1]-hard (and XP).

We
restrict the input graph G to belong to some particular graph class C.

MC(L, C)
Input: A graph G ∈ C and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

Holy grail: for which L and C is MC(L, C) FPT? f (|ϕ|) · |G |O(1)

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)
Input: A graph G and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

We restrict the input graph G to belong to some particular graph class C.

MC(L, C)
Input: A graph G ∈ C and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

Holy grail: for which L and C is MC(L, C) FPT? f (|ϕ|) · |G |O(1)

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)
Input: A graph G and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

We restrict the input graph G to belong to some particular graph class C.

MC(L, C)
Input: A graph G ∈ C and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

Holy grail: for which L and C is MC(L, C) FPT? f (|ϕ|) · |G |O(1)

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)
Input: A graph G and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

We restrict the input graph G to belong to some particular graph class C.

MC(L, C)
Input: A graph G ∈ C and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

Holy grail: for which L and C is MC(L, C) FPT?

f (|ϕ|) · |G |O(1)

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)
Input: A graph G and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

We restrict the input graph G to belong to some particular graph class C.

MC(L, C)
Input: A graph G ∈ C and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

Holy grail: for which L and C is MC(L, C) FPT? f (|ϕ|) · |G |O(1)

21

Parameterized model-checking

The “right” problem to consider in graphs is the following :

MC(L)
Input: A graph G and a sentence ϕ ∈ L.
Parameter: |ϕ|.
Question: G |= ϕ?

We restrict the input graph G to belong to some particular graph class C.

MC(L,p)
Input: A graph G and a sentence ϕ ∈ L.
Parameter: |ϕ|+ p(G).
Question: G |= ϕ?

Holy grail: for which L and C is MC(L, C) FPT? f (|ϕ|,p(G)) · |G |O(1)

21

Next section is...

1 Introduction to logic (in graphs)

2 AMTs for monadic second-order logic

3 AMTs for first-order logic

22

MSO model-checking

MC(MSO)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|.
Question: G |= ϕ?

3-Colorability is MSO-definable and NP-complete.

MC(MSO) is para-NP-hard.

MC(MSO,p)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ p(G).
Question: G |= ϕ?

As some of you may imagine: we take p = treewidth.

23

MSO model-checking

MC(MSO)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|.
Question: G |= ϕ?

3-Colorability is MSO-definable and NP-complete.

MC(MSO) is para-NP-hard.

MC(MSO,p)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ p(G).
Question: G |= ϕ?

As some of you may imagine: we take p = treewidth.

23

MSO model-checking

MC(MSO)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|.
Question: G |= ϕ?

3-Colorability is MSO-definable and NP-complete.

MC(MSO) is para-NP-hard.

MC(MSO,p)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ p(G).
Question: G |= ϕ?

As some of you may imagine: we take p = treewidth.

23

MSO model-checking

MC(MSO)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|.
Question: G |= ϕ?

3-Colorability is MSO-definable and NP-complete.

MC(MSO) is para-NP-hard.

MC(MSO,p)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ p(G).
Question: G |= ϕ?

As some of you may imagine: we take p = treewidth.

23

MSO model-checking

MC(MSO)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|.
Question: G |= ϕ?

3-Colorability is MSO-definable and NP-complete.

MC(MSO) is para-NP-hard.

MC(MSO,p)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ p(G).
Question: G |= ϕ?

As some of you may imagine: we take p = treewidth.
23

Crucial notion: treewidth

1972: Bertelè and Brioschi (dimension).

1976: Halin (S-functions of graphs).

1984: Arnborg and Proskurowski (partial k-trees).

1984: Robertson and Seymour (treewidth).

Treewidth measures the (topological) similarity of a graph with a forest.

24

Crucial notion: treewidth

1972: Bertelè and Brioschi (dimension).

1976: Halin (S-functions of graphs).

1984: Arnborg and Proskurowski (partial k-trees).

1984: Robertson and Seymour (treewidth).

Treewidth measures the (topological) similarity of a graph with a forest.

24

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G , denoted tw(G):
smallest integer k such that G is a partial k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G , denoted tw(G):
smallest integer k such that G is a partial k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Construction suggests the notion of tree decomposition: small separators.

25

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:

⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G . 26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

G

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

G

T

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

G

T

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu
G

T

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

G

T

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

Xw

G

T

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

Xw

Xs

G

T

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

Xw

Xs

Xt

G

T

26

An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Xt | t ∈ V (T)}), where
T is a tree, and
Xt ⊆ V (G) ∀t ∈ V (T) (bags),

satisfying the following:⋃
t∈V (T) Xt = V (G),

∀{u, v} ∈ E (G), ∃t ∈ V (T)
with {u, v} ⊆ Xt .

∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T) |Xt | − 1.

Treewidth of a graph G , tw(G):
minimum width of a tree
decomposition of G .

u

v

w

s

t

z

Xu

Xv

Xw

Xs

Xt

Xz

G

T

26

Treewidth measures the tree-likeness of a graph

27

Treewidth measures the tree-likeness of a graph

27

Treewidth measures the tree-likeness of a graph

27

Treewidth measures the tree-likeness of a graph

27

Treewidth measures the tree-likeness of a graph

27

Treewidth measures the tree-likeness of a graph

27

Treewidth measures the tree-likeness of a graph

27

Courcelle’s theorem
(Credit also goes to Arnborg, Lagergreen, and Seese.)

Theorem (Courcelle. 1990)
The following problem is fixed-parameter tractable:

MC(MSO, tw)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ tw(G).
Question: G |= ϕ?

Can be seen as an abstraction of the notion of dynamic programming.

Also applies to the extension of MSO by modular counting: CMSO.
[Courcelle. 1990]

Can be generalized to optimize a linear function of free second-order
variables. [Arnborg, Lagergreen, Seese. 1991]

28

Courcelle’s theorem

Theorem (Courcelle. 1990)
The following problem is fixed-parameter tractable:

MC(MSO, tw)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ tw(G).
Question: G |= ϕ?

Can be seen as an abstraction of the notion of dynamic programming.

Also applies to the extension of MSO by modular counting: CMSO.
[Courcelle. 1990]

Can be generalized to optimize a linear function of free second-order
variables. [Arnborg, Lagergreen, Seese. 1991]

28

Courcelle’s theorem

Theorem (Courcelle. 1990)
The following problem is fixed-parameter tractable:

MC(MSO, tw)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ tw(G).
Question: G |= ϕ?

Can be seen as an abstraction of the notion of dynamic programming.

Also applies to the extension of MSO by modular counting: CMSO.
[Courcelle. 1990]

Can be generalized to optimize a linear function of free second-order
variables. [Arnborg, Lagergreen, Seese. 1991]

28

Courcelle’s theorem and its extensions

Theorem (Courcelle. 1990)
The following problem is fixed-parameter tractable:

MC(MSO, tw)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ tw(G).
Question: G |= ϕ?

Can be seen as an abstraction of the notion of dynamic programming.

Also applies to the extension of MSO by modular counting: CMSO.
[Courcelle. 1990]

Can be generalized to optimize a linear function of free second-order
variables. [Arnborg, Lagergreen, Seese. 1991]

28

Courcelle’s theorem and its extensions

Theorem (Courcelle. 1990)
The following problem is fixed-parameter tractable:

MC(MSO, tw)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ tw(G).
Question: G |= ϕ?

Can be seen as an abstraction of the notion of dynamic programming.

Also applies to the extension of MSO by modular counting: CMSO.
[Courcelle. 1990]

Can be generalized to optimize a linear function of free second-order
variables. [Arnborg, Lagergreen, Seese. 1991]

28

Interpretations (transductions)

One of the proofs of Courcelle’s theorem uses interpretations:

G |= ϕ if, and only if, G′ |= ϕ′. Then tractability of MSO-model checking on D
follows immediately from tractability on C – provided the encoding is efficient.

MSO-interpretations help us in doing just this: they provide a way to rewrite
the formula ϕ speaking about D to a formula ϕ′ speaking about C and also give
us a translation of graphs “in the other direction”, namely a way to translate a
graph G′ ∈ C to a graph G := Γ (G′) ∈ D so that G′ |= ϕ′ if, and only if, G |= ϕ.
Hence, to reduce the model checking problem for MSO on D to the problem on
C, we have to find an interpretation Γ to translate the formulas from D to C
and an encoding of graphs G ∈ D to graphs G′ ∈ C so that Γ (G′) ∼= G. Figure 2
demonstrates the way interpretations are used as reductions.

Class D Class C

G G′

ϕ ∈ MSO[τ] Γ (ϕ) ∈ MSO[σ]

Γ (G′) ∼= G G′

algorithmic encoding

interpretation

interpretation

Fig. 2. Using interpretations as reductions between problems

We will first define the notion of interpretations formally and then demon-
strate the concept by giving an example.

Definition 2.4 Let σ := {E,P1, . . . , Pk} and τ := {E} be signatures, where E
is a binary relation symbol and the Pi are unary. A (one-dimensional) MSO in-
terpretation from σ-structures to τ-structures is a triple Γ := (ϕuniv, ϕvalid, ϕE) MSO-interpretation

of MSO[σ]-formulas.
For every σ-structure T with T |= ϕvalid we define a graph (i.e. τ-structure)

G := Γ (T) as the graph with vertex set V (G) := {u ∈ V (T) : T |= ϕuniv(v)} and
edge set

E(G) := {{u, v} ∈ V (G) : T |= ϕE(u, v)}.
If C is a class of σ-structures we define Γ (C) := {Γ (T) : T ∈ C, T |= ϕvalid}.
Every interpretation naturally defines a mapping from MSO[τ]-formulas ϕ

to MSO[σ]-formulas ϕ∗ := Γ (ϕ). Here, ϕ∗ is obtained from ϕ by recursively
replacing

– first-order quantifiers ∃xϕ and ∀xϕ by ∃x(ϕuniv(x)∧ϕ∗) and ∀x(ϕuniv(x) →
ϕ∗) respectively,

– second-order quantifiers ∃Xϕ and ∀Xϕ by ∃X
(
∀y(Xy → ϕuniv(y)) ∧ ϕ∗)

and ∀X
(
∀y(Xy → ϕuniv(y)) → ϕ∗) respectively and

– atoms E(x, y) by ϕE(x, y).

The following lemma is easily proved (see [57]).

9

Suppose that MC(MSO, C) is FPT ⇒ then MC(MSO,D) is also FPT

For Courcelle’s theorem: interpret “tw ≤ k” into the class of labeled trees.

29

Interpretations (transductions)

One of the proofs of Courcelle’s theorem uses interpretations:

G |= ϕ if, and only if, G′ |= ϕ′. Then tractability of MSO-model checking on D
follows immediately from tractability on C – provided the encoding is efficient.

MSO-interpretations help us in doing just this: they provide a way to rewrite
the formula ϕ speaking about D to a formula ϕ′ speaking about C and also give
us a translation of graphs “in the other direction”, namely a way to translate a
graph G′ ∈ C to a graph G := Γ (G′) ∈ D so that G′ |= ϕ′ if, and only if, G |= ϕ.
Hence, to reduce the model checking problem for MSO on D to the problem on
C, we have to find an interpretation Γ to translate the formulas from D to C
and an encoding of graphs G ∈ D to graphs G′ ∈ C so that Γ (G′) ∼= G. Figure 2
demonstrates the way interpretations are used as reductions.

Class D Class C

G G′

ϕ ∈ MSO[τ] Γ (ϕ) ∈ MSO[σ]

Γ (G′) ∼= G G′

algorithmic encoding

interpretation

interpretation

Fig. 2. Using interpretations as reductions between problems

We will first define the notion of interpretations formally and then demon-
strate the concept by giving an example.

Definition 2.4 Let σ := {E,P1, . . . , Pk} and τ := {E} be signatures, where E
is a binary relation symbol and the Pi are unary. A (one-dimensional) MSO in-
terpretation from σ-structures to τ-structures is a triple Γ := (ϕuniv, ϕvalid, ϕE) MSO-interpretation

of MSO[σ]-formulas.
For every σ-structure T with T |= ϕvalid we define a graph (i.e. τ-structure)

G := Γ (T) as the graph with vertex set V (G) := {u ∈ V (T) : T |= ϕuniv(v)} and
edge set

E(G) := {{u, v} ∈ V (G) : T |= ϕE(u, v)}.
If C is a class of σ-structures we define Γ (C) := {Γ (T) : T ∈ C, T |= ϕvalid}.
Every interpretation naturally defines a mapping from MSO[τ]-formulas ϕ

to MSO[σ]-formulas ϕ∗ := Γ (ϕ). Here, ϕ∗ is obtained from ϕ by recursively
replacing

– first-order quantifiers ∃xϕ and ∀xϕ by ∃x(ϕuniv(x)∧ϕ∗) and ∀x(ϕuniv(x) →
ϕ∗) respectively,

– second-order quantifiers ∃Xϕ and ∀Xϕ by ∃X
(
∀y(Xy → ϕuniv(y)) ∧ ϕ∗)

and ∀X
(
∀y(Xy → ϕuniv(y)) → ϕ∗) respectively and

– atoms E(x, y) by ϕE(x, y).

The following lemma is easily proved (see [57]).

9

Suppose that MC(MSO, C) is FPT

⇒ then MC(MSO,D) is also FPT

For Courcelle’s theorem: interpret “tw ≤ k” into the class of labeled trees.

29

Interpretations (transductions)

One of the proofs of Courcelle’s theorem uses interpretations:

G |= ϕ if, and only if, G′ |= ϕ′. Then tractability of MSO-model checking on D
follows immediately from tractability on C – provided the encoding is efficient.

MSO-interpretations help us in doing just this: they provide a way to rewrite
the formula ϕ speaking about D to a formula ϕ′ speaking about C and also give
us a translation of graphs “in the other direction”, namely a way to translate a
graph G′ ∈ C to a graph G := Γ (G′) ∈ D so that G′ |= ϕ′ if, and only if, G |= ϕ.
Hence, to reduce the model checking problem for MSO on D to the problem on
C, we have to find an interpretation Γ to translate the formulas from D to C
and an encoding of graphs G ∈ D to graphs G′ ∈ C so that Γ (G′) ∼= G. Figure 2
demonstrates the way interpretations are used as reductions.

Class D Class C

G G′

ϕ ∈ MSO[τ] Γ (ϕ) ∈ MSO[σ]

Γ (G′) ∼= G G′

algorithmic encoding

interpretation

interpretation

Fig. 2. Using interpretations as reductions between problems

We will first define the notion of interpretations formally and then demon-
strate the concept by giving an example.

Definition 2.4 Let σ := {E,P1, . . . , Pk} and τ := {E} be signatures, where E
is a binary relation symbol and the Pi are unary. A (one-dimensional) MSO in-
terpretation from σ-structures to τ-structures is a triple Γ := (ϕuniv, ϕvalid, ϕE) MSO-interpretation

of MSO[σ]-formulas.
For every σ-structure T with T |= ϕvalid we define a graph (i.e. τ-structure)

G := Γ (T) as the graph with vertex set V (G) := {u ∈ V (T) : T |= ϕuniv(v)} and
edge set

E(G) := {{u, v} ∈ V (G) : T |= ϕE(u, v)}.
If C is a class of σ-structures we define Γ (C) := {Γ (T) : T ∈ C, T |= ϕvalid}.
Every interpretation naturally defines a mapping from MSO[τ]-formulas ϕ

to MSO[σ]-formulas ϕ∗ := Γ (ϕ). Here, ϕ∗ is obtained from ϕ by recursively
replacing

– first-order quantifiers ∃xϕ and ∀xϕ by ∃x(ϕuniv(x)∧ϕ∗) and ∀x(ϕuniv(x) →
ϕ∗) respectively,

– second-order quantifiers ∃Xϕ and ∀Xϕ by ∃X
(
∀y(Xy → ϕuniv(y)) ∧ ϕ∗)

and ∀X
(
∀y(Xy → ϕuniv(y)) → ϕ∗) respectively and

– atoms E(x, y) by ϕE(x, y).

The following lemma is easily proved (see [57]).

9

Suppose that MC(MSO, C) is FPT ⇒ then MC(MSO,D) is also FPT

For Courcelle’s theorem: interpret “tw ≤ k” into the class of labeled trees.

29

Interpretations (transductions)

One of the proofs of Courcelle’s theorem uses interpretations:

G |= ϕ if, and only if, G′ |= ϕ′. Then tractability of MSO-model checking on D
follows immediately from tractability on C – provided the encoding is efficient.

MSO-interpretations help us in doing just this: they provide a way to rewrite
the formula ϕ speaking about D to a formula ϕ′ speaking about C and also give
us a translation of graphs “in the other direction”, namely a way to translate a
graph G′ ∈ C to a graph G := Γ (G′) ∈ D so that G′ |= ϕ′ if, and only if, G |= ϕ.
Hence, to reduce the model checking problem for MSO on D to the problem on
C, we have to find an interpretation Γ to translate the formulas from D to C
and an encoding of graphs G ∈ D to graphs G′ ∈ C so that Γ (G′) ∼= G. Figure 2
demonstrates the way interpretations are used as reductions.

Class D Class C

G G′

ϕ ∈ MSO[τ] Γ (ϕ) ∈ MSO[σ]

Γ (G′) ∼= G G′

algorithmic encoding

interpretation

interpretation

Fig. 2. Using interpretations as reductions between problems

We will first define the notion of interpretations formally and then demon-
strate the concept by giving an example.

Definition 2.4 Let σ := {E,P1, . . . , Pk} and τ := {E} be signatures, where E
is a binary relation symbol and the Pi are unary. A (one-dimensional) MSO in-
terpretation from σ-structures to τ-structures is a triple Γ := (ϕuniv, ϕvalid, ϕE) MSO-interpretation

of MSO[σ]-formulas.
For every σ-structure T with T |= ϕvalid we define a graph (i.e. τ-structure)

G := Γ (T) as the graph with vertex set V (G) := {u ∈ V (T) : T |= ϕuniv(v)} and
edge set

E(G) := {{u, v} ∈ V (G) : T |= ϕE(u, v)}.
If C is a class of σ-structures we define Γ (C) := {Γ (T) : T ∈ C, T |= ϕvalid}.
Every interpretation naturally defines a mapping from MSO[τ]-formulas ϕ

to MSO[σ]-formulas ϕ∗ := Γ (ϕ). Here, ϕ∗ is obtained from ϕ by recursively
replacing

– first-order quantifiers ∃xϕ and ∀xϕ by ∃x(ϕuniv(x)∧ϕ∗) and ∀x(ϕuniv(x) →
ϕ∗) respectively,

– second-order quantifiers ∃Xϕ and ∀Xϕ by ∃X
(
∀y(Xy → ϕuniv(y)) ∧ ϕ∗)

and ∀X
(
∀y(Xy → ϕuniv(y)) → ϕ∗) respectively and

– atoms E(x, y) by ϕE(x, y).

The following lemma is easily proved (see [57]).

9

Suppose that MC(MSO, C) is FPT ⇒ then MC(MSO,D) is also FPT

For Courcelle’s theorem: interpret “tw ≤ k” into the class of labeled trees.

29

Is treewidth the limit of tractability of MSO?

Another crucial parameter: cliquewidth. [Courcelle, Olariu. 2000]

A graph G has cliquewidth at most k if it can be obtained by the following
operations, for i , j ∈ [k], with i 6= j :

int(v , i): introduce a new vertex v with color i .
ρi→j : recolor vertices of color i to color j .
ηi ,j : add all edges between vertices colored i and j .
⊕: take the disjoint union of two colored graphs.

Cliques have cliquewidth 2.
Trees have cliquewidth 3.

Small cliquewidth does not mean “being tree-like” (such as small
treewidth), but having a structure with a “tree-like decomposition”.

30

Is treewidth the limit of tractability of MSO? Cliquewidth!

Another crucial parameter: cliquewidth. [Courcelle, Olariu. 2000]

A graph G has cliquewidth at most k if it can be obtained by the following
operations, for i , j ∈ [k], with i 6= j :

int(v , i): introduce a new vertex v with color i .
ρi→j : recolor vertices of color i to color j .
ηi ,j : add all edges between vertices colored i and j .
⊕: take the disjoint union of two colored graphs.

Cliques have cliquewidth 2.
Trees have cliquewidth 3.

Small cliquewidth does not mean “being tree-like” (such as small
treewidth), but having a structure with a “tree-like decomposition”.

30

Is treewidth the limit of tractability of MSO?

Another crucial parameter: cliquewidth. [Courcelle, Olariu. 2000]

A graph G has cliquewidth at most k if it can be obtained by the following
operations, for i , j ∈ [k], with i 6= j :

int(v , i): introduce a new vertex v with color i .
ρi→j : recolor vertices of color i to color j .
ηi ,j : add all edges between vertices colored i and j .
⊕: take the disjoint union of two colored graphs.

Cliques have cliquewidth 2.
Trees have cliquewidth 3.

Small cliquewidth does not mean “being tree-like” (such as small
treewidth), but having a structure with a “tree-like decomposition”.

30

Is treewidth the limit of tractability of MSO?

Another crucial parameter: cliquewidth. [Courcelle, Olariu. 2000]

A graph G has cliquewidth at most k if it can be obtained by the following
operations, for i , j ∈ [k], with i 6= j :

int(v , i): introduce a new vertex v with color i .
ρi→j : recolor vertices of color i to color j .
ηi ,j : add all edges between vertices colored i and j .
⊕: take the disjoint union of two colored graphs.

Cliques have cliquewidth 2.
Trees have cliquewidth 3.

Small cliquewidth does not mean “being tree-like” (such as small
treewidth), but having a structure with a “tree-like decomposition”.

30

Is treewidth the limit of tractability of MSO?

Another crucial parameter: cliquewidth. [Courcelle, Olariu. 2000]

A graph G has cliquewidth at most k if it can be obtained by the following
operations, for i , j ∈ [k], with i 6= j :

int(v , i): introduce a new vertex v with color i .
ρi→j : recolor vertices of color i to color j .
ηi ,j : add all edges between vertices colored i and j .
⊕: take the disjoint union of two colored graphs.

Cliques have cliquewidth 2.
Trees have cliquewidth 3.

Small cliquewidth does not mean “being tree-like” (such as small
treewidth), but having a structure with a “tree-like decomposition”.

30

MSO is tractable on graphs of bounded cliquewidth

Cliques have cliquewidth 2 (but unbounded treewidth).
Trees have cliquewidth 3.

Every graph of treewidth at most k has cliquewidth at most 2k+1 + 1.
[Wanke. 94 + Courcelle, Olariu. 00]

Theorem (Courcelle, Makowski, Rotics. 1990)
The following problem is fixed-parameter tractable:

MC(MSO, cw)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ cw(G).
Question: G |= ϕ?

Is the above theorem strictly more general than Courcelle’s theorem?

31

MSO is tractable on graphs of bounded cliquewidth

Cliques have cliquewidth 2 (but unbounded treewidth).
Trees have cliquewidth 3.

Every graph of treewidth at most k has cliquewidth at most 2k+1 + 1.
[Wanke. 94 + Courcelle, Olariu. 00]

Theorem (Courcelle, Makowski, Rotics. 1990)
The following problem is fixed-parameter tractable:

MC(MSO, cw)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ cw(G).
Question: G |= ϕ?

Is the above theorem strictly more general than Courcelle’s theorem?

31

MSO is tractable on graphs of bounded cliquewidth

Cliques have cliquewidth 2 (but unbounded treewidth).
Trees have cliquewidth 3.

Every graph of treewidth at most k has cliquewidth at most 2k+1 + 1.
[Wanke. 94 + Courcelle, Olariu. 00]

Theorem (Courcelle, Makowski, Rotics. 1990)
The following problem is fixed-parameter tractable:

MC(MSO, cw)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ cw(G).
Question: G |= ϕ?

Is the above theorem strictly more general than Courcelle’s theorem?

31

MSO is tractable on graphs of bounded cliquewidth

Cliques have cliquewidth 2 (but unbounded treewidth).
Trees have cliquewidth 3.

Every graph of treewidth at most k has cliquewidth at most 2k+1 + 1.
[Wanke. 94 + Courcelle, Olariu. 00]

Theorem (Courcelle, Makowski, Rotics. 1990)
The following problem is fixed-parameter tractable:

MC(MSO, cw)
Input: A graph G and a sentence ϕ ∈ MSO.
Parameter: |ϕ|+ cw(G).
Question: G |= ϕ?

Is the above theorem strictly more general than Courcelle’s theorem?
31

MSO1 and MSO2

MSO in graphs: we allow quantification on sets of vertices.

MSO2 in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G :
1 Standard encoding: universe = V (G), with the binary “edge”

relation.

2 Incidence encoding: universe = V (G) ∪ E (G), with the unary
“vertex” and “edge” relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:
. Courcelle’s theorem directly generalizes to MSO2.

Edge subdivisions do not preserve cliquewidth:
. Is it possible that MC(MSO2, cw) is FPT?

32

MSO1 and MSO2

MSO1 in graphs: we allow quantification on sets of vertices.

MSO2 in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G :
1 Standard encoding: universe = V (G), with the binary “edge”

relation.

2 Incidence encoding: universe = V (G) ∪ E (G), with the unary
“vertex” and “edge” relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:
. Courcelle’s theorem directly generalizes to MSO2.

Edge subdivisions do not preserve cliquewidth:
. Is it possible that MC(MSO2, cw) is FPT?

32

MSO1 and MSO2

MSO1 in graphs: we allow quantification on sets of vertices.

MSO2 in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G :
1 Standard encoding: universe = V (G), with the binary “edge”

relation.

2 Incidence encoding: universe = V (G) ∪ E (G), with the unary
“vertex” and “edge” relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:
. Courcelle’s theorem directly generalizes to MSO2.

Edge subdivisions do not preserve cliquewidth:
. Is it possible that MC(MSO2, cw) is FPT?

32

MSO1 and MSO2

MSO1 in graphs: we allow quantification on sets of vertices.

MSO2 in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G :
1 Standard encoding: universe = V (G), with the binary “edge”

relation.

2 Incidence encoding: universe = V (G) ∪ E (G), with the unary
“vertex” and “edge” relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:
. Courcelle’s theorem directly generalizes to MSO2.

Edge subdivisions do not preserve cliquewidth:
. Is it possible that MC(MSO2, cw) is FPT?

32

MSO1 and MSO2

MSO1 in graphs: we allow quantification on sets of vertices.

MSO2 in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G :
1 Standard encoding: universe = V (G), with the binary “edge”

relation.

2 Incidence encoding: universe = V (G) ∪ E (G), with the unary
“vertex” and “edge” relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:
. Courcelle’s theorem directly generalizes to MSO2.

Edge subdivisions do not preserve cliquewidth:
. Is it possible that MC(MSO2, cw) is FPT?

32

MSO1 and MSO2

MSO1 in graphs: we allow quantification on sets of vertices.

MSO2 in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G :
1 Standard encoding: universe = V (G), with the binary “edge”

relation.

2 Incidence encoding: universe = V (G) ∪ E (G), with the unary
“vertex” and “edge” relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:

. Courcelle’s theorem directly generalizes to MSO2.

Edge subdivisions do not preserve cliquewidth:
. Is it possible that MC(MSO2, cw) is FPT?

32

MSO1 and MSO2

MSO1 in graphs: we allow quantification on sets of vertices.

MSO2 in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G :
1 Standard encoding: universe = V (G), with the binary “edge”

relation.

2 Incidence encoding: universe = V (G) ∪ E (G), with the unary
“vertex” and “edge” relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:
. Courcelle’s theorem directly generalizes to MSO2.

Edge subdivisions do not preserve cliquewidth:
. Is it possible that MC(MSO2, cw) is FPT?

32

MSO1 and MSO2

MSO1 in graphs: we allow quantification on sets of vertices.

MSO2 in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G :
1 Standard encoding: universe = V (G), with the binary “edge”

relation.

2 Incidence encoding: universe = V (G) ∪ E (G), with the unary
“vertex” and “edge” relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:
. Courcelle’s theorem directly generalizes to MSO2.

Edge subdivisions do not preserve cliquewidth:

. Is it possible that MC(MSO2, cw) is FPT?

32

MSO1 and MSO2

MSO1 in graphs: we allow quantification on sets of vertices.

MSO2 in graphs: we allow quantification on sets of vertices and edges.

Two typical ways to encode a graph G :
1 Standard encoding: universe = V (G), with the binary “edge”

relation.

2 Incidence encoding: universe = V (G) ∪ E (G), with the unary
“vertex” and “edge” relations, and a binary “incidence” relation.

Edge subdivisions preserve treewidth:
. Courcelle’s theorem directly generalizes to MSO2.

Edge subdivisions do not preserve cliquewidth:
. Is it possible that MC(MSO2, cw) is FPT?

32

The limits of cliquewidth

Edge Dominating Set, Hamiltonian Cycle, and Graph
Coloring are MSO2-definable and W[1]-hard parameterized by
cliquewidth. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

For MSO we cannot go really further than bounded treewidth/cliquewidth:

3-Colorability is NP-complete on planar graphs of degree at most 4.
[Garey, Johnson, Stockmeyer. 1974]

33

The limits of cliquewidth and MSO

Edge Dominating Set, Hamiltonian Cycle, and Graph
Coloring are MSO2-definable and W[1]-hard parameterized by
cliquewidth. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

For MSO we cannot go really further than bounded treewidth/cliquewidth:

3-Colorability is NP-complete on planar graphs of degree at most 4.
[Garey, Johnson, Stockmeyer. 1974]

33

Next section is...

1 Introduction to logic (in graphs)

2 AMTs for monadic second-order logic

3 AMTs for first-order logic

34

FO model-checking

MC(FO)
Input: A graph G and a sentence ϕ ∈ FO.
Parameter: |ϕ|.
Question: G |= ϕ?

As we said, this problem is in XP: solvable in time |G |f (|ϕ|).

MC(FO, C)
Input: A graph G ∈ C and a sentence ϕ ∈ FO.
Parameter: |ϕ|.
Question: G |= ϕ?

Question: for which (parameterized) graph classes C is MC(FO, C) FPT?

35

FO model-checking

MC(FO)
Input: A graph G and a sentence ϕ ∈ FO.
Parameter: |ϕ|.
Question: G |= ϕ?

As we said, this problem is in XP: solvable in time |G |f (|ϕ|).

MC(FO, C)
Input: A graph G ∈ C and a sentence ϕ ∈ FO.
Parameter: |ϕ|.
Question: G |= ϕ?

Question: for which (parameterized) graph classes C is MC(FO, C) FPT?

35

Crucial property of FO: locality

. A first-order formula ϕ(x) on graphs is r -local if, for every graph G and
every v ∈ V (G),

G |= ϕ(v) ⇔ G [Nr [v]] |= ϕ],

where Nr [v] denotes the set of vertices at distance at most r from v in G .

. A first-order formula ϕ(x) on graphs is local if it is r -local for an r ∈ N.

. A basic local sentence is a first-order sentence of the form

∃x1 . . . ∃xk

 ∧
1≤i<j≤k

dist(xi , xj) > 2r ∧
k∧

i=1
ψ(xi)

 ,
where ψ(xi) is a local first-order formula.

36

Crucial property of FO: locality

. A first-order formula ϕ(x) on graphs is r -local if, for every graph G and
every v ∈ V (G),

G |= ϕ(v) ⇔ G [Nr [v]] |= ϕ],

where Nr [v] denotes the set of vertices at distance at most r from v in G .

. A first-order formula ϕ(x) on graphs is local if it is r -local for an r ∈ N.

. A basic local sentence is a first-order sentence of the form

∃x1 . . . ∃xk

 ∧
1≤i<j≤k

dist(xi , xj) > 2r ∧
k∧

i=1
ψ(xi)

 ,
where ψ(xi) is a local first-order formula.

36

Crucial property of FO: locality

. A first-order formula ϕ(x) on graphs is r -local if, for every graph G and
every v ∈ V (G),

G |= ϕ(v) ⇔ G [Nr [v]] |= ϕ],

where Nr [v] denotes the set of vertices at distance at most r from v in G .

. A first-order formula ϕ(x) on graphs is local if it is r -local for an r ∈ N.

. A basic local sentence is a first-order sentence of the form

∃x1 . . . ∃xk

 ∧
1≤i<j≤k

dist(xi , xj) > 2r ∧
k∧

i=1
ψ(xi)

 ,
where ψ(xi) is a local first-order formula.

36

Crucial property of FO: locality

. A first-order formula ϕ(x) on graphs is r -local if, for every graph G and
every v ∈ V (G),

G |= ϕ(v) ⇔ G [Nr [v]] |= ϕ],

where Nr [v] denotes the set of vertices at distance at most r from v in G .

. A first-order formula ϕ(x) on graphs is local if it is r -local for an r ∈ N.

. A basic local sentence is a first-order sentence of the form

∃x1 . . . ∃xk

 ∧
1≤i<j≤k

dist(xi , xj) > 2r ∧
k∧

i=1
ψ(xi)

 ,
where ψ(xi) is a local first-order formula.

36

Gaifman’s theorem

Theorem (Gaifman. 1982)
Every first-order sentence is equivalent to a Boolean combination of basic
local sentences, which can be effectively computed given the sentence.

This translation may involve a non-elementary blow-up in the size of the
sentence.

[Dawar, Grohe, Kreutzer, Schweikardt. 2007]

37

Gaifman’s theorem

Theorem (Gaifman. 1982)
Every first-order sentence is equivalent to a Boolean combination of basic
local sentences, which can be effectively computed given the sentence.

This translation may involve a non-elementary blow-up in the size of the
sentence.

[Dawar, Grohe, Kreutzer, Schweikardt. 2007]

37

Example: k-Dominating Set

ϕk := ∃x1 . . . ∃xk∀y
(k∨

i=1
(xi = y ∨ Eyxi)

)

To convert it into “Gaifman normal form”: if diameter ≥ 3k + 1 → ‘no’.

n I.fi ier
ϕk is equivalent to the conjunction of these two basic local sentences:

1 Diameter at most 3k: ψ := ¬∃x1∃x2dist(x1, x2) ≥ 3k + 1.
2 ∃xχ(x), where χ(x) is the (3k + 1)-local formula

∃y1 ∈ N3k+1(x) . . . ∃yk ∈ N3k+1(x)∀z ∈ N3k+1(x)
(k∨

i=1
(yi = z ∨ Ezyi)

)
.

38

Example: k-Dominating Set

ϕk := ∃x1 . . . ∃xk∀y
(k∨

i=1
(xi = y ∨ Eyxi)

)

To convert it into “Gaifman normal form”: if diameter ≥ 3k + 1 → ‘no’.

n I.fi ier
ϕk is equivalent to the conjunction of these two basic local sentences:

1 Diameter at most 3k: ψ := ¬∃x1∃x2dist(x1, x2) ≥ 3k + 1.
2 ∃xχ(x), where χ(x) is the (3k + 1)-local formula

∃y1 ∈ N3k+1(x) . . . ∃yk ∈ N3k+1(x)∀z ∈ N3k+1(x)
(k∨

i=1
(yi = z ∨ Ezyi)

)
.

38

Example: k-Dominating Set

ϕk := ∃x1 . . . ∃xk∀y
(k∨

i=1
(xi = y ∨ Eyxi)

)

To convert it into “Gaifman normal form”: if diameter ≥ 3k + 1 → ‘no’.

n I.fi ier

ϕk is equivalent to the conjunction of these two basic local sentences:

1 Diameter at most 3k: ψ := ¬∃x1∃x2dist(x1, x2) ≥ 3k + 1.
2 ∃xχ(x), where χ(x) is the (3k + 1)-local formula

∃y1 ∈ N3k+1(x) . . . ∃yk ∈ N3k+1(x)∀z ∈ N3k+1(x)
(k∨

i=1
(yi = z ∨ Ezyi)

)
.

38

Example: k-Dominating Set

ϕk := ∃x1 . . . ∃xk∀y
(k∨

i=1
(xi = y ∨ Eyxi)

)

To convert it into “Gaifman normal form”: if diameter ≥ 3k + 1 → ‘no’.

n ffifff.ir

ϕk is equivalent to the conjunction of these two basic local sentences:

1 Diameter at most 3k: ψ := ¬∃x1∃x2dist(x1, x2) ≥ 3k + 1.
2 ∃xχ(x), where χ(x) is the (3k + 1)-local formula

∃y1 ∈ N3k+1(x) . . . ∃yk ∈ N3k+1(x)∀z ∈ N3k+1(x)
(k∨

i=1
(yi = z ∨ Ezyi)

)
.

38

Example: k-Dominating Set

ϕk := ∃x1 . . . ∃xk∀y
(k∨

i=1
(xi = y ∨ Eyxi)

)

To convert it into “Gaifman normal form”: if diameter ≥ 3k + 1 → ‘no’.

n iiii.fi itr

ϕk is equivalent to the conjunction of these two basic local sentences:

1 Diameter at most 3k: ψ := ¬∃x1∃x2dist(x1, x2) ≥ 3k + 1.
2 ∃xχ(x), where χ(x) is the (3k + 1)-local formula

∃y1 ∈ N3k+1(x) . . . ∃yk ∈ N3k+1(x)∀z ∈ N3k+1(x)
(k∨

i=1
(yi = z ∨ Ezyi)

)
.

38

Example: k-Dominating Set

ϕk := ∃x1 . . . ∃xk∀y
(k∨

i=1
(xi = y ∨ Eyxi)

)

To convert it into “Gaifman normal form”: if diameter ≥ 3k + 1 → ‘no’.

n iiii.fi itr
ϕk is equivalent to the conjunction of these two basic local sentences:

1 Diameter at most 3k: ψ := ¬∃x1∃x2dist(x1, x2) ≥ 3k + 1.

2 ∃xχ(x), where χ(x) is the (3k + 1)-local formula

∃y1 ∈ N3k+1(x) . . . ∃yk ∈ N3k+1(x)∀z ∈ N3k+1(x)
(k∨

i=1
(yi = z ∨ Ezyi)

)
.

38

Example: k-Dominating Set

ϕk := ∃x1 . . . ∃xk∀y
(k∨

i=1
(xi = y ∨ Eyxi)

)

To convert it into “Gaifman normal form”: if diameter ≥ 3k + 1 → ‘no’.

n iiii.fi itr
ϕk is equivalent to the conjunction of these two basic local sentences:

1 Diameter at most 3k: ψ := ¬∃x1∃x2dist(x1, x2) ≥ 3k + 1.
2 ∃xχ(x), where χ(x) is the (3k + 1)-local formula

∃y1 ∈ N3k+1(x) . . . ∃yk ∈ N3k+1(x)∀z ∈ N3k+1(x)
(k∨

i=1
(yi = z ∨ Ezyi)

)
.

38

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)
Let d ∈ N and let Cd be the class of graphs of degree bounded by d.
Then MC(FO, Cd) is FPT.

Proof:

Given G ∈ Cd and ϕ ∈ FO, convert ϕ into “Gaifman normal form”.
We only need to consider basic local sentences of the form

∃x1 . . . ∃xk

 ∧
1≤i<j≤k

dist(xi , xj) > 2r ∧
k∧

i=1
ψ(xi)

 .
For every v ∈ V (G), we test whether G [Nr [v]] |= ψ.
Since G [Nr [v]] has constant size, easy to do!
Finally, we greedily try to find k such “good” vertices far apart. �

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)
Let d ∈ N and let Cd be the class of graphs of degree bounded by d.
Then MC(FO, Cd) is FPT.

Proof:

Given G ∈ Cd and ϕ ∈ FO, convert ϕ into “Gaifman normal form”.

We only need to consider basic local sentences of the form

∃x1 . . . ∃xk

 ∧
1≤i<j≤k

dist(xi , xj) > 2r ∧
k∧

i=1
ψ(xi)

 .
For every v ∈ V (G), we test whether G [Nr [v]] |= ψ.
Since G [Nr [v]] has constant size, easy to do!
Finally, we greedily try to find k such “good” vertices far apart. �

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)
Let d ∈ N and let Cd be the class of graphs of degree bounded by d.
Then MC(FO, Cd) is FPT.

Proof:

Given G ∈ Cd and ϕ ∈ FO, convert ϕ into “Gaifman normal form”.
We only need to consider basic local sentences of the form

∃x1 . . . ∃xk

 ∧
1≤i<j≤k

dist(xi , xj) > 2r ∧
k∧

i=1
ψ(xi)

 .

For every v ∈ V (G), we test whether G [Nr [v]] |= ψ.
Since G [Nr [v]] has constant size, easy to do!
Finally, we greedily try to find k such “good” vertices far apart. �

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)
Let d ∈ N and let Cd be the class of graphs of degree bounded by d.
Then MC(FO, Cd) is FPT.

Proof:

Given G ∈ Cd and ϕ ∈ FO, convert ϕ into “Gaifman normal form”.
We only need to consider basic local sentences of the form

∃x1 . . . ∃xk

 ∧
1≤i<j≤k

dist(xi , xj) > 2r ∧
k∧

i=1
ψ(xi)

 .
For every v ∈ V (G), we test whether G [Nr [v]] |= ψ.

Since G [Nr [v]] has constant size, easy to do!
Finally, we greedily try to find k such “good” vertices far apart. �

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)
Let d ∈ N and let Cd be the class of graphs of degree bounded by d.
Then MC(FO, Cd) is FPT.

Proof:

Given G ∈ Cd and ϕ ∈ FO, convert ϕ into “Gaifman normal form”.
We only need to consider basic local sentences of the form

∃x1 . . . ∃xk

 ∧
1≤i<j≤k

dist(xi , xj) > 2r ∧
k∧

i=1
ψ(xi)

 .
For every v ∈ V (G), we test whether G [Nr [v]] |= ψ.
Since G [Nr [v]] has constant size, easy to do!

Finally, we greedily try to find k such “good” vertices far apart. �

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)
Let d ∈ N and let Cd be the class of graphs of degree bounded by d.
Then MC(FO, Cd) is FPT.

Proof:

Given G ∈ Cd and ϕ ∈ FO, convert ϕ into “Gaifman normal form”.
We only need to consider basic local sentences of the form

∃x1 . . . ∃xk

 ∧
1≤i<j≤k

dist(xi , xj) > 2r ∧
k∧

i=1
ψ(xi)

 .
For every v ∈ V (G), we test whether G [Nr [v]] |= ψ.
Since G [Nr [v]] has constant size, easy to do!
Finally, we greedily try to find k such “good” vertices far apart. �

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)
Let d ∈ N and let Cd be the class of graphs of degree bounded by d.
Then MC(FO, Cd) is FPT.

Proof:

Crucial issue: test whether G [Nr [v]] |= ψ in FPT time.

If G [Nr [v]] has constant size, easy to do!

But also if tw(G [Nr [v]]) is bounded, by Courcelle’s theorem.

But also if tw(G [Nr [v]]) ≤ f (r): bounded local treewidth.

This has triggered a lot of research in the last 20 years...

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)
Let d ∈ N and let Cd be the class of graphs of degree bounded by d.
Then MC(FO, Cd) is FPT.

Proof:

Crucial issue: test whether G [Nr [v]] |= ψ in FPT time.

If G [Nr [v]] has constant size, easy to do!

But also if tw(G [Nr [v]]) is bounded, by Courcelle’s theorem.

But also if tw(G [Nr [v]]) ≤ f (r): bounded local treewidth.

This has triggered a lot of research in the last 20 years...

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)
Let d ∈ N and let Cd be the class of graphs of degree bounded by d.
Then MC(FO, Cd) is FPT.

Proof:

Crucial issue: test whether G [Nr [v]] |= ψ in FPT time.

If G [Nr [v]] has constant size, easy to do!

But also if tw(G [Nr [v]]) is bounded, by Courcelle’s theorem.

But also if tw(G [Nr [v]]) ≤ f (r): bounded local treewidth.

This has triggered a lot of research in the last 20 years...

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)
Let d ∈ N and let Cd be the class of graphs of degree bounded by d.
Then MC(FO, Cd) is FPT.

Proof:

Crucial issue: test whether G [Nr [v]] |= ψ in FPT time.

If G [Nr [v]] has constant size, easy to do!

But also if tw(G [Nr [v]]) is bounded, by Courcelle’s theorem.

But also if tw(G [Nr [v]]) ≤ f (r):

bounded local treewidth.

This has triggered a lot of research in the last 20 years...

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)
Let d ∈ N and let Cd be the class of graphs of degree bounded by d.
Then MC(FO, Cd) is FPT.

Proof:

Crucial issue: test whether G [Nr [v]] |= ψ in FPT time.

If G [Nr [v]] has constant size, easy to do!

But also if tw(G [Nr [v]]) is bounded, by Courcelle’s theorem.

But also if tw(G [Nr [v]]) ≤ f (r): bounded local treewidth.

This has triggered a lot of research in the last 20 years...

39

FO model-checking on graphs of bounded degree

Theorem (Seese. 1996)
Let d ∈ N and let Cd be the class of graphs of degree bounded by d.
Then MC(FO, Cd) is FPT.

Proof:

Crucial issue: test whether G [Nr [v]] |= ψ in FPT time.

If G [Nr [v]] has constant size, easy to do!

But also if tw(G [Nr [v]]) is bounded, by Courcelle’s theorem.

But also if tw(G [Nr [v]]) ≤ f (r): bounded local treewidth.

This has triggered a lot of research in the last 20 years...
39

AMTs for MSO and FO

40

FO model-checking on sparse graph classes

planar

bounded genus
bounded tree-width

bounded
local

tree-width

excluded minor

excluded topological subgraph

bounded degree

bounded expansion

locally excluded minor

locally bounded expansion

nowhere dense

bounded degeneracy

nowhere dense

somewhere dense

Figure 1: Sparse graph classes

problem specific analysis may yield better algorithms – eventhough implementations of, for instance, Cour-
celle’s theorem have shown that the direct application of meta theorems can yield competitive algorithms
for common problems such as the dominating set problem (see [27]).

In this paper, we prove a new meta theorem for first-order logic on nowhere dense classes of graphs.
These classes were introduced by Nešetřil and Ossona de Mendez [28, 29] as a formalisation of classes of
“sparse” graphs. All familiar examples of sparse graph classes, like the class of planar graphs, classes of
bounded tree-width, classes of bounded degree, and indeed all classes with excluded topological subgraphs
are nowhere dense. Figure 1 shows the containment relationsbetween these and other sparse graph classes.1

“Nowhere density” turns out to be a very robust concept with several seemingly unrelated natural character-
isations (see [28, 29]). Furthermore, Nešetřil and Ossona de Mendez [29] established a clear-cut dichotomy
between nowhere dense and somewhere dense graph classes. The exact definition of nowhere dense graph
classes is technical and we defer it to Section 3.

Theorem 1.1 For every nowhere dense classC and everyε > 0, every property of graphs definable in
first-order logic can be decided in timeO(n1+ε) onC.

1Notably, classes of bounded average degree or bounded degeneracy are not necessarily nowhere dense. To be precise: for
everyk ≥ 2 the class of all graphs of degeneracy at mostk is somewhere dense. This is reasonable, because every graphcan be
turned into a graph of degeneracy2 by simply subdividing every edge once. Recall that a graph has degeneracyat mostd if every
subgraph has a vertex of degree at mostd. Degeneracy at mostd implies that the graph and all its subgraphs have average degree
at most2d and hence have a linear number of edges. Contrarily, graphs in nowhere dense classes can have an edge density ofn1+ε

and are therefore not necessarily degenerate.

2

41

Simplified picture for monotone graph classes

Logic

Structure

nowhere dense

bounded treewidth

FO MSO

[Grohe, Kreutzer, & Siebertz]

[Courcelle]

42

Simplified picture for hereditary graph classes

Logic

Structure

bounded twinwidth

bounded cliquewidth

FO MSO

[Bonnet, Kim, Thomassé, & Watrigant]

[Courcelle et al.]

42

A lot of interesting stuff between FO and MSO

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+dp Θ̃dp MSO

[Grohe, Kreutzer, & Siebertz]

[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny]

[Golovach, Stamoulis, & Thilikos]

[Fomin, Golovach, S., Stamoulis, & Thilikos]

[Courcelle]

43

A lot of interesting stuff between FO and MSO

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+dp Θ̃dp MSO

[Grohe, Kreutzer, & Siebertz]

[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny]

[Golovach, Stamoulis, & Thilikos]

[Fomin, Golovach, S., Stamoulis, & Thilikos]

[Courcelle]

43

Graph minors

A graph H is a minor of a graph G , denoted by H 6m G , if H can be
obtained by a subgraph of G by contracting edges.

It Xz
this is a test

00

I FTW
ing

I urIip to
t 2

H Ha
44

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

G ∈ C ⇒ H ∈ C for every H 6m G .

Examples of minor-closed graph classes:

Independent sets.
Forests.
Subgraphs of series-parallel graphs.
Planar graphs.
Graphs embeddable in a fixed surface.
Linklessly embeddable graphs.
Knotlessly embeddable graphs.
...

45

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

G ∈ C ⇒ H ∈ C for every H 6m G .

Examples of minor-closed graph classes:

Independent sets.
Forests.
Subgraphs of series-parallel graphs.
Planar graphs.
Graphs embeddable in a fixed surface.
Linklessly embeddable graphs.
Knotlessly embeddable graphs.
...

45

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

G ∈ C ⇒ H ∈ C for every H 6m G .

Theorem (Robertson, Seymour. 1983-2004)
Every minor-closed graph class C can be characterized by a finite list of
excluded minors.

45

Missing axis: efficiency dimension

nowhere dense

excluding a top. minor

excluding a minor

bounded treewidth

FO FO+conn FO+dp Θ̃dp MSO

[Grohe, Kreutzer, & Siebertz]

[Mi. Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny]

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny]

[Golovach, Stamoulis, & Thilikos]

[Fomin, Golovach, S., Stamoulis, & Thilikos]

[Courcelle]

f (|ϕ|, p(G)) · |G |O(1)

46

Gràcies!

FREEDOM FOR ALL CATALAN POLITICAL PRISONERS IN SPAIN

47

	Introduction to logic (in graphs)
	AMTs for monadic second-order logic
	AMTs for first-order logic

