
Programmation dynamique
dans les graphes peu denses

Ignasi Sau

Equipe AlGCo, LIRMM, CNRS

Journée Scientifique du LIRMM

19 juin 2014

1

Outline

1 Introduction

2 Treewidth and dynamic programming

3 Dynamic programming on sparse graphs

4 Generalizations and some recent results

2

Next section is...

1 Introduction

2 Treewidth and dynamic programming

3 Dynamic programming on sparse graphs

4 Generalizations and some recent results

3

Basic idea of dynamic programming

I According to WIKIPEDIA:

“Dynamic programming is a method for solving complex problems
by breaking them down into simpler subproblems.”

I Roughly speaking, it is a clever brute force search.

I The idea is to recursively combine previously computed partial
solutions of smaller instances.

I In this talk, we will focus exclusively on graphs .

4

Basic idea of dynamic programming

I According to WIKIPEDIA:

“Dynamic programming is a method for solving complex problems
by breaking them down into simpler subproblems.”

I Roughly speaking, it is a clever brute force search.

I The idea is to recursively combine previously computed partial
solutions of smaller instances.

I In this talk, we will focus exclusively on graphs .

4

Basic idea of dynamic programming

I According to WIKIPEDIA:

“Dynamic programming is a method for solving complex problems
by breaking them down into simpler subproblems.”

I Roughly speaking, it is a clever brute force search.

I The idea is to recursively combine previously computed partial
solutions of smaller instances.

I In this talk, we will focus exclusively on graphs .

4

Example: MAXIMUM INDEPENDENT SET

Independent set in a graph: set of vertices pairwise non-adjacent.

WEIGHTED INDEPENDENT SET

Input: A graph G = (V ,E) and a weight function w : V → N.
Output: An independent set of G of maximum weight.

5

Example: MAXIMUM INDEPENDENT SET

Independent set in a graph: set of vertices pairwise non-adjacent.

WEIGHTED INDEPENDENT SET

Input: A graph G = (V ,E) and a weight function w : V → N.
Output: An independent set of G of maximum weight.

5

Example: MAXIMUM INDEPENDENT SET

Independent set in a graph: set of vertices pairwise non-adjacent.

WEIGHTED INDEPENDENT SET

Input: A graph G = (V ,E) and a weight function w : V → N.
Output: An independent set of G of maximum weight.

5

WEIGHTED INDEPENDENT SET in trees via DP
Merci Christophe !

2

1

2

4

3

1

4

2
3

1
2

1

1

6

WEIGHTED INDEPENDENT SET in trees via DP
Merci Christophe !

2

1

2

4

3

1

4

2
3

1
2

1

1

6

WEIGHTED INDEPENDENT SET in trees via DP
Merci Christophe !

13

1
2

1

1

2

4

3

1

4

2

2
2

T

T

1

Remarks:

1 Every vertex in a tree is a separator.
2 The union of independent sets in distinct connected components

is an independent set.

6

WEIGHTED INDEPENDENT SET in trees via DP
Merci Christophe !

13

1
2

1

1

2

4

3

1

4

2

2
2

T

T

1

Let x be the root of T and x1, . . . , x` their children:

I wIS(T , x)→ max. independent set in T containing x .
I wIS(T , x)→ max. independent set in T not containing x .

6

WEIGHTED INDEPENDENT SET in trees via DP
Merci Christophe !

13

1
2

1

1

2

4

3

1

4

2

2
2

T

T

1

Let x be the root of T and x1, . . . , x` their children:

I wIS(T , x)→ max. independent set in T containing x .
I wIS(T , x)→ max. independent set in T not containing x . wIS(T , x) = w(x) +

∑
i∈{1,...,`}

wIS(T , xi)

6

WEIGHTED INDEPENDENT SET in trees via DP
Merci Christophe !

13

1
2

1

1

2

4

3

1

4

2

2
2

T

T

1

Let x be the root of T and x1, . . . , x` their children:

I wIS(T , x)→ max. independent set in T containing x .
I wIS(T , x)→ max. independent set in T not containing x .

wIS(T , x) = w(x) +
∑

i∈{1,...,`}
wIS(T , xi)

wIS(T , x) =
∑

i∈{1,...,`}
max{wIS(T , xi),wIS(T , xi)}

6

Next section is...

1 Introduction

2 Treewidth and dynamic programming

3 Dynamic programming on sparse graphs

4 Generalizations and some recent results

7

Tree decompositions

Idea To measure the topological resemblance of a graph to a tree.

A tree decomposition of a graph G = (V ,E) is a pair
(T , {Xt : t ∈ V (T)}), with T a tree and ∀t ∈ T , Xt ⊆ V such that

I covering of vertices ∀x ∈ V , ∃t ∈ V (T) such that x ∈ Xt .

I covering of edges ∀{x , y} ∈ E , ∃t ∈ T such that x , y ∈ Xt .

I consistence ∀x ∈ V , the set of “bags” containing x defines a
connected subtree of T .

8

Tree decompositions

Idea To measure the topological resemblance of a graph to a tree.

A tree decomposition of a graph G = (V ,E) is a pair
(T , {Xt : t ∈ V (T)}), with T a tree and ∀t ∈ T , Xt ⊆ V such that

I covering of vertices ∀x ∈ V , ∃t ∈ V (T) such that x ∈ Xt .

I covering of edges ∀{x , y} ∈ E , ∃t ∈ T such that x , y ∈ Xt .

I consistence ∀x ∈ V , the set of “bags” containing x defines a
connected subtree of T .

8

Tree decompositions

Idea To measure the topological resemblance of a graph to a tree.

A tree decomposition of a graph G = (V ,E) is a pair
(T , {Xt : t ∈ V (T)}), with T a tree and ∀t ∈ T , Xt ⊆ V such that

I covering of vertices ∀x ∈ V , ∃t ∈ V (T) such that x ∈ Xt .

I covering of edges ∀{x , y} ∈ E , ∃t ∈ T such that x , y ∈ Xt .

I consistence ∀x ∈ V , the set of “bags” containing x defines a
connected subtree of T .

8

Tree decompositions

Idea To measure the topological resemblance of a graph to a tree.

A tree decomposition of a graph G = (V ,E) is a pair
(T , {Xt : t ∈ V (T)}), with T a tree and ∀t ∈ T , Xt ⊆ V such that

I covering of vertices ∀x ∈ V , ∃t ∈ V (T) such that x ∈ Xt .

I covering of edges ∀{x , y} ∈ E , ∃t ∈ T such that x , y ∈ Xt .

I consistence ∀x ∈ V , the set of “bags” containing x defines a
connected subtree of T .

8

Tree decompositions

Idea To measure the topological resemblance of a graph to a tree.

A tree decomposition of a graph G = (V ,E) is a pair
(T , {Xt : t ∈ V (T)}), with T a tree and ∀t ∈ T , Xt ⊆ V such that

I covering of vertices ∀x ∈ V , ∃t ∈ V (T) such that x ∈ Xt .

I covering of edges ∀{x , y} ∈ E , ∃t ∈ T such that x , y ∈ Xt .

I consistence ∀x ∈ V , the set of “bags” containing x defines a
connected subtree of T .

8

Treewidth

I The width of a tree decomposition TG = (T , {Xt}) of G is

width(TG) = max
t∈T
|Xt | − 1

I The treewidth of a graph G is

tw(G) = min
TG

width(TG)

Idea
The smaller the treewidth of a graph, the more it resembles to a tree
(if G is a tree, then tw(G) = 1).

Observation
Let TG = (T , {Xt : t ∈ V (T)}) be a tree decomposition of G.

I Every bag Xt is a separator of G.
I This makes tree decompositions a very suitable object for

dynamic programming.
9

Treewidth

I The width of a tree decomposition TG = (T , {Xt}) of G is

width(TG) = max
t∈T
|Xt | − 1

I The treewidth of a graph G is

tw(G) = min
TG

width(TG)

Idea
The smaller the treewidth of a graph, the more it resembles to a tree
(if G is a tree, then tw(G) = 1).

Observation
Let TG = (T , {Xt : t ∈ V (T)}) be a tree decomposition of G.

I Every bag Xt is a separator of G.
I This makes tree decompositions a very suitable object for

dynamic programming.
9

Treewidth

I The width of a tree decomposition TG = (T , {Xt}) of G is

width(TG) = max
t∈T
|Xt | − 1

I The treewidth of a graph G is

tw(G) = min
TG

width(TG)

Idea
The smaller the treewidth of a graph, the more it resembles to a tree
(if G is a tree, then tw(G) = 1).

Observation
Let TG = (T , {Xt : t ∈ V (T)}) be a tree decomposition of G.

I Every bag Xt is a separator of G.
I This makes tree decompositions a very suitable object for

dynamic programming.
9

Treewidth

I The width of a tree decomposition TG = (T , {Xt}) of G is

width(TG) = max
t∈T
|Xt | − 1

I The treewidth of a graph G is

tw(G) = min
TG

width(TG)

Idea
The smaller the treewidth of a graph, the more it resembles to a tree
(if G is a tree, then tw(G) = 1).

Observation
Let TG = (T , {Xt : t ∈ V (T)}) be a tree decomposition of G.

I Every bag Xt is a separator of G.
I This makes tree decompositions a very suitable object for

dynamic programming.
9

Treewidth

I The width of a tree decomposition TG = (T , {Xt}) of G is

width(TG) = max
t∈T
|Xt | − 1

I The treewidth of a graph G is

tw(G) = min
TG

width(TG)

Idea
The smaller the treewidth of a graph, the more it resembles to a tree
(if G is a tree, then tw(G) = 1).

Observation
Let TG = (T , {Xt : t ∈ V (T)}) be a tree decomposition of G.

I Every bag Xt is a separator of G.
I This makes tree decompositions a very suitable object for

dynamic programming.
9

INDEPENDENT SET on graphs of bounded treewidth

As in the case of trees, the problem can be solved via DP.

For graphs on n vertices and tw ≤ k , this algorithm solves
INDEPENDENT SET in time

O(4k · k2 · n)

10

INDEPENDENT SET on graphs of bounded treewidth

As in the case of trees, the problem can be solved via DP.

1

t

2t

S

t
t3

S2

IS(S, t) =

|S| +∑

i∈[`] max {IS(Si
j , tj)− |Sj | :

Si
j ∩ Xt = Sj & Sj ⊆ Si

j independent}

For graphs on n vertices and tw ≤ k , this algorithm solves
INDEPENDENT SET in time

O(4k · k2 · n)
10

INDEPENDENT SET on graphs of bounded treewidth

As in the case of trees, the problem can be solved via DP.

1

t

2t

S

t
t3

S2

IS(S, t) =

|S| +∑

i∈[`] max {IS(Si
j , tj)− |Sj | :

Si
j ∩ Xt = Sj & Sj ⊆ Si

j independent}

For graphs on n vertices and tw ≤ k , this algorithm solves
INDEPENDENT SET in time

O(4k · k2 · n)
10

Some words on parameterized complexity

Idea given an NP-hard problem, fix a parameter k of the input to
see if the problem gets more “tractable”.

Example: the size of a VERTEX COVER, or the TREEWIDTH.

I Given a (NP-hard) problem with input of size n and a parameter k ,
a fixed-parameter tractable (FPT) algorithm runs in

f (k) · nO(1) for some (computable) function f .

Examples: k -VERTEX COVER, k -LONGEST PATH.

11

Some words on parameterized complexity

Idea given an NP-hard problem, fix a parameter k of the input to
see if the problem gets more “tractable”.

Example: the size of a VERTEX COVER, or the TREEWIDTH.

I Given a (NP-hard) problem with input of size n and a parameter k ,
a fixed-parameter tractable (FPT) algorithm runs in

f (k) · nO(1) for some (computable) function f .

Examples: k -VERTEX COVER, k -LONGEST PATH.

11

Algorithmic importance of treewidth

Courcelle’s theorem (1988)

Graph problems expressible in Monadic Second Order Logic
(MSOL) can be solved in time f (k) · nO(1) in graphs with tw ≤ k .

(In other words, problems expressible in MSOL are FPT when
parameterized by the treewidth of the input graph.)

F Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

In fact, f (k) must be an exponential tower whose height equals
the number of alternate quantifiers in the MSOL formula that
expresses the problem.

12

Algorithmic importance of treewidth

Courcelle’s theorem (1988)

Graph problems expressible in Monadic Second Order Logic
(MSOL) can be solved in time f (k) · nO(1) in graphs with tw ≤ k .

(In other words, problems expressible in MSOL are FPT when
parameterized by the treewidth of the input graph.)

F Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

In fact, f (k) must be an exponential tower whose height equals
the number of alternate quantifiers in the MSOL formula that
expresses the problem.

12

Algorithmic importance of treewidth

Courcelle’s theorem (1988)

Graph problems expressible in Monadic Second Order Logic
(MSOL) can be solved in time f (k) · nO(1) in graphs with tw ≤ k .

(In other words, problems expressible in MSOL are FPT when
parameterized by the treewidth of the input graph.)

F Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

In fact, f (k) must be an exponential tower whose height equals
the number of alternate quantifiers in the MSOL formula that
expresses the problem.

12

Algorithmic importance of treewidth

Courcelle’s theorem (1988)

Graph problems expressible in Monadic Second Order Logic
(MSOL) can be solved in time f (k) · nO(1) in graphs with tw ≤ k .

(In other words, problems expressible in MSOL are FPT when
parameterized by the treewidth of the input graph.)

F Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

In fact, f (k) must be an exponential tower whose height equals
the number of alternate quantifiers in the MSOL formula that
expresses the problem.

12

FPT single-exponential algorithms

I We would like to find functions f (k) as small as possible that apply
to as many problems as possible.

I A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

For many problems, such function f (k) is best possible (under the ETH).

Objective:
build a framework to obtain single-exponential algorithms for
a class of NP-hard problems on sparse graphs.

13

FPT single-exponential algorithms

I We would like to find functions f (k) as small as possible that apply
to as many problems as possible.

I A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

For many problems, such function f (k) is best possible (under the ETH).

Objective:
build a framework to obtain single-exponential algorithms for
a class of NP-hard problems on sparse graphs.

13

FPT single-exponential algorithms

I We would like to find functions f (k) as small as possible that apply
to as many problems as possible.

I A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

For many problems, such function f (k) is best possible (under the ETH).

Objective:
build a framework to obtain single-exponential algorithms for
a class of NP-hard problems on sparse graphs.

13

FPT single-exponential algorithms

I We would like to find functions f (k) as small as possible that apply
to as many problems as possible.

I A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

For many problems, such function f (k) is best possible (under the ETH).

Objective:
build a framework to obtain single-exponential algorithms for
a class of NP-hard problems on sparse graphs.

13

Dynamic programming (DP) on tree decompositions

I Applied in a bottom-up fashion on a rooted tree decomposition of
the input graph G.

I For each graph problem, DP requires the suitable definition of
tables encoding how potential (global) solutions are restricted to a
bag Xt .

I The size of the tables reflects the dependence on |Xt | ≤ k in the
running time of the DP.

I The precise definition of the tables of the DP depends on each
particular problem.

14

Dynamic programming (DP) on tree decompositions

I Applied in a bottom-up fashion on a rooted tree decomposition of
the input graph G.

I For each graph problem, DP requires the suitable definition of
tables encoding how potential (global) solutions are restricted to a
bag Xt .

I The size of the tables reflects the dependence on |Xt | ≤ k in the
running time of the DP.

I The precise definition of the tables of the DP depends on each
particular problem.

14

A classification of graph optimization problems

How can we certificate a solution in a bag Xt of a tree decomposition?

1 A subset of vertices of Xt (not restricted by some global condition).
Examples: INDEPENDENT SET, VERTEX COVER, DOMINATING SET.

The size of the tables is bounded by 2O(k) .

2 A connected pairing of vertices of Xt .
Examples: HAMILTONIAN CYCLE, LONGEST PATH, CYCLE PACKING.

The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k) .

15

A classification of graph optimization problems

How can we certificate a solution in a bag Xt of a tree decomposition?

1 A subset of vertices of Xt (not restricted by some global condition).
Examples: INDEPENDENT SET, VERTEX COVER, DOMINATING SET.

The size of the tables is bounded by 2O(k) .

2 A connected pairing of vertices of Xt .
Examples: HAMILTONIAN CYCLE, LONGEST PATH, CYCLE PACKING.

The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k) .

15

A classification of graph optimization problems

How can we certificate a solution in a bag Xt of a tree decomposition?

1 A subset of vertices of Xt (not restricted by some global condition).
Examples: INDEPENDENT SET, VERTEX COVER, DOMINATING SET.

The size of the tables is bounded by 2O(k) .

2 A connected pairing of vertices of Xt .
Examples: HAMILTONIAN CYCLE, LONGEST PATH, CYCLE PACKING.

The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k) .

15

A classification of graph optimization problems

How can we certificate a solution in a bag Xt of a tree decomposition?

1 A subset of vertices of Xt (not restricted by some global condition).
Examples: INDEPENDENT SET, VERTEX COVER, DOMINATING SET.

The size of the tables is bounded by 2O(k) .

2 A connected pairing of vertices of Xt .
Examples: HAMILTONIAN CYCLE, LONGEST PATH, CYCLE PACKING.

The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k) .

Vt

Xt

15

A classification of graph optimization problems

How can we certificate a solution in a bag Xt of a tree decomposition?

1 A subset of vertices of Xt (not restricted by some global condition).
Examples: INDEPENDENT SET, VERTEX COVER, DOMINATING SET.

The size of the tables is bounded by 2O(k) .

2 A connected pairing of vertices of Xt .
Examples: HAMILTONIAN CYCLE, LONGEST PATH, CYCLE PACKING.

The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k) .

Vt

Xt

15

A classification of graph optimization problems

How can we certificate a solution in a bag Xt of a tree decomposition?

1 A subset of vertices of Xt (not restricted by some global condition).
Examples: INDEPENDENT SET, VERTEX COVER, DOMINATING SET.

The size of the tables is bounded by 2O(k) .

2 A connected pairing of vertices of Xt .
Examples: HAMILTONIAN CYCLE, LONGEST PATH, CYCLE PACKING.

The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k) .

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.

Again, # of packings in a set of k elements is 2Θ(k log k) .

15

A classification of graph optimization problems

How can we certificate a solution in a bag Xt of a tree decomposition?

1 A subset of vertices of Xt (not restricted by some global condition).
Examples: INDEPENDENT SET, VERTEX COVER, DOMINATING SET.

The size of the tables is bounded by 2O(k) .

2 A connected pairing of vertices of Xt .
Examples: HAMILTONIAN CYCLE, LONGEST PATH, CYCLE PACKING.

The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k) .

3 Connected packing of vertices of mid(e) into subsets of arbitrary size.
Examples: CONNECTED VERTEX COVER, MAX LEAF SPANNING TREE.

Again, # of packings in a set of k elements is 2Θ(k log k) .

F How can be improve the bound 2O(k log k) to 2O(k) ?

15

Next section is...

1 Introduction

2 Treewidth and dynamic programming

3 Dynamic programming on sparse graphs

4 Generalizations and some recent results

16

Sparse graphs

I A family of graphs is sparse if it has a linear number of edges.

I Archetypical example: Planar graphs.
By Euler’s formula, if G = (V ,E) is a planar graph, then

|E | ≤ 3 · |V | − 6.

I Graphs that can be embedded on surfaces of bounded genus.

I Graphs that exclude a fixed graph H as a (topological) minor.
17

Sparse graphs

I A family of graphs is sparse if it has a linear number of edges.

I Archetypical example: Planar graphs.
By Euler’s formula, if G = (V ,E) is a planar graph, then

|E | ≤ 3 · |V | − 6.

I Graphs that can be embedded on surfaces of bounded genus.

I Graphs that exclude a fixed graph H as a (topological) minor.
17

Sparse graphs

I A family of graphs is sparse if it has a linear number of edges.

I Archetypical example: Planar graphs.
By Euler’s formula, if G = (V ,E) is a planar graph, then

|E | ≤ 3 · |V | − 6.

I Graphs that can be embedded on surfaces of bounded genus.

I Graphs that exclude a fixed graph H as a (topological) minor.
17

Sparse graphs

I A family of graphs is sparse if it has a linear number of edges.

I Archetypical example: Planar graphs.
By Euler’s formula, if G = (V ,E) is a planar graph, then

|E | ≤ 3 · |V | − 6.

I Graphs that can be embedded on surfaces of bounded genus.

I Graphs that exclude a fixed graph H as a (topological) minor.
17

How sparsity helps for dynamic programming?

I We will consider a tree-decomposition of a sparse graph, and
exploit the structure of the subgraph induced by the bags.

I More precisely, we will use the existence of tree decompositions of
small width and with nice topological properties.

I These nice properties will not change the DP algorithms, but the
analysis of their running time.

18

How sparsity helps for dynamic programming?

I We will consider a tree-decomposition of a sparse graph, and
exploit the structure of the subgraph induced by the bags.

I More precisely, we will use the existence of tree decompositions of
small width and with nice topological properties.

I These nice properties will not change the DP algorithms, but the
analysis of their running time.

18

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.

19

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.

19

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.

19

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.

19

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.

19

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.

19

Sphere cut decompositions

I Let G be a planar graph. A sphere cut decomposition of G is a
tree decomposition (T , {Xt : t ∈ V (T)}) of G such that the
vertices in each bag Xt are situated around a noose in the plane.

(NB: several details are missing in this definition)

Theorem (Seymour and Thomas ’94)
Every planar graph G has a sphere cut decomposition whose width
equals tw(G), and that can be computed in polynomial time.

I The size of the tables of a DP algorithm depends on how many
ways a partial solution can intersect the vertices in a bag Xt .

20

Sphere cut decompositions

I Let G be a planar graph. A sphere cut decomposition of G is a
tree decomposition (T , {Xt : t ∈ V (T)}) of G such that the
vertices in each bag Xt are situated around a noose in the plane.

(NB: several details are missing in this definition)

Theorem (Seymour and Thomas ’94)
Every planar graph G has a sphere cut decomposition whose width
equals tw(G), and that can be computed in polynomial time.

I The size of the tables of a DP algorithm depends on how many
ways a partial solution can intersect the vertices in a bag Xt .

20

Sphere cut decompositions

I Let G be a planar graph. A sphere cut decomposition of G is a
tree decomposition (T , {Xt : t ∈ V (T)}) of G such that the
vertices in each bag Xt are situated around a noose in the plane.

(NB: several details are missing in this definition)

Theorem (Seymour and Thomas ’94)
Every planar graph G has a sphere cut decomposition whose width
equals tw(G), and that can be computed in polynomial time.

I The size of the tables of a DP algorithm depends on how many
ways a partial solution can intersect the vertices in a bag Xt .

20

Sphere cut decompositions (2)

I Suppose we do DP on a sphere cut decomposition of width ≤ k .

I In how many ways can we draw polygons inside a circle such that they
touch the circle only on its k vertices and they do not intersect?

I Exactly the number of non-crossing partitions over k elements, which is
given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .

21

Sphere cut decompositions (2)

I Suppose we do DP on a sphere cut decomposition of width ≤ k .

I In how many ways can we draw polygons inside a circle such that they
touch the circle only on its k vertices and they do not intersect?

I Exactly the number of non-crossing partitions over k elements, which is
given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .

21

Sphere cut decompositions (2)

I Suppose we do DP on a sphere cut decomposition of width ≤ k .

I In how many ways can we draw polygons inside a circle such that they
touch the circle only on its k vertices and they do not intersect?

I Exactly the number of non-crossing partitions over k elements, which is
given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .

21

How to use this framework?

1 Let P be a “connected packing-encodable” problem on a planar
graph G.

2 As a preprocessing step, build a surface cut decomposition of G,
using the Theorem of Seymour and Thomas.

3 Run a “natural” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time is just a consequence of the
topological properties of surface cut decomposition.

This idea was first used in [Dorn, Penninkx, Bodlaender, Fomin ’05]

22

How to use this framework?

1 Let P be a “connected packing-encodable” problem on a planar
graph G.

2 As a preprocessing step, build a surface cut decomposition of G,
using the Theorem of Seymour and Thomas.

3 Run a “natural” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time is just a consequence of the
topological properties of surface cut decomposition.

This idea was first used in [Dorn, Penninkx, Bodlaender, Fomin ’05]

22

How to use this framework?

1 Let P be a “connected packing-encodable” problem on a planar
graph G.

2 As a preprocessing step, build a surface cut decomposition of G,
using the Theorem of Seymour and Thomas.

3 Run a “natural” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time is just a consequence of the
topological properties of surface cut decomposition.

This idea was first used in [Dorn, Penninkx, Bodlaender, Fomin ’05]

22

How to use this framework?

1 Let P be a “connected packing-encodable” problem on a planar
graph G.

2 As a preprocessing step, build a surface cut decomposition of G,
using the Theorem of Seymour and Thomas.

3 Run a “natural” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time is just a consequence of the
topological properties of surface cut decomposition.

This idea was first used in [Dorn, Penninkx, Bodlaender, Fomin ’05]

22

How to use this framework?

1 Let P be a “connected packing-encodable” problem on a planar
graph G.

2 As a preprocessing step, build a surface cut decomposition of G,
using the Theorem of Seymour and Thomas.

3 Run a “natural” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time is just a consequence of the
topological properties of surface cut decomposition.

This idea was first used in [Dorn, Penninkx, Bodlaender, Fomin ’05]

22

Next section is...

1 Introduction

2 Treewidth and dynamic programming

3 Dynamic programming on sparse graphs

4 Generalizations and some recent results

23

Generalizations to other sparse graph classes

This idea has been generalized to other graph classes and problems:

I Graphs on surfaces:

[Dorn, Fomin, Thilikos ’06]
[Rué, S., Thilikos ’10]

I H-minor-free graphs:
[Dorn, Fomin, Thilikos ’08]

[Rué, S., Thilikos ’12]

24

Some recent results on general graphs

F For an FPT problem, is it always possible to obtain algorithms with
running time 2O(tw) · nO(1)?

If 3-SAT cannot be solved in time 2o(n), then DISJOINT PATHS

cannot be solved in time 2o(tw log tw) · nO(1) on general graphs.

[Lokshtanov, Marx, Saurabh ’11]

I HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ...
Is 2O(tw log tw) · nO(1) best possible?

F Randomized algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Cygan, Nederlof, (Pilipczuk)2, van Rooij, Wojtaszczyk ’11]

I They introduce a DP technique called Cut&Count.
(It relies on a probabilistic result called the Isolation Lemma.)

I Can these algorithms be derandomized?
25

Some recent results on general graphs

F For an FPT problem, is it always possible to obtain algorithms with
running time 2O(tw) · nO(1)?

If 3-SAT cannot be solved in time 2o(n), then DISJOINT PATHS

cannot be solved in time 2o(tw log tw) · nO(1) on general graphs.

[Lokshtanov, Marx, Saurabh ’11]

I HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ...
Is 2O(tw log tw) · nO(1) best possible?

F Randomized algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Cygan, Nederlof, (Pilipczuk)2, van Rooij, Wojtaszczyk ’11]

I They introduce a DP technique called Cut&Count.
(It relies on a probabilistic result called the Isolation Lemma.)

I Can these algorithms be derandomized?
25

Some recent results on general graphs

F For an FPT problem, is it always possible to obtain algorithms with
running time 2O(tw) · nO(1)?

If 3-SAT cannot be solved in time 2o(n), then DISJOINT PATHS

cannot be solved in time 2o(tw log tw) · nO(1) on general graphs.

[Lokshtanov, Marx, Saurabh ’11]

I HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ...
Is 2O(tw log tw) · nO(1) best possible?

F Randomized algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Cygan, Nederlof, (Pilipczuk)2, van Rooij, Wojtaszczyk ’11]

I They introduce a DP technique called Cut&Count.
(It relies on a probabilistic result called the Isolation Lemma.)

I Can these algorithms be derandomized?
25

Some recent results on general graphs

F For an FPT problem, is it always possible to obtain algorithms with
running time 2O(tw) · nO(1)?

If 3-SAT cannot be solved in time 2o(n), then DISJOINT PATHS

cannot be solved in time 2o(tw log tw) · nO(1) on general graphs.

[Lokshtanov, Marx, Saurabh ’11]

I HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ...
Is 2O(tw log tw) · nO(1) best possible?

F Randomized algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Cygan, Nederlof, (Pilipczuk)2, van Rooij, Wojtaszczyk ’11]

I They introduce a DP technique called Cut&Count.
(It relies on a probabilistic result called the Isolation Lemma.)

I Can these algorithms be derandomized?
25

Some recent results on general graphs

F For an FPT problem, is it always possible to obtain algorithms with
running time 2O(tw) · nO(1)?

If 3-SAT cannot be solved in time 2o(n), then DISJOINT PATHS

cannot be solved in time 2o(tw log tw) · nO(1) on general graphs.

[Lokshtanov, Marx, Saurabh ’11]

I HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ...
Is 2O(tw log tw) · nO(1) best possible?

F Randomized algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Cygan, Nederlof, (Pilipczuk)2, van Rooij, Wojtaszczyk ’11]

I They introduce a DP technique called Cut&Count.
(It relies on a probabilistic result called the Isolation Lemma.)

I Can these algorithms be derandomized?
25

Some recent results on general graphs

F For an FPT problem, is it always possible to obtain algorithms with
running time 2O(tw) · nO(1)?

If 3-SAT cannot be solved in time 2o(n), then DISJOINT PATHS

cannot be solved in time 2o(tw log tw) · nO(1) on general graphs.

[Lokshtanov, Marx, Saurabh ’11]

I HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ...
Is 2O(tw log tw) · nO(1) best possible?

F Randomized algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Cygan, Nederlof, (Pilipczuk)2, van Rooij, Wojtaszczyk ’11]

I They introduce a DP technique called Cut&Count.
(It relies on a probabilistic result called the Isolation Lemma.)

I Can these algorithms be derandomized?
25

Some recent results on general graphs (2)

F Deterministic algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Bodlaender, Cygan, Kratsch, Nederlof ’14]

I The approach is based on linear algebra.

F More deterministic algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Fomin, Lokshtanov, Saurabh ’14]

I The approach is based on matroids.

26

Some recent results on general graphs (2)

F Deterministic algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Bodlaender, Cygan, Kratsch, Nederlof ’14]

I The approach is based on linear algebra.

F More deterministic algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Fomin, Lokshtanov, Saurabh ’14]

I The approach is based on matroids.

26

Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE

27

	Introduction
	Treewidth and dynamic programming
	Dynamic programming on sparse graphs
	Generalizations and some recent results

