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Basic idea of dynamic programming

I According to WIKIPEDIA:

“Dynamic programming is a method for solving complex problems
by breaking them down into simpler subproblems.”

I Roughly speaking, it is a clever brute force search.

I The idea is to recursively combine previously computed partial
solutions of smaller instances.

I In this talk, we will focus exclusively on graphs .
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Example: MAXIMUM INDEPENDENT SET

Independent set in a graph: set of vertices pairwise non-adjacent.

WEIGHTED INDEPENDENT SET

Input: A graph G = (V ,E) and a weight function w : V → N.
Output: An independent set of G of maximum weight.
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WEIGHTED INDEPENDENT SET in trees via DP
Merci Christophe !
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Remarks:

1 Every vertex in a tree is a separator.
2 The union of independent sets in distinct connected components

is an independent set.
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Let x be the root of T and x1, . . . , x` their children:

I wIS(T , x)→ max. independent set in T containing x .
I wIS(T , x)→ max. independent set in T not containing x .
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∑
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wIS(T , xi)
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∑
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Tree decompositions

Idea To measure the topological resemblance of a graph to a tree.

A tree decomposition of a graph G = (V ,E) is a pair
(T , {Xt : t ∈ V (T )}), with T a tree and ∀t ∈ T , Xt ⊆ V such that

I covering of vertices ∀x ∈ V , ∃t ∈ V (T ) such that x ∈ Xt .

I covering of edges ∀{x , y} ∈ E , ∃t ∈ T such that x , y ∈ Xt .

I consistence ∀x ∈ V , the set of “bags” containing x defines a
connected subtree of T .

8



Tree decompositions

Idea To measure the topological resemblance of a graph to a tree.

A tree decomposition of a graph G = (V ,E) is a pair
(T , {Xt : t ∈ V (T )}), with T a tree and ∀t ∈ T , Xt ⊆ V such that

I covering of vertices ∀x ∈ V , ∃t ∈ V (T ) such that x ∈ Xt .

I covering of edges ∀{x , y} ∈ E , ∃t ∈ T such that x , y ∈ Xt .

I consistence ∀x ∈ V , the set of “bags” containing x defines a
connected subtree of T .

8



Tree decompositions

Idea To measure the topological resemblance of a graph to a tree.

A tree decomposition of a graph G = (V ,E) is a pair
(T , {Xt : t ∈ V (T )}), with T a tree and ∀t ∈ T , Xt ⊆ V such that

I covering of vertices ∀x ∈ V , ∃t ∈ V (T ) such that x ∈ Xt .

I covering of edges ∀{x , y} ∈ E , ∃t ∈ T such that x , y ∈ Xt .

I consistence ∀x ∈ V , the set of “bags” containing x defines a
connected subtree of T .

8



Tree decompositions

Idea To measure the topological resemblance of a graph to a tree.

A tree decomposition of a graph G = (V ,E) is a pair
(T , {Xt : t ∈ V (T )}), with T a tree and ∀t ∈ T , Xt ⊆ V such that

I covering of vertices ∀x ∈ V , ∃t ∈ V (T ) such that x ∈ Xt .

I covering of edges ∀{x , y} ∈ E , ∃t ∈ T such that x , y ∈ Xt .

I consistence ∀x ∈ V , the set of “bags” containing x defines a
connected subtree of T .

8



Tree decompositions

Idea To measure the topological resemblance of a graph to a tree.

A tree decomposition of a graph G = (V ,E) is a pair
(T , {Xt : t ∈ V (T )}), with T a tree and ∀t ∈ T , Xt ⊆ V such that

I covering of vertices ∀x ∈ V , ∃t ∈ V (T ) such that x ∈ Xt .

I covering of edges ∀{x , y} ∈ E , ∃t ∈ T such that x , y ∈ Xt .

I consistence ∀x ∈ V , the set of “bags” containing x defines a
connected subtree of T .

8



Treewidth

I The width of a tree decomposition TG = (T , {Xt}) of G is

width(TG) = max
t∈T
|Xt | − 1

I The treewidth of a graph G is

tw(G) = min
TG

width(TG)

Idea
The smaller the treewidth of a graph, the more it resembles to a tree
(if G is a tree, then tw(G) = 1).

Observation
Let TG = (T , {Xt : t ∈ V (T )}) be a tree decomposition of G.

I Every bag Xt is a separator of G.
I This makes tree decompositions a very suitable object for

dynamic programming.
9
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INDEPENDENT SET on graphs of bounded treewidth

As in the case of trees, the problem can be solved via DP.

For graphs on n vertices and tw ≤ k , this algorithm solves
INDEPENDENT SET in time

O(4k · k2 · n)
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Some words on parameterized complexity

Idea given an NP-hard problem, fix a parameter k of the input to
see if the problem gets more “tractable”.

Example: the size of a VERTEX COVER, or the TREEWIDTH.

I Given a (NP-hard) problem with input of size n and a parameter k ,
a fixed-parameter tractable (FPT) algorithm runs in

f (k) · nO(1) for some (computable) function f .

Examples: k -VERTEX COVER, k -LONGEST PATH.
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Algorithmic importance of treewidth

Courcelle’s theorem (1988)

Graph problems expressible in Monadic Second Order Logic
(MSOL) can be solved in time f (k) · nO(1) in graphs with tw ≤ k .

(In other words, problems expressible in MSOL are FPT when
parameterized by the treewidth of the input graph.)

F Problem: f (k) can be huge!!! (for instance, f (k) = 23456k

)

In fact, f (k) must be an exponential tower whose height equals
the number of alternate quantifiers in the MSOL formula that
expresses the problem.
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FPT single-exponential algorithms

I We would like to find functions f (k) as small as possible that apply
to as many problems as possible.

I A single-exponential parameterized algorithm is a FPT algo s.t.

f (k) = 2O(k).

For many problems, such function f (k) is best possible (under the ETH).

Objective:
build a framework to obtain single-exponential algorithms for
a class of NP-hard problems on sparse graphs.
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Dynamic programming (DP) on tree decompositions

I Applied in a bottom-up fashion on a rooted tree decomposition of
the input graph G.

I For each graph problem, DP requires the suitable definition of
tables encoding how potential (global) solutions are restricted to a
bag Xt .

I The size of the tables reflects the dependence on |Xt | ≤ k in the
running time of the DP.

I The precise definition of the tables of the DP depends on each
particular problem.
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A classification of graph optimization problems

How can we certificate a solution in a bag Xt of a tree decomposition?

1 A subset of vertices of Xt (not restricted by some global condition).
Examples: INDEPENDENT SET, VERTEX COVER, DOMINATING SET.

The size of the tables is bounded by 2O(k) .

2 A connected pairing of vertices of Xt .
Examples: HAMILTONIAN CYCLE, LONGEST PATH, CYCLE PACKING.

The # of pairings in a set of k elements is kΘ(k) = 2Θ(k log k) .
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F How can be improve the bound 2O(k log k) to 2O(k) ?
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Sparse graphs

I A family of graphs is sparse if it has a linear number of edges.

I Archetypical example: Planar graphs.
By Euler’s formula, if G = (V ,E) is a planar graph, then

|E | ≤ 3 · |V | − 6.

I Graphs that can be embedded on surfaces of bounded genus.

I Graphs that exclude a fixed graph H as a (topological) minor.
17
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How sparsity helps for dynamic programming?

I We will consider a tree-decomposition of a sparse graph, and
exploit the structure of the subgraph induced by the bags.

I More precisely, we will use the existence of tree decompositions of
small width and with nice topological properties.

I These nice properties will not change the DP algorithms, but the
analysis of their running time.
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Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ

homeomorphic to S1 that meets G only at vertices.
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Sphere cut decompositions

I Let G be a planar graph. A sphere cut decomposition of G is a
tree decomposition (T , {Xt : t ∈ V (T )}) of G such that the
vertices in each bag Xt are situated around a noose in the plane.

(NB: several details are missing in this definition)

Theorem (Seymour and Thomas ’94)
Every planar graph G has a sphere cut decomposition whose width
equals tw(G), and that can be computed in polynomial time.

I The size of the tables of a DP algorithm depends on how many
ways a partial solution can intersect the vertices in a bag Xt .
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Sphere cut decompositions (2)

I Suppose we do DP on a sphere cut decomposition of width ≤ k .

I In how many ways can we draw polygons inside a circle such that they
touch the circle only on its k vertices and they do not intersect?

I Exactly the number of non-crossing partitions over k elements, which is
given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .

21
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given by the k -th Catalan number:

CN(k) =
1

k + 1

(
2k
k

)
∼ 4k
√
πk3/2 ≈ 4k .
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How to use this framework?

1 Let P be a “connected packing-encodable” problem on a planar
graph G.

2 As a preprocessing step, build a surface cut decomposition of G,
using the Theorem of Seymour and Thomas.

3 Run a “natural” DP algorithm to solve P over the obtained surface
cut decomposition.

4 The single-exponential running time is just a consequence of the
topological properties of surface cut decomposition.

This idea was first used in [Dorn, Penninkx, Bodlaender, Fomin ’05]
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Next section is...

1 Introduction

2 Treewidth and dynamic programming

3 Dynamic programming on sparse graphs

4 Generalizations and some recent results
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Generalizations to other sparse graph classes

This idea has been generalized to other graph classes and problems:

I Graphs on surfaces:

[Dorn, Fomin, Thilikos ’06]
[Rué, S., Thilikos ’10]

I H-minor-free graphs:
[Dorn, Fomin, Thilikos ’08]

[Rué, S., Thilikos ’12]
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Some recent results on general graphs

F For an FPT problem, is it always possible to obtain algorithms with
running time 2O(tw) · nO(1)?

If 3-SAT cannot be solved in time 2o(n), then DISJOINT PATHS

cannot be solved in time 2o(tw log tw) · nO(1) on general graphs.

[Lokshtanov, Marx, Saurabh ’11]

I HAMILTONIAN PATH, FVS, CONNECTED VERTEX COVER, ...
Is 2O(tw log tw) · nO(1) best possible?

F Randomized algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Cygan, Nederlof, (Pilipczuk)2, van Rooij, Wojtaszczyk ’11]

I They introduce a DP technique called Cut&Count.
(It relies on a probabilistic result called the Isolation Lemma.)

I Can these algorithms be derandomized?
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Some recent results on general graphs (2)

F Deterministic algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Bodlaender, Cygan, Kratsch, Nederlof ’14]

I The approach is based on linear algebra.

F More deterministic algorithms for connected packing-encodable
problems on general graphs in time 2O(tw) · nO(1).

[Fomin, Lokshtanov, Saurabh ’14]

I The approach is based on matroids.
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Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE
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