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M-saturated vertices
Endpoints of the edges of a matching M. Let us denote them by V).

In a general matching M, the graph G[V),] does not have any restriction.

What if we want G[V)y] to satisfy some special property P?

The corresponding matchings are called .
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Examples of PP-matchings

A matching M in a graph G is a P-matching if G[V)y] satisfies property P.

Popular examples

if P = {being any graph} — (unrestricted) matching.

if P = {being a forest} — acyclic matching.

if P = {being (dis)connected} — (dis)connected matching.
if P = {being a matching} — induced matching.

if P = {having exactly one perfect matching}
— uniquely restricted matching (URM).
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UNIQUELY RESTRICTED MATCHING (URM)
Input: An undirected graph G and a positive integer /.
Question: Does G have a URM of size at least ¢7

Problem studied in a number of articles, in particular:

Graph class

Results

|

authors

|

bipartite, split
threshold, cacti, block

NP-hard
linear-time solvable

[Golumbic, Hirst, Lewenstein. 2001]

Bipartite of degree < 3

APX-complete

[Mishra. 2011]

interval,
proper int., bipartite perm.

poly time
linear time

[Francis, Jacob, Jan. 2018]

In this article we study the parameterized complexity of the
UNIQUELY RESTRICTED MATCHING problem.



Parameterized complexity in a nutshell

Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80's, by Downey and Fellows:

Today, it is a well-established and very active area.
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A parameterized problem is a language L C >* x IN,
where X is a fixed, finite alphabet.

For an instance (x, k) € £* x N, k is called the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if it can be
solved in time £ (k) - |x|(}) for some computable function f.

W][1]-hardness: strong evidence of not being FPT.



Kernelization
polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

‘Instance (x, k) of A‘ } polynomial time ‘Instance (x', k") of A‘

@ (x, k) is a YEs-instance of A < (x/, k") is a YEs-instance of A.
@ |[x/| + k' < g(k) for some computable function g : N — IN.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.
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Fact: ‘A problem is FPT < it admits a kernel‘

Do all FPT problems admit polynomial kernels?

Theorem (Bodlaender, Downey, Fellows, Hermelin. 2009)

Deciding whether a graph has a PATH with > k vertices is FPT but does
not admit a polynomial kernel, unless NP C coNP/poly.

Major goal in parameterized complexity:

Which FPT problems admit polynomial kernels?
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UNIQUELY RESTRICTED MATCHING: [Chaudhary, Zehavi. 2025]

@ The problem cannot be approximated in FPT time within any
constant factor. In particular, it is W[1]-hard by the solution size.

@ It admits a linear kernel on planar graphs by the solution size.

deeper analysis of the parameterized complexity of URM.
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Our results and sketch of techniques (part 1/3)

The problem is W[1]-hard by the solution size ¢/ on general graphs.
[Chaudhary, Zehavi. 2025]

Can we identify relevant classes of graphs where the problem is FPT?
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200 .| V(G)| when parameterized by the solution size .

This is an easy consequence of the following lemma:

Let H be a graph and G = L(H) be the line graph of H. Then, G has a
URM of size ¢ if and only if H contains { edge-disjoint paths W4, ..., W,
each with 2 edges, such that | | i€l W; is a forest, and no two distinct
paths W; and W, (for i # j) together form a Ki 4.

H G = L(H)

€1 €2

€3 €4
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UNIQUELY RESTRICTED MATCHING does not admit a polynomial kernel

when parameterized by the vertex cover number plus the size of the
matching unless NP C coNP /poly.
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Useful technique for kernel lower bounds:  [Bodlaender, Jansen, Kratsch. 2011]

Let L C X" be a problem and let Q@ C ~* x N be a parameterized problem.
We say that L OR-cross-composes into @ if there is an algorithm which,
given t instances xi, x2, ..., x; of L, computes an instance

(x*, k*) € X* x N of Q in time polynomial in X_,|x;| such that:

Q (x",k')e Q & x;e L forsomeie[t],
@ k* is bounded by a polynomial in max!_; [x;| + log t.

Theorem (Bodlaender, Jansen, Kratsch. 2011)

If some problem L is NP-hard (under Karp reduction) and there exists an
OR-cross-composition from L into some parameterized problem Q, then
there is no polynomial kernel for Q unless NP C coNP /poly.
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Reduction: OR-cross-composition from ExacT-3-COVER (NP-hard):

ExacT-3-COVER:

Instance: A set U with || = 3¢, where ¢ € N, and a collection
X of 3-element subsets of U.

Question: Does there exist a subcollection X’ C X such that every element
of U appears in exactly one member of X’7?
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UNIQUELY RESTRICTED MATCHING can be solved in O(2™°/2.|V(G)))
time when parameterized by the treewidth tw of the input graph G.

Can we get running time 2°(") . |V(G)|?
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Further research

UNIQUELY RESTRICTED MATCHING can be solved in O(2™°/2.|V(G)))
time when parameterized by the treewidth tw of the input graph G.

Can we get running time 2°(") . |V(G)|?

Investigate cliquewidth as the parameter, recently studied for
INDUCED MATCHING and ACYCLIC MATCHING. [Lampis, Vasilakis. 2025]

Study below-guarantee parameters of the form UB — ¢, where UB is
an upper bound on the uniquely restricted matching number.

Explored for INDUCED MATCHING and ACYCLIC MATCHING.
[Koana. 2023]
[Chaudhary, Zehavi. 2025]
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Gracies!
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