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Definitions

Matching in a graph G
A subset of edges M ⊆ E (G) that do not share an endpoint.

M-saturated vertices
Endpoints of the edges of a matching M. Let us denote them by VM .

In a general matching M, the graph G [VM ] does not have any restriction.

What if we want G [VM ] to satisfy some special property P?

The corresponding matchings are called P-matchings .
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Examples of P-matchings

P-matching
A matching M in a graph G is a P-matching if G [VM ] satisfies property P.

Popular examples
if P = {being any graph} → (unrestricted) matching.

if P = {being a forest} → acyclic matching.

if P = {being (dis)connected} → (dis)connected matching.

if P = {being a matching} → induced matching.

if P = {having exactly one perfect matching}
→ uniquely restricted matching (URM).
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This article: uniquely restricted matchings (URMs)

URMs have motivation from linear algebra. [Golumbic, Hirst, Lewenstein. 2001]

Uniquely Restricted Matching (URM)
Input: An undirected graph G and a positive integer ℓ.
Question: Does G have a URM of size at least ℓ?

Problem studied in a number of articles, in particular:

Graph class Results authors
bipartite, split NP-hard [Golumbic, Hirst, Lewenstein. 2001]
threshold, cacti, block linear-time solvable
Bipartite of degree ≤ 3 APX-complete [Mishra. 2011]
interval, poly time [Francis, Jacob, Jan. 2018]
proper int., bipartite perm. linear time

In this article we study the parameterized complexity of the
Uniquely Restricted Matching problem.
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Parameterized complexity in a nutshell

Idea Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established and very active area.
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Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if it can be
solved in time f (k) · |x |O(1) for some computable function f .

W[1]-hardness: strong evidence of not being FPT.
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Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′| + k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel
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Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels?

NO!

Theorem (Bodlaender, Downey, Fellows, Hermelin. 2009)
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.

Major goal in parameterized complexity:

Which FPT problems admit polynomial kernels?
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Param. comp. of Uniquely Restricted Matching

Only a few recent results about the parameterized complexity of
Uniquely Restricted Matching: [Chaudhary, Zehavi. 2025]

The problem cannot be approximated in FPT time within any
constant factor. In particular, it is W[1]-hard by the solution size.

It admits a linear kernel on planar graphs by the solution size.

Our goal: deeper analysis of the parameterized complexity of URM.
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Our results and sketch of techniques (part 1/3)
The problem is W[1]-hard by the solution size ℓ on general graphs.

[Chaudhary, Zehavi. 2025]

Can we identify relevant classes of graphs where the problem is FPT?

Theorem 1
For every line graph G, the URM problem can be solved in time
2O(ℓ) · |V (G)| when parameterized by the solution size ℓ.

This is an easy consequence of the following lemma:
Lemma
Let H be a graph and G = L(H) be the line graph of H. Then, G has a
URM of size ℓ if and only if H contains ℓ edge-disjoint paths W1, . . . , Wℓ,
each with 2 edges, such that

⋃
i∈[ℓ] Wi is a forest, and no two distinct

paths Wi and Wj (for i ̸= j) together form a K1,4.

e1 e2

e3 e4

Wi

Wj

e1 e2

e3 e4

H G = L(H)
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Our results and sketch of techniques (part 2/3)
One of the most successful structural parameters is treewidth (noted tw).

FPT algorithms in time 2O(tw) · |V (G)| were obtained for Induced
Matching, Acyclic Matching, and c-Disconnected Matching.

[Chaudhary, Zehavi. 2023]
[Lampis, Vasilakis. 2025]

Theorem 2
Uniquely Restricted Matching can be solved in O(2tw2/2 · |V (G)|)
time when parameterized by the treewidth tw of the input graph G.

A matching M in a graph G is uniquely restricted if and only if there is no
alternating cycle with respect to M in G . [Golumbic, Hirst, Lewenstein. 2001]
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Our results and sketch of techniques (part 3/3)

Another popular (strong) parameter: vertex cover number.

Acyclic Matching does not admit a polynomial kernel when
parameterized by the vertex cover number plus the size of the matching
unless NP ⊆ coNP/poly. [Chaudhary, Zehavi. 2025]

Theorem 3
Uniquely Restricted Matching does not admit a polynomial kernel
when parameterized by the vertex cover number plus the size of the
matching unless NP ⊆ coNP/poly.
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OR-cross-compositions

Useful technique for kernel lower bounds: [Bodlaender, Jansen, Kratsch. 2011]

Let L ⊆ Σ∗ be a problem and let Q ⊆ Σ∗ ×N be a parameterized problem.
We say that L OR-cross-composes into Q if there is an algorithm which,
given t instances x1, x2, . . . , xt of L, computes an instance
(x∗, k∗) ∈ Σ∗ × N of Q in time polynomial in Σt

i=1|xi | such that:

1 (x∗, k∗) ∈ Q ⇔ xi ∈ L for some i ∈ [t],
2 k⋆ is bounded by a polynomial in maxt

i=1 |xi | + log t.

Theorem (Bodlaender, Jansen, Kratsch. 2011)
If some problem L is NP-hard (under Karp reduction) and there exists an
OR-cross-composition from L into some parameterized problem Q, then
there is no polynomial kernel for Q unless NP ⊆ coNP/poly.
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Reduction: OR-cross-composition from Exact-3-Cover (NP-hard):

Exact-3-Cover:
Instance: A set U with |U| = 3c, where c ∈ N, and a collection

X of 3-element subsets of U .
Question: Does there exist a subcollection X ′ ⊆ X such that every element

of U appears in exactly one member of X ′?

qj rj

pj sj

wja

w′
ja

qi ri

pi si

wia

w′
ia

va v′a

u′aua

X

y

x1 xt
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Further research

Theorem 2
Uniquely Restricted Matching can be solved in O(2tw2/2 · |V (G)|)
time when parameterized by the treewidth tw of the input graph G.

1 Can we get running time 2O(tw) · |V (G)|?

2 Investigate cliquewidth as the parameter, recently studied for
Induced Matching and Acyclic Matching. [Lampis, Vasilakis. 2025]

3 Study below-guarantee parameters of the form UB − ℓ, where UB is
an upper bound on the uniquely restricted matching number.
Explored for Induced Matching and Acyclic Matching.

[Koana. 2023]
[Chaudhary, Zehavi. 2025]
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Gràcies!
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