
Finding subdigraphs in digraphs
of bounded directed treewidth

Raul Lopes
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Algorithmen und Komplexität, Technische Univ. Hamburg, Germany

Ignasi Sau
LIRMM, Université de Montpellier, CNRS, Montpellier, France

LAGOS 2025, Buenos Aires, Argentina

1

Undirected vs directed treewidth

Treewidth of undirected graphs: invariant that measures the structural
similarity of a graph to a forest.

[Bertelè, Brioschi. 1972]
[Halin. 1976]

[Arnborg, Proskurowski. 1984]
[Robertson, Seymour. 1984]

Treewidth of directed graphs: invariant that measures the structural
similarity of a digraph to a DAG.

[Johnson, Robertson, Seymour, Thomas. 2001]

2

Undirected vs directed treewidth

Treewidth of undirected graphs: invariant that measures the structural
similarity of a graph to a forest.

[Bertelè, Brioschi. 1972]
[Halin. 1976]

[Arnborg, Proskurowski. 1984]
[Robertson, Seymour. 1984]

Treewidth of directed graphs: invariant that measures the structural
similarity of a digraph to a DAG.

[Johnson, Robertson, Seymour, Thomas. 2001]

2

Preliminaries: guarded sets

Let D be a digraph, Z ⊆ V (D), and S ⊆ V (D) \ Z .

We say that S is Z -guarded if there is no directed walk in D \ Z with first
and last vertices in S that uses a vertex of D \ (Z ∪ S).

V (D) \ (Z ∪ S)

S

Z

u v

S is w -guarded if S is X -guarded by some X ⊆ V (D) with |X | ≤ w .

3

Preliminaries: guarded sets
Let D be a digraph, Z ⊆ V (D), and S ⊆ V (D) \ Z .

We say that S is Z -guarded if there is no directed walk in D \ Z with first
and last vertices in S that uses a vertex of D \ (Z ∪ S).

V (D) \ (Z ∪ S)

S

Z

u v

S is w -guarded if S is X -guarded by some X ⊆ V (D) with |X | ≤ w .

3

Preliminaries: guarded sets
Let D be a digraph, Z ⊆ V (D), and S ⊆ V (D) \ Z .

We say that S is Z -guarded if there is no directed walk in D \ Z with first
and last vertices in S that uses a vertex of D \ (Z ∪ S).

V (D) \ (Z ∪ S)

S

Z

u v

S is w -guarded if S is X -guarded by some X ⊆ V (D) with |X | ≤ w .
3

Directed treewidth (“distance to a DAG”)

a
a

b
b

c
c

d
d

e
e

f
f

g
g

aW1

b,c

W2
d,e

W3

f,g

W4

Partition V (D) into non-empty bags {W1, W2, W3, W4},
corresponding to the nodes of an out-arborescence T .
For every arc e ∈ E (T): set Xe ⊆ V (D) that guards the subdigraph
defined by its descendants (these sets may be empty or intersect)
{b} guards {d , e}

No path starting and ending in {d , e} using vertices from the other
side of the guard (=V (D) \ {d , e}) in D \ {b}.

Width = size of largest set of (bag ∪ adjacent guards) −1 .
= 2 in the example.

4

Directed treewidth (“distance to a DAG”)

a
a

b
b

c
c

d
d

e
e

f
f

g
g

aW1

b,c

W2
d,e

W3

f,g

W4

Partition V (D) into non-empty bags {W1, W2, W3, W4},
corresponding to the nodes of an out-arborescence T .

For every arc e ∈ E (T): set Xe ⊆ V (D) that guards the subdigraph
defined by its descendants (these sets may be empty or intersect)
{b} guards {d , e}

No path starting and ending in {d , e} using vertices from the other
side of the guard (=V (D) \ {d , e}) in D \ {b}.

Width = size of largest set of (bag ∪ adjacent guards) −1 .
= 2 in the example.

4

Directed treewidth (“distance to a DAG”)

a
a

b
b

c
c

d
d

e
e

f
f

g
g

aW1

b,c

W2
d,e

W3

f,g

W4

b, c

b c

Partition V (D) into non-empty bags {W1, W2, W3, W4},
corresponding to the nodes of an out-arborescence T .
For every arc e ∈ E (T): set Xe ⊆ V (D) that guards the subdigraph
defined by its descendants (these sets may be empty or intersect)

{b} guards {d , e}

No path starting and ending in {d , e} using vertices from the other
side of the guard (=V (D) \ {d , e}) in D \ {b}.

Width = size of largest set of (bag ∪ adjacent guards) −1 .
= 2 in the example.

4

Directed treewidth (“distance to a DAG”)

a
a

b
b

c
c

d
d

e
e

f
f

g
g

aW1

b,c

W2
f,g

W4

d,e

W3

b, c

b c

Partition V (D) into non-empty bags {W1, W2, W3, W4},
corresponding to the nodes of an out-arborescence T .
For every arc e ∈ E (T): set Xe ⊆ V (D) that guards the subdigraph
defined by its descendants (these sets may be empty or intersect)
{b} guards {d , e}.

No path starting and ending in {d , e} using vertices from the other
side of the guard (=V (D) \ {d , e}) in D \ {b}.

Width = size of largest set of (bag ∪ adjacent guards) −1 .
= 2 in the example.

4

Directed treewidth (“distance to a DAG”)

a
a

b
b

c
c

d
d

e
e

f
f

g
g

aW1

b,c

W2
d,e

W3

f,g

W4

b, c

b c

Partition V (D) into non-empty bags {W1, W2, W3, W4},
corresponding to the nodes of an out-arborescence T .
For every arc e ∈ E (T): set Xe ⊆ V (D) that guards the subdigraph
defined by its descendants (these sets may be empty or intersect)
{b} guards {d , e}, {b, c} guards V (D) \ {a}.

No path starting and ending in {d , e} using vertices from the other
side of the guard (=V (D) \ {d , e}) in D \ {b}.

Width = size of largest set of (bag ∪ adjacent guards) −1 .
= 2 in the example.

4

Directed treewidth (“distance to a DAG”)

a
a

b
b

c
c

d
d

e
e

f
f

g
g

aW1

b,c

W2
d,e

W3

f,g

W4

b, c

b c

Partition V (D) into non-empty bags {W1, W2, W3, W4},
corresponding to the nodes of an out-arborescence T .
For every arc e ∈ E (T): set Xe ⊆ V (D) that guards the subdigraph
defined by its descendants (these sets may be empty or intersect)
{b} guards {d , e}, {b, c} guards V (D) \ {a}.

No path starting and ending in {d , e} using vertices from the other
side of the guard (=V (D) \ {d , e}) in D \ {b}.

Width = size of largest set of (bag ∪ adjacent guards) −1 .
= 2 in the example. 4

More preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

XP problem: solvable in time f (k) · ng(k).

Example: O(nk).

FPT problem: solvable in time f (k) · nc for an absolute constant c.

Example: O(2k · n2).

W[i]-hard problem, for i ≥ 1: strong evidence that it is not FPT.

para-NP-hard problem: NP-hard for a fixed value of the parameter.

5

More preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

XP problem: solvable in time f (k) · ng(k).

Example: O(nk).

FPT problem: solvable in time f (k) · nc for an absolute constant c.

Example: O(2k · n2).

W[i]-hard problem, for i ≥ 1: strong evidence that it is not FPT.

para-NP-hard problem: NP-hard for a fixed value of the parameter.

5

More preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

XP problem: solvable in time f (k) · ng(k).

Example: O(nk).

FPT problem: solvable in time f (k) · nc for an absolute constant c.

Example: O(2k · n2).

W[i]-hard problem, for i ≥ 1: strong evidence that it is not FPT.

para-NP-hard problem: NP-hard for a fixed value of the parameter.

5

More preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

XP problem: solvable in time f (k) · ng(k).

Example: O(nk).

FPT problem: solvable in time f (k) · nc for an absolute constant c.

Example: O(2k · n2).

W[i]-hard problem, for i ≥ 1: strong evidence that it is not FPT.

para-NP-hard problem: NP-hard for a fixed value of the parameter.

5

More preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

XP problem: solvable in time f (k) · ng(k).

Example: O(nk).

FPT problem: solvable in time f (k) · nc for an absolute constant c.

Example: O(2k · n2).

W[i]-hard problem, for i ≥ 1: strong evidence that it is not FPT.

para-NP-hard problem: NP-hard for a fixed value of the parameter.

5

More preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

XP problem: solvable in time f (k) · ng(k).

Example: O(nk).

FPT problem: solvable in time f (k) · nc for an absolute constant c.

Example: O(2k · n2).

W[i]-hard problem, for i ≥ 1: strong evidence that it is not FPT.

para-NP-hard problem: NP-hard for a fixed value of the parameter.

5

More preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

XP problem: solvable in time f (k) · ng(k).

Example: O(nk).

FPT problem: solvable in time f (k) · nc for an absolute constant c.

Example: O(2k · n2).

W[i]-hard problem, for i ≥ 1: strong evidence that it is not FPT.

para-NP-hard problem: NP-hard for a fixed value of the parameter.

5

More preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

XP problem: solvable in time f (k) · ng(k).

Example: O(nk).

FPT problem: solvable in time f (k) · nc for an absolute constant c.

Example: O(2k · n2).

W[i]-hard problem, for i ≥ 1: strong evidence that it is not FPT.

para-NP-hard problem: NP-hard for a fixed value of the parameter.

5

Back to undirected and directed treewidth

How can we exploit algorithmically bounded (un)directed treewidth?

Undirected treewidth rules!

Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw. (Also for optimizing)

Hamiltonian Path, Max Cut, Max Independent Set, Min
Dominating Set, Feedback Vertex Set, 3-Coloring, Longest Path...

What about directed treewidth (dtw)?

Directed Hamiltonian Path is W [2]-hard parameterized by dtw.
Max Directed Cut is NP-hard restricted to DAGs (dtw = 0).

[Lampis, Kaouri, Mitsou. 2011]

6

Back to undirected and directed treewidth

How can we exploit algorithmically bounded (un)directed treewidth?

Undirected treewidth rules!

Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

(Also for optimizing)

Hamiltonian Path, Max Cut, Max Independent Set, Min
Dominating Set, Feedback Vertex Set, 3-Coloring, Longest Path...

What about directed treewidth (dtw)?

Directed Hamiltonian Path is W [2]-hard parameterized by dtw.
Max Directed Cut is NP-hard restricted to DAGs (dtw = 0).

[Lampis, Kaouri, Mitsou. 2011]

6

Back to undirected and directed treewidth

How can we exploit algorithmically bounded (un)directed treewidth?

Undirected treewidth rules!

Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw. (Also for optimizing)

Hamiltonian Path, Max Cut, Max Independent Set, Min
Dominating Set, Feedback Vertex Set, 3-Coloring, Longest Path...

What about directed treewidth (dtw)?

Directed Hamiltonian Path is W [2]-hard parameterized by dtw.
Max Directed Cut is NP-hard restricted to DAGs (dtw = 0).

[Lampis, Kaouri, Mitsou. 2011]

6

Back to undirected and directed treewidth

How can we exploit algorithmically bounded (un)directed treewidth?

Undirected treewidth rules!

Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw. (Also for optimizing)

Hamiltonian Path, Max Cut, Max Independent Set, Min
Dominating Set, Feedback Vertex Set, 3-Coloring, Longest Path...

What about directed treewidth (dtw)?

Directed Hamiltonian Path is W [2]-hard parameterized by dtw.
Max Directed Cut is NP-hard restricted to DAGs (dtw = 0).

[Lampis, Kaouri, Mitsou. 2011]

6

Back to undirected and directed treewidth

How can we exploit algorithmically bounded (un)directed treewidth?

Undirected treewidth rules!

Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw. (Also for optimizing)

Hamiltonian Path, Max Cut, Max Independent Set, Min
Dominating Set, Feedback Vertex Set, 3-Coloring, Longest Path...

What about directed treewidth (dtw)?

Directed Hamiltonian Path is W [2]-hard parameterized by dtw.
Max Directed Cut is NP-hard restricted to DAGs (dtw = 0).

[Lampis, Kaouri, Mitsou. 2011]

6

Back to undirected and directed treewidth

How can we exploit algorithmically bounded (un)directed treewidth?

Undirected treewidth rules!

Theorem (Courcelle. 1990)
Every problem expressible in MSO2 can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw. (Also for optimizing)

Hamiltonian Path, Max Cut, Max Independent Set, Min
Dominating Set, Feedback Vertex Set, 3-Coloring, Longest Path...

What about directed treewidth (dtw)?

Directed Hamiltonian Path is W [2]-hard parameterized by dtw.
Max Directed Cut is NP-hard restricted to DAGs (dtw = 0).

[Lampis, Kaouri, Mitsou. 2011]
6

Only bad news for directed treewidth?

1 Directed Hamiltonian Path and Directed k-Disjoint Paths
can be solved, respectively, in time nO(dtw) and nO(dtw+k).

[Johnson, Robertson, Seymour, Thomas. 2001]

Fix an integer k and an MSO2 formula φ, and let H be a digraph s.t.:

H consists of the union of at most k directed paths.
H satisfies the property described by φ.

2 Then, deciding whether a digraph D on n vertices and directed
treewidth dtw contains H as a subdigraph can be solved in time nf (k,φ,dtw).

[de Oliveira Oliveira. 2016]

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

7

Only bad news for directed treewidth? No!

1 Directed Hamiltonian Path and Directed k-Disjoint Paths
can be solved, respectively, in time nO(dtw) and nO(dtw+k).

[Johnson, Robertson, Seymour, Thomas. 2001]

Fix an integer k and an MSO2 formula φ, and let H be a digraph s.t.:

H consists of the union of at most k directed paths.
H satisfies the property described by φ.

2 Then, deciding whether a digraph D on n vertices and directed
treewidth dtw contains H as a subdigraph can be solved in time nf (k,φ,dtw).

[de Oliveira Oliveira. 2016]

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

7

Only bad news for directed treewidth? No!

1 Directed Hamiltonian Path and Directed k-Disjoint Paths
can be solved, respectively, in time nO(dtw) and nO(dtw+k).

[Johnson, Robertson, Seymour, Thomas. 2001]

Fix an integer k and an MSO2 formula φ, and let H be a digraph s.t.:

H consists of the union of at most k directed paths.
H satisfies the property described by φ.

2 Then, deciding whether a digraph D on n vertices and directed
treewidth dtw contains H as a subdigraph can be solved in time nf (k,φ,dtw).

[de Oliveira Oliveira. 2016]

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

7

Only bad news for directed treewidth? No!

1 Directed Hamiltonian Path and Directed k-Disjoint Paths
can be solved, respectively, in time nO(dtw) and nO(dtw+k).

[Johnson, Robertson, Seymour, Thomas. 2001]

Fix an integer k and an MSO2 formula φ, and let H be a digraph s.t.:

H consists of the union of at most k directed paths.
H satisfies the property described by φ.

2 Then, deciding whether a digraph D on n vertices and directed
treewidth dtw contains H as a subdigraph can be solved in time nf (k,φ,dtw).

[de Oliveira Oliveira. 2016]

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

7

Only bad news for directed treewidth? No!

1 Directed Hamiltonian Path and Directed k-Disjoint Paths
can be solved, respectively, in time nO(dtw) and nO(dtw+k).

[Johnson, Robertson, Seymour, Thomas. 2001]

Fix an integer k and an MSO2 formula φ, and let H be a digraph s.t.:

H consists of the union of at most k directed paths.
H satisfies the property described by φ.

2 Then, deciding whether a digraph D on n vertices and directed
treewidth dtw contains H as a subdigraph can be solved in time nf (k,φ,dtw).

[de Oliveira Oliveira. 2016]

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

7

Only bad news for directed treewidth? No!

1 Directed Hamiltonian Path and Directed k-Disjoint Paths
can be solved, respectively, in time nO(dtw) and nO(dtw+k).

[Johnson, Robertson, Seymour, Thomas. 2001]

Fix an integer k and an MSO2 formula φ, and let H be a digraph s.t.:

H consists of the union of at most k directed paths.
H satisfies the property described by φ.

2 Then, deciding whether a digraph D on n vertices and directed
treewidth dtw contains H as a subdigraph can be solved in time nf (k,φ,dtw).

[de Oliveira Oliveira. 2016]

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

7

Our results

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?

If we take |V (H)|, the problem is XP for every H: time |V (D)|O(|V (H)|).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

If H is a digraph consisting of the union of ≤ k digraphs from A.

Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, only for A = {paths, stars}.

8

Our results

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”?

XP. Ok, but for which parameter?

If we take |V (H)|, the problem is XP for every H: time |V (D)|O(|V (H)|).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

If H is a digraph consisting of the union of ≤ k digraphs from A.

Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, only for A = {paths, stars}.

8

Our results

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP.

Ok, but for which parameter?

If we take |V (H)|, the problem is XP for every H: time |V (D)|O(|V (H)|).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

If H is a digraph consisting of the union of ≤ k digraphs from A.

Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, only for A = {paths, stars}.

8

Our results

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?

If we take |V (H)|, the problem is XP for every H: time |V (D)|O(|V (H)|).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

If H is a digraph consisting of the union of ≤ k digraphs from A.

Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, only for A = {paths, stars}.

8

Our results

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?

If we take |V (H)|, the problem is XP for every H: time |V (D)|O(|V (H)|).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

If H is a digraph consisting of the union of ≤ k digraphs from A.

Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, only for A = {paths, stars}.

8

Our results

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?

If we take |V (H)|, the problem is XP for every H: time |V (D)|O(|V (H)|).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

If H is a digraph consisting of the union of ≤ k digraphs from A.

Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, only for A = {paths, stars}.

8

Our results

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?

If we take |V (H)|, the problem is XP for every H: time |V (D)|O(|V (H)|).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

If H is a digraph consisting of the union of ≤ k digraphs from A.

Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, only for A = {paths, stars}.

8

Our results

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?

If we take |V (H)|, the problem is XP for every H: time |V (D)|O(|V (H)|).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

If H is a digraph consisting of the union of ≤ k digraphs from A.

Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, only for A = {paths, stars}.

8

Our results (informally)

Our question Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?

If we take |V (H)|, the problem is XP for every H: time |V (D)|O(|V (H)|).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

If H is a digraph consisting of the union of ≤ k digraphs from A.

Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, only for A = {paths, stars}.

8

Our results (more formally)

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

u1 u2 u3 u4 u5

u6u7u8u9

s

9

Our results (more formally)

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars.

Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

u1 u2 u3 u4 u5

u6u7u8u9

s

9

Our results (more formally)

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

u1 u2 u3 u4 u5

u6u7u8u9

s

9

Our results (more formally)

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

What about digraphs H that cannot be covered by few paths or stars?

For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

u1 u2 u3 u4 u5

u6u7u8u9

s

9

Our results (more formally)

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

u1 u2 u3 u4 u5

u6u7u8u9

s

9

Our results (more formally)

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

u1 u2 u3 u4 u5

u6u7u8u9

s

9

Our results (more formally)

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

u1 u2 u3 u4 u5

u6u7u8u9

s

9

Our results (more formally)

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

u1 u2 u3 u4 u5

u6u7u8u9

s

9

Our results (more formally)

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

u1 u2 u3 u4 u5

u6u7u8u9

s

9

Our techniques

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

We generalize the dynamic programming approach to solve this problem:

Directed k-Disjoint Paths can be solved in time nO(k+dtw).
[Johnson, Robertson, Seymour, Thomas. 2001]

But now we also have stars!

s1 s3s2 s4

10

Our techniques: XP algorithm

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

We generalize the dynamic programming approach to solve this problem:

Directed k-Disjoint Paths can be solved in time nO(k+dtw).
[Johnson, Robertson, Seymour, Thomas. 2001]

But now we also have stars!

s1 s3s2 s4

10

Our techniques: XP algorithm

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

We generalize the dynamic programming approach to solve this problem:

Directed k-Disjoint Paths can be solved in time nO(k+dtw).
[Johnson, Robertson, Seymour, Thomas. 2001]

But now we also have stars!

s1 s3s2 s4

10

Our techniques: XP algorithm

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

We generalize the dynamic programming approach to solve this problem:

Directed k-Disjoint Paths can be solved in time nO(k+dtw).
[Johnson, Robertson, Seymour, Thomas. 2001]

But now we also have stars!

s1 s3s2 s4

10

Our techniques: XP algorithm

Theorem
Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time nO(k+dtw).

We generalize the dynamic programming approach to solve this problem:

Directed k-Disjoint Paths can be solved in time nO(k+dtw).
[Johnson, Robertson, Seymour, Thomas. 2001]

But now we also have stars!

s1 s3s2 s4

10

Our techniques: XP algorithm

s1 s3s2 s4

If we had only stars: guess centers (XP time), and reduce the problem
to an system of integer inequations (relating the sizes of the desired
stars to the sizes of the neighborhoods of the centers), which can be
solved in FPT time in the number of variables. [Lenstra. 1983]

Generalized version: for every candidate center si ∈ V (D), we guess a
number allowed-for-stars(si) (in XP time), representing how many
vertices from N(si) we want to use as leaves of all the stars.

Finally, we solve a generalized version of Directed k-Disjoint
Paths where, in addition to the pairs of terminals, we are given, for
each terminal si a set Xsi ⊆ N(si), with |Xsi | = allowed-for-stars(si),
and we want to route the paths avoiding these sets.

11

Our techniques: XP algorithm

s1 s3s2 s4

If we had only stars: guess centers (XP time), and reduce the problem
to an system of integer inequations (relating the sizes of the desired
stars to the sizes of the neighborhoods of the centers),

which can be
solved in FPT time in the number of variables. [Lenstra. 1983]

Generalized version: for every candidate center si ∈ V (D), we guess a
number allowed-for-stars(si) (in XP time), representing how many
vertices from N(si) we want to use as leaves of all the stars.

Finally, we solve a generalized version of Directed k-Disjoint
Paths where, in addition to the pairs of terminals, we are given, for
each terminal si a set Xsi ⊆ N(si), with |Xsi | = allowed-for-stars(si),
and we want to route the paths avoiding these sets.

11

Our techniques: XP algorithm

s1 s3s2 s4

If we had only stars: guess centers (XP time), and reduce the problem
to an system of integer inequations (relating the sizes of the desired
stars to the sizes of the neighborhoods of the centers), which can be
solved in FPT time in the number of variables. [Lenstra. 1983]

Generalized version: for every candidate center si ∈ V (D), we guess a
number allowed-for-stars(si) (in XP time), representing how many
vertices from N(si) we want to use as leaves of all the stars.

Finally, we solve a generalized version of Directed k-Disjoint
Paths where, in addition to the pairs of terminals, we are given, for
each terminal si a set Xsi ⊆ N(si), with |Xsi | = allowed-for-stars(si),
and we want to route the paths avoiding these sets.

11

Our techniques: XP algorithm

s1 s3s2 s4

If we had only stars: guess centers (XP time), and reduce the problem
to an system of integer inequations (relating the sizes of the desired
stars to the sizes of the neighborhoods of the centers), which can be
solved in FPT time in the number of variables. [Lenstra. 1983]

Generalized version: for every candidate center si ∈ V (D), we guess a
number allowed-for-stars(si) (in XP time), representing how many
vertices from N(si) we want to use as leaves of all the stars.

Finally, we solve a generalized version of Directed k-Disjoint
Paths where, in addition to the pairs of terminals, we are given, for
each terminal si a set Xsi ⊆ N(si), with |Xsi | = allowed-for-stars(si),
and we want to route the paths avoiding these sets.

11

Our techniques: XP algorithm

s1 s3s2 s4

If we had only stars: guess centers (XP time), and reduce the problem
to an system of integer inequations (relating the sizes of the desired
stars to the sizes of the neighborhoods of the centers), which can be
solved in FPT time in the number of variables. [Lenstra. 1983]

Generalized version: for every candidate center si ∈ V (D), we guess a
number allowed-for-stars(si) (in XP time), representing how many
vertices from N(si) we want to use as leaves of all the stars.

Finally, we solve a generalized version of Directed k-Disjoint
Paths where, in addition to the pairs of terminals, we are given, for
each terminal si a set Xsi ⊆ N(si), with |Xsi | = allowed-for-stars(si),
and we want to route the paths avoiding these sets.

11

Our techniques: hardness results

We present several (more or less involved) NP-hardness reductions:

u1 u2 u3 u4 u5

u6u7u8u9

s

12

Further research

For which collections A of allowed digraphs the following holds?
If H is a digraph consisting of the union of ≤ k digraphs from A.
Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, “only” for A = {paths, stars}.

... but A = {matchings} is even polynomial for k = 1! (not for k = 2)

hard

easy ????

Strong connection with notoriously open problem: Exact Matching.

13

Further research
For which collections A of allowed digraphs the following holds?

If H is a digraph consisting of the union of ≤ k digraphs from A.
Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, “only” for A = {paths, stars}.

... but A = {matchings} is even polynomial for k = 1! (not for k = 2)

hard

easy ????

Strong connection with notoriously open problem: Exact Matching.

13

Further research
For which collections A of allowed digraphs the following holds?

If H is a digraph consisting of the union of ≤ k digraphs from A.
Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, “only” for A = {paths, stars}.

... but A = {matchings} is even polynomial for k = 1! (not for k = 2)

hard

easy ????

Strong connection with notoriously open problem: Exact Matching.

13

Further research
For which collections A of allowed digraphs the following holds?

If H is a digraph consisting of the union of ≤ k digraphs from A.
Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, “only” for A = {paths, stars}.

... but A = {matchings} is even polynomial for k = 1!

(not for k = 2)

hard

easy ????

Strong connection with notoriously open problem: Exact Matching.

13

Further research
For which collections A of allowed digraphs the following holds?

If H is a digraph consisting of the union of ≤ k digraphs from A.
Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, “only” for A = {paths, stars}.

... but A = {matchings} is even polynomial for k = 1! (not for k = 2)

hard

easy ????

Strong connection with notoriously open problem: Exact Matching.

13

Further research
For which collections A of allowed digraphs the following holds?

If H is a digraph consisting of the union of ≤ k digraphs from A.
Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, “only” for A = {paths, stars}.

... but A = {matchings} is even polynomial for k = 1! (not for k = 2)

hard

easy ????

Strong connection with notoriously open problem: Exact Matching.

13

Further research
For which collections A of allowed digraphs the following holds?

If H is a digraph consisting of the union of ≤ k digraphs from A.
Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, “only” for A = {paths, stars}.

... but A = {matchings} is even polynomial for k = 1! (not for k = 2)

hard

easy

????

Strong connection with notoriously open problem: Exact Matching.

13

Further research
For which collections A of allowed digraphs the following holds?

If H is a digraph consisting of the union of ≤ k digraphs from A.
Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, “only” for A = {paths, stars}.

... but A = {matchings} is even polynomial for k = 1! (not for k = 2)

hard

easy ????

Strong connection with notoriously open problem: Exact Matching.

13

Further research
For which collections A of allowed digraphs the following holds?

If H is a digraph consisting of the union of ≤ k digraphs from A.
Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf (k,dtw).

Our results Essentially, “only” for A = {paths, stars}.

... but A = {matchings} is even polynomial for k = 1! (not for k = 2)

hard

easy ????

Strong connection with notoriously open problem: Exact Matching.
13

Gràcies!

14

