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S is w-guarded if S is X-guarded by some X C V(D) with |X| < w.
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@ Partition V(D) into non-empty bags {W;, W, W5, Wy},
corresponding to the nodes of an out-arborescence T.
@ For every arc e € E(T): set X. C V(D) that guards the subdigraph
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e No path starting and ending in {d, e} using vertices from the other
side of the guard (=V/(D)\ {d,e})in D\ {b}.
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@ Partition V(D) into non-empty bags {W;, W, W5, Wy},
corresponding to the nodes of an out-arborescence T.
@ For every arc e € E(T): set X. C V(D) that guards the subdigraph
defined by its descendants (these sets may be empty or intersect)
e {b} guards {d, e}, {b,c} guards V(D) \ {a}.
e No path starting and ending in {d, e} using vertices from the other
side of the guard (=V/(D) \ {d,e})in D\ {b}.
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@ Partition V(D) into non-empty bags {W;, W, W5, Wy},
corresponding to the nodes of an out-arborescence T.
@ For every arc e € E(T): set X. C V(D) that guards the subdigraph
defined by its descendants (these sets may be empty or intersect)
e {b} guards {d, e}, {b,c} guards V(D) \ {a}.
e No path starting and ending in {d, e} using vertices from the other
side of the guard (=V/(D)\ {d,e})in D\ {b}.

o Width = ‘size of largest set of (bag U adjacent guards) —1 ‘

e = 2 in the example.
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More preliminaries: parameterized complexity in one slide
Instance of a parameterized problem: total size n, parameter k.

@ XP problem: solvable in time f(k) - n&(¥).

o Example: O(n%).

@ FPT problem: solvable in time f(k) - n© for an absolute constant c.

o Example: O(2K - n?).
@ WIJi]-hard problem, for i > 1: strong evidence that it is not FPT.

@ para-NP-hard problem: NP-hard for a fixed value of the parameter.
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Back to undirected and directed treewidth

How can we exploit algorithmically bounded (un)directed treewidth?

Undirected treewidth rules!

Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw. (Also for optimizing)

HAMILTONIAN PATH, MAX CuUT, MAX INDEPENDENT SET, MIN
DOMINATING SET, FEEDBACK VERTEX SET, 3-COLORING, LONGEST PATH...

What about directed treewidth (dtw)?

e DIRECTED HAMILTONIAN PATH is W/[2]-hard parameterized by dtw.
e Max DIRECTED CUT is NP-hard restricted to DAGs (dtw = 0).
[Lampis, Kaouri, Mitsou. 2011]
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o If we had only stars: guess centers (XP time), and reduce the problem
to an system of integer inequations (relating the sizes of the desired
stars to the sizes of the neighborhoods of the centers), which can be
solved in FPT time in the number of variables. [Lenstra. 1983]

o Generalized version: for every candidate center s; € V/(D), we guess a
number allowed-for-stars(s;) (in XP time), representing how many
vertices from /N(s;) we want to use as leaves of all the stars.

e Finally, we solve a generalized version of DIRECTED k-DISJOINT
PATHS where, in addition to the pairs of terminals, we are given, for
each terminal s; a set X;, C N(s;), with | X,,| = allowed-for-stars(s;),
and we want to route the paths avoiding these sets.

11
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We present several (more or less involved) NP-hardness reductions:
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Further research

For which collections A of allowed digraphs the following holds?

e If H is a digraph consisting of the union of < k digraphs from A.
@ Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf(kdtw),

Essentially, “only” for A = {paths, stars}.

. but A = {matchings} is even polynomial for k = 1! (not for k = 2)

Strong connection with notoriously open problem: EXACT MATCHING.
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