Finding subdigraphs in digraphs
of bounded directed treewidth

Raul Lopes
LIRMM, Université de Montpellier, CNRS, Montpellier, France
Algorithmen und Komplexitat, Technische Univ. Hamburg, Germany

Ignasi Sau
LIRMM, Université de Montpellier, CNRS, Montpellier, France

LAGOS 2025, Buenos Aires, Argentina

@ OLIRMM

Undirected vs directed treewidth

Treewidth of undirected graphs: invariant that measures the structural

similarity of a graph to a forest.

[Bertelé, Brioschi.
[Halin.
[Arnborg, Proskurowski.

[Robertson, Seymour.

1972
1976
1984

]
]
]
1984]

Undirected vs directed treewidth

Treewidth of undirected graphs: invariant that measures the structural

similarity of a graph to a forest.

[Bertelé, Brioschi.
[Halin.
[Arnborg, Proskurowski.

[Robertson, Seymour.

Treewidth of directed graphs: invariant that measures the structural

similarity of a digraph to a DAG.

[Johnson, Robertson, Seymour, Thomas.

1972]
1976]
1984]
1984]

2001]

Preliminaries: guarded sets

Preliminaries: guarded sets

Let D be a digraph, Z C V(D), and S C V(D) \ Z.

We say that S is Z-guarded if there is no directed walk in D\ Z with first
and last vertices in S that uses a vertex of D\ (Z U S).

V(D)\ (ZUS)

= G

NN

S

Preliminaries: guarded sets

Let D be a digraph, Z C V(D), and S C V(D) \ Z.

We say that S is Z-guarded if there is no directed walk in D\ Z with first
and last vertices in S that uses a vertex of D\ (Z U S).

V(D)\ (ZUS)

= G

NN

S

S is w-guarded if S is X-guarded by some X C V(D) with |X| < w.

Directed treewidth (“distance to a DAG")

N

Ot——r 0

VANV

Directed treewidth (“distance to a DAG")

"

a
[

o N
VAW

@ Partition V(D) into non-empty bags {W;, W, W5, Wy},
corresponding to the nodes of an out-arborescence T.

Directed treewidth (“distance to a DAG")

a
[

/\ /\

@ Partition V(D) into non-empty bags {W;, W, W5, Wy},
corresponding to the nodes of an out-arborescence T.

@ For every arc e € E(T): set X. C V(D) that guards the subdigraph
defined by its descendants (these sets may be empty or intersect)

Directed treewidth (“distance to a DAG")

a
[)
e
[]
/ N\ o e
Toe'e® fdeief . (6]
W,

@ Partition V(D) into non-empty bags {W;, W, W5, Wy},
corresponding to the nodes of an out-arborescence T.
@ For every arc e € E(T): set X. C V(D) that guards the subdigraph
defined by its descendants (these sets may be empty or intersect)
e {b} guards {d, e}.
e No path starting and ending in {d, e} using vertices from the other
side of the guard (=V/(D)\ {d,e})in D\ {b}.

Directed treewidth (“distance to a DAG")

Wi (2)

[3%

Ws W,
do«—»oe fo«—»og . 5] .
W,

@ Partition V(D) into non-empty bags {W;, W, W5, Wy},
corresponding to the nodes of an out-arborescence T.
@ For every arc e € E(T): set X. C V(D) that guards the subdigraph
defined by its descendants (these sets may be empty or intersect)
e {b} guards {d, e}, {b,c} guards V(D) \ {a}.
e No path starting and ending in {d, e} using vertices from the other
side of the guard (=V/(D) \ {d,e})in D\ {b}.

Directed treewidth (“distance to a DAG")

a
[

/\ /\ /@

@ Partition V(D) into non-empty bags {W;, W, W5, Wy},
corresponding to the nodes of an out-arborescence T.
@ For every arc e € E(T): set X. C V(D) that guards the subdigraph
defined by its descendants (these sets may be empty or intersect)
e {b} guards {d, e}, {b,c} guards V(D) \ {a}.
e No path starting and ending in {d, e} using vertices from the other
side of the guard (=V/(D)\ {d,e})in D\ {b}.

o Width = ‘size of largest set of (bag U adjacent guards) —1 ‘

e = 2 in the example.

More preliminaries: parameterized complexity in one slide

More preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

More preliminaries: parameterized complexity in one slide
Instance of a parameterized problem: total size n, parameter k.

@ XP problem: solvable in time f(k) - n&(¥).

More preliminaries: parameterized complexity in one slide
Instance of a parameterized problem: total size n, parameter k.

@ XP problem: solvable in time f(k) - n&(¥).

o Example: O(n%).

More preliminaries: parameterized complexity in one slide
Instance of a parameterized problem: total size n, parameter k.

@ XP problem: solvable in time f(k) - n&(¥).

o Example: O(n%).

@ FPT problem: solvable in time f(k) - n© for an absolute constant c.

More preliminaries: parameterized complexity in one slide
Instance of a parameterized problem: total size n, parameter k.

@ XP problem: solvable in time f(k) - n&(¥).

o Example: O(n%).

@ FPT problem: solvable in time f(k) - n© for an absolute constant c.

o Example: O(2K - n?).

More preliminaries: parameterized complexity in one slide
Instance of a parameterized problem: total size n, parameter k.

@ XP problem: solvable in time f(k) - n&(¥).

o Example: O(n%).

@ FPT problem: solvable in time f(k) - n© for an absolute constant c.

o Example: O(2K - n?).

@ WIJi]-hard problem, for i > 1: strong evidence that it is not FPT.

More preliminaries: parameterized complexity in one slide
Instance of a parameterized problem: total size n, parameter k.

@ XP problem: solvable in time f(k) - n&(¥).

o Example: O(n%).

@ FPT problem: solvable in time f(k) - n© for an absolute constant c.

o Example: O(2K - n?).
@ WIJi]-hard problem, for i > 1: strong evidence that it is not FPT.

@ para-NP-hard problem: NP-hard for a fixed value of the parameter.

Back to undirected and directed treewidth

How can we exploit algorithmically bounded (un)directed treewidth?

Back to undirected and directed treewidth

How can we exploit algorithmically bounded (un)directed treewidth?

Undirected treewidth rules!

Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw.

Back to undirected and directed treewidth

How can we exploit algorithmically bounded (un)directed treewidth?

Undirected treewidth rules!

Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw. (Also for optimizing)

Back to undirected and directed treewidth
How can we exploit algorithmically bounded (un)directed treewidth?

Undirected treewidth rules!

Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw. (Also for optimizing)

HAMILTONIAN PATH, MAX CuUT, MAX INDEPENDENT SET, MIN
DOMINATING SET, FEEDBACK VERTEX SET, 3-COLORING, LONGEST PATH...

Back to undirected and directed treewidth

How can we exploit algorithmically bounded (un)directed treewidth?

Undirected treewidth rules!

Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw. (Also for optimizing)

HAMILTONIAN PATH, MAX CuUT, MAX INDEPENDENT SET, MIN
DOMINATING SET, FEEDBACK VERTEX SET, 3-COLORING, LONGEST PATH...

What about directed treewidth (dtw)?

Back to undirected and directed treewidth

How can we exploit algorithmically bounded (un)directed treewidth?

Undirected treewidth rules!

Theorem (Courcelle. 1990)

Every problem expressible in MSO» can be solved in time f(tw) - n on
graphs on n vertices and treewidth at most tw. (Also for optimizing)

HAMILTONIAN PATH, MAX CuUT, MAX INDEPENDENT SET, MIN
DOMINATING SET, FEEDBACK VERTEX SET, 3-COLORING, LONGEST PATH...

What about directed treewidth (dtw)?

e DIRECTED HAMILTONIAN PATH is W/[2]-hard parameterized by dtw.
e Max DIRECTED CUT is NP-hard restricted to DAGs (dtw = 0).
[Lampis, Kaouri, Mitsou. 2011]

Only bad news for directed treewidth?

Only bad news for directed treewidth? Nol!

DIRECTED HAMILTONIAN PATH and DIRECTED k-DISJOINT PATHS
can be solved, respectively, in time n©@(d™) and p@dtwk),

[Johnson, Robertson, Seymour, Thomas. 2001]

Only bad news for directed treewidth? Nol!

DIRECTED HAMILTONIAN PATH and DIRECTED k-DISJOINT PATHS
can be solved, respectively, in time n©@(d™W) and p@(dtwtk)

[Johnson, Robertson, Seymour, Thomas. 2001]

Fix an integer k and an MSO; formula ¢, and let H be a digraph s.t.:

Only bad news for directed treewidth? Nol!

DIRECTED HAMILTONIAN PATH and DIRECTED k-DISJOINT PATHS
can be solved, respectively, in time n©@(d™) and p@dtwk),

[Johnson, Robertson, Seymour, Thomas. 2001]

Fix an integer k and an MSO; formula ¢, and let H be a digraph s.t.:

@ H consists of the union of at most k directed paths.

@ H satisfies the property described by .

Only bad news for directed treewidth? Nol!

DIRECTED HAMILTONIAN PATH and DIRECTED k-DISJOINT PATHS
can be solved, respectively, in time n©@(d™) and p@dtwk),

[Johnson, Robertson, Seymour, Thomas. 2001]

Fix an integer k and an MSO; formula ¢, and let H be a digraph s.t.:

@ H consists of the union of at most k directed paths.

@ H satisfies the property described by .

Then, deciding whether a digraph D on n vertices and directed
treewidth dtw contains H as a subdigraph can be solved in time nf(k#:dtw),

[de Oliveira Oliveira. 2016]

Only bad news for directed treewidth? Nol!

DIRECTED HAMILTONIAN PATH and DIRECTED k-DISJOINT PATHS
can be solved, respectively, in time n©@(d™) and p@dtwk),

[Johnson, Robertson, Seymour, Thomas. 2001]

Fix an integer k and an MSO; formula ¢, and let H be a digraph s.t.:

@ H consists of the union of at most k directed paths.

@ H satisfies the property described by .

Then, deciding whether a digraph D on n vertices and directed
treewidth dtw contains H as a subdigraph can be solved in time nf(k#:dtw),

[de Oliveira Oliveira. 2016]

Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

Our results

Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

Our results

Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”?

Our results

Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP.

Our results

Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?

Our results

Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?

If we take |V/(H)|, the problem is XP for every H: time |V/(D)|UV(H)]).

Our results
Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?
If we take |V/(H)|, the problem is XP for every H: time |V/(D)|UV(H)]).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

Our results

Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?
If we take |V/(H)|, the problem is XP for every H: time |V/(D)|UV(H)]).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

e If H is a digraph consisting of the union of < k digraphs from A.

Our results

Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?
If we take |V/(H)|, the problem is XP for every H: time |V/(D)|UV(H)]).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

e If H is a digraph consisting of the union of < k digraphs from A.

@ Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf(kdtw)

Our results (informally)

Are there subdigraphs H, other than the directed paths,
that can be found efficiently in digraphs of bounded directed treewidth?

What do we mean by “efficiently”? XP. Ok, but for which parameter?

If we take |V/(H)|, the problem is XP for every H: time |V/(D)|UV(H)]).

In the spirit of the existing XP algorithms, we want to know for which
collections A of allowed digraphs the following holds:

e If H is a digraph consisting of the union of < k digraphs from A.

@ Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf(kdtw)

Essentially, only for A = {paths, stars}.

Our results (more formally)

Our results (more formally)

Let H be a digraph that consists of the union of at most k directed paths
or stars.

Our results (more formally)

Let H be a digraph that consists of the union of at most k directed paths

or stars. Then deciding if a digraph D on n vertices and directed treewidth

dtw contains H as a subdigraph can be solved in time n©(<+dtw),

Our results (more formally)

Let H be a digraph that consists of the union of at most k directed paths

or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time n©(<+dtw),

What about digraphs H that cannot be covered by few paths or stars?

Our results (more formally)

Let H be a digraph that consists of the union of at most k directed paths

or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time n©(<+dtw),

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

Our results (more formally)

Let H be a digraph that consists of the union of at most k directed paths

or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time n©(<+dtw),

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

up uz usz us Uy
*—>0+— @0 —>0<+— @

g ug uz Ue

Our results (more formally)

Let H be a digraph that consists of the union of at most k directed paths

or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time n©(<+dtw),

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

S
- /!a
up uz usz us Uy /" \
*—>0+— @0 —>0<+— @

.
~ / \
7 \ ~
o ¥ .
*—>0<+—0—>0
Uy ug uz 6

<

Our results (more formally)

Let H be a digraph that consists of the union of at most k directed paths

or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time n©(<+dtw),

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

S
]

un u> u3 m us /N
o —>0<+—— @0 —>0<+—— 0

7N\
"/ \
P VAR
v ¥ X S
*r—>0<+—0— >0
ug ug uz 6

<

Our results (more formally)

Let H be a digraph that consists of the union of at most k directed paths

or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time n©(<+dtw),

What about digraphs H that cannot be covered by few paths or stars?
For all these subdigraphs H, the problem is NP-hard on DAGs (dtw = 0):

S
]

un u> u3 m us /N
o —>0<+—— @0 —>0<+—— 0

%.\ %.\ SN %

Our techniques

10

Our techniques: XP algorithm

Let H be a digraph that consists of the union of at most k directed paths

or stars. Then deciding if a digraph D on n vertices and directed treewidth

dtw contains H as a subdigraph can be solved in time n©(k+dtw),

10

Our techniques: XP algorithm

Let H be a digraph that consists of the union of at most k directed paths

or stars. Then deciding if a digraph D on n vertices and directed treewidth

dtw contains H as a subdigraph can be solved in time n©(k+dtw),

We generalize the dynamic programming approach to solve this problem:

DIRECTED k-DISJOINT PATHS can be solved in time n@(k+dtw)
[Johnson, Robertson, Seymour, Thomas. 2001]

10

Our techniques: XP algorithm

Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time n©(k+dtw),

We generalize the dynamic programming approach to solve this problem:

DIRECTED k-DISJOINT PATHS can be solved in time n©@(k+dtw),
[Johnson, Robertson, Seymour, Thomas. 2001]

But now we also have stars!

WL AR AL

10

Our techniques: XP algorithm

Let H be a digraph that consists of the union of at most k directed paths
or stars. Then deciding if a digraph D on n vertices and directed treewidth
dtw contains H as a subdigraph can be solved in time n©(k+dtw),

We generalize the dynamic programming approach to solve this problem:

DIRECTED k-DISJOINT PATHS can be solved in time n©@(k+dtw),
[Johnson, Robertson, Seymour, Thomas. 2001]

But now we also have stars!

WL AR AL

10

Our techniques: XP algorithm

SR R

11

Our techniques: XP algorithm

SR R A

o If we had only stars: guess centers (XP time), and reduce the problem
to an system of integer inequations (relating the sizes of the desired
stars to the sizes of the neighborhoods of the centers),

11

Our techniques: XP algorithm

SR R A

o If we had only stars: guess centers (XP time), and reduce the problem
to an system of integer inequations (relating the sizes of the desired
stars to the sizes of the neighborhoods of the centers), which can be
solved in FPT time in the number of variables. [Lenstra. 1983]

11

Our techniques: XP algorithm

SR R A

o If we had only stars: guess centers (XP time), and reduce the problem
to an system of integer inequations (relating the sizes of the desired
stars to the sizes of the neighborhoods of the centers), which can be
solved in FPT time in the number of variables. [Lenstra. 1983]

o Generalized version: for every candidate center s; € V/(D), we guess a
number allowed-for-stars(s;) (in XP time), representing how many
vertices from /N(s;) we want to use as leaves of all the stars.

11

Our techniques: XP algorithm

.-

AT

o If we had only stars: guess centers (XP time), and reduce the problem
to an system of integer inequations (relating the sizes of the desired
stars to the sizes of the neighborhoods of the centers), which can be
solved in FPT time in the number of variables. [Lenstra. 1983]

o Generalized version: for every candidate center s; € V/(D), we guess a
number allowed-for-stars(s;) (in XP time), representing how many
vertices from /N(s;) we want to use as leaves of all the stars.

e Finally, we solve a generalized version of DIRECTED k-DISJOINT
PATHS where, in addition to the pairs of terminals, we are given, for
each terminal s; a set X;, C N(s;), with | X,,| = allowed-for-stars(s;),
and we want to route the paths avoiding these sets.

11

Our techniques: hardness results

We present several (more or less involved) NP-hardness reductions:

12

Further research

13

Further research

For which collections A of allowed digraphs the following holds?

e If H is a digraph consisting of the union of < k digraphs from A.
@ Then deciding if a digraph D on n vertices and directed treewidth dtw

contains H as a subdigraph can be solved in time nf(%:d),

13

Further research

For which collections A of allowed digraphs the following holds?

e If H is a digraph consisting of the union of < k digraphs from A.
@ Then deciding if a digraph D on n vertices and directed treewidth dtw

contains H as a subdigraph can be solved in time nf(%:d),

Essentially, “only” for A = {paths, stars}.

13

Further research

For which collections A of allowed digraphs the following holds?

e If H is a digraph consisting of the union of < k digraphs from A.
@ Then deciding if a digraph D on n vertices and directed treewidth dtw

contains H as a subdigraph can be solved in time nf(%:d),

Essentially, “only” for A = {paths, stars}.

... but A = {matchings} is even polynomial for k = 1!

13

Further research

For which collections A of allowed digraphs the following holds?

e If H is a digraph consisting of the union of < k digraphs from A.
@ Then deciding if a digraph D on n vertices and directed treewidth dtw

contains H as a subdigraph can be solved in time nf(%:d),

Essentially, “only” for A = {paths, stars}.

... but A = {matchings} is even polynomial for kK = 1! (not for k = 2)

13

Further research

For which collections A of allowed digraphs the following holds?

e If H is a digraph consisting of the union of < k digraphs from A.

@ Then deciding if a digraph D on n vertices and directed treewidth dtw

contains H as a subdigraph can be solved in time nf(%:d),

Essentially, “only” for A = {paths, stars}.

... but A = {matchings} is even polynomial for kK = 1! (not for k = 2)

AN AN

13

Further research

For which collections A of allowed digraphs the following holds?

e If H is a digraph consisting of the union of < k digraphs from A.
@ Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf(kdtw),

Essentially, “only” for A = {paths, stars}.

. but A = {matchings} is even polynomial for k = 1! (not for k = 2)

13

Further research

For which collections A of allowed digraphs the following holds?

e If H is a digraph consisting of the union of < k digraphs from A.
@ Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf(kdtw),

Essentially, “only” for A = {paths, stars}.

. but A = {matchings} is even polynomial for k = 1! (not for k = 2)

13

Further research

For which collections A of allowed digraphs the following holds?

e If H is a digraph consisting of the union of < k digraphs from A.
@ Then deciding if a digraph D on n vertices and directed treewidth dtw
contains H as a subdigraph can be solved in time nf(kdtw),

Essentially, “only” for A = {paths, stars}.

. but A = {matchings} is even polynomial for k = 1! (not for k = 2)

Strong connection with notoriously open problem: EXACT MATCHING.
13

Gracies!

14

