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Our setting: graph modification problems

Let C be a target graph class (planar graphs, bounded degree, ...).

Let M be a set of allowed graph modification operations
(vertex deletion, edge deletion/addition/contraction, elimination distance...).

M-MODIFICATION TO C
Input: A graph G and an integer k (“amount of modification”).
Question:  Can we transform G to a graph in C by applying

at most k operations from M?

This meta-problem has a huge expressive power.

Because we are in LoGAlg: suppose that C and M are definable in some logic(s).

Goal: We define logics L that capture huge families of modification problems.

Amount of modification: given by the size of the formula ¢ € L.

Want: algorithms in time | () - ") |, where n = |V(G)).
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Algorithmic Meta-Theorems (AMTs)

For some logic L and some class C of combinatorial structures, every
algorithmic problem T1 that is expressible in L, there is an efficient algo-
rithm solving T for inputs that belong in C.

A constructive viewpoint of AMTs:

Problem description

———— . X A
input ¢ € L M | output _ an algorithm

for the problem described by ¢

Two main logics for ¢:
e FOL: First Order Logic
> quantification on vertices or edges

e CMSOL: Counting Monadic Second Order Logic
» quantification on sets of vertices or edges
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Famous AMTs for model-checking in time FPT

Structure C A

nowhere dense / bounded twin-width [Grohe, Kreutzer, Siebertz] / [Bonnet, Kim, Thomassé, Watrigant]

bounded Hadwiger number
[Flum, Grohe]

[Courcelle] and [Borie, Parker, Tovey]

bounded treewidth and [Arnborg, Lagergren, Seese]

FOL CMSOL  Logic L

treewidth: tw(G) ~ max grid-minor of the graph G

Hadwiger number: hw(G)= max clique-minor of the graph G
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A typical problem that is not captured by the mentioned AMTs:

VERTEX DELETION TO PLANARITY
Given G and k, is there an X C V/(G)=" such that G\ X is planar?

Or, given G, k, ask whether G € Mod (),
where o, = 3x1,...,xx G\ {x1,...,x} is planar.

@ ¢, € CMSOL, but yes-instances have unbounded treewidth.

@ yes-instances have bounded Hadwiger number but ¢, & FOL.

Modulator |: X = {xt,..,xc}
Target property | minor-exclusion of H = {Ks, K33}
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.. can be solved in time f(k) - n?.
Because: For every k, the set of yes-instances is minor-closed.

... the same if the target is any minor-closed graph class G.

[Adler, Grohe, Kreutzer, SODA 2008]

[Marx and Schlotter, Algorithmica 2012]
[Kawarabayashi, FOCS 2009]

[Jansen, Lokshtanov, Saurabh, SODA 2014]
[Kociumaka and Pilipczuk, Algorithmica 2019]
[S., Stamoulis, Thilikos, ACM Trans. Alg. 2022]
[Morelle, S., Stamoulis, Thilikos, arXiv 2022]

Topological minor exclusion:

[Golovach, Stamoulis, Thilikos, SODA 2020]
[Fomin, Lokshtanov, Panolan, Saurabh, Zehavi, STOC 2020]
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Given G and k, is there an X C V(G)=F such that G\ X is planar+more?

» What if we add further (non-hereditary) conditions on top of planarity?
Such conditions might be FOL-conditions (even CMSOL-conditions)

planarity + any FOL condition:

[Fomin, Golovach, Stamoulis, Thilikos, ESA 2020]

planarity + bipartiteness:

[Fiorini, Hardy, Reed, Vetta, DAM 2008]

» What if we apply other modifications, apart from vertex removals?
Edge removal to planarity:

[Kawarabayashi and Reed, STOC 2007]

AMTs:
edge removals, edge contractions, edge additions  (to planarity)
[Fomin, Golovach, Stamoulis, Thilikos, ESA 2020]

Other local transformations  (to planarity)
[Fomin, Golovach, Thilikos, STACS 2019]
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First-Order Logic with Disjoint Paths (FOL+DP)
[Schirrmacher, Siebertz, Vigny, CSL 2022]

FPT model-checking on minor-free graphs.
[Golovach, Stamoulis, Thilikos, SODA 2023]

ELIMINATION DISTANCE to FOL+DP is FPT on minor-free graphs.

» More general modification operations do not seem to be captured...
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A-MODIFICATION TO g
Given G and k, is there an X C V/(G) such that A\(G,X) < kand G\ X € G?

» Modulator: X.
> (G, X): some (global) measure of modification.

» G: target graph class (example: planar + 3-regular).

@ Can we define successive target properties?
@ Hierarchical clustering?

@ Multi-level modification?

@ Consider different modification scenarios?

@ We may demand target conditions to be satisfied by the connected
components (or even the blocks) of G\ X (CMSOL-demand).

@ MurLTiwAy CUT or MULTICUT to some target property G.

@ We may demand vertex/edge removals with prescribed adjacencies.
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» Main challenge: “meta-algorithmize” the modulator operation A\(G, X).

» Typically A\(G, X) = p(torso(G, X)), where p is some graph parameter.

C1 C2
» p=tree-depth: (-elimination distance
G = minor-excluding: > (A Ty
[Bulian and Dawar, Algorithmica, 2017] <X
[Morelle, S., Stamoulis, Thilikos, arXiv 2022]
G

G = planar+bounded degree:
[Lindermayr, Siebertz, Vigny, MFCS 2020]

» p=treewidth: G-treewidth:

[Eiben, Ganian, Hamm, Kwon, JCSS 2021]
[Jansen, de Kroon, Wtodarczyk, STOC 2021]
[Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, Zehavi, SODA 2022]

» p=bridge-depth: §-bridge-depth:
[Bougeret, Jansen, S., ICALP 2020]
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Given G and k, is there an X C V/(G) such that A\(G, X) < kand G\ X € G?

MG, X) = p(torso(G, X)), where p is parametrically bigger than tw

» p=tree-depth
» p=treewidth
» p=bridge-depth

» p=pathwidth, cutwidth, tree-cut-width, branchwidth, carving width,
block tree-depth... ?

Is is possible to ask more about the modulator?
» Can we additionally ask the modulator G[X] to be, e.g., Hamiltonian?
» or just G[X] |= B for some B, € CMSOL™?

e CMSOL™I[E,X] (on annotated graphs):

every 5 € CMSOLIE, X] for which there exists some cg such that the torsos
of all the models of 5 have treewidth at most cg.
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|s there one meta-theorem that deals with these cases?
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G |= A5 if 3X C V(G) so that | (stell(G, X), X) |= 8| and | G\ X |= 1

Op[E]: every sentence 0 A [, where o € FOL[E] and 11 expresses minor-exclusion.

Theorem (our result, in its simplest form)

For every 3 € CMSOL™ and every - € Oq, there is an algorithm deciding
Mod(S > ) in quadratic time.

e If ~ is void, this gives the theorem of Courcelle.
e If 3 is void, this gives the theorem of Grohe and Flum.
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We define a compound logic for modification problems

Let 8 € CMSOLIE, X] and v € CMSOLIE]. c .

Iz X' 1z
B: modulator sentence on annotated graphs.
~: target sentence on graphs. i
’Compound logic ‘ We define 81>+ so that G Vo

G |= Ao if 3X C V(G) so that | (stell(G, X), X) |= 8| and | G\ X |= 5

©Og[E]: every sentence 0 A [, where o € FOL[E] and 1 expresses minor-exclusion.

Theorem (our result, in a less simple form)

For every 3 € CMSOL™ and every v € ©\7, there is an algorithm deciding
Mod(B > ) in quadratic time.

e for p € CMSOL, define ¢(9: G |= p(©) if VC € cc(G), C = .
e for L C CMSOL, define L(©) = L U {x() | p € L}.
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e MB(L): all monotone Boolean combinations of sentences in L.
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We define a compound logic for modification problems

Let 8 € CMSOLIE, X] and v € CMSOLIE].

G G Ve X' Ve
B: modulator sentence on annotated graphs.
~: target sentence on graphs. =
’Compound logic ‘ We define 5> so that G Vo

G |= A5 if 3X C V(G) so that | (stell(G, X), X) |= 8| and | G\ X =+

©Opl[E]: every sentence o A [, where o € FOL[E] and 1 expresses minor-exclusion.

Theorem (our result, in a simple form)

For every 3 € CMSOL™ and every - € MB(@(()C)), there is an algorithm deciding
Mod(S > ) in quadratic time.

» This automatically implies algorithms in all aforementioned directions, beyond the
applicability of the theorems of Courcelle and Grohe and Flum.
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The ©-hierarchy

Recall that
Og: sentences o A 11 where o € FOL and o expresses minor-exclusion.
We recursively define, for every i > 1,

©; = {B>7]|BeCMSOL™ and v € MB(0'Y,)}.
We finally set: © = ;5 ©;. Observe: © C CMSOL

Theorem (our result, in its general form on graphs)

For 0 € ©, there is an algorithm A, deciding Mod(0) in quadratic time.
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The ©-hierarchy

Recall that
Og: sentences o A 11 where o € FOL and o expresses minor-exclusion.
We recursively define, for every i > 1,

©; = {B>7]|BeCMSOL™ and v € MB(0'Y,)}.
We finally set: © = ;5 ©;. Observe: © C CMSOL

Theorem (our result, in its general form on graphs)

For 0 € ©, there is an algorithm A, deciding Mod(0) in quadratic time.

Our results are constructive:

There is a Meta-Algorithm M that,
with input a sentence () € © and an upper bound ¢, on hw(Mod(?)),
returns as output the algorithm Ay.
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We set O := FOL (i.e., remove minor-exclusion)
We recursively define, for every i > 1,
B; = (B>~ | B CMSOL™ and 4 € MB(®'9))1.

We finally set: © =J;5; ©;.  Observe: FOL € © € CMSOL

Corollary (a promise version of our result, using ©)

For every § € ©, there is an algorithm deciding Mod(?) in quadratic time on
graphs of fixed Hadwiger number.

Structure

nowhere dense / bounded twin-width [Grohe, Kreutzer, Siebertz] / [Bonnet, Kim, Thomassé, Watrigant]

bounded Hadwiger number Our results for ©

[Courcelle] and [Borie, Parker, Tovey]

bounded Treewidth and [Arnborg, Lagergren, Seese]

FOL & CMSOL Logic
15



Generalization to extensions of FOL

First-Order Logic with Connectivity Operators

[Schirrmacher, Siebertz, Vigny, CSL 2022] + [Bojanczyk, 2021]
[Pilipczuk, Schirrmacher, Siebertz, Torunczyk, Vigny, ICALP 2022]

First-Order Logic with Disjoint Paths (FOL + DP)

[Schirrmacher, Siebertz, Vigny, CSL 2022]
[Golovach, Stamoulis, Thilikos, SODA 2023]
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Define ©PF (resp. (:)DP): like © (resp. ©) but replacing FOL with
FOL + DP in the target sentences.
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Generalization to extensions of FOL

First-Order Logic with Connectivity Operators

[Schirrmacher, Siebertz, Vigny, CSL 2022] + [Bojanczyk, 2021]
[Pilipczuk, Schirrmacher, Siebertz, Torunczyk, Vigny, ICALP 2022]

First-Order Logic with Disjoint Paths (FOL + DP)

[Schirrmacher, Siebertz, Vigny, CSL 2022]
[Golovach, Stamoulis, Thilikos, SODA 2023]

Define ©PF (resp. (:)DP): like © (resp. ©) but replacing FOL with
FOL + DP in the target sentences.

Theorem (a generalized promise version)

For every 0 € éDP, there is an algorithm deciding Mod (7)) in quadratic time on
graphs of fixed Hadwiger number.
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The current meta-algorithmic landscape

Structure j

nowhere dense / bounded tww . Grohe, Kreutzer, Siebertz / Bonnet, Kim, Thomassé, Watrigant

bounded Hajés number Pilipczuk, Schirrmacher, Siebertz, Torunczyk, Vigny

Golovach, Stamoulis, Thilikos

ADP
bounded Hadwiger number Our results for ©

Courcelle + Borie, Parker, Tovey
+ Arnborg, Lagergren, Seese

FOL, FOL+conn, FOL+DP,8PP,CMSOL  Logic

bounded treewidth
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Basic ingredients and techniques of the proof(s)
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Basic ingredients and techniques of the proof(s)

Some (suitable) variant of Courcelle’s theorem + CMSOL transductions
to deal with the “meta-algorithmic” modulator operation.

Some (non-trivial) adaptation of Gaifman’s theorem working on proper
minor-excluding classes.

The combinatorial /algorithmic results in

ichi Kawarabayashi, Robin Thomas

torial Theory, Serie

Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. A more accurate view of the Flat Wall Theorem,
2021. arXiv:2102.06463.

Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. Hitting topological minor models in planar
graphs is fixed parameter tractable. In Proc. of the 31st Annual ACM-SIAM Symposium on Discrete
Algorithms, (SODA), pages 931-950, 2020.

Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting connected minors on
bounded treewidth graphs: the chair and the banner draw the boundary. In Proc. of the 31st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 951-970, 2020.

Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. k-apices of minor-closed graph classes. 1.
Bounding the obstructions. Transactions on Algorithms 2022.

Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. An algorithmic
meta-theorem for graph modification to planarity and FOL. In Proc. of the 28th Annual European
Symposium on Algorithms (ESA), volume 173 of LIPIcs, pages 51:1-51:17, 2020.
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Basic ingredients and techniques of the proof(s)

@ Some (suitable) variant of Courcelle’s theorem + CMSOL transductions
to deal with the “meta-algorithmic” modulator operation.

@ Some (non-trivial) adaptation of Gaifman’s theorem working on proper
minor-excluding classes.

Irrelevant Vertex Tech“ique ‘ (> 1200 citations and used in > 120 papers)

@ Neil Robertson and Paul D. Seymour. Graph minors. XIIl. The disjoint paths
problem. Journal of Comb. Theory, Ser. B, 63(1):65-110, 1995.
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Ultra-sketch of proof

Given ¢ € © and a graph G:
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Ultra-sketch of proof

Given ¢ € © and a graph G:

@ If the treewidth of G is “small” (as a function of 0): Courcelle.

@ Otherwise: find an irrelevant vertex.
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Crucial fact: the fact that the modulator sentence 3 € CMSOL™ allows to prove
that the removal of the modulator X does not destroy a flat wall too much.
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Necessity of the ingredients of our logic

Theorem (our result, in its simplest form)

For every 3 € CMSOL™ and every v € O, there is an algorithm deciding
Mod(S > ) in quadratic time.

o G By if IX CV(G) st |(stell(G,X), X) = B[+ | G\ X |-+

e CMSOL™I[E,X] (on annotated graphs):
every € CMSOLIE, X] for which there exists some cg such that the torsos

of all the models of 5 have treewidth at most cg.

e Op : sentences o A i1 where o € FOL and j1 expresses minor-exclusion.
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@ CMSOL™I[E,X] : every 8 € CMSOLIE, X] for which 3¢z such that the torsos
of all the models of /5 have treewidth at most cg.

® G = fBoyif X C V(G) st | (stell(G, X), X) |= B] + | G\ X |= 1

‘ 1. Why bounded treewidth of the torso of the modulator? 3 € CMSOL™. ‘
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of all the models of 5 have treewidth at most cg.

® G oy if X C V(G) st | (stell(G, X), X) = B] + | G\ X |= 7

‘ 1. Why bounded treewidth of the torso of the modulator? 3 € CMSOL™. ‘

@ CMSOL-model-checking is not FPT if treewidth is unbounded.
[Kreutzer and Tazari, LICS 2010]
[Ganian, Hlinény, Langer, Obdrzalek, Rossmanith, Sikdar, JCSS 2014]
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@ CMSOL™I[E,X] : every 8 € CMSOLIE, X] for which 3¢z such that the torsos
of all the models of /5 have treewidth at most cg.

® G Boyif X C V(G) st | (stell(G,X), X) = 8|+ G\ X |=+

‘ 1. Why bounded treewidth of the torso of the modulator? 3 € CMSOL™. ‘

@ CMSOL-model-checking is not FPT if treewidth is unbounded.
[Kreutzer and Tazari, LICS 2010]
[Ganian, Hlinény, Langer, Obdrzalek, Rossmanith, Sikdar, JCSS 2014]

@ But why caring about the torso of the modulator?
& e G Hamiltonian < G’ has a vertex set
S such that G'[S] is a cycle and
< G'\ S is edgeless.
e tw(G'[S]) =2 but
tw(torso(G’, S)) = tw(G) unbounded.
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° G| By if IX C V(G) st | (stell(G,X), X) |= 8|+ | G\ X =5

e Op : target sentences v = o A i where o € FOL and 2 minor-exclusion.

‘2. Why the target sentence o € FOL (or extensions)?‘
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Hamiltonicity is CMSOL-definable and NP-complete on planar graphs
(consider a void modulator).

Thus, o € CMSOL is not possible (although can be more general than FOL).
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° G| By if IX C V(G) st | (stell(G,X), X) |= 8|+ | G\ X =5

e Op : target sentences v = o A i where o € FOL and 2 minor-exclusion.

‘2. Why the target sentence o € FOL (or extensions)?‘

Hamiltonicity is CMSOL-definable and NP-complete on planar graphs
(consider a void modulator).

Thus, o € CMSOL is not possible (although can be more general than FOL).

‘3. Why the target sentence p expresses proper minor—exclusion?‘

Expressing whether a graph G contains a clique on k vertices is FOL-expressible,
while k-CLIQUE is W[1]-hard on general graphs
(again, consider a void modulator).
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Some final remarks
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Some final remarks

@ Limitations

are torsos really necessary?
which are the optimal combinatorial assumptions on FOL+CMSOL?

irrelevant friendliness (bipartiteness)
other modification operations (blocks, contractions, ...)

@ Open problems

constants hidden in O)y(n?)
o is the ©-hierarchy proper?

e Is quadratic time improvable?
o Further than minor-exclusion?
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