The List Allocation problem and some of its applications in parameterized algorithms

EunJung Kim¹ Sang-II Oum² Christophe Paul³ Ignasi Sau³ Dimitrios M. Thilikos³

SEMINARI COMBINATÒRIA, TEORIA DE GRAFS I APLICACIONS Barcelona, 7 maig 2015

- ¹ CNRS, LAMSADE, Paris (France)
- ² KAIST, Daejeon (South Korea)
- ³ CNRS, LIRMM, Montpellier (France)

- 2 Sketch of the FPT algorithm
- Some applications

- 2 Sketch of the FPT algorithm
- 3 Some applications
- 4 Conclusions

 Idea given an NP-hard problem with input size n, fix one parameter k of the input to see whether the problem gets more "tractable".
 Example: the size of a VERTEX COVER.

• Given a (NP-hard) problem with input of size *n* and a parameter *k*, a fixed-parameter tractable (FPT) algorithm runs in time

 $f(k) \cdot n^{O(1)}$, for some function f.

Examples: *k*-VERTEX COVER, *k*-LONGEST PATH.

Cut problem given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

Cut problem given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

 $\bullet~\mathrm{Min}~\mathrm{Cut:}$ polynomial by classical max-flow min-cut theorem.

Cut problem given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

- $\bullet~\rm Min~\rm Cut:$ polynomial by classical max-flow min-cut theorem.
- MULTIWAY CUT: FPT by using important separators. [Marx '06]
- MULTICUT: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé '10]
- STEINER CUT: Improved FPT algorithm by using randomized contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12]
- MIN BISECTION: Finally, FPT.

[Cygan, Lokshtanov, Pilipczuk², Saurabh '13]

• A new cut problem: LIST ALLOCATION (to be defined in two slides).

Theorem

The LIST ALLOCATION problem is FPT.

• A new cut problem: LIST ALLOCATION (to be defined in two slides).

Theorem	l
The LIST ALLOCATION problem is FPT.	

- LIST ALLOCATION generalizes, in particular, MULTIWAY CUT.
- General enough so that several other problems can be reduced to it:
 - $\star~{\rm FPT}$ algorithm for a parameterization of DIGRAPH HOMOMORPHISM.
 - $\star~{\rm FPT}$ algorithm for the MIN-MAX GRAPH PARTITIONING problem.
 - \star FPT 2-approximation for TREE-CUT WIDTH.

- An *r*-allocation of a set *S* is an *r*-tuple $\mathcal{V} = (V_1, \ldots, V_r)$ of possibly empty pairwise disjoint subsets of *S* whose union is *S*.
- Elements of \mathcal{V} : parts of \mathcal{V} .
- We denote by $\mathcal{V}^{(i)}$ the *i*-th part of \mathcal{V} , i.e., $\mathcal{V}^{(i)} = V_i$.

- An *r*-allocation of a set *S* is an *r*-tuple $\mathcal{V} = (V_1, \ldots, V_r)$ of possibly empty pairwise disjoint subsets of *S* whose union is *S*.
- Elements of \mathcal{V} : parts of \mathcal{V} .
- We denote by $\mathcal{V}^{(i)}$ the *i*-th part of \mathcal{V} , i.e., $\mathcal{V}^{(i)} = V_i$.
- Let G = (V, E) be a graph and let V be an r-allocation of V:
 |δ(V⁽ⁱ⁾, V^(j))|: #edges in G with one endpoint in V⁽ⁱ⁾ and one in V^(j).

Definition of the problem: LIST ALLOCATION

LIST ALLOCATION Input: A tuple $I = (G, r, \lambda, \alpha)$, where G is an *n*-vertex graph, $r \in \mathbb{Z}_{\geq 1}, \lambda : V(G) \to 2^{[r]}$, and $\alpha : {[r] \choose 2} \to \mathbb{Z}_{\geq 0}$.

Definition of the problem: LIST ALLOCATION

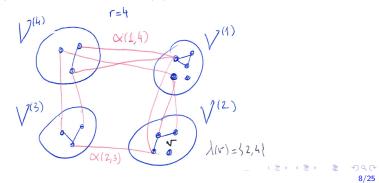
LIST ALLOCATION Input: A tuple $I = (G, r, \lambda, \alpha)$, where G is an *n*-vertex graph, $r \in \mathbb{Z}_{\geq 1}, \lambda : V(G) \rightarrow 2^{[r]}$, and $\alpha : {[r] \choose 2} \rightarrow \mathbb{Z}_{\geq 0}$. Parameter: $k = \sum \alpha$.

Definition of the problem: LIST ALLOCATION

LIST ALLOCATION Input: A tuple $I = (G, r, \lambda, \alpha)$, where G is an *n*-vertex graph, $r \in \mathbb{Z}_{\geq 1}, \lambda : V(G) \rightarrow 2^{[r]}$, and $\alpha : {[r] \choose 2} \rightarrow \mathbb{Z}_{\geq 0}$. Parameter: $k = \sum \alpha$.

Question: Decide whether there exists an *r*-allocation \mathcal{V} of V(G) s.t.

- $\forall \{i, j\} \in {[r] \choose 2}, \ |\delta(\mathcal{V}^{(i)}, \mathcal{V}^{(j)})| = \alpha(i, j)$ and
- $\forall v \in V(G)$, if $v \in \mathcal{V}^{(i)}$ then $i \in \lambda(v)$.



2 Sketch of the FPT algorithm

3 Some applications

< □ > < @ > < 글 > < 글 > < 글 > = ∽) < ⊙ 9/25 • We use a series of FPT reductions:

Problem $A \xrightarrow{\text{FPT}} \text{Problem } B$: If problem B is FPT, then problem A is FPT.

• We use a series of FPT reductions:

Problem $A \xrightarrow{\text{FPT}} \text{Problem } B$: If problem B is FPT, then problem A is FPT.

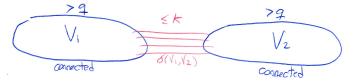
- At some steps, we obtain instances whose size is bounded by some function f(k).
- Then we will use that the LIST ALLOCATION problem is in XP:

Lemma

There exists an algorithm that, given an instance $I = (G, r, \lambda, \alpha)$ of LIST ALLOCATION, computes all possible solutions in time $n^{O(k)} \cdot r^{O(k+\ell)}$, where ℓ is the number of connected components of G.

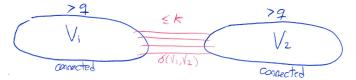
Some preliminaries

• Let G be a connected graph. A partition (V_1, V_2) of V(G) is a (q, k)-separation if $|V_1|, |V_2| > q$, $|\delta(V_1, V_2)| \le k$, and $G[V_1]$ and $G[V_2]$ are both connected.



Some preliminaries

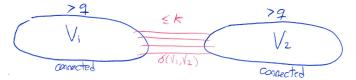
• Let G be a connected graph. A partition (V_1, V_2) of V(G) is a (q, k)-separation if $|V_1|, |V_2| > q$, $|\delta(V_1, V_2)| \le k$, and $G[V_1]$ and $G[V_2]$ are both connected.



• A graph G is (q, k)-connected if it does not contain any (q, k - 1)-separation.

Some preliminaries

• Let G be a connected graph. A partition (V_1, V_2) of V(G) is a (q, k)-separation if $|V_1|, |V_2| > q$, $|\delta(V_1, V_2)| \le k$, and $G[V_1]$ and $G[V_2]$ are both connected.



• A graph G is (q, k)-connected if it does not contain any (q, k - 1)-separation.

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12)

There exists an algorithm that given a n-vertex connected graph G and two integers q, k, either finds a (q, k)-separation, or reports that no such separation exists, in time $(q + k)^{O(\min\{q,k\})} n^3 \log n$.

LIST ALLOCATION (LA)

 \downarrow FPT

Connected List Allocation (CLA)

Same input + graph G is connected and $r \leq 2k$

Series of FPT reductions

LIST ALLOCATION (LA)

 \downarrow FPT

Connected List Allocation (CLA)

 \downarrow FPT

HIGHLY CONNECTED LIST ALLOCATION (HCLA)

Same input + graph G is $(f_1(k), k+1)$ -connected, for $f_1(k) := 2^k \cdot (2k)^{2k}$

Series of FPT reductions

LIST ALLOCATION (LA)

 \downarrow FPT

Connected List Allocation (CLA)

 \downarrow FPT

HIGHLY CONNECTED LIST ALLOCATION (HCLA)

Same input + graph G is $(f_1(k), k+1)$ -connected, for $f_1(k) := 2^k \cdot (2k)^{2k}$

Claim (Unique big part)

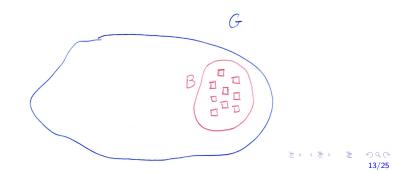
For any solution \mathcal{V} of HCLA there exists a unique index $j \in [r]$ such that

$$\sum_{\in [r]\setminus j} |\mathcal{V}^{(i)}| \leqslant k \cdot f_1(k).$$

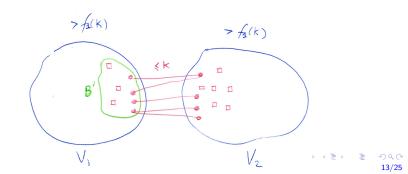
• Part $\mathcal{V}^{(j)}$ is called the big part.

Reduction from CLA to HCLA: we shrink the graph

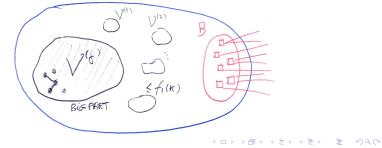
• We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):



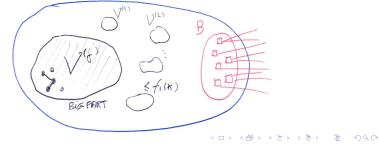
- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):
 - If G has a $(f_1(k), k)$ -separation (V_1, V_2) :
 - W.l.o.g. let V₁ be the part with the smallest number of boundary vertices, and let B' be the new boundary: so |B'| ≤ 2k.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.



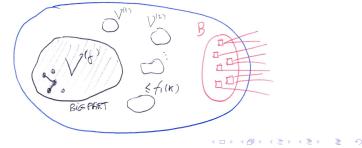
- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):
 - If G has a $(f_1(k), k)$ -separation (V_1, V_2) :
 - W.l.o.g. let V₁ be the part with the smallest number of boundary vertices, and let B' be the new boundary: so |B'| ≤ 2k.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.
 - Otherwise, find a set of "indistinguishable"' vertices, and identify them.
 Idea We generate all partial solutions in the boundary, and for each of them we compute a solution of HCLA, using our "black box".



- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):
 - If G has a $(f_1(k), k)$ -separation (V_1, V_2) :
 - W.l.o.g. let V₁ be the part with the smallest number of boundary vertices, and let B' be the new boundary: so |B'| ≤ 2k.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.
 - Otherwise, find a set of "indistinguishable"' vertices, and identify them.
 Idea By the high connectivity (Claim), each such solution has a unique big part V^(j): indistinguishable vertices for this behavior.



- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):
 - If G has a $(f_1(k), k)$ -separation (V_1, V_2) :
 - W.l.o.g. let V₁ be the part with the smallest number of boundary vertices, and let B' be the new boundary: so |B'| ≤ 2k.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.
 - Otherwise, find a set of "indistinguishable"' vertices, and identify them.
 Idea If the graph is big enough, there are vertices that are indistinguishable for all behaviors ⇒ identify them. Return the graph.



Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):
 - If G has a $(f_1(k), k)$ -separation (V_1, V_2) :
 - W.l.o.g. let V_1 be the part with the smallest number of boundary vertices, and let B' be the new boundary: so $|B'| \leq 2k$.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.
 - ② Otherwise, find a set of "indistinguishable"' vertices, and identify them. Idea If the graph is big enough, there are vertices that are indistinguishable for all behaviors ⇒ identify them. Return the graph.

Lemma

The above algorithm returns in FPT time an equivalent instance of CLA of size at most $f_2(k) := k \cdot (f_1(k))^2 + 2k + 2$. (Then we apply the XP algorithm.)

Series of FPT reductions

 \downarrow FPT

CONNECTED LIST ALLOCATION (CLA)

 \downarrow FPT

HIGHLY CONNECTED LIST ALLOCATION (HCLA)

Series of FPT reductions

 \downarrow FPT

CONNECTED LIST ALLOCATION (CLA)

 \downarrow FPT

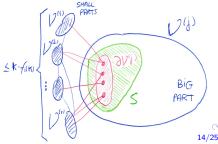
HIGHLY CONNECTED LIST ALLOCATION (HCLA)

 \downarrow FPT

Split Highly Connected List Allocation (SHCLA)

Same input + set $S \subseteq V(G)$ and a solution \mathcal{V} additionally needs to satisfy that if $j \in [r]$ is such that $\mathcal{V}^{(j)}$ is the big part of \mathcal{V} , then

 $\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}.$



Crucial ingredient: Splitter Lemma

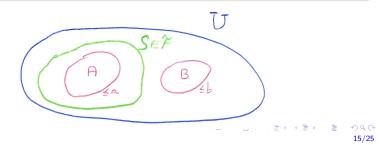
• Splitters were first introduced by

[Naor, Schulman, Srinivasan '95]

• We use the following deterministic version:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12)

There exists an algorithm that given a set U of size n and two integers $a, b \in [0, n]$, outputs a set $\mathcal{F} \subseteq 2^U$ where $|\mathcal{F}| = (a + b)^{O(\min\{a,b\})} \cdot \log n$ such that for every two sets $A, B \subseteq U$, where $A \cap B = \emptyset$, $|A| \leq a$, $|B| \leq b$, there exists a set $S \in \mathcal{F}$ where $A \subseteq S$ and $B \cap S = \emptyset$, in $(a + b)^{O(\min\{a,b\})} \cdot n \log n$ steps.



Reduction from HCLA to SHCLA: we use splitters

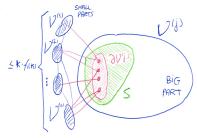
 We use the Splitter Lemma with universe U = V(G), a = k, and b = k ⋅ f₁(k), obtaining a family F of subsets of V(G).

Reduction from HCLA to SHCLA: we use splitters

- We use the Splitter Lemma with universe U = V(G), a = k, and $b = k \cdot f_1(k)$, obtaining a family \mathcal{F} of subsets of V(G).
- Idea We want a set $S \subseteq V(G)$ that "splits" these two sets:

$$A = \partial \mathcal{V}^{(j)}$$
 and $B = \bigcup_{i \in [r] \setminus \{j\}} \mathcal{V}^{(i)}$.

For some $j \in [r]$: $|A| \leq k$ and $|B| \leq k \cdot f_1(k)$ (by the Claim).



Reduction from HCLA to SHCLA : we use splitters

- We use the Splitter Lemma with universe U = V(G), a = k, and $b = k \cdot f_1(k)$, obtaining a family \mathcal{F} of subsets of V(G).
- Idea We want a set $S \subseteq V(G)$ that "splits" these two sets:

$$A = \partial \mathcal{V}^{(j)}$$
 and $B = \bigcup_{i \in [r] \setminus \{j\}} \mathcal{V}^{(i)}$.

For some $j \in [r]$: $|A| \leq k$ and $|B| \leq k \cdot f_1(k)$ (by the Claim).



• It holds that *I* is a YES-instance of HCLA if and only if for some $S \in \mathcal{F}$, (I, S) is a YES-instance of SHCLA:

An algorithm to solve SHCLA

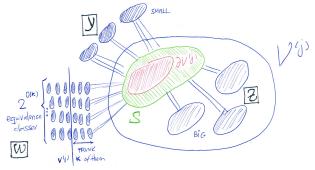
• Try all $j \in [r]$ so that $\mathcal{V}^{(j)}$ is the big part: assume $\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}$.

An algorithm to solve SHCLA

- Try all $j \in [r]$ so that $\mathcal{V}^{(j)}$ is the big part: assume $\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}$.
- Partition the connected components of $G \setminus S$ into 3 sets:

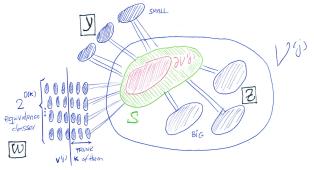
An algorithm to solve SHCLA

- Try all $j \in [r]$ so that $\mathcal{V}^{(j)}$ is the big part: assume $\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}$.
- Partition the connected components of $G \setminus S$ into 3 sets:
 - \mathcal{Y} : those that cannot go entirely in $\mathcal{V}^{(j)}$.
 - \mathcal{Z} : those that are big $(> k \cdot f_1(k))$ and that can go entirely in $\mathcal{V}^{(j)}$.
 - \mathcal{W} : those that are small ($\leq k \cdot f_1(k)$) and that can go entirely in $\mathcal{V}^{(j)}$.



An algorithm to solve SHCLA

- Try all $j \in [r]$ so that $\mathcal{V}^{(j)}$ is the big part: assume $\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}$.
- Partition the connected components of $G \setminus S$ into 3 sets:
 - \mathcal{Y} : those that cannot go entirely in $\mathcal{V}^{(j)}$.
 - \mathcal{Z} : those that are big $(> k \cdot f_1(k))$ and that can go entirely in $\mathcal{V}^{(j)}$.
 - \mathcal{W} : those that are small ($\leq k \cdot f_1(k)$) and that can go entirely in $\mathcal{V}^{(j)}$.



Lemma

The SHCLA problem can be solved in time $2^{O(k^2 \cdot \log k)} \cdot n$.

17/25

LIST ALLOCATION (LA)

 \downarrow FPT reduction

CONNECTED LIST ALLOCATION (CLA)

 \downarrow FPT reduction

HIGHLY CONNECTED LIST ALLOCATION (HCLA)

 \downarrow FPT reduction

Split Highly Connected List Allocation (SHCLA)

 \downarrow FPT algorithm to solve SHCLA

Theorem

LIST ALLOCATION can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.

Sketch of the FPT algorithm

< □ > < 큔 > < 글 > < 글 > < 글 > = ∽ < ⊙ < ⊙ 19/25

ARC-BOUNDED LIST DIGRAPH HOMOMORPHISM Input: Two digraphs G and H, a list $\lambda : V(G) \rightarrow 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of non-loop arcs in G mapped to each arc of H.

ARC-BOUNDED LIST DIGRAPH HOMOMORPHISM Input: Two digraphs G and H, a list $\lambda : V(G) \to 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of non-loop arcs in G mapped to each arc of H.

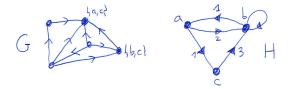
Parameter: $\mathbf{k} = \sum \alpha$.

Arc-Bounded List Digraph Homomorphism

Input: Two digraphs G and H, a list $\lambda : V(G) \to 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of non-loop arcs in G mapped to each arc of H.

Parameter: $\mathbf{k} = \sum \alpha$.

Question: Decide whether there exists a homomorphism from G to H respecting the constraints imposed by λ and α .



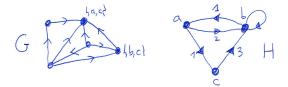
• It generalizes several homomorphism problems. [Díaz, Serna, Thilikos '08]

Arc-Bounded List Digraph Homomorphism

Input: Two digraphs G and H, a list $\lambda : V(G) \to 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of non-loop arcs in G mapped to each arc of H.

Parameter: $\mathbf{k} = \sum \alpha$.

Question: Decide whether there exists a homomorphism from G to H respecting the constraints imposed by λ and α .



It generalizes several homomorphism problems.

[Díaz, Serna, Thilikos '08]

Corollary

The Arc-Bounded List Digraph Homomorphism problem is FPT.

MIN-MAX GRAPH PARTITIONING

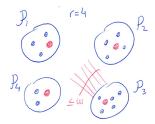
Input: An undirected graph G, $w, r \in \mathbb{Z}_{\geq 0}$, and $T \subseteq V(G)$ with |T| = r.

MIN-MAX GRAPH PARTITIONING Input: An undirected graph G, $w, r \in \mathbb{Z}_{\geq 0}$, and $T \subseteq V(G)$ with |T| = r. Parameter: $k = w \cdot r$.

Min-Max Graph Partitioning

Input: An undirected graph G, $w, r \in \mathbb{Z}_{\geq 0}$, and $T \subseteq V(G)$ with |T| = r. Parameter: $k = w \cdot r$.

Question: Decide whether there exists a partition $\{\mathcal{P}_1, \ldots, \mathcal{P}_r\}$ of V(G)s.t. $\max_{i \in [r]} |\delta(\mathcal{P}_i, V(G) \setminus \mathcal{P}_i)| \leq w$ and for every $i \in [r], |\mathcal{P}_i \cap T| = 1$.



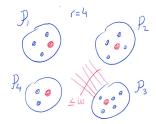
• Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz'11]

• The "MIN-SUM" version is exactly the MULTIWAY CUT problem. \$[Marx : 06]\$

Min-Max Graph Partitioning

Input: An undirected graph G, $w, r \in \mathbb{Z}_{\geq 0}$, and $T \subseteq V(G)$ with |T| = r. Parameter: $k = w \cdot r$.

Question: Decide whether there exists a partition $\{\mathcal{P}_1, \ldots, \mathcal{P}_r\}$ of V(G)s.t. $\max_{i \in [r]} |\delta(\mathcal{P}_i, V(G) \setminus \mathcal{P}_i)| \leq w$ and for every $i \in [r], |\mathcal{P}_i \cap T| = 1$.



• Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz'11]

• The "MIN-SUM" version is exactly the MULTIWAY CUT problem. [Marx '06]

Corollary

The MIN-MAX GRAPH PARTITIONING problem is FPT.

2-approximation for $\operatorname{TREE-CUT}$ WIDTH

- Tree-cut width is a graph invariant fundamental in the structure of graphs not admitting a fixed graph as an immersion. [Wollan '14]
- Tree-cut decompositions are a variation of tree decompositions based on edge cuts instead of vertex cuts.
- Tree-cut width also has algorithmic applications. [Ganian, Kim, Szeider '14]

2-approximation for $\operatorname{TREE-CUT}$ WIDTH

- Tree-cut width is a graph invariant fundamental in the structure of graphs not admitting a fixed graph as an immersion. [Wollan '14]
- Tree-cut decompositions are a variation of tree decompositions based on edge cuts instead of vertex cuts.
- Tree-cut width also has algorithmic applications.

[Ganian, Kim, Szeider '14]

Corollary

There exists an algorithm that, given a graph G and a $k \in \mathbb{Z}_{\geq 0}$, in time $2^{O(k^2 \cdot \log k)} \cdot n^5 \cdot \log n$ either outputs a tree-cut decomposition of G with width at most 2k, or correctly reports that the tree-cut width of G is strictly larger than k.

- 2 Sketch of the FPT algorithm
- 3 Some applications

▲□ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶
 23/25

Theorem

LIST ALLOCATION can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.

Theorem

LIST ALLOCATION can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.

Some further research:

- Improve the running time of our algorithms.
- Can we find more applications of LIST ALLOCATION?
- Find an explicit (exact) FPT algorithm for tree-cut width.

Theorem

LIST ALLOCATION can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.

Some further research:

- Improve the running time of our algorithms.
- Can we find more applications of LIST ALLOCATION?
- Find an explicit (exact) FPT algorithm for tree-cut width.
- Recent work on finding (q, k)-separations:

[Montejano, S. '15]

24/25

• FPT when parameterized by both q and k.

Theorem

LIST ALLOCATION can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.

Some further research:

- Improve the running time of our algorithms.
- Can we find more applications of LIST ALLOCATION?
- Find an explicit (exact) FPT algorithm for tree-cut width.
- Recent work on finding (q, k)-separations:
 - FPT when parameterized by both q and k.
 - W[1]-hard when parameterized by q.
 - No polynomial kernel when parameterized by k.

[Montejano, S. '15]

24/25

Theorem

LIST ALLOCATION can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.

Some further research:

- Improve the running time of our algorithms.
- Can we find more applications of LIST ALLOCATION?
- Find an explicit (exact) FPT algorithm for tree-cut width.
- Recent work on finding (q, k)-separations:
 - FPT when parameterized by both q and k.
 - W[1]-hard when parameterized by q.
 - No polynomial kernel when parameterized by k.
 - \star FPT when parameterized by k?

[Montejano, S. '15]

24/25

Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <