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Introduction

@ WDM (Wavelength Division Multiplexing) networks
o 1 wavelength (or frequency) = up to 40 Gb/s
o 1 fiber = hundreds of wavelengths = Th/s
@ |dea:
Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

— we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

@ Objectives:

o Better use of bandwidth
o Reduce the equipment cost (mostly given by electronics)
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ADM and OADM

@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber

@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM
(electric low-speed signal) to/from a wavelength

OADM OADM OADM
I l I l
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ADM and OADM

@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength

to/from an optical fiber

@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM
(electric low-speed signal) to/from a wavelength

OADM OADM OADM
I l I l I 1l
| | | | | |

( J 0 )

— we want to minimize the number of ADMs
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@ Request (/,/): a pair of vertices i/, j that want to exchange
(low-speed) traffic

6/39



@ Request (/,/): a pair of vertices (i, /) that want to exchange
(low-speed) traffic

@ Grooming factor C:

node i - node |
\ /
\ [ \
/ \ /
\ / A\ requests

<~/ in|
/ int,

For each wavelenght and each
arc between 2 nodes, there can be
only C requests routed through this arc

7/39



@ Request (/,/): a pair of vertices (i, /) that want to exchange
(low-speed) traffic
@ Grooming factor C:

node i node |
C=5

\ /
| [ \
| | /

\ / A requests

/ int,
For each wavelenght and each
arc between 2 nodes, there can be
only C requests routed through this arc

Example:
Capacity of one wavelength = 2400 Mb/s
Capacity used by a request = 600 Mb/s = C=4
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@ Request (/,/): a pair of vertices (i, ) that want to exchange
(low-speed) traffic

@ Grooming factor C:

node i node |
C=5
\ /
\ [ \
/ \ /
\ / A\ requests

<~/ _
/ inl,

For each wavelenght and each
arc between 2 nodes, there can be
only C requests routed through this arc

@ load of an arc in a wavelength: number of requests using this arc
in this wavelength (< C)
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ADM and OADM

@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber

@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric
low-speed signal) to/from a wavelength

OADM OADM
[ —

v I

@ Idea: Use an ADM only at the endpoints of a request
(lightpaths) in order to save as many ADMs as possible
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@ Model:
Topology graph G
Request set graph R
Grooming factor integer C

Requests in a wavelength
ADM in a wavelength

edges in a subgraph of R
node in a subgraph of R

Ll
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@ Model:
Topology graph G
Request set graph R
Grooming factor integer C

Requests in a wavelength
ADM in a wavelength

Ll

edges in a subgraph of R
node in a subgraph of R

@ We study the case when G = 6n (unidirectional ring)
@ We assume that the requests are symmetric
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Unidirectional Ring with Symmetric Requests

@ Symmetric requests: whenever there is the request (i, ), there is
also the request (j, /).

(i)
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Unidirectional Ring with Symmetric Requests

@ Symmetric requests: whenever there is the request (i, ), there is
also the request (j, /).

(i)

@ W.l.o.g. requests (/,j) and (j, /) are in the same subgraph
— each pair of symmetric requests induces load 1
— grooming factor C < each subgraph has < C edges.
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Statement of the “old” problem

Traffic Grooming in Unidirectional Rings

Input A cycle C, on n nodes (network);
An undirected graph R on n nodes (request set);
A grooming factor C.

Output A partition of E(R) into subgraphs
Ri,...,Rw with |[E(R))| < C,i=1...,W.

Objective Minimize -, |V(R.)|.
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Example: n=4, R=Ks,and C =3

=

o+

N

w
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w

8 ADMs

7 ADMs
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9 Statement of the problem
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New model [Munoz and S., WG 2008]

@ Non-exhaustive previous work (a lot!):

Bermond, Coudert, and Munoz - ONDM 2003.

Bermond and Coudert - ICC 2003.

Bermond, Braud, and Coudert - SIROCCO 2005.

Bermond et al. - SIAM J. on Disc. Maths 2005.

Flammini, Moscardelli, Shalom and Zaks - ISAAC 2005.

Flammini, Monaco, Moscardelli, Shalom and Zaks - WG 2006.
Amini, Pérennes and S. - ISAAC 2007, TCS 2009.

Bermond, Munoz, and S. - Manusc. 2009.

Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2009.
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Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2009.

@ In all of them: place ADMs at nodes for a fixed request graph.
— placement of ADMs a posteriori.

@ New model [Munoz and S., WG 2008]: place the ADMs at nodes
such that the network can support any request graph with
maximum degree at most A.

— placement of ADMs a priori.
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Statement of the "new” problem

Traffic Grooming in Unidirectional Rings

with Bounded-Degree Request Graph

Input An integer n (size of the ring);
An integer C (grooming factor);
An integer A (maximum degree).

Output An assignment of A(v) ADMs to each v € V(Cp),
in such a way that for any graph R on n nodes
with maximum degree at most A, it exists
a partition of E(R) into subgraphs Ry, ..., Ry s.t.:

(N|E(Bj)| < Cforalli=1,...,W;and
(if) each v € V(Cp) isin < A(v) subgraphs.

Objective  Minimize >, ¢, A(V),
and the optimum is denoted A(n, C, A).

v,
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e The parameter M(C, A)
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M(C, )

Definition

Let M(C, A) be the least positive number M such that, for all n > 1, the
inequality A(n, C, A) < Mn holds.
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Definition

Let M(C, A) be the least positive number M such that, for all n > 1, the
inequality A(n, C, A) < Mn holds.

@ Due to symmetry, it can be seen that A(v) is the same for all
nodes v, except for a subset whose size is independent of n.

@ M(C,A) is always an integer.

@ Equivalently:

M(C, A) is the smallest integer M such that the edges of
any graph with maximum degree at most A can be parti-
tioned into subgraphs with at most C edges, in such a way
that each vertex appears in at most M subgraphs.

@ In the sequel we focus on determining M(C, A).
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More formally...

@ Let Ga be the class of (simple undirected) graphs with maximum degree
at most A.

19/39



More formally...

@ Let Ga be the class of (simple undirected) graphs with maximum degree
at most A.

@ For G € Ga, let Po(G) be the set of partitions of E(G) into subgraphs
with at most C edges.

19/39



More formally...

@ Let Ga be the class of (simple undirected) graphs with maximum degree
at most A.

@ For G € Ga, let Po(G) be the set of partitions of E(G) into subgraphs
with at most C edges.

@ For P € Pc(G), let

occ(P) = Vrenve})é) {Be P:ve B}

19/39



More formally...

@ Let Ga be the class of (simple undirected) graphs with maximum degree
at most A.

@ For G € Ga, let Po(G) be the set of partitions of E(G) into subgraphs
with at most C edges.

@ For P € Pc(G), let

occ(P) = Vrenve})é) {Be P:ve B}

@ And then,

M(C,A) = max ( min occ(P)>
GeGa \PEPc(G)

19/39



More formally...

@ Let Ga be the class of (simple undirected) graphs with maximum degree
at most A.

@ For G € Ga, let Po(G) be the set of partitions of E(G) into subgraphs
with at most C edges.

@ For P € Pc(G), let

occ(P) = Vrenva}é) {Be P:ve B}

@ And then,

M(C,A) = max ( min occ(P)>
GeGa \PEPc(G)

@ If the request graph is restricted to belong to a subclass of graphs
C C Gga, then the corresponding positive integer is denoted by
M(C, A,C).
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@ Previous work (Munoz and S., WG 2008)
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Some properties of M(C, A) [Munoz and S., WG 2008]

@ W.lLo.g. we can assume that R has regular degree A.
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Some properties of M(C, A) [Munoz and S., WG 2008]

@ W.lLo.g. we can assume that R has regular degree A.

@ C>C = M(C,A)<M(C,A)forall A>1.
e A>AN = M(C,A)>M(C,A") forall C>1.

@ Upper bound: M(C,A) < M(1,A) = A.

Proposition (Lower Bound)

M(C,A) > {CH A] forall C,A > 1.
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Known values of M(C, A) [Munoz and S., WG 2008]

@ A=1:M(C,1) =1 forall C (trivial).
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Known values of M(C, A) [Munoz and S., WG 2008]

@ A=1:M(C,1) =1 forall C (trivial).
e A=2: M(C,2)=2for all C (not difficult).

@ A = 3: Cubic graphs. First “interesting” case:
e If C <83, then M(C,3) =3.
e If C > 5, then M(C,3) = 2.

@ Question left open in [Munoz and S., WG 2008]:
M(3,4)=20r3 7?77
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e Our results
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Next subsection is...

e Our results
@ CaseA=3,C=4
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Case A=3,C=4
Proposition
M(4,3) = 2.

Idea of the proof.
(in fact, we prove a slightly stronger result)
@ Let G be a minimal counterexample.

@ If has no bridges, then it can be “easily” proved.
@ If G has a bridge e, then the property is true for U and V.

ErtlEls

U \4 wu wY
(a) (b)

@ Finally, we merge “carefully” the partitions of U and V to obtain a,,

[é3]
©



Next subsection is...

e Our results

@ Case A > 4 even
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Let A > 4 be even. Then forany C > 1, M(C,A) = {% %W
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Let A > 4 be even. Then forany C > 1, M(C,A) = {%1 %W

@ The lower bound follows from [Mufioz and S., WG 2008].

@ Construction:

e Orient the edges of G = (V, E) in an Eulerian tour.

Assign to each vertex v € V its A/2 out-edges, and partition them
into [ £ | stars with (at most) C edges centered at v.

Each vertex v appears as a leaf in stars centered at other vertices
exactly A — A/2 = A/2 times.

@ The number of occurrences of each vertex in this partition is

AT, A
2C| ' 2
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Let A > 4 be even. Then forany C > 1, M(C,A) = {%1 %W

@ The lower bound follows from [Mufioz and S., WG 2008].

@ Construction:

e Orient the edges of G = (V, E) in an Eulerian tour.

Assign to each vertex v € V its A/2 out-edges, and partition them
into [ £ | stars with (at most) C edges centered at v.

Each vertex v appears as a leaf in stars centered at other vertices
exactly A — A/2 = A/2 times.

@ The number of occurrences of each vertex in this partition is

2] 2= [2(+)]-[o54]

=
(%)
©



Next subsection is...

e Our results

@ Case A > 5 odd
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Case A > 5 odd

Proposition

Let A > 5 be odd. Then forany C > 1, M(C,A)

IA
- 1
o2
o>
+
r\)‘?
=
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Case A > 5odd

Let A > 5 be odd. Then forany C > 1, M(C,A) < {%%+%W

v

Sketch of proof.

@ Since A is odd, |V(G)| is even. Add a perfect matching M to G to obtain a
(A + 1)-regular multigraph G'. Orient the edges of G’ in an Eulerian tour, and
assign to each vertex v € V(G') its (A + 1)/2 out-edges E;f.
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| A\

Sketch of proof

@ Since A is odd, |V(G)| is even. Add a perfect matching M to G to obtain a
(A + 1)-regular multigraph G'. Orient the edges of G’ in an Eulerian tour, and
assign to each vertex v € V(G') its (A + 1)/2 out-edges E;f.

@ Remove M and partition £, into stars with C edges.
@ Number of occurrences of each vertex v € V(G):
o If an edge of Mis in E/, then: [ 55! 11 +A-AF =0 S
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Case A > 5 odd

Let A > 5 be odd. Then for any C > 1, M(C,A) < {%%+%W

| A\

Sketch of proof
@ Since A is odd, |V(G)| is even. Add a perfect matching M to G to obtain a
(A + 1)-regular multigraph G'. Orient the edges of G’ in an Eulerian tour, and
assign to each vertex v € V(G') its (A + 1)/2 out-edges E;f.
@ Remove M and partition £, into stars with C edges.
@ Number of occurrences of each vertex v € V(G):
o Ifanedge of Misin £/, then: [551 ]| + A — 871 = [¢H12 + .
@ Otherwise, if no edge of M is in E;f, then:
(A—H'I_’_A A+1 _ {C+1A+ 201 < (C+1%_’_@‘|'
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Case A > 5 odd (ll)

LetA >5beodd. IfA (mod2C)=1orA (mod 2C) > C+ 1, then
M(C,8) = |S£15 .
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Case A > 5 odd (ll)

LetA >5beodd. IfA (mod2C)=1orA (mod 2C) > C+ 1, then
M(C,8) = |S£15 .

Corollary (Value of M(C, A) for C = 2)

Forany A > 5 odd, M(2,A) = [32].

Proposition

Let A > 5 be odd and let C be the class of A-regular graphs than
contain a perfect matching. Then M(C, A,C) = {C—y %W :
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Next subsection is...

e Our results

@ Improved lower bound when A = C (mod 2C)
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v

Corollary (Value of M(C, A) for C = 3)
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v

Idea of the proof of the theorem.

@ We prove that if A = kC with k odd, then M(C,A) > [€£1 5] +1
5141 = k

@ Since both A and k are odd, so is C, and therefore [ 5] = k- &1L
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Improved lower bound when

Theorem
Let A > 5 be odd. If A = C (mod 2C), then M(C, A) = [
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Idea of the proof of the theorem.

| A\

We prove that if A = kC with k odd, then M(C, A) > {c+1 %] +1.

T
Since both A and k are odd, so is C, and therefore [££1 2] = k- &1
We proceed to build a A-regular graph G with no C-edge-partition where each

vertex is incident to at most k - % subgraphs.

First, we construct a graph H where all vertices have degree A except one which
has degree A — 1. Furthermore, we build H so that it has girth strictly greater
than C. Such a graph H exists by [Chandran, SIAM J. Dicr. Math., 2003].
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Continuation of the proof.

@ Make A copies of H and add a cut-vertex v joined to all vertices of degree A — 1
to make our A-regular graph G.
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@ Now suppose for the sake of contradiction that there is a C-edge-partition 5 of G
where each vertex is incident to at most LB(C, A) subgraphs.

@ Since the girth of G is greater than C, all the subgraphs in B are trees.

Since LB(C, A) < A, v must have degree at least 2 in some subgraph T’ € 5.

@ Since |[E(T')| < C, the tree T’ contains at most | 52| = <52 edges of a copy
H' of H intersecting T".

@ Now we only work in H'. Leta = |E(T' N H')| < 53.

@ Let B = {BN H'}ges—{1}), With the empty subgraphs removed. That is, 55’
contains the subgraphs in B that partition the edges in H’ that are not in T".

@ Letn=|V(H')|, which is odd as in H’ there is one vertex of degree A — 1 and all
the others have degree A.
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Improved lower bound when (1)

Continuation of the proof (l1).

@ Therefore, the total number of edges of the trees in B’ is

> M) = B —a = B2 0= BOZT (1)

Ten’ 2

34/39



Improved lower bound when (1)

Continuation of the proof (l1).

@ Therefore, the total number of edges of the trees in B’ is

> M) = B —a = B2 0= BOZT (1)

Ten’ 2

@ Asa < 33, from (1) we get

nkC—1 C-3 nk — 1
YIEMI 2 —— -5 = ( 5 )~C+1. @)
TenB’!
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Improved lower bound when (1)

Continuation of the proof (l1).

@ Therefore, the total number of edges of the trees in B’ is

nA — 1 nkC —1

> IE(M)| = |E(H)| —a = a = a. )
Ten’ 2 2
©=%
o As o < =52, from (1) we get
nkC — 1 Cc-3 nk — 1
E(T)| > — = . 1. 2
> IEM 2 = 5 (2)c+ @)

TeB’
@ As each tree in B’ has at most C edges, from (2) we get that

k—1 1 k—1 [1 k —1
e

c

B| >
512 | .

=172 "¢
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@ Therefore, the total number of edges of the trees in B’ is

nA — 1 nkC —1

> IE(M)| = |E(H)| —a = a = a. )
Ten’ 2 2
©=%
o As o < =52, from (1) we get
nkC — 1 Cc-3 nk — 1
E(T)| > — = . 1. 2
> IEM 2 = 5 (2)c+ @)

TeB’
@ As each tree in B’ has at most C edges, from (2) we get that
nk —1 1} nk —1 [1} nk —1
= + =

— 5 > +1. (3)

c

>
'BL[ > T¢

@ Clearly, Y rcppr [V(T)| = X repr [E(T)| + |8/, and [V(T/ N H')| = a + 1.
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Improved lower bound when (1V)

Continuation of the proof (lll).

@ Therefore, using (1) and (3), we get that the total number of occurrences of the vertices in
H’ in some tree of B is

> KTeB:veT} SIVDI+IUT nH) = > IE(M+ 18+ a+
veV(H") TeB’ TenB’
nkC — 1 p nkC—1 nk—1
— = >
5 a+|Bl+a+1 > 5t %

- nk.%m — n.LB(C,A) +1,

+14

35/39



Improved lower bound when (1V)

Continuation of the proof (lll).

@ Therefore, using (1) and (3), we get that the total number of occurrences of the vertices in
H’ in some tree of B is

> KTeB:veT} SIVDI+IUT nH) = > IE(M+ 18+ a+
veV(H") TeB’ TenB’
nkC — 1 p nkC—1 nk—1
— = >
5 a+|Bl+a+1 > 5t %

- nk.%m — n.LB(C,A) +1,

+14

@ which implies that at least one vertex of H' appears in at least LB(C, A) + 1 subgraphs,
which is a contradiction to B being a C-edge-partition of G in which each vertex appears in
at most LB(C, A) subgraphs.

Ol
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Summary of results: values of M(C, A)

[ClalT 1 JT2] 83 4] 5 [ 6 ] 7 J..]Aeen] Aodd |
[ T[2] 3 ][4 5 6 7 A A

2 1]l2] 38 |3 4 5 6 o B

3 1]12(32]3 4 5(4) 5 2 2041 (%)
4 1] 2] 2 |3 4 4 5 B > 38 (o)
5 1t 2] 2 [ 3] 4(8) 4 5 % 2%(:)
6 1]2] 2 [383[>3(] 4 5 2 ZE(:)
7 1]2] 2 |[3[>3(=)] 4 5 (4) = EQZ(:)
8 1 2 2 3 | >23(=) 4 >4 (=) 5172 25—}72(:)
9 1 2 2 3 | >23(=) 4 >4 (=) 28 27(:)
C 1] 2 2 3 [>38(=)| 4 |>4(=) a2 1>80209)

Table: Known values of M(C, A). The red cases remain open. The (blue)
cases in brackets only hold if the graph has a perfect matching. The symbol
“(=)” means that the corresponding lower bound is attained.
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Conclusions and further research

@ We have studied a new model of traffic grooming that allows the
network to support dynamic traffic without reconfiguring the
electronic equipment at the nodes.
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@ We have studied a new model of traffic grooming that allows the
network to support dynamic traffic without reconfiguring the
electronic equipment at the nodes.

@ We established the value of M(C, A) for “almost all” values of C
and A, leaving open only the case where:
e A >5isodd;
o C>4,
@ 3<A (mod2C)<C-1;and
e the request graph does not contain a perfect matching.

@ For these open cases, we provided upper bounds that differ from
the optimal value by at most one.

@ Further Research:

o Determine M(C, A) for the remaining cases:

(G lor[S5a]+177

o Other classes of request graphs that make sense from the

telecommunications point of view? se/s0
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