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For a minimization problem, it is natural to consider its
“maximum minimal” version: worst-case of a greedy heuristic.

Maximum Minimal Dominating Set: Upper Domination.
Maximum Minimal Hitting Set.
Maximum Minimal Feedback Vertex Set.

In this talk:
Maximum Minimal Vertex Cover (MMVC)
Input: A graph G and an integer k.
Question: Does G contain a minimal vertex cover of size at least k?

Dual problem of MMVC: Minimum Independent Dominating Set.

X

A set X ⊆ V (G) is a minimal vertex cover of G ⇔
X is a vertex cover of G and, for every vertex v ∈ X , N(v) * X .
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Previous work

FPT algorithms and general remarks. [Fernau. 2005]

FPT algorithms (solution size, treewidth, size of a min. vertex cover),
n1/2-approximation, and n1/2−ε-inapproximability.

[Boria, Della Croce, Paschos. 2015]

Tight FPT algorithms (weighted version) parameterized by the size of
a minimum vertex cover. [Zehavi. 2017]

Inapproximability of MMVC in subexponential time.
[Bonnet, Paschos. 2018]

[Bonnet, Lampis, Paschos. 2018]
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What about the kernelization of MMVC?

v

deg(v) ≥ k

If there exists v with deg(v) ≥ k ⇒ we have a Yes-instance.

Thus, we may assume that ∆(G) ≤ k − 1.

Any vertex cover X of G covers at most |X | · (k − 1) edges.

By removing isolated vertices, it follows that |V (G)| ≤ |X | · k.

If |V (G)| ≥ k2 ⇒ we have a Yes-instance.

Thus, we trivially have a kernel with |V (G)| < k2.
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A linear kernel
Strategy to obtain a linear kernel: [Fernau. 2005]

V0 V0

Given a graph G and a parameter k.
Deciding whether S ⊆ V (G) can the extended to a minimal vertex cover
of G is NP-complete. [Casel, Fernau, Ghadikolaei, Monnot, Sikora. 2019]

The existence of a kernel with o(k2) vertices has been asked by
[Boria, Della Croce, Paschos. 2015]
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A linear kernel ...that doesn’t work!
Strategy to obtain a linear kernel: [Fernau. 2005]
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What about smaller parameters?

Do polynomial kernels exist for parameters smaller than the solution size?

Natural candidate: size of a minimum vertex cover.

Theorem
The Maximum Minimal Vertex Cover problem parameterized by the
size of a minimum vertex cover of the input graph does not admit a
polynomial kernel unless NP ⊆ coNP/poly, even on bipartite graphs.

This complements the FPT algorithms for MMVC with this parameter.
[Boria, Della Croce, Paschos. 2015]

[Zehavi. 2017]

Our result rules out the existence of polynomial kernels for MMVC
parameterized by treewidth as well.
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Can a subquadratic kernel for MMVC exist?

From now on, we consider the solution size k as the parameter.

Question Does MMVC admit a kernel of size O(k2−ε)?

We introduce a new framework to provide kernelization lower bounds.

We consider a general vertex-maximization problem Π,
parameterized by the solution size k.

(The definitions can be adapted to vertex-minimization problems as well.)

10



Can a subquadratic kernel for MMVC exist?

From now on, we consider the solution size k as the parameter.

Question Does MMVC admit a kernel of size O(k2−ε)?

We introduce a new framework to provide kernelization lower bounds.

We consider a general vertex-maximization problem Π,
parameterized by the solution size k.

(The definitions can be adapted to vertex-minimization problems as well.)

10



Can a subquadratic kernel for MMVC exist?

From now on, we consider the solution size k as the parameter.

Question Does MMVC admit a kernel of size O(k2−ε)?

We introduce a new framework to provide kernelization lower bounds.

We consider a general vertex-maximization problem Π,
parameterized by the solution size k.

(The definitions can be adapted to vertex-minimization problems as well.)

10



Can a subquadratic kernel for MMVC exist?

From now on, we consider the solution size k as the parameter.

Question Does MMVC admit a kernel of size O(k2−ε)?

We introduce a new framework to provide kernelization lower bounds.

We consider a general vertex-maximization problem Π,
parameterized by the solution size k.

(The definitions can be adapted to vertex-minimization problems as well.)

10



Can a subquadratic kernel for MMVC exist?

From now on, we consider the solution size k as the parameter.

Question Does MMVC admit a kernel of size O(k2−ε)?

We introduce a new framework to provide kernelization lower bounds.

We consider a general vertex-maximization problem Π,
parameterized by the solution size k.

(The definitions can be adapted to vertex-minimization problems as well.)

10



A kernel for Π with parameter k is a polynomial-time algorithm that,
given an instance (G , k), produces an instance (G ′, k ′) with |V (G ′)| ≤ s(k)
for some function s : N→ N, called the size of the kernel, s.t.

1 (G ′, k ′) Yes-instance ⇒ (G , k) Yes-instance.
2 (G , k) Yes-instance ⇒ (G ′, k ′) Yes-instance.

Slight restriction: “large optimal preserving” kernel, or lop-kernel for short:

A lop-kernel for Π with parameter k is a polynomial-time algorithm that,
given an instance (G , k), produces an instance (G ′, k ′) with |V (G ′)| ≤ s(k)
for some function s : N→ N, called the size of the kernel, s.t.

1 optΠ(G ′) ≥ k ′ ⇒ optΠ(G) ≥ k.
2 optΠ(G) ≥ k ⇒ optΠ(G ′) ≥ optΠ(G)− (k − k ′) ⇒ optΠ(G ′) ≥ k ′.

We call a reduction rule as above a lop-rule.

We also allow a lop-kernel to answer ‘Yes’ directly.
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given an instance (G , k), produces an instance (G ′, k ′) with |V (G ′)| ≤ s(k)
for some function s : N→ N, called the size of the kernel, s.t.

1 optΠ(G ′) ≥ k ′ ⇒ optΠ(G) ≥ k.
2 optΠ(G) ≥ k ⇒ optΠ(G ′) ≥ optΠ(G)− (k − k ′) ⇒ optΠ(G ′) ≥ k ′.

We call a reduction rule as above a lop-rule.

We also allow a lop-kernel to answer ‘Yes’ directly.
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lop-rules are a particular (?) type of reduction rules
Example of a rule that is not a lop-rule for MMVC:

(G, k)
v

> k

Want: mmvc(G) ≥ k ⇒ mmvc(G ′) ≥ mmvc(G)− (k − k ′) = mmvc(G).
But mmvc(G) > mmvc(G ′) may happen.
Anyway, we can just answer ‘Yes’, so no problem!
Known examples of lop-rules:

Classical reduction rules for Vertex Cover:
high-degree, crown decomposition, Nemhauser-Trotter.

Rules based on protrusion replacement, matroids...
So far, we don’t know of any reduction rule that is not a lop-rule!

12



lop-rules are a particular (?) type of reduction rules
Example of a rule that is not a lop-rule for MMVC:

(G, k)
v

> k

Want: mmvc(G) ≥ k ⇒ mmvc(G ′) ≥ mmvc(G)− (k − k ′) = mmvc(G).
But mmvc(G) > mmvc(G ′) may happen.
Anyway, we can just answer ‘Yes’, so no problem!
Known examples of lop-rules:

Classical reduction rules for Vertex Cover:
high-degree, crown decomposition, Nemhauser-Trotter.

Rules based on protrusion replacement, matroids...
So far, we don’t know of any reduction rule that is not a lop-rule!

12



lop-rules are a particular (?) type of reduction rules
Example of a rule that is not a lop-rule for MMVC:

(G, k)
v

> k

(G′, k)
v

k

Want: mmvc(G) ≥ k ⇒ mmvc(G ′) ≥ mmvc(G)− (k − k ′) = mmvc(G).
But mmvc(G) > mmvc(G ′) may happen.
Anyway, we can just answer ‘Yes’, so no problem!
Known examples of lop-rules:

Classical reduction rules for Vertex Cover:
high-degree, crown decomposition, Nemhauser-Trotter.

Rules based on protrusion replacement, matroids...
So far, we don’t know of any reduction rule that is not a lop-rule!

12



lop-rules are a particular (?) type of reduction rules
Example of a rule that is not a lop-rule for MMVC:

(G, k)
v

> k

(G′, k)
v

k

Want: mmvc(G) ≥ k

⇒ mmvc(G ′) ≥ mmvc(G)− (k − k ′) = mmvc(G).
But mmvc(G) > mmvc(G ′) may happen.
Anyway, we can just answer ‘Yes’, so no problem!
Known examples of lop-rules:

Classical reduction rules for Vertex Cover:
high-degree, crown decomposition, Nemhauser-Trotter.

Rules based on protrusion replacement, matroids...
So far, we don’t know of any reduction rule that is not a lop-rule!

12



lop-rules are a particular (?) type of reduction rules
Example of a rule that is not a lop-rule for MMVC:

(G, k)
v

> k

(G′, k)
v

k

Want: mmvc(G) ≥ k ⇒ mmvc(G ′) ≥ mmvc(G)− (k − k ′)

= mmvc(G).
But mmvc(G) > mmvc(G ′) may happen.
Anyway, we can just answer ‘Yes’, so no problem!
Known examples of lop-rules:

Classical reduction rules for Vertex Cover:
high-degree, crown decomposition, Nemhauser-Trotter.

Rules based on protrusion replacement, matroids...
So far, we don’t know of any reduction rule that is not a lop-rule!

12



lop-rules are a particular (?) type of reduction rules
Example of a rule that is not a lop-rule for MMVC:

(G, k)
v

> k

(G′, k)
v

k

Want: mmvc(G) ≥ k ⇒ mmvc(G ′) ≥ mmvc(G)− (k − k ′) = mmvc(G).

But mmvc(G) > mmvc(G ′) may happen.
Anyway, we can just answer ‘Yes’, so no problem!
Known examples of lop-rules:

Classical reduction rules for Vertex Cover:
high-degree, crown decomposition, Nemhauser-Trotter.

Rules based on protrusion replacement, matroids...
So far, we don’t know of any reduction rule that is not a lop-rule!

12



lop-rules are a particular (?) type of reduction rules
Example of a rule that is not a lop-rule for MMVC:

(G, k)
v

> k

(G′, k)
v

k

Want: mmvc(G) ≥ k ⇒ mmvc(G ′) ≥ mmvc(G)− (k − k ′) = mmvc(G).
But mmvc(G) > mmvc(G ′) may happen.

Anyway, we can just answer ‘Yes’, so no problem!
Known examples of lop-rules:

Classical reduction rules for Vertex Cover:
high-degree, crown decomposition, Nemhauser-Trotter.

Rules based on protrusion replacement, matroids...
So far, we don’t know of any reduction rule that is not a lop-rule!

12



lop-rules are a particular (?) type of reduction rules
Example of a rule that is not a lop-rule for MMVC:

(G, k)
v

> k

(G′, k)
v

k

Want: mmvc(G) ≥ k ⇒ mmvc(G ′) ≥ mmvc(G)− (k − k ′) = mmvc(G).
But mmvc(G) > mmvc(G ′) may happen.
Anyway, we can just answer ‘Yes’, so no problem!

Known examples of lop-rules:
Classical reduction rules for Vertex Cover:

high-degree, crown decomposition, Nemhauser-Trotter.
Rules based on protrusion replacement, matroids...

So far, we don’t know of any reduction rule that is not a lop-rule!

12



lop-rules are a particular (?) type of reduction rules
Example of a rule that is not a lop-rule for MMVC:

(G, k)
v

> k

(G′, k)
v

k

Want: mmvc(G) ≥ k ⇒ mmvc(G ′) ≥ mmvc(G)− (k − k ′) = mmvc(G).
But mmvc(G) > mmvc(G ′) may happen.
Anyway, we can just answer ‘Yes’, so no problem!
Known examples of lop-rules:

Classical reduction rules for Vertex Cover:
high-degree, crown decomposition, Nemhauser-Trotter.

Rules based on protrusion replacement, matroids...
So far, we don’t know of any reduction rule that is not a lop-rule!

12



lop-rules are a particular (?) type of reduction rules
Example of a rule that is not a lop-rule for MMVC:

(G, k)
v

> k

(G′, k)
v

k

Want: mmvc(G) ≥ k ⇒ mmvc(G ′) ≥ mmvc(G)− (k − k ′) = mmvc(G).
But mmvc(G) > mmvc(G ′) may happen.
Anyway, we can just answer ‘Yes’, so no problem!
Known examples of lop-rules:

Classical reduction rules for Vertex Cover:
high-degree, crown decomposition, Nemhauser-Trotter.

Rules based on protrusion replacement, matroids...

So far, we don’t know of any reduction rule that is not a lop-rule!

12



lop-rules are a particular (?) type of reduction rules
Example of a rule that is not a lop-rule for MMVC:

(G, k)
v

> k

(G′, k)
v

k

Want: mmvc(G) ≥ k ⇒ mmvc(G ′) ≥ mmvc(G)− (k − k ′) = mmvc(G).
But mmvc(G) > mmvc(G ′) may happen.
Anyway, we can just answer ‘Yes’, so no problem!
Known examples of lop-rules:

Classical reduction rules for Vertex Cover:
high-degree, crown decomposition, Nemhauser-Trotter.

Rules based on protrusion replacement, matroids...
So far, we don’t know of any reduction rule that is not a lop-rule!

12



A general result

Idea: lop-kernel of size O(k
1

1−r−ε) ⇒ O(nr−ε′)-approximation algorithm

Theorem
Let Π be a vertex-maximization problem.
Let r and ε be real numbers in the interval (0, 1).
If Π parameterized by the solution size admits a lop-kernel with O(k

1
1−r−ε)

vertices, then Π admits a polynomial-time approximation algorithm with
ratio O(nr−ε′) on n-vertex graphs, for some constant ε′ > 0.

Thus, inapproximability results directly yield kernel lower bounds.

(Similar statement for vertex-minimization problems.)
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Other frameworks to obtain kernelization lower bounds

Rule out polynomial kernels, assuming NP * coNP/poly.
[Bodlaender, Downey, Fellows, Hermelin. 2009]

[Bodlaender, Jansen, Kratsch. 2014]

Weak compositions: lower bounds on the degree of polynomial
kernels, assuming NP * coNP/poly.
[Dell and van Melkebeek. 2010] [Dell, Marx. 2012] [Hermelin, Wu. 2012]

Transfer lower bounds: polynomial parameter transformations.
[Bodlaender, Thomassé, Yeo. 2009]

[Fernau, Fomin, Lokshtanov, Raible, Saurabh, Villanger. 2009]

Lower bounds on the coefficients of linear kernels, assuming P 6= NP.
[Chen, Fernau, Kanj, Xia. 2007]

Lossy kernelization. [Lokshtanov, Panolan, Ramanujan, Saurabh. 2017]

Strong points immediate application, weak hypothesis (P 6= NP).

Weak points needs strong inapproximability result, only vertex problems.
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A consequence of our general result

lop-kernel of size O(k
1

1−r−ε) ⇒ O(nr−ε′)-approximation algorithm

Maximum Minimal Vertex Cover does not admit an
O(n 1

2−ε)-approximation, unless P = NP. [Boria, Della Croce, Paschos. 2015]

By just plugging r = 1
2 in our general result we obtain:

Corollary
Maximum Minimal Vertex Cover parameterized by the solution size
does not admit a lop-kernel with O(k2−ε) vertices, unless P = NP.

Thus, the trivial quadratic kernel is “essentially” optimal.
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Another consequence of our general result

lop-kernel of size O(k
1

1−r−ε) ⇒ O(nr−ε′)-approximation algorithm

Maximum Minimal Feedback Vertex Set parameterized by the
solution size k admits a kernel of size O(k3).

[Dublois, Hanaka, Ghadikolaei, Lampis, Melissinos. 2020]

Open problem: does a kernel smaller than O(k3) exist?

Maximum Minimal Feedback Vertex Set does not admit an
O(n 2

3−ε)-approximation, unless P = NP. [Dublois et al. 2020]

By just plugging r = 2
3 in our general result we obtain:

Corollary
If P 6= NP, Maximum Minimal Feedback Vertex Set parameterized
by the solution size does not admit a lop-kernel with O(k3−ε) vertices.
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Subquadratic kernels on particular graph classes
We use, for the first time, the Erdős-Hajnal property in kernelization.

Theorem
The Maximum Minimal Vertex Cover problem parameterized by k
restricted to bull-free graphs admits a kernel with O(k7/4) vertices.

Theorem
For every t ≥ 3, Maximum Minimal Vertex Cover parameterized by
k restricted to Kt-free graphs admits a kernel with O(k

2t−3
t−1 ) vertices.

Theorem
The Maximum Minimal Vertex Cover problem parameterized by k
restricted to paw-free graphs admits a kernel with O(k5/3) vertices.
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Theorem
The Maximum Minimal Vertex Cover problem parameterized by the
size of a minimum vertex cover of the input graph does not admit a
polynomial kernel unless NP ⊆ coNP/poly, even on bipartite graphs.

Polynomial parameter transformation (PPT):

Instance (x , k) of A polynomial time Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ = O(kc) for some constant c.

If A does not admit a polynomial kernel and ∃ a PPT from A to B,
then B does not admit a polynomial kernel, assuming NP ⊆ coNP/poly.

We present a PPT from the Monotone Sat problem parameterized by
the number of variables, which is known not to admit a polynomial kernel.

[Fortnow, Santhanam. 2011]
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Let φ be an instance of Monotone Sat, with n variables and m clauses.

The literals in each clause of φ are either all positive or all negative.

We construct in poly time an instance (G , k) of MMVC with k := 2n + m:

x+
1 x−

1`1 r1

x+
n x−

n`n rn

cj

cj′

positive
clauses

negative
clauses

The set {x+
i , x

−
i | i ∈ [n]} is a minimum vertex cover of G of size 2n.

φ is satisfiable ⇔ G contains a minimal vertex cover of size k.
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Our framework to rule out subquadratic kernels for MMVC

A lop-kernel for Π with parameter k is a polynomial-time algorithm that,
given an instance (G , k), produces an instance (G ′, k ′) with |V (G ′)| ≤ s(k)
for some function s : N→ N, called the size of the kernel, s.t.

1 optΠ(G ′) ≥ k ′ ⇒ optΠ(G) ≥ k.
2 optΠ(G) ≥ k ⇒ optΠ(G ′) ≥ optΠ(G)− (k − k ′) (⇒ optΠ(G ′) ≥ k ′).

We call a reduction rule as above a lop-rule.

We also allow a lop-kernel to answer ‘Yes’ directly.

Idea: lop-kernel of size O(k
1

1−r−ε) ⇒ O(nr−ε′)-approximation algorithm
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Sketch of proof
Let Π be a vertex-maximization problem parameterized by solution size k.

Suppose that Π admits a lop-kernel of size O(kc) for some constant c ≥ 1.

Then, given an instance (G , k), in poly time either we conclude that

optΠ(G) ≥ k, or

we obtain an equivalent instance (G ′, k ′) such that

optΠ(G) ≤ optΠ(G ′) + (k − k ′) ≤ |V (G ′)|+ k = O(kc).

From this, it is not difficult to see that we can obtain a polynomial-time
approximation algorithm for Π with the desired ratio:

lop-kernel of size O(k
1

1−r−ε) ⇒ O(nr−ε′)-approximation algorithm

It holds with ε′ := ε2 · (1−r)2

r .
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Subquadratic kernels on particular graph classes

Theorem
The Maximum Minimal Vertex Cover problem parameterized by k
restricted to bull-free graphs admits a kernel with O(k7/4) vertices.

A graph H satisfies the Erdős-Hajnal property if there exists a constant
δ > 0 such that every H-free graph G with n vertices contains either a
clique or an independent set of size nδ.
Conjecture: every graph H satisfies the E-H property. [Erdős, Hajnal. 1982]

True for graphs with at most 4 vertices, the bull, the complete graphs...
[Chudnovsky. 2014]

For all the known cases, such a clique or independent set of size nδ can be
found in polynomial time.
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Two useful lemmas

Lemma
Let H be a graph satisfying the constructive Erdős-Hajnal property with
constant δ > 0, and let G be an H-free graph.

Then V (G) can be
partitioned in polynomial time into a collection of cliques C and a
collection of independent sets I such that |C|+ |I| = O(|V (G)|1−δ).

Lemma
Let G be a graph and let S ⊆ V (G) be an independent set.
Then there exists a minimal vertex cover of G containing N(S).

S N(S)

V (G) \N [S]
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A subquadratic kernel on bull-free graphs: sketch

Let (G , k) be an instance of MMVC, where G is bull-free.

We can assume that the maximum degree of G is at most k − 1.

We find greedily a minimal vertex cover X of G .

We can assume |X | ≤ k − 1. Let S = V (G) \ X . Goal: bound |S|.

The bull satisfies the EH-property with δ = 1
4 . [Chudnovsky, Safra. 2008]

Partition G [X ] into cliques C and indep. sets I with |C|+ |I| = O(k3/4).

Since S is an independent set and there are no isolated vertices,

S =
⋃

C∈C
NS(C) ∪

⋃
I∈I

NS(I).

Enough: for every Y ∈ C ∪ I, show that |NS(Y )| = O(k).
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Goal for every Y ∈ C ∪ I, show that |NS(Y )| = O(k).

Suppose first that I ∈ I is an independent set.

From the second Lemma, if |NS(I)| ≥ k then (G , k) is a Yes-instance,

So we can assume that |NS(I)| ≤ k − 1.

Suppose now that C ∈ C is a clique. Goal |NS(C)| = O(k)

S1
C S2

C

C

Partition NS(C) = S1
C ] S2

C so that S1
C is a maximal subset of NS(C) s.t.

the neighborhoods of its vertices pairwise do not cover all the clique C .
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x yS1
C S2

C

C

Claim: The vertices in S1
C can be ordered x1, . . . , xp so that

NC (xi ) ⊆ NC (xj) whenever i ≤ j .
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x∈S1
C

NC (x).

Since deg(u) ≤ k − 1, it follows that |S1
C | ≤ k − 1.
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Further research

lop-kernel of size O(k
1

1−r−ε) ⇒ O(nr−ε′)-approximation algorithm

Can the “lop” assumption be removed?
Are there natural reduction rules that are not lop-rules?
Apply our framework to vertex-minimization problems.

Subquadratic kernels for MMVC on H-free graphs using the EH-property

Other graphs H satisfying the E-H property: C4, the diamond, P5, C5.
The complexity of MMVC on P5-free graphs is open.
If G is a graph on n vertices without isolated vertices, then

mmvc(G) ≥ bn1/2c. [Boria, Della Croce, Paschos. 2015]

This immediately yields a quadratic kernel for MMVC.
Is it possible that, for the H-free graphs that we considered,
mmvc(G) ≥ n1/2+ε, for some ε > 0? Triangle-free graphs?
If so, it would immediately yield a subquadratic kernel.
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