Single-exponential algorithms and linear kernels via protrusion decompositions

Eun Jung Kim¹ Christophe Paul² Ignasi Sau²

Alexander Langer³ Felix Reidl³ Peter Rossmanith³ Somnath Sikdar³

arXiv/1207.0835

¹ CNRS, LAMSADE, Paris (France)

² CNRS, LIRMM, Montpellier (France)

³ Department of Computer Science, RWTH Aachen University (Germany)

Outline of the talk

- Preliminaries
- 2 Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- 3 Single-exponential algorithm for PLANAR- \mathcal{F} -DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

Next section is...

- Preliminaries
- 2 Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- \bigcirc Single-exponential algorithm for PLANAR- ${\cal F}$ -DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

Some words on parameterized complexity

• Idea given an NP-hard problem with input size n, fix one parameter k of the input to see whether the problem gets more "tractable".

Example: the size of a VERTEX COVER.

Some words on parameterized complexity

• Idea given an NP-hard problem with input size *n*, fix one parameter *k* of the input to see whether the problem gets more "tractable".

Example: the size of a VERTEX COVER.

• Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in time

$$f(k) \cdot n^{O(1)}$$
, for some function f .

Examples: *k*-Vertex Cover, *k*-Longest Path.

Some words on parameterized complexity

• Idea given an NP-hard problem with input size n, fix one parameter k of the input to see whether the problem gets more "tractable".

Example: the size of a VERTEX COVER.

• Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in time

$$f(k) \cdot n^{O(1)}$$
, for some function f .

Examples: *k*-Vertex Cover, *k*-Longest Path.

• A single-exponential parameterized algorithm is an FPT algo s.t.

$$f(\mathbf{k}) = 2^{O(\mathbf{k})}.$$

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Some famous examples:

• PTAS and exact subexponential algorithms based on finding separators of size $O(\sqrt{n})$ on planar graphs. [Baker's approach]

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Some famous examples:

- PTAS and exact subexponential algorithms based on finding separators of size $O(\sqrt{n})$ on planar graphs. [Baker's approach]
- Linear-time algorithms for problems expressible in MSOL on graphs of bounded treewidth.

 [Coucelle's theorem]

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Some famous examples:

- PTAS and exact subexponential algorithms based on finding separators of size $O(\sqrt{n})$ on planar graphs. [Baker's approach]
- Linear-time algorithms for problems expressible in MSOL on graphs of bounded treewidth.
- FPT algorithms based on the structural decomposition result of
 H-minor-free graphs.
 [Graph Minors theory by Robertson and Seymour]

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Some famous examples:

- PTAS and exact subexponential algorithms based on finding separators of size $O(\sqrt{n})$ on planar graphs. [Baker's approach]
- Linear-time algorithms for problems expressible in MSOL on graphs of bounded treewidth.

 [Coucelle's theorem]
- FPT algorithms based on the structural decomposition result of
 H-minor-free graphs.
 [Graph Minors theory by Robertson and Seymour]
- Linear-time algorithms based on modular decompositions.

Next section is...

- Preliminaries
- Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- ${ t @}$ Single-exponential algorithm for ${ t PLANAR-}{\mathcal F} ext{-}{ t DELETION}$
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

Next subsection is...

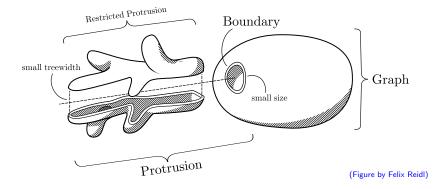
- Preliminaries
- Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- ${ t @}$ Single-exponential algorithm for ${ t PLANAR-}{\mathcal F} ext{-}{ t DELETION}$
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

Protrusions

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

• Given a graph G, a set $W \subseteq V(G)$ is a t-protrusion of G if

$$|\partial_G(W)|\leqslant t$$
 and $\mathrm{tw}(G[W])\leqslant t$

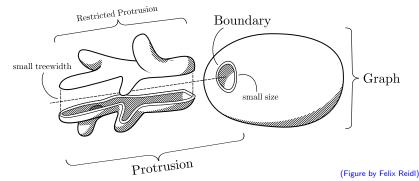


Protrusions

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

• Given a graph G, a set $W \subseteq V(G)$ is a t-protrusion of G if

$$|\partial_G(W)|\leqslant t$$
 and $\mathrm{tw}(G[W])\leqslant t$

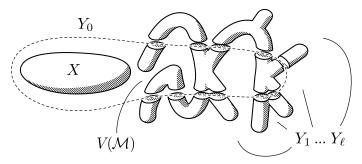


- The vertex set $W' = W \setminus \partial_G(W)$ is the restricted protrusion of W.
- We call $\partial_G(W)$ the boundary and |W| the size of W.

Protrusion decompositions

An (α, t) -protrusion decomposition of a graph G is a partition $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ of V(G) such that:

- for every $1 \leqslant i \leqslant \ell$, $N(Y_i) \subseteq Y_0$;
- for every $1 \leqslant i \leqslant \ell$, $Y_i \cup N_{Y_0}(Y_i)$ is a *t*-protrusion of G;
- $\max\{\ell, |Y_0|\} \leqslant \alpha$.



The set Y_0 is called the separating part of \mathcal{P} .

(Figure by Felix Reidl)

Next subsection is...

- Preliminaries
- Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- 3 Single-exponential algorithm for PLANAR- \mathcal{F} -DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

Protrusion decompositions have already been used in the literature.

[Bodlaender, Fomin, Lokshtanov, Saurabh, Thilikos '09-12]

 Here we present a new algorithm to compute protrusion decompositions for graphs G that come equipped with a set

$$X \subseteq V(G)$$
 s.t. $tw(G - X) \leqslant t$

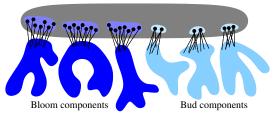
for some constant t > 0.

The set X is called a *t*-treewidth-modulator.

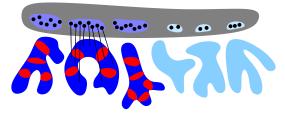
• Our algorithm marks the bags of a tree-decomposition of G.

- Our algorithm marks the bags of a tree-decomposition of G.
- Let *r* be an integer that is also given to the algorithm.

- Our algorithm marks the bags of a tree-decomposition of G.
- Let *r* be an integer that is also given to the algorithm.
- Given tree-decompositions of the conn. comp. of G X with $\ge r$ neighbors in X, we identify a set of bags \mathcal{M} in a bottom-up manner.

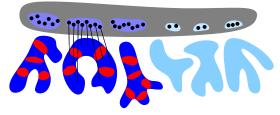


- Our algorithm marks the bags of a tree-decomposition of G.
- Let *r* be an integer that is also given to the algorithm.
- Given tree-decompositions of the conn. comp. of G X with $\ge r$ neighbors in X, we identify a set of bags \mathcal{M} in a bottom-up manner.



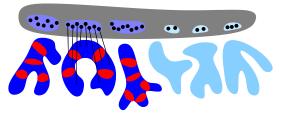
• The set $V(\mathcal{M})$ of vertices contained in marked bags together with X will form the separating part Y_0 of the protrusion decomposition.

- Our algorithm marks the bags of a tree-decomposition of G.
- Let *r* be an integer that is also given to the algorithm.
- Given tree-decompositions of the conn. comp. of G X with $\ge r$ neighbors in X, we identify a set of bags \mathcal{M} in a bottom-up manner.



- The set $V(\mathcal{M})$ of vertices contained in marked bags together with X will form the separating part Y_0 of the protrusion decomposition.
- Some marked bags will be mapped bijectively into pairwise vertex-disjoint connected subgraphs of G X, each of which has $\ge r$ neighbors in X.

- Our algorithm marks the bags of a tree-decomposition of G.
- Let *r* be an integer that is also given to the algorithm.
- Given tree-decompositions of the conn. comp. of G X with $\ge r$ neighbors in X, we identify a set of bags \mathcal{M} in a bottom-up manner.



- The set $V(\mathcal{M})$ of vertices contained in marked bags together with X will form the separating part Y_0 of the protrusion decomposition.
- Some marked bags will be mapped bijectively into pairwise vertex-disjoint connected subgraphs of G X, each of which has $\ge r$ neighbors in X.
- Finally, to guarantee that the conn. comp. of $G (X \cup V(\mathcal{M}))$ form protrusions with small boundary, the set \mathcal{M} is closed under taking LCA.

Input G, $X \subseteq V(G)$ s.t. $\operatorname{tw}(G - X) \leqslant t$, and an integer r > 0.

Input G, $X \subseteq V(G)$ s.t. $tw(G - X) \le t$, and an integer r > 0.

★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.

Input G, $X \subseteq V(G)$ s.t. $tw(G - X) \le t$, and an integer r > 0.

- ★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
- * Compute an optimal rooted tree-decomposition $\mathcal{T}_C = (\mathcal{T}_C, \mathcal{B}_C)$ of every connected component C of G X such that $|N_X(C)| \ge r$.

Input G, $X \subseteq V(G)$ s.t. $tw(G - X) \le t$, and an integer r > 0.

- ★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
- * Compute an optimal rooted tree-decomposition $\mathcal{T}_C = (\mathcal{T}_C, \mathcal{B}_C)$ of every connected component C of G X such that $|N_X(C)| \ge r$.
- * Repeat the following loop for every rooted tree-decomposition \mathcal{T}_C : while \mathcal{T}_C contains an unprocessed bag do:
 - \star Let B be an unprocess. bag at farthest distance from the root of \mathcal{T}_C .

```
Input G, X \subseteq V(G) s.t. tw(G - X) \le t, and an integer r > 0.
```

- ★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
- * Compute an optimal rooted tree-decomposition $\mathcal{T}_C = (\mathcal{T}_C, \mathcal{B}_C)$ of every connected component C of G X such that $|N_X(C)| \ge r$.
- * Repeat the following loop for every rooted tree-decomposition \mathcal{T}_C : while \mathcal{T}_C contains an unprocessed bag do:
 - \star Let B be an unprocess. bag at farthest distance from the root of \mathcal{T}_C .
 - ★ LCA marking step

if B is the LCA of two marked bags of M:

 $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of B from every bag of $\mathcal{T}_{\mathcal{C}}$.

```
Input G, X \subseteq V(G) s.t. \operatorname{tw}(G - X) \leqslant t, and an integer r > 0.
```

- ★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
- * Compute an optimal rooted tree-decomposition $\mathcal{T}_C = (\mathcal{T}_C, \mathcal{B}_C)$ of every connected component C of G X such that $|N_X(C)| \ge r$.
- * Repeat the following loop for every rooted tree-decomposition \mathcal{T}_C : while \mathcal{T}_C contains an unprocessed bag do:
 - \star Let B be an unprocess. bag at farthest distance from the root of \mathcal{T}_C .
 - ★ LCA marking step

if B is the LCA of two marked bags of M:

 $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of B from every bag of $\mathcal{T}_{\mathcal{C}}$.

★ Bloom-subgraph marking step

else if G_B contains a connected component C_B s.t. $|N_X(C_B)| \ge r$: $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of B from every bag of \mathcal{T}_C .

```
Input G, X \subseteq V(G) s.t. tw(G - X) \le t, and an integer r > 0.
```

- ★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
- * Compute an optimal rooted tree-decomposition $\mathcal{T}_C = (\mathcal{T}_C, \mathcal{B}_C)$ of every connected component C of G X such that $|N_X(C)| \ge r$.
- * Repeat the following loop for every rooted tree-decomposition \mathcal{T}_C : while \mathcal{T}_C contains an unprocessed bag do:
 - \star Let B be an unprocess. bag at farthest distance from the root of \mathcal{T}_C .
 - ★ LCA marking step
 - if B is the LCA of two marked bags of M:
 - $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of B from every bag of $\mathcal{T}_{\mathcal{C}}$.
 - ★ Bloom-subgraph marking step
 - else if G_B contains a connected component C_B s.t. $|N_X(C_B)| \ge r$: $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of B from every bag of \mathcal{T}_C .
 - \star Bag B is now processed.

Input
$$G$$
, $X \subseteq V(G)$ s.t. $tw(G - X) \le t$, and an integer $r > 0$.

- ★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
- * Compute an optimal rooted tree-decomposition $\mathcal{T}_C = (\mathcal{T}_C, \mathcal{B}_C)$ of every connected component C of G X such that $|N_X(C)| \ge r$.
- * Repeat the following loop for every rooted tree-decomposition \mathcal{T}_C : while \mathcal{T}_C contains an unprocessed bag do:
 - \star Let B be an unprocess. bag at farthest distance from the root of \mathcal{T}_C .
 - ★ LCA marking step

if B is the LCA of two marked bags of M:

 $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of B from every bag of \mathcal{T}_C .

- ★ Bloom-subgraph marking step
 - else if G_B contains a connected component C_B s.t. $|N_X(C_B)| \ge r$: $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of B from every bag of \mathcal{T}_C .
- \star Bag *B* is now processed.

Return
$$Y_0 = X \cup V(\mathcal{M})$$
.

Some properties of the bag marking algorithm

Lemma

The bag marking algorithm can be implemented to run in O(n) time, where the hidden constant depends only on t and r.

Some properties of the bag marking algorithm

Given a graph G and a subset $S \subseteq V(G)$, a cluster of G - S is a maximal collection of connected components of G - S with the same neighborhood in S.

Some properties of the bag marking algorithm

Given a graph G and a subset $S \subseteq V(G)$, a cluster of G - S is a maximal collection of connected components of G - S with the same neighborhood in S.

Proposition

- Let r, t be two positive integers,
- let G be a graph and $X \subseteq V(G)$ such that $\operatorname{tw}(G X) \leqslant t 1$,
- let $Y_0 \subseteq V(G)$ be the output of the algorithm with input (G, X, r), and
- let Y_1, \ldots, Y_ℓ be the set of clusters of $G Y_0$.

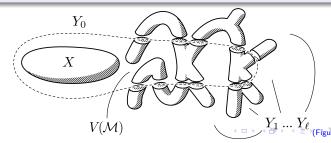
Some properties of the bag marking algorithm

Given a graph G and a subset $S \subseteq V(G)$, a cluster of G - S is a maximal collection of connected components of G - S with the same neighborhood in S.

Proposition

- Let r, t be two positive integers,
- let G be a graph and $X \subseteq V(G)$ such that $tw(G X) \leqslant t 1$,
- let $Y_0 \subseteq V(G)$ be the output of the algorithm with input (G, X, r), and
- let Y_1, \ldots, Y_ℓ be the set of clusters of $G Y_0$.

 $\textit{Then $\mathcal{P}:=Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ is a $(\max\{\ell,|Y_0|\},2t+r)$-protrusion decomp. of G.}$



Next section is...

- Preliminaries
- Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- 3 Single-exponential algorithm for PLANAR- \mathcal{F} -DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

Next subsection is...

- Preliminaries
- Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- 3 Single-exponential algorithm for PLANAR- \mathcal{F} -DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

The (parameterized) PLANAR- \mathcal{F} -DELETION problem

Let \mathcal{F} be a finite family of graphs containing at least one planar graph.

The (parameterized) PLANAR- \mathcal{F} -DELETION problem

Let \mathcal{F} be a finite family of graphs containing at least one planar graph.

PLANAR- \mathcal{F} -DELETION

Input: A graph G and a non-negative integer k.

Parameter: The integer k.

Question: Does G have a set $X \subseteq V(G)$ such that $|X| \le k$ and

G - X is H-minor-free for every $H \in \mathcal{F}$?

The (parameterized) PLANAR- \mathcal{F} -DELETION problem

Let \mathcal{F} be a finite family of graphs containing at least one planar graph.

PLANAR- \mathcal{F} -DELETION

Input: A graph G and a non-negative integer k.

Parameter: The integer k.

Question: Does G have a set $X \subseteq V(G)$ such that $|X| \leq k$ and

G - X is H-minor-free for every $H \in \mathcal{F}$?

Some particular cases:

■ Treewidth-zero Vertex Deletion

■ Treewidth-one Vertex Deletion

Particular cases:

•
$$\mathcal{F} = \{K_2\}$$

$$O^*(1.2738^k)$$

•
$$\mathcal{F} = \{K_3\}$$

• $\mathcal{F} = \{\theta_c\}$

$$O^*(3.83^k)$$

 $O^*(c^k)$

•
$$\mathcal{F} = \{K_4\}$$

$$O^*(c^k)$$

[Cao, Chen, Liu '10]

Particular cases:

•
$$\mathcal{F} = \{K_2\}$$

$$O^*(1.2738^k)$$

•
$$\mathcal{F} = \{K_3\}$$

$$O^*(3.83^k)$$

•
$$\mathcal{F} = \{\theta_c\}$$

$$O^*(c^k)$$

•
$$\mathcal{F} = \{K_4\}$$

$$O^*(c^k)$$

[Kim, Paul, Philip '12]

General case:

• PLANAR- \mathcal{F} -DELETION is FPT.

[Roberston and Seymour's Graph Minors theory]

Particular cases:

$$m{\mathcal{F}}=\{\mathcal{K}_2\}$$
 $O^*(1.2738^k)$ [Chen, Fernau, Kanj, Xia '10]

$$oldsymbol{\circ} \mathcal{F} = \{\mathcal{K}_3\}$$
 $O^*(3.83^k)$ [Cao, Chen, Liu '10]

$$m{\circ} \ \mathcal{F} = \{ m{ heta}_{m{c}} \}$$
 [Joret, Paul, S., Saurabh, Thomassé '11]

$$oldsymbol{\circ} \mathcal{F} = \{ \mathcal{K}_4 \}$$
 $O^*(c^k)$ [Kim, Paul, Philip '12]

General case:

- ullet PLANAR- ${\cal F}$ -DELETION is FPT. [Roberston and Seymour's Graph Minors theory]
- $2^{2^{O(k \log k)}} \cdot n^{O(1)}$ -time algorithm based on standard DP.

Particular cases:

•
$$\mathcal{F} = \{K_2\}$$
 $O^*(1.2738^k)$

•
$$\mathcal{F} = \{K_3\}$$
 $O^*(3.83^k)$

$$\bullet \ \mathcal{F} = \{\theta_c\} \qquad O^*(c^k)$$

$$\bullet \ \mathcal{F} = \{K_4\} \qquad O^*(c^k)$$

[Chen, Fernau, Kanj, Xia '10]

[Cao, Chen, Liu '10]

[Joret, Paul, S., Saurabh, Thomassé '11]

[Kim, Paul, Philip '12]

General case:

• PLANAR- \mathcal{F} -DELETION is FPT.

- [Roberston and Seymour's Graph Minors theory]
- $2^{2^{O(k \log k)}} \cdot n^{O(1)}$ -time algorithm based on standard DP.
- $2^{O(k \log k)} \cdot n^2$ -time algorithm.

[Fomin, Lokshtanov, Misra, Saurabh '11]

Particular cases:

•
$$\mathcal{F} = \{K_2\}$$
 $O^*(1.2738^k)$

•
$$\mathcal{F} = \{K_3\}$$

• $\mathcal{F} = \{\theta_c\}$

$$O^*(3.83^k)$$

 $O^*(c^k)$

•
$$\mathcal{F} = \{K_4\}$$

$$O^*(c^k)$$

[Kim, Paul, Philip '12]

[Cao, Chen, Liu '10]

General case:

• PLANAR- \mathcal{F} -DELETION is FPT.

- [Roberston and Seymour's Graph Minors theory]
- $2^{2^{O(k \log k)}} \cdot n^{O(1)}$ -time algorithm based on standard DP.
- $2^{O(k \log k)} \cdot n^2$ -time algorithm.

[Fomin, Lokshtanov, Misra, Saurabh '11]

• $2^{O(k)} \cdot n \log^2 n$ -time algorithm for

Our result

Theorem

The PLANAR- \mathcal{F} -DELETION problem can be solved in time $2^{O(k)} \cdot n^2$.

• This result unifies a number of algorithms in the literature.

Our result

Theorem

The PLANAR- \mathcal{F} -DELETION problem can be solved in time $2^{O(k)} \cdot n^2$.

- This result unifies a number of algorithms in the literature.
- No hope for a $2^{o(k)} \cdot n^{O(1)}$ -time algorithm (under ETH). [Chen et al. '05]

That is, the function $2^{O(k)}$ in our theorem is best possible.

Next subsection is...

- Preliminaries
- Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- 3 Single-exponential algorithm for PLANAR- \mathcal{F} -DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

Using iterative compression the $PLANAR-\mathcal{F}-DELETION$ problem can be reduced in single-exponential time to the following problem:

Using iterative compression the $PLANAR-\mathcal{F}-DELETION$ problem can be reduced in single-exponential time to the following problem:

DISJOINT PLANAR- \mathcal{F} -DELETION

Input: A graph G, a non-negative integer k, and a set

 $X \subseteq V(G)$ with |X| = k s.t. G - X is \mathcal{F} -minor-free.

Using iterative compression the PLANAR- \mathcal{F} -DELETION problem can be reduced in single-exponential time to the following problem:

DISJOINT PLANAR- \mathcal{F} -DELETION

Input: A graph G, a non-negative integer k, and a set

 $X \subseteq V(G)$ with |X| = k s.t. G - X is \mathcal{F} -minor-free.

Parameter: The integer k.

Question: Does G have a set $\left| \tilde{X} \subseteq V(G) \setminus X \right|$ such that $\left| \tilde{X} \right| < k$ and

G - X is H-minor-free for every $H \in \mathcal{F}$?

We call \tilde{X} an alternative solution.

Using iterative compression the PLANAR- \mathcal{F} -DELETION problem can be reduced in single-exponential time to the following problem:

DISJOINT PLANAR- \mathcal{F} -DELETION

Input: A graph G, a non-negative integer k, and a set

 $X \subseteq V(G)$ with |X| = k s.t. G - X is \mathcal{F} -minor-free.

Parameter: The integer k.

Question: Does G have a set $|\tilde{X} \subseteq V(G) \setminus X|$ such that $|\tilde{X}| < k$ and

G - X is H-minor-free for every $H \in \mathcal{F}$?

We call \tilde{X} an alternative solution.

Lemma (well-kwown)

If DISJOINT PLANAR- \mathcal{F} -DELETION can be solved in time $O^*(c^k)$ for some $c \in \mathbb{N}^+$, then PLANAR- \mathcal{F} -DELETION can be solved in $O^*((c+1)^k)$.

Observation:

- G[X] is \mathcal{F} -minor-free
- $G[V \setminus X]$ is \mathcal{F} -minor-free

Observation:

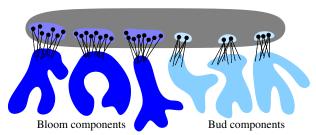
- G[X] is \mathcal{F} -minor-free $\Rightarrow G[X]$ has bounded tw!!
- $G[V \setminus X]$ is \mathcal{F} -minor-free $\Rightarrow G[V \setminus X]$ has bounded tw!!

Observation:

- G[X] is \mathcal{F} -minor-free $\Rightarrow G[X]$ has bounded tw!!
- $G[V \setminus X]$ is \mathcal{F} -minor-free $\Rightarrow G[V \setminus X]$ has bounded tw!!
- * Let r := |V(H)| for H being some planar graph in the family \mathcal{F} .

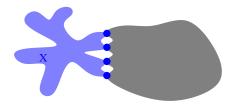
Observation:

- G[X] is \mathcal{F} -minor-free $\Rightarrow G[X]$ has bounded tw!!
- $G[V \setminus X]$ is \mathcal{F} -minor-free $\Rightarrow G[V \setminus X]$ has bounded tw!!
- * Let r := |V(H)| for H being some planar graph in the family \mathcal{F} .
- * A connected component C of G X is called a bloom component if $|N_X(C)| \ge r$, and a bud component otherwise.



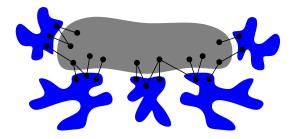
Linear protrusion decompositions

* Recall that a β -protrusion in a graph G is a subset $Y \subseteq V(G)$ such that $|\partial(Y)| \leqslant \beta$ and $\operatorname{tw}(G[Y]) \leqslant \beta$



Linear protrusion decompositions

* Recall that a β -protrusion in a graph G is a subset $Y \subseteq V(G)$ such that $|\partial(Y)| \leqslant \beta$ and $\operatorname{tw}(G[Y]) \leqslant \beta$

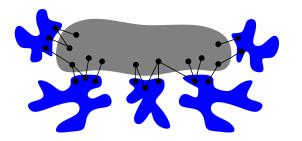


 \star A partition $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ of V(G) with $\max\{\ell, |Y_0|\} \leqslant \alpha$ is an (α, β) -protrusion decomposition if for every $1 \leqslant i \leqslant \ell$,

 $N(Y_i) \subseteq Y_0$ and $Y_i \cup N_{Y_0}(Y_i)$ is a β -protrusion

Linear protrusion decompositions

* Recall that a β -protrusion in a graph G is a subset $Y \subseteq V(G)$ such that $|\partial(Y)| \leqslant \beta$ and $\operatorname{tw}(G[Y]) \leqslant \beta$



 \star A partition $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ of V(G) with $\max\{\ell, |Y_0|\} \leqslant \alpha$ is an (α, β) -protrusion decomposition if for every $1 \leqslant i \leqslant \ell$,

$$N(Y_i) \subseteq Y_0$$
 and $Y_i \cup N_{Y_0}(Y_i)$ is a β -protrusion

* \mathcal{P} is linear with respect to a parameter k whenever $\alpha = O(k)$.

★ We will use our algorithm to compute protrusion decompositions.

* Recall that r = |V(H)|,

* Recall that r = |V(H)|, and that $\operatorname{tw}(G[V \setminus X]) \leqslant t_{\mathcal{F}}$,

* Recall that r = |V(H)|, and that $\operatorname{tw}(G[V \setminus X]) \leq t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.

- * Recall that r = |V(H)|, and that $\operatorname{tw}(G[V \setminus X]) \leq t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.
- * But it turns out that, with input (G, X, r), the set Y_0 output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

- * Recall that r = |V(H)|, and that $\operatorname{tw}(G[V \setminus X]) \leq t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.
- \star But it turns out that, with input (G, X, r), the set Y_0 output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...
 - 1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.:
 - G I has a linear protrusion decomposition

$$\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$$

• with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

- * Recall that r = |V(H)|, and that $\operatorname{tw}(G[V \setminus X]) \leq t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.
- * But it turns out that, with input (G, X, r), the set Y_0 output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...
 - 1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.:
 - G I has a linear protrusion decomposition

$$\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$$

• with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

By carefully analyzing the output of our bag marking algorithm

- * Recall that r = |V(H)|, and that $\operatorname{tw}(G[V \setminus X]) \leq t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.
- * But it turns out that, with input (G, X, r), the set Y_0 output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...
 - 1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.:
 - \bullet G-I has a linear protrusion decomposition

$$\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$$

• with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

By carefully analyzing the output of our bag marking algorithm

Finally, compute $\tilde{X} \setminus I$, given a linear protrusion decomposition.

- * Recall that r = |V(H)|, and that $\operatorname{tw}(G[V \setminus X]) \leq t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.
- \star But it turns out that, with input (G, X, r), the set Y_0 output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...
 - 1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.:
 - \bullet G-I has a linear protrusion decomposition

$$\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$$

• with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

By carefully analyzing the output of our bag marking algorithm

2 Finally, compute $\tilde{X} \setminus I$, given a linear protrusion decomposition.

Based on the finite index of MSO-definable properties (automaton theory)

Algorithm to solve DISJOINT PLANAR- \mathcal{F} -DELETION

- * Recall that r = |V(H)|, and that $\operatorname{tw}(G[V \setminus X]) \leq t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.
- * But it turns out that, with input (G, X, r), the set Y_0 output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...
 - 1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.:
 - G I has a linear protrusion decomposition

$$\mathcal{P} = \mathit{Y}_{0} \uplus \mathit{Y}_{1} \uplus \cdots \uplus \mathit{Y}_{\ell}$$

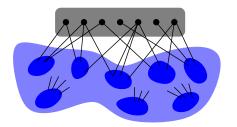
• with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

By carefully analyzing the output of our bag marking algorithm

- 2 Finally, compute $\tilde{X} \setminus I$, given a linear protrusion decomposition.
 - Based on the finite index of MSO-definable properties (automaton theory)
- ★ Both steps can be done in single-exponential time,

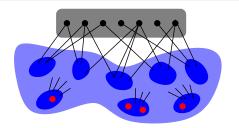
Lemma (edge simulation to chop bloom components)

If C_1, \ldots, C_ℓ is a collection of connected pairwise vertex-disjoint subgraphs of G-X such that $|N_X(C_i)|\geqslant r$ for $1\leqslant i\leqslant \ell$, then $\ell\leqslant (1+\alpha_r)\cdot k$.



Lemma (edge simulation to chop bloom components)

If C_1, \ldots, C_ℓ is a collection of connected pairwise vertex-disjoint subgraphs of G-X such that $|N_X(C_i)|\geqslant r$ for $1\leqslant i\leqslant \ell$, then $\ell\leqslant (1+\alpha_r)\cdot k$.



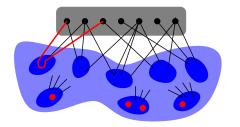
Proposition (Thomason '01)

There exists a constant $\alpha < 0.320$ such that any n-vertex graph with no K_r -minor has at most $\alpha_r \cdot n = (\alpha \cdot r \sqrt{\log r}) \cdot n$ edges.

(Recall that r = |V(H)|, for H being any planar graph in \mathcal{F})

Lemma (edge simulation to chop bloom components)

If C_1, \ldots, C_ℓ is a collection of connected pairwise vertex-disjoint subgraphs of G-X such that $|N_X(C_i)|\geqslant r$ for $1\leqslant i\leqslant \ell$, then $\ell\leqslant (1+\alpha_r)\cdot k$.



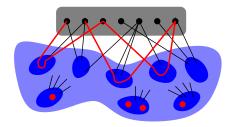
Proposition (Thomason '01)

There exists a constant $\alpha < 0.320$ such that any n-vertex graph with no K_r -minor has at most $\alpha_r \cdot n = (\alpha \cdot r \sqrt{\log r}) \cdot n$ edges.

(Recall that r = |V(H)|, for H being any planar graph in \mathcal{F})

Lemma (edge simulation to chop bloom components)

If C_1, \ldots, C_ℓ is a collection of connected pairwise vertex-disjoint subgraphs of G-X such that $|N_X(C_i)|\geqslant r$ for $1\leqslant i\leqslant \ell$, then $\ell\leqslant (1+\alpha_r)\cdot k$.

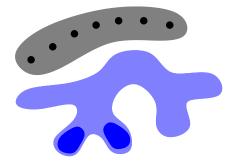


Proposition (Thomason '01)

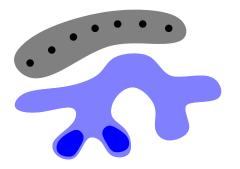
There exists a constant $\alpha < 0.320$ such that any n-vertex graph with no K_r -minor has at most $\alpha_r \cdot n = (\alpha \cdot r \sqrt{\log r}) \cdot n$ edges.

(Recall that r = |V(H)|, for H being any planar graph in \mathcal{F})

Consider an optimal tree-decomposition $\mathcal{T}=(\mathcal{T},\mathcal{B})$ of a "bloom" connected component C of G-X (i.e., $|N_X(C)|\geqslant r$)



Consider an optimal tree-decomposition $\mathcal{T}=(\mathcal{T},\mathcal{B})$ of a "bloom" connected component C of G-X (i.e., $|N_X(C)|\geqslant r$)



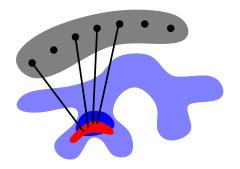
Recall our bottom-up BAG MARKING algorithm:

if a bag B is the LCA of two marked bags of \mathcal{M} , or

GB contains a connected bloom component, then

• $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices in B from the bags of T

Consider an optimal tree-decomposition $\mathcal{T}=(\mathcal{T},\mathcal{B})$ of a "bloom" connected component C of G-X (i.e., $|N_X(C)|\geqslant r$)



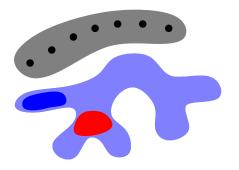
Recall our bottom-up BAG MARKING algorithm:

if a bag B is the LCA of two marked bags of \mathcal{M} , or

G_B contains a connected bloom component, then

 $\bullet \ \mathcal{M} \leftarrow \mathcal{M} \cup \{\mathit{B}\} \ \text{and remove the vertices in } \underset{\leftarrow}{\mathit{B}} \ \text{from the bags of } \underset{\leftarrow}{\mathcal{T}}$

Consider an optimal tree-decomposition $\mathcal{T}=(\mathcal{T},\mathcal{B})$ of a "bloom" connected component C of G-X (i.e., $|N_X(C)|\geqslant r$)



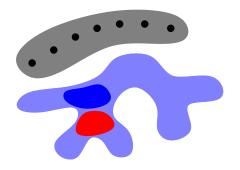
Recall our bottom-up BAG MARKING algorithm:

if a bag B is the LCA of two marked bags of M, or

GB contains a connected bloom component, then

 $\bullet \ \mathcal{M} \leftarrow \mathcal{M} \cup \{B\} \text{ and remove the vertices in } \underset{\longleftarrow}{B} \text{ from the bags of } \underset{\equiv}{\mathcal{T}}$

Consider an optimal tree-decomposition $\mathcal{T}=(\mathcal{T},\mathcal{B})$ of a "bloom" connected component C of G-X (i.e., $|N_X(C)|\geqslant r$)



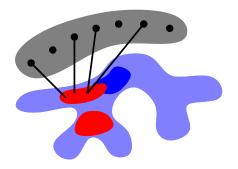
Recall our bottom-up BAG MARKING algorithm:

if a bag B is the LCA of two marked bags of \mathcal{M} , or

GB contains a connected bloom component, then

 $\bullet \ \mathcal{M} \leftarrow \mathcal{M} \cup \{B\} \text{ and remove the vertices in } \underset{\longleftarrow}{B} \text{ from the bags of } \underset{\equiv}{\mathcal{T}}$

Consider an optimal tree-decomposition $\mathcal{T}=(\mathcal{T},\mathcal{B})$ of a "bloom" connected component C of G-X (i.e., $|N_X(C)|\geqslant r$)



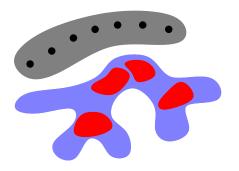
Recall our bottom-up BAG MARKING algorithm:

if a bag B is the LCA of two marked bags of \mathcal{M} , or

G_B contains a connected bloom component, then

• $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices in B from the bags of T

Consider an optimal tree-decomposition $\mathcal{T}=(\mathcal{T},\mathcal{B})$ of a "bloom" connected component C of G-X (i.e., $|N_X(C)|\geqslant r$)

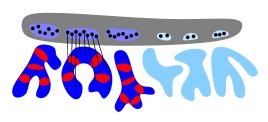


Recall our bottom-up BAG MARKING algorithm:

if a bag B is the LCA of two marked bags of \mathcal{M} , or

G_B contains a connected bloom component, then

• $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices in B from the bags of T

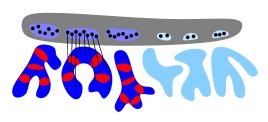


Lemma $(|Y_0| = O(k))$ and every component is a protrusion)

If (G, X, k) is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then

- $Y_0 = X \cup V(\mathcal{M})$ has size at most $k + 2t_{\mathcal{F}} \cdot (1 + \alpha_r) \cdot k$.
- ullet Every connected component ${\color{red}C}$ of ${\color{red}G}-{\color{red}Y_0}$ satisfies

$$|N_X(C)| \leqslant r$$
 and $|N_{Y_0}(C)| \leqslant r + 2t_{\mathcal{F}}$



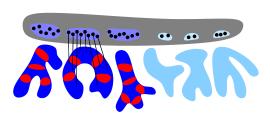
Lemma $(|Y_0| = O(k))$ and every component is a protrusion)

If (G, X, k) is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then

- $Y_0 = X \cup V(\mathcal{M})$ has size at most $k + 2t_{\mathcal{F}} \cdot (1 + \alpha_r) \cdot k$.
- Every connected component C of $G-Y_0$ satisfies

$$|N_X(C)| \leqslant r \text{ and } |N_{Y_0}(C)| \leqslant r + 2t_{\mathcal{F}}$$

• Note that k = |X|,



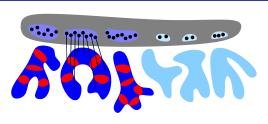
Lemma $(|Y_0| = O(k))$ and every component is a protrusion)

If (G, X, k) is a Yes-instance of Disjoint Planar- \mathcal{F} -Deletion, then

- $Y_0 = X \cup V(\mathcal{M})$ has size at most $k + 2t_{\mathcal{F}} \cdot (1 + \alpha_r) \cdot k$.
- ullet Every connected component C of $G-Y_0$ satisfies

$$|N_X(C)| \leqslant r \text{ and } |N_{Y_0}(C)| \leqslant r + 2t_{\mathcal{F}}$$

- Note that k = |X|,
- $\operatorname{tw}(G X) \leqslant t_{\mathcal{F}}$, and



Lemma $(|Y_0| = O(k))$ and every component is a protrusion)

If (G, X, k) is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then

- $Y_0 = X \cup V(\mathcal{M})$ has size at most $k + 2t_{\mathcal{F}} \cdot (1 + \alpha_r) \cdot k$.
- ullet Every connected component ${\it C}$ of ${\it G}-{\it Y}_0$ satisfies

$$|N_X(C)| \leqslant r$$
 and $|N_{Y_0}(C)| \leqslant r + 2t_F$

- Note that k = |X|,
- $\operatorname{tw}(G X) \leqslant t_{\mathcal{F}}$, and
- $|\mathcal{M}| \leqslant (1+\alpha_r) \cdot k$ (by the "edge simulation" Lemma)

Remark: Therefore, Y_0 and the connected components of $G-Y_0$ form a protrusion decomposition of G... but not a linear one!

Remark: Therefore, Y_0 and the connected components of $G-Y_0$ form a protrusion decomposition of G... but not a linear one!

We need that #protrusions = O(k).

Remark: Therefore, Y_0 and the connected components of $G-Y_0$ form a protrusion decomposition of G... but not a linear one!

We need that #protrusions = O(k).

Branching step:

Guess $I = \tilde{X} \cap Y_0$ among the $2^{O(k)}$ subsets of $V(\mathcal{M})$

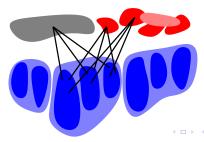
Remark: Therefore, Y_0 and the connected components of $G - Y_0$ form a protrusion decomposition of G... but not a linear one!

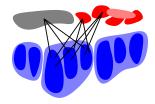
We need that #protrusions = O(k).

Branching step:

Guess
$$I = \tilde{X} \cap Y_0$$
 among the $2^{O(k)}$ subsets of $V(\mathcal{M})$

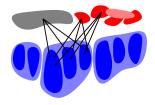
Let $G_I := G - I$. Recall that a cluster of $G_I - Y_0$ is a maximal set of connected components of $G_I - Y_0$ with the same neighborhood in Y_0 .





Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k$.

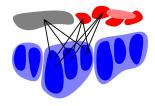


Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every n-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.



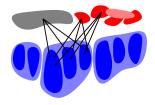
Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r)\cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every n-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

* At most $\ell' = k - |I|$ clusters $C_1, \ldots, C_{\ell'}$ intersect the alternative solution \tilde{X} .



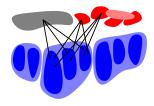
Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every n-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

We have that $G' = G_I - \bigcup_{i=1}^{\ell'} C_i$ is \mathcal{F} -minor-free.



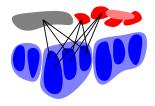
Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every n-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

★ Using edge simulation we construct a minor of G' on vertices of Y_0 .



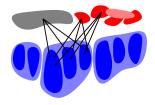
Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every n-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

* As before, the number of clusters used so far is at most $\alpha_r \cdot k$.



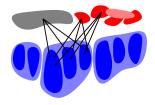
Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every n-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

★ When we cannot add more edges, all neighborhoods of clusters are cliques!



Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every n-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

* Now we use the Proposition: the number of remaining clusters is $\mu_r \cdot k$.

Back to the road map of the algorithm

Therefore, the partition $\mathcal{P} = Y_0 \uplus C_1 \uplus \cdots \uplus C_\ell$ is a

 $(O(k), r + 2t_{\mathcal{F}})$ -protrusion decomposition of $G_I = G - I$

Back to the road map of the algorithm

Therefore, the partition $\mathcal{P} = Y_0 \uplus C_1 \uplus \cdots \uplus C_\ell$ is a

$$(O(k), r + 2t_{\mathcal{F}})$$
-protrusion decomposition of $G_I = G - I$

Recall the two main steps of our algorithm:

- 1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.:
 - \bullet G-I has a linear protrusion decomposition

$$\mathcal{P} = \mathit{Y}_0 \uplus \mathit{C}_1 \uplus \cdots \uplus \mathit{C}_\ell$$

• with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

Back to the road map of the algorithm

Therefore, the partition $\mathcal{P} = Y_0 \uplus C_1 \uplus \cdots \uplus C_\ell$ is a

$$(O(k), r + 2t_{\mathcal{F}})$$
-protrusion decomposition of $G_I = G - I$

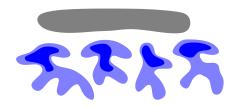
Recall the two main steps of our algorithm:

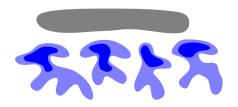
- 1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.:
 - G I has a linear protrusion decomposition

$$\mathcal{P} = Y_0 \uplus C_1 \uplus \cdots \uplus C_\ell$$

- with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.
- 2 Finally, compute $\tilde{X} \setminus I$, given a linear protrusion decomposition.

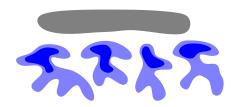
Based on the finite index of MSO-definable properties (automaton theory)





Main ingredients of our approach:

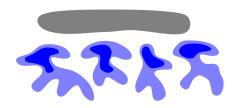
* We define an equivalence relation on subsets of vertices of each restricted protrusion Y_i (roughly, same class if they behave in the same way).



Main ingredients of our approach:

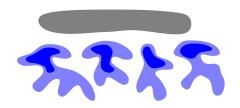
- * We define an equivalence relation on subsets of vertices of each restricted protrusion Y_i (roughly, same class if they behave in the same way).
- ★ Each of these equiv. relations defines finitely many equivalence classes s.t. any partial solution on Y_i can be replaced with one of the representatives. (by the finite index of MSO-definable properties)

 [Bodlaender, de Fluiter '01]



Main ingredients of our approach:

- * We define an equivalence relation on subsets of vertices of each restricted protrusion Y_i (roughly, same class if they behave in the same way).
- * Each of these equiv. relations defines finitely many equivalence classes s.t. any partial solution on Y_i can be replaced with one of the representatives. (by the finite index of MSO-definable properties) [Bodlaender, de Fluiter '01]
- * We use a decomposability property of the solution: there exists a solution which is formed by the union of one representative per restricted protrusion.



Main ingredients of our approach:

- * We define an equivalence relation on subsets of vertices of each restricted protrusion Y_i (roughly, same class if they behave in the same way).
- * Each of these equiv. relations defines finitely many equivalence classes s.t. any partial solution on Y_i can be replaced with one of the representatives. (by the finite index of MSO-definable properties) [Bodlaender, de Fluiter '01]
- * We use a decomposability property of the solution: there exists a solution which is formed by the union of one representative per restricted protrusion.
- \star To make the algorithm constructive and uniform on the family \mathcal{F} , we use classic arguments from tree automaton theory (like method of test sets).

Next subsection is...

- Preliminaries
- Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- 3 Single-exponential algorithm for PLANAR- \mathcal{F} -DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

Theorem

The PLANAR- \mathcal{F} -DELETION problem can be solved in time $2^{O(k)} \cdot n^2$.

Theorem

The PLANAR- \mathcal{F} -DELETION problem can be solved in time $2^{O(k)} \cdot n^2$.

★ No single-exponential algorithm is known when the family *F* does not contain any planar graph. Can such a family exist?

Theorem

The PLANAR- \mathcal{F} -DELETION problem can be solved in time $2^{O(k)} \cdot n^2$.

- ★ No single-exponential algorithm is known when the family \mathcal{F} does not contain any planar graph. Can such a family exist?
- ★ Very recently: randomized constant-factor approximation algorithm for PLANAR-F-DELETION. [Fomin, Lokshtanov, Misra, Saurabh '12]

Finding a deterministic constant-factor approximation remains open.

Theorem

The PLANAR- \mathcal{F} -DELETION problem can be solved in time $2^{O(k)} \cdot n^2$.

- ★ No single-exponential algorithm is known when the family \mathcal{F} does not contain any planar graph. Can such a family exist?
- ★ Very recently: randomized constant-factor approximation algorithm for PLANAR-F-DELETION. [Fomin, Lokshtanov, Misra, Saurabh '12]
 - Finding a deterministic constant-factor approximation remains open.
- \bigstar We could forbid the family of graphs \mathcal{F} according to another containment relation, like topological minor.

Next section is...

- Preliminaries
- Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- ${ t @ Single-exponential algorithm for PLANAR-} {\cal F}-{ t DELETION}$
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

Next subsection is...

- Preliminaries
- Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- \bigcirc Single-exponential algorithm for PLANAR- ${\cal F}$ -DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.
- The function **g** is called the size of the kernel.
 - ★ If $g(k) = k^{O(1)}$: Π admits a polynomial kernel.
 - ★ If g(k) = O(k): Π admits a linear kernel.

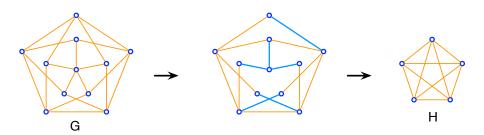
- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.
- The function g is called the size of the kernel.
 - ★ If $g(k) = k^{O(1)}$: Π admits a polynomial kernel.
 - ★ If g(k) = O(k): Π admits a linear kernel.
- Folklore result: for a parameterized problem Π,

 Π is $\mathrm{FPT} \Leftrightarrow \Pi$ admits a kernel

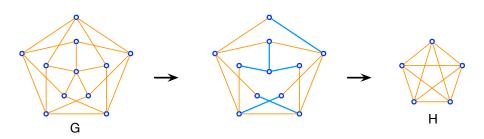
- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.
- The function g is called the size of the kernel.
 - ★ If $g(k) = k^{O(1)}$: Π admits a polynomial kernel.
 - ★ If g(k) = O(k): Π admits a linear kernel.
- Folklore result: for a parameterized problem Π,

 Π is $\mathrm{FPT} \Leftrightarrow \Pi$ admits a kernel

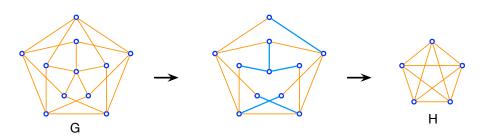
• Question: which FPT problems admit linear or polynomial kernels?



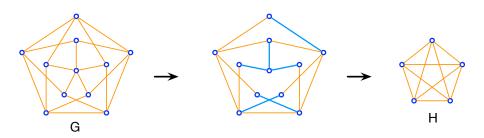
• *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.



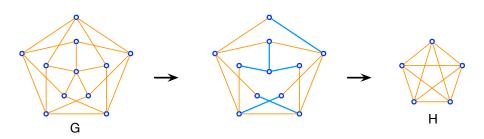
- *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.
- H is a topological minor of G if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of deg ≤ 2 .



- *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.
- H is a topological minor of G if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of deg ≤ 2 .
- Therefore: H minor of $G \Rightarrow H$ topological minor of G.



- *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.
- H is a topological minor of G if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of deg ≤ 2 .
- Therefore: H minor of $G \nleftrightarrow H$ topological minor of G.



- *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.
- H is a topological minor of G if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of deg ≤ 2 .
- Therefore: H minor of $G \nleftrightarrow H$ topological minor of G.
- Fixed H: H-minor-free graphs $\subseteq H$ -topological-minor-free graphs .

Linear kernels on sparse graphs – an overview

• DOMINATING SET on planar graphs.

[Alber, Fellows, Niedermeier '04]

Linear kernels on sparse graphs – an overview

• DOMINATING SET on planar graphs.

[Alber, Fellows, Niedermeier '04]

• Framework for several problems on planar graphs.

[Guo, Niedermeier '04]

Linear kernels on sparse graphs - an overview

• DOMINATING SET on planar graphs.

[Alber, Fellows, Niedermeier '04]

• Framework for several problems on planar graphs.

[Guo, Niedermeier '04]

Meta-result for graphs of bounded genus.

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

Linear kernels on sparse graphs - an overview

• DOMINATING SET on planar graphs.

[Alber, Fellows, Niedermeier '04]

• Framework for several problems on planar graphs.

[Guo, Niedermeier '04]

• Meta-result for graphs of bounded genus.

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

• Meta-result for *H*-minor-free graphs.

[Fomin, Lokshtanov, Saurabh, Thilikos '10]

Linear kernels on sparse graphs - an overview

• DOMINATING SET on planar graphs.

- [Alber, Fellows, Niedermeier '04]
- Framework for several problems on planar graphs.
- [Guo, Niedermeier '04]

- Meta-result for graphs of bounded genus.
 - [Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]
- Meta-result for *H*-minor-free graphs.

- [Fomin, Lokshtanov, Saurabh, Thilikos '10]
- Meta-result for *H*-topological-minor-free graphs.

[Our result]

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

• A parameterized graph problem Π is treewidth-bounding if \exists constants c, t such that if $(G, k) \in \Pi$ then

$$\exists X \subseteq V(G) \text{ s.t. } |X| \leqslant c \cdot k \text{ and } \operatorname{tw}(G - X) \leqslant t.$$

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

• A parameterized graph problem Π is treewidth-bounding if \exists constants c, t such that if $(G, k) \in \Pi$ then

$$\exists X \subseteq V(G) \text{ s.t. } |X| \leqslant c \cdot k \text{ and } \operatorname{tw}(G - X) \leqslant t.$$

FII allows us to replace large protrusions by smaller gadgets...

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

• A parameterized graph problem Π is treewidth-bounding if \exists constants c, t such that if $(G, k) \in \Pi$ then

$$\exists X \subseteq V(G) \text{ s.t. } |X| \leqslant c \cdot k \text{ and } \operatorname{tw}(G - X) \leqslant t.$$

- FII allows us to replace large protrusions by smaller gadgets...
- ★ We assume that the gadgets are given. Our algorithm is non-uniform.

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

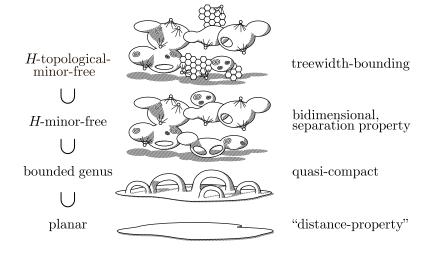
• A parameterized graph problem Π is treewidth-bounding if \exists constants c, t such that if $(G, k) \in \Pi$ then

$$\exists X \subseteq V(G) \text{ s.t. } |X| \leqslant c \cdot k \text{ and } \operatorname{tw}(G - X) \leqslant t.$$

- FII allows us to replace large protrusions by smaller gadgets...
- ★ We assume that the gadgets are given. Our algorithm is non-uniform.

Problems affected by our result:

Linear kernels on sparse graphs – the conditions



We require FII + treewidth-bounding

We require FII + treewidth-bounding

• FII is necessary when using protrusion replacement rules.

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?

```
Conditions on H-minor-free graphs:
```

```
bidimensional + separation property. \\
```

[Fomin, Lokshtanov, Saurabh, Thilikos '10]

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?

```
Conditions on H-minor-free graphs: bidimensional + separation property.
```

bidimensional + separation property.

[Fomin, Lokshtanov, Saurabh, Thilikos '10]

But it holds that

```
 | bidimensional + separation | property | \Rightarrow | treewidth-bounding |
```

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?

```
Conditions on H-minor-free graphs: bidimensional + separation property.
```

[Fomin, Lokshtanov, Saurabh, Thilikos '10]

But it holds that

```
 | bidimensional + separation | property | \Rightarrow | treewidth-bounding |
```

• Thus, our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos '10]

Next subsection is...

- Preliminaries
- Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- ${ t @ Single-exponential algorithm for PLANAR-} {\cal F}-{ t DELETION}$
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

Finite Integer Index (FII)

[Bodlaender, de Fluiter '01]

Finite Integer Index (FII)

[Bodlaender, de Fluiter '01]

• Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_1 , G_2 be two *t*-boundaried graphs in \mathcal{G}_t .

- Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_1 , G_2 be two t-boundaried graphs in \mathcal{G}_t .
- We say that $G_1 \equiv_{\Pi,t} G_2$ if there exists a constant $\Delta_{\Pi,t}(G_1,G_2)$ such that for all t-boundaried graphs H and for all k:

 - $(G_1 \oplus H, k) \in \Pi \text{ iff } (G_2 \oplus H, k + \Delta_{\Pi,t}(G_1, G_2)) \in \Pi.$

- Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_1 , G_2 be two t-boundaried graphs in \mathcal{G}_t .
- We say that $G_1 \equiv_{\Pi,t} G_2$ if there exists a constant $\Delta_{\Pi,t}(G_1,G_2)$ such that for all t-boundaried graphs H and for all k:
- Problem Π has FII in the class \mathcal{G} if for every integer t, the equivalence relation $\equiv_{\Pi,t}$ has a finite number of equivalence classes.

- Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_1 , G_2 be two t-boundaried graphs in \mathcal{G}_t .
- We say that $G_1 \equiv_{\Pi,t} G_2$ if there exists a constant $\Delta_{\Pi,t}(G_1,G_2)$ such that for all t-boundaried graphs H and for all k:
- Problem Π has FII in the class \mathcal{G} if for every integer t, the equivalence relation $\equiv_{\Pi,t}$ has a finite number of equivalence classes.
- Main idea If a parameterized problem has FII then its instances can be reduced by replacing any "large" protrusion by a "small" gadget (representative in a set \mathcal{R}_t) from the same equivalence class.

- Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_1 , G_2 be two t-boundaried graphs in \mathcal{G}_t .
- We say that $G_1 \equiv_{\Pi,t} G_2$ if there exists a constant $\Delta_{\Pi,t}(G_1,G_2)$ such that for all t-boundaried graphs H and for all k:
- Problem Π has FII in the class \mathcal{G} if for every integer t, the equivalence relation $\equiv_{\Pi,t}$ has a finite number of equivalence classes.
- Main idea If a parameterized problem has FII then its instances can be reduced by replacing any "large" protrusion by a "small" gadget (representative in a set \mathcal{R}_t) from the same equivalence class.
- The protrusion limit of Π is a function $\rho_{\Pi} \colon \mathbb{N} \to \mathbb{N}$ defined as $\rho_{\Pi}(t) = \max_{G \in \mathcal{R}_t} |V(G)|$.

- Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_1 , G_2 be two t-boundaried graphs in \mathcal{G}_t .
- We say that $G_1 \equiv_{\Pi,t} G_2$ if there exists a constant $\Delta_{\Pi,t}(G_1,G_2)$ such that for all t-boundaried graphs H and for all k:
- Problem Π has FII in the class \mathcal{G} if for every integer t, the equivalence relation $\equiv_{\Pi,t}$ has a finite number of equivalence classes.
- Main idea If a parameterized problem has FII then its instances can be reduced by replacing any "large" protrusion by a "small" gadget (representative in a set \mathcal{R}_t) from the same equivalence class.
- The protrusion limit of Π is a function $\rho_{\Pi} \colon \mathbb{N} \to \mathbb{N}$ defined as $\rho_{\Pi}(t) = \max_{G \in \mathcal{R}_t} |V(G)|$. We also define $\rho'_{\Pi}(t) = \rho_{\Pi}(2t)$.

Disconnected PLANAR-F-DELETION has not FIL

• We prove: if \mathcal{F} is a family of graphs containing some disconnected graph H, then PLANAR- \mathcal{F} -DELETION has not FII (in general).

Disconnected Planar- \mathcal{F} -Deletion has not FII

• Let o- Π be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two t-boundaried graphs.

Disconnected PLANAR-F-DELETION has not FII

• Let o- Π be the non-parameterized version of Planar- \mathcal{F} -Deletion. Let G_1 and G_2 be two t-boundaried graphs. We define $G_1 \sim_{\Pi,t} G_2$ iff \exists integer i such that \forall t-boundaried graph H, it holds

$$\pi(G_1 \oplus H) = \pi(G_2 \oplus H) + i,$$

Disconnected PLANAR-F-DELETION has not FIL

• Let o- Π be the non-parameterized version of Planar- \mathcal{F} -Deletion. Let G_1 and G_2 be two t-boundaried graphs. We define $G_1 \sim_{\Pi,t} G_2$ iff \exists integer i such that \forall t-boundaried graph H, it holds

$$\pi(G_1 \oplus H) = \pi(G_2 \oplus H) + i,$$

where $\pi(G)$ denotes the optimal value of problem o- Π on graph G.

• We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.

Disconnected PLANAR-F-DELETION has not FIL

• Let o- Π be the non-parameterized version of Planar- \mathcal{F} -Deletion. Let G_1 and G_2 be two t-boundaried graphs. We define $G_1 \sim_{\Pi,t} G_2$ iff \exists integer i such that \forall t-boundaried graph H, it holds

$$\pi(G_1 \oplus H) = \pi(G_2 \oplus H) + i,$$

- We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.
- For $i \ge 1$, let G_i (resp. H_i) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F_1 (resp. F_2) joined to v (resp. u) by an edge.

Disconnected PLANAR-F-DELETION has not FII

• Let o- Π be the non-parameterized version of Planar- \mathcal{F} -Deletion. Let G_1 and G_2 be two t-boundaried graphs. We define $G_1 \sim_{\Pi,t} G_2$ iff \exists integer i such that \forall t-boundaried graph H, it holds

$$\pi(G_1 \oplus H) = \pi(G_2 \oplus H) + i,$$

- We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.
- For $i \ge 1$, let G_i (resp. H_i) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F_1 (resp. F_2) joined to v (resp. u) by an edge.
- By construction, if $i, j \ge 1$, it holds $\pi(G_i \oplus H_j) = \min\{i, j\}$.

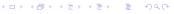
Disconnected PLANAR-F-DELETION has not FIL

• Let o- Π be the non-parameterized version of Planar- \mathcal{F} -Deletion. Let G_1 and G_2 be two t-boundaried graphs. We define $G_1 \sim_{\Pi,t} G_2$ iff \exists integer i such that \forall t-boundaried graph H, it holds

$$\pi(G_1 \oplus H) = \pi(G_2 \oplus H) + i,$$

- We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.
- For $i \ge 1$, let G_i (resp. H_i) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F_1 (resp. F_2) joined to v (resp. u) by an edge.
- By construction, if $i, j \ge 1$, it holds $\pi(G_i \oplus H_j) = \min\{i, j\}$.
- Then, if we take $1 \leqslant n < m$,

$$\pi(G_n \oplus H_{n-1}) - \pi(G_m \oplus H_{n-1}) = (n-1) - (n-1) = 0, \pi(G_n \oplus H_m) - \pi(G_m \oplus H_m) = n - m < 0.$$



Disconnected PLANAR-F-DELETION has not FII

• Let o- Π be the non-parameterized version of Planar- \mathcal{F} -Deletion. Let G_1 and G_2 be two t-boundaried graphs. We define $G_1 \sim_{\Pi,t} G_2$ iff \exists integer i such that \forall t-boundaried graph H, it holds

$$\pi(G_1 \oplus H) = \pi(G_2 \oplus H) + i,$$

where $\pi(G)$ denotes the optimal value of problem o- Π on graph G.

- We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.
- For $i \ge 1$, let G_i (resp. H_i) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F_1 (resp. F_2) joined to v (resp. u) by an edge.
- By construction, if $i, j \ge 1$, it holds $\pi(G_i \oplus H_i) = \min\{i, j\}$.
- Then, if we take $1 \leq n < m$,

$$\pi(G_n \oplus H_{n-1}) - \pi(G_m \oplus H_{n-1}) = (n-1) - (n-1) = 0, \pi(G_n \oplus H_m) - \pi(G_m \oplus H_m) = n - m < 0.$$

• Thus, G_n , $G_m \notin \text{same equiv. class of } \sim_{\Pi,1} \text{ whenever } 1 \leqslant n \leqslant m$.

Some important ingredients

(suppose problem Π has FII)

 \forall fixed t, \exists finite set \mathcal{R}_t of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_t \exists G' \in \mathcal{R}_t$ s.t. $G \equiv_{\Pi,t} G'$ and $\Delta_{\Pi,t}(G,G') \geqslant 0$.

 \forall fixed t, \exists finite set \mathcal{R}_t of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_t \exists G' \in \mathcal{R}_t$ s.t. $G \equiv_{\Pi,t} G'$ and $\Delta_{\Pi,t}(G,G') \geqslant 0$.

Lemma (Finding maximum sized protrusions)

Let t be a constant. Given an n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found in time $O(n^{t+1})$.

 \forall fixed t, \exists finite set \mathcal{R}_t of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_t \exists G' \in \mathcal{R}_t$ s.t. $G \equiv_{\Pi,t} G'$ and $\Delta_{\Pi,t}(G,G') \geqslant 0$.

Lemma (Finding maximum sized protrusions)

Let t be a constant. Given an n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found in time $O(n^{t+1})$.

Lemma (Big... but not too big!)

If one is given a t-protrusion $X\subseteq V(G)$ s.t. $\rho'_\Pi(t)<|X|$, then one can, in time O(|X|), find a 2t-protrusion W s.t. $\rho'_\Pi(t)<|W|\leqslant 2\cdot \rho'_\Pi(t)$.

 \forall fixed t, \exists finite set \mathcal{R}_t of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_t \exists G' \in \mathcal{R}_t$ s.t. $G \equiv_{\Pi,t} G'$ and $\Delta_{\Pi,t}(G,G') \geqslant 0$.

Lemma (Finding maximum sized protrusions)

Let t be a constant. Given an n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found in time $O(n^{t+1})$.

Lemma (Big... but not too big!)

If one is given a **t**-protrusion $X \subseteq V(G)$ s.t. $\rho'_{\Pi}(t) < |X|$, then one can, in time O(|X|), find a 2t-protrusion W s.t. $\rho'_{\Pi}(t) < |W| \le 2 \cdot \rho'_{\Pi}(t)$.

Lemma (Replacing protrusions of constant size)

For $t \in \mathbb{N}$, suppose that the set \mathcal{R}_t of representatives of $\equiv_{\Pi,t}$ is given. If W is a t-protrusion of size at most a fixed constant c, then one can decide in constant time which $G' \in \mathcal{R}_t$ satisfies $G' \equiv_{\Pi,t} G[W]$.

Protrusion reduction rule

• Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leqslant 2 \cdot \rho'_{\Pi}(t)$.

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leqslant 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2t-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leqslant 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2*t*-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.
- Let further $G_1 \in \mathcal{R}_{2t}$ be the representative of G_W for the equivalence relation $\equiv_{\Pi,|\partial(W)|}$.

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leqslant 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2t-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.
- Let further $G_1 \in \mathcal{R}_{2t}$ be the representative of G_W for the equivalence relation $\equiv_{\Pi,|\partial(W)|}$.
- The protrusion reduction rule (for boundary size t) is the following:

```
Reduce (G, k) to (G', k') = (G[V \setminus W] \oplus G_1, k - \Delta_{\Pi,2t}(G_1, G_W)).
```

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leqslant 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2t-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.
- Let further $G_1 \in \mathcal{R}_{2t}$ be the representative of G_W for the equivalence relation $\equiv_{\Pi, |\partial(W)|}$.
- The protrusion reduction rule (for boundary size t) is the following:

Reduce
$$(G, k)$$
 to $(G', k') = (G[V \setminus W] \oplus G_1, k - \Delta_{\Pi,2t}(G_1, G_W)).$

It runs in polynomial time ...

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leqslant 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2t-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.
- Let further $G_1 \in \mathcal{R}_{2t}$ be the representative of G_W for the equivalence relation $\equiv_{\Pi,|\partial(W)|}$.
- The protrusion reduction rule (for boundary size t) is the following:

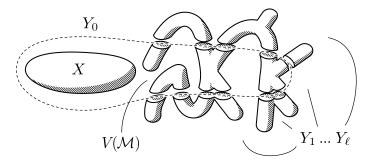
Reduce
$$(G, k)$$
 to $(G', k') = (G[V \setminus W] \oplus G_1, k - \Delta_{\Pi,2t}(G_1, G_W)).$

It runs in polynomial time ... given the sets of representatives!

Protrusion decompositions (in case someone forgot!)

An (α, t) -protrusion decomposition of a graph G is a partition $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ of V(G) such that:

- for every $1 \leqslant i \leqslant \ell$, $N(Y_i) \subseteq Y_0$;
- for every $1 \le i \le \ell$, $Y_i \cup N_{Y_0}(Y_i)$ is a *t*-protrusion of G;
- $\max\{\ell, |Y_0|\} \leqslant \alpha$.



We apply exhaustively the protrusion replacement rule.

We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leqslant \beta$, every t-protrusion W of G has size $\leqslant \rho'_{\Pi}(t)$.

We apply exhaustively the protrusion replacement rule.

If (G,k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leqslant \beta$, every t-protrusion W of G has size $\leqslant \rho'_\Pi(t)$.

We can choose $\beta := 2t + \omega(H)$, where t comes from the treewidth-bounding property of Π .

We apply exhaustively the protrusion replacement rule.

If (G,k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leqslant \beta$, every t-protrusion W of G has size $\leqslant \rho'_{\Pi}(t)$.

We can choose $\beta := 2t + \omega(H)$, where t comes from the treewidth-bounding property of Π .

We use protrusion decompositions to analyze the kernel size.

• We apply exhaustively the protrusion replacement rule.

If (G,k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leqslant \beta$, every t-protrusion W of G has size $\leqslant \rho'_{\Pi}(t)$.

We can choose $\beta := 2t + \omega(H)$, where t comes from the treewidth-bounding property of Π .

We use protrusion decompositions to analyze the kernel size.
Using what we explained before, we can easily prove that:
Let Π be a parameterized graph problem that has FII and is t-treewidth-bounding, both on the class of H-topological-minor-free graphs.

We apply exhaustively the protrusion replacement rule.

If (G,k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leqslant \beta$, every t-protrusion W of G has size $\leqslant \rho'_{\Pi}(t)$.

We can choose $\beta := 2t + \omega(H)$, where t comes from the treewidth-bounding property of Π .

We use protrusion decompositions to analyze the kernel size.

Using what we explained before, we can easily prove that: Let Π be a parameterized graph problem that has FII and is t-treewidth-bounding, both on the class of H-topological-minor-free graphs. Then any reduced YES-instance (G, k) has a protrusion decomposition $V(G) = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ s.t.:

- $|Y_0| = O(k);$
- $|Y_i| \leqslant \rho'_{\Pi}(2t + \omega_{\mathcal{H}}) \text{ for } 1 \leqslant i \leqslant \ell$; and
- $0 \ell = O(k).$

Next subsection is...

- Preliminaries
- Protrusion decompositions
 - Definitions
 - A simple algorithm to compute them
- ${ t @ Single-exponential algorithm for PLANAR-} {\cal F}-{ t DELETION}$
 - Motivation and our result
 - Sketch of proof
 - Further research
- 4 Linear kernels on graphs without topological minors
 - Motivation and our result
 - Idea of proof
 - Further research

• For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?

- For which notions of sparseness (beyond H-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - **1** A class \mathcal{G} of graphs locally excludes a minor if $\forall r \in \mathbb{N}$, $\exists H_r$ s.t. the r-neighborhood of a vertex of any graph of \mathcal{G} excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free)

- For which notions of sparseness (beyond H-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free) Except for a very restricted case, our technique fails.

- For which notions of sparseness (beyond H-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free) Except for a very restricted case, our technique fails.
 - ② Graphs of bounded expansion (contains *H*-topological-minor-free)?

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free) Except for a very restricted case, our technique fails.
 - ② Graphs of bounded expansion (contains *H*-topological-minor-free)?

 Obtaining a kernel for TREEWIDTH-*t* VERTEX DELETION on graphs of bounded expansion is as hard as on general graphs.

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free) Except for a very restricted case, our technique fails.
 - ② Graphs of bounded expansion (contains H-topological-minor-free)?
 Obtaining a kernel for TREEWIDTH-t VERTEX DELETION on graphs

of bounded expansion is as hard as on general graphs.

Best known kernel: $k^{O(t)}$.

[Fomin, Lokshtanov, Misra, Saurabh '12]

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free) Except for a very restricted case, our technique fails.
 - ② Graphs of bounded expansion (contains *H*-topological-minor-free)?

 Obtaining a kernel for TREEWIDTH-*t* VERTEX DELETION on graphs of bounded expansion is as hard as on general graphs.

Best known kernel: $k^{O(t)}$.

[Fomin, Lokshtanov, Misra, Saurabh '12]

• Constructing the kernels? Finding the sets of representatives!!

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free) Except for a very restricted case, our technique fails.
 - ② Graphs of bounded expansion (contains *H*-topological-minor-free)?

 Obtaining a kernel for TREEWIDTH-*t* VERTEX DELETION on graphs of bounded expansion is as hard as on general graphs.

Best known kernel: $k^{O(t)}$.

[Fomin, Lokshtanov, Misra, Saurabh '12]

- Constructing the kernels? Finding the sets of representatives!!
- Explicit constants? Lower bounds on their size?

Gràcies!

