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Permutation routing

@ The permutation routing problem is a packet routing problem.

@ Each processor is the origin of at most one packet and the
destination of no more than one packet

@ The goal is to minimize the number of time steps  required to
route all packets to their respective destinations.
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Statement of the problem

@ Input:
» adirected graph G = (V,E) (the host graph),
» asubsetS C V of nodes,
» and a permutation 7t : S — S.
Each node u € S wants to send a packet to 7 (u).
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@ Constraints:

» At each step, a packet can move or stay at a node.
» No arc can be crossed by two packets at the same step.
» Cohabitation of multiple packets at the same node is allowed.

@ Goal: minimize the number of time steps  required to route all

packets to their respective destinations.
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Assumptions

@ We consider the store-and-forward and A-port model.

@ Full duplex link : packets can be sent in the two directions of the
link simultaneously .

TN

U@ oV

S

@ We focus on full-duplex hexagonal networks
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Assumptions

@ We consider the store-and-forward and A-port model.

@ Full duplex link : packets can be sent in the two directions of the
link simultaneously .

TN

U@ oV

S

@ We focus on full-duplex hexagonal networks

@ If the network is half-duplex —

2 factor approximation algorithm  from an optimal algorithm for
the full-duplex case, by introducing odd-even steps.

Ignasi Sau & Janez Zerovnik (COST 293) Optimal Permutation Routing 3th February 2007 5/31



Network topologies

@ There is an ambiguity in the notation in the literature:

triangular grid < hexagonal network,
hexagonal grid «<» honeycomb network.

@ Hexagonal network (A) and hexagonal tessellation (O):

>

FVAVAY:
CAAFD
(KHAA
VAVAVAVAY,

VAVAVAY

@ Hexagonal networks are finite subgraphs of the triangular grid.
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Network topologies

@ There is an ambiguity in the notation in the literature:

triangular grid < hexagonal network,
hexagonal grid «<» honeycomb network.

@ Hexagonal network (A) and hexagonal tessellation (O):

>

JAVAY,
CAAARS
XA
NHAAS
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A

@ Hexagonal networks are finite subgraphs of the triangular grid.

@ In this work we study convex hexagonal networks .
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Previous work

-The permutation routing problem has been studied in:

@ Mobile Ad Hoc Networks

@ Cube-Connected Cycle Networks
@ Wireless and Radio Networks

@ All-Optical Networks

@ Reconfigurable Meshes...
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Previous work

-The permutation routing problem has been studied in:

@ Mobile Ad Hoc Networks

@ Cube-Connected Cycle Networks
@ Wireless and Radio Networks

@ All-Optical Networks

@ Reconfigurable Meshes...

-But, optimal algorithms:
@ 2-circulant graphs, square grids.

@ Hexagonal networks: Two-terminal routing
(only one message to be sent)

-In this work we find an optimal permutation routing algorithm for
hexagonal full-duplex networks
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Notation and preliminary results

Nocetti, Stojmenovic and Zhang
[[EEE TPDS'02]:

Representation of the relative Z—<
address of the nodes on a generat- y
ing system i, j, k on the directions of

the three axis x,y, z.
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Notation and preliminary results

Nocetti, Stojmenovic and Zhang
[IEEE TPDS'02]:

Representation of the relative Z—<
address of the nodes on a generat- y
ing system i, j, k on the directions of

the three axis x,y, z.

@ This address is not unique , but we have that, being (a, b, c) and
(a’,b’,c’) the addresses of two D — S pairs,

(a,b,c) = (a’,b’,c’) & Fanintegerd such that

!/
a =a+d,
!/
b'=b+d,
= d
c =c+d.
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Notation and preliminary results (2)

@ Arelative address D — S = (a, b, ¢) is of the shortest path form if

» there is a path C from S to D, C=ai+bj+ck,
» and C has the shortest length over all paths going from S to D.
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Notation and preliminary results (2)

@ Arelative address D — S = (a, b, ¢) is of the shortest path form if

» thereis a path C from S to D, C=ai+bj+ck,
» and C has the shortest length over all paths going from S to D.

Theorem (NSZ'02)
An address (a, b, c) is of the shortest path form if and only if
i) at least one componentis zero (thatis, abc = 0),

i) and any two components do not have the same sign
(thatis, ab < 0, ac <0, and bc < 0).
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Notation and preliminary results (3)

Corollary (MSZ'02)
Any address has a unique shortest path form. J
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Notation and preliminary results (3)

Corollary (MSZ'02)
Any address has a unique shortest path form. J

Corollary (MSZ'02)
IfD —S = (a,b,c), then the shortest path form is one of those:

(0,b—a,c —a),
(a—b,0,c —b),
(a—C,b—C,O),

and thus:

ID— S| =min(lb —a|+|c —al,|]a—b|+]|c—Db|,la—c|+|b—c]|).
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Notation and preliminary results (4)

@ Given a packet p and its relative address (a, b, c)
in the shortest path form,

lp = |a + |b] +[c,
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Notation and preliminary results (4)

@ Given a packet p and its relative address (a, b, c)
in the shortest path form,

lp = |a + |b] +[c,

@ Trivial lower bound :

Any permutation routing algorithm needs at least /max routing
steps.
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Example of an instance
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A non-optimal intuitive algorithm
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A non-optimal intuitive algorithm (2)
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A non-optimal intuitive algorithm (3)
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Another non-optimal intuitive algorithm
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Another non-optimal intuitive algorithm (2)
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Another non-optimal intuitive algorithm (3)
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Description of Algorithm A

At each node u of the network:
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At each node u of the network:

@ Preprocessing : Initially, if there is a packet at u, compute the
relative address D — S of the message in the shortest path form,
and add this information to the message.
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@ Reception phase : At each step, when a packet is received at u,
its relative address is updated.

@ Transmission phase :

a) If there are packets with negative components , send them
immediately along the direction of this component.

b) If not, for each outgoing edge order the packets according to
decreasing number of remaining steps , and send the first
packet of each queue.
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Routing of the packets according to A

@ Algorithm A defines for each packet two directions of movement
(except if a packet has only one non-zero component)
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Routing of the packets according to A

@ Algorithm A defines for each packet two directions of movement
(except if a packet has only one non-zero component)

@ For instance:

» if the packet address is of the type (—,0,+) —
this packet goes first in the direction —x, and after in +z

— We symbolize this rule by the arrow ~/
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Routing of the packets according to A

@ Algorithm A defines for each packet two directions of movement
(except if a packet has only one non-zero component)

@ For instance:

» if the packet address is of the type (—,0,+) —
this packet goes first in the direction —x, and after in +z

— We symbolize this rule by the arrow ~/

» the routing of the address (+, —, 0) is represented by <
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Routing the packets (2)

In this figure all the routing rules are summarized:
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Correctness of Algorithm A

At each node u of the network:

o Preprocessing : Initially, if there is a packet at u, compute the relative address D — S of the message in the shortest
path form, and add this information to the message.

o Reception phase : At each step, when a packet is received at u, its relative address is updated.

@ Transmission phase :

a) If there are packets with negative
components , send them immediately along
the direction of this component.

b) If not, for each outgoing edge order the packets according to decreasing number of remaining steps , and

send the first packet of each queue.
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Correctness (2)

@ Key observation:

Packets can only wait, possibly, during their last direction

Z=
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Correctness (2)

@ Key observation:
Packets can only wait, possibly, during their last direction .

» this is because if two packets meet when their first direction is not
finished yet, they must have the same origin node — contradiction.

:\\ N
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Correctness (2)

@ Key observation:
Packets can only wait, possibly, during their last direction .

» this is because if two packets meet when their first direction is not
finished yet, they must have the same origin node — contradiction.

ﬂ N

@ Thus, in a) there can be at most one packet with negative
component at each outgoing edge  — there is no ambiguity.

Ignasi Sau & Janez Zerovnik (COST 293) Optimal Permutation Routing 3th February 2007 23/31



Correctness (3)

At each node u of the network:

o Preprocessing : Initially, if there is a packet at u, compute the relative address D — S of the message in the shortest
path form, and add this information to the message.

o Reception phase : At each step, when a packet is received at u, its relative address is updated.

@ Transmission phase :

a) If there are packets with negative components , send them immediately along the direction of this component.

b) If not, for each outgoing edge order the
packets according to decreasing number of
remaining steps , and send the first packet of
each queue.
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Correctness (4)

@ All the packets in in b) are moving along their last direction

» their negative component is already finished, otherwise they would
be in a)
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Correctness (4)

@ All the packets in in b) are moving along their last direction

» their negative component is already finished, otherwise they would
be in a)

@ Thus, since each node is the destination of at most one packet, in
b) the packet with maximum remaining length at each
outgoing edge is unique
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Optimality

@ Using this algorithm, at each step all the packets with maximum
remaining distance move
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Optimality

@ Using this algorithm, at each step all the packets with maximum
remaining distance move

— every step the maximum remaining distance over all packets
decreases by one

— the total running time is at most ¢max, meeting the lower
bound .
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Optimality

@ Using this algorithm, at each step all the packets with maximum
remaining distance move

— every step the maximum remaining distance over all packets
decreases by one

— the total running time is at most /ihax, meeting the lower
bound .

@ lItis a distributed , oblivious and translation invariant algorithm.

@ The only involved operation are integer addition and comparison
among the lengths of the addresses of the packets at each node.
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Final example
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Final example (2)
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Summary

@ We have solved the permutation routing problem for full-duplex
triangular grids

@ 2 factor approximation algorithm for half-duplex triangular grids

@ 2 factor approximation algorithm for full-duplex hexagonal grids
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Further research

@ (¢ —k)-routing

Hexagonal grid

Half-duplex case for triangular/hexagonal grids

Permutation routing on 3-circulant graphs

@ Conceive algorithms under average case analysis
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Thanks!
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