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Permutation routing

The permutation routing problem is a packet routing problem.

Each processor is the origin of at most one packet and the
destination of no more than one packet .

The goal is to minimize the number of time steps required to
route all packets to their respective destinations.
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Statement of the problem

Input:
I a directed graph G = (V , E) (the host graph),
I a subset S ⊆ V of nodes,
I and a permutation π : S → S.

Each node u ∈ S wants to send a packet to π(u).

Output: Find for each pair (u, π(u)), a path form u to π(u) in G.

Constraints:
I At each step, a packet can move or stay at a node.
I No arc can be crossed by two packets at the same step.
I Cohabitation of multiple packets at the same node is allowed.

Goal: minimize the number of time steps required to route all
packets to their respective destinations.
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Assumptions

We consider the store-and-forward and ∆-port model.

Full duplex link : packets can be sent in the two directions of the
link simultaneously .

u v
uv

vu

We focus on full-duplex hexagonal networks .

If the network is half-duplex →
2 factor approximation algorithm from an optimal algorithm for
the full-duplex case, by introducing odd-even steps.
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Network topologies

There is an ambiguity in the notation in the literature:

triangular grid ↔ hexagonal network,
hexagonal grid ↔ honeycomb network.

Hexagonal network (4) and hexagonal tessellation (9):

Hexagonal networks are finite subgraphs of the triangular grid.

In this work we study convex hexagonal networks .
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Previous work

-The permutation routing problem has been studied in:

Mobile Ad Hoc Networks

Cube-Connected Cycle Networks

Wireless and Radio Networks

All-Optical Networks

Reconfigurable Meshes...

-But, optimal algorithms:

2-circulant graphs, square grids.

Hexagonal networks: Two-terminal routing
(only one message to be sent)

-In this work we find an optimal permutation routing algorithm for
hexagonal full-duplex networks .
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Notation and preliminary results
Nocetti, Stojmenović and Zhang
[IEEE TPDS’02]:

Representation of the relative
address of the nodes on a generat-
ing system i, j, k on the directions of
the three axis x , y , z.

x

y

z

This address is not unique , but we have that, being (a, b, c) and
(a′, b′, c′) the addresses of two D − S pairs,

(a, b, c) = (a′, b′, c′) ⇔ ∃ an integer d such that

a′ = a + d ,

b′ = b + d ,

c′ = c + d .
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Notation and preliminary results (2)

A relative address D−S = (a, b, c) is of the shortest path form if
I there is a path C from S to D, C=ai+bj+ck,
I and C has the shortest length over all paths going from S to D.

Theorem (NSZ’02)
An address (a, b, c) is of the shortest path form if and only if

i) at least one component is zero (that is, abc = 0),

ii) and any two components do not have the same sign
(that is, ab ≤ 0, ac ≤ 0, and bc ≤ 0).
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Notation and preliminary results (3)

Corollary (MSZ’02)
Any address has a unique shortest path form.

Corollary (MSZ’02)
If D − S = (a, b, c), then the shortest path form is one of those:

(0, b − a, c − a),

(a− b, 0, c − b),

(a− c, b − c, 0),

and thus:

|D − S| = min(|b − a|+ |c − a|, |a− b|+ |c − b|, |a− c|+ |b − c|).
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Notation and preliminary results (4)

Given a packet p and its relative address (a, b, c)
in the shortest path form,

`p := |a|+ |b|+ |c|,

`max := max
p

(`p)

Trivial lower bound :

Any permutation routing algorithm needs at least `max routing
steps.
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Example of an instance
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A non-optimal intuitive algorithm

a
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1: 2: 3:
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A non-optimal intuitive algorithm (2)
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A non-optimal intuitive algorithm (3)
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Another non-optimal intuitive algorithm (3)
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Description of Algorithm A

At each node u of the network:

Preprocessing : Initially, if there is a packet at u, compute the
relative address D − S of the message in the shortest path form,
and add this information to the message.

Reception phase : At each step, when a packet is received at u,
its relative address is updated.

Transmission phase :

a) If there are packets with negative components , send them
immediately along the direction of this component.

b) If not, for each outgoing edge order the packets according to
decreasing number of remaining steps , and send the first
packet of each queue.
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Routing of the packets according to A

Algorithm A defines for each packet two directions of movement
(except if a packet has only one non-zero component)

For instance:
I if the packet address is of the type (−, 0,+) →

this packet goes first in the direction −x , and after in +z

→ We symbolize this rule by the arrow

I the routing of the address (+,−, 0) is represented by
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Routing the packets (2)

In this figure all the routing rules are summarized:

x

y

z
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Correctness of Algorithm A

At each node u of the network:

Preprocessing : Initially, if there is a packet at u, compute the relative address D − S of the message in the shortest
path form, and add this information to the message.

Reception phase : At each step, when a packet is received at u, its relative address is updated.

Transmission phase :

a) If there are packets with negative
components , send them immediately along
the direction of this component.

b) If not, for each outgoing edge order the packets according to decreasing number of remaining steps , and

send the first packet of each queue.
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Correctness (2)

Key observation:

Packets can only wait , possibly, during their last direction .

I this is because if two packets meet when their first direction is not
finished yet, they must have the same origin node → contradiction.

x

y

z

Thus, in a) there can be at most one packet with negative
component at each outgoing edge → there is no ambiguity.
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Correctness (3)

At each node u of the network:

Preprocessing : Initially, if there is a packet at u, compute the relative address D − S of the message in the shortest
path form, and add this information to the message.

Reception phase : At each step, when a packet is received at u, its relative address is updated.

Transmission phase :

a) If there are packets with negative components , send them immediately along the direction of this component.

b) If not, for each outgoing edge order the
packets according to decreasing number of
remaining steps , and send the first packet of
each queue.
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Correctness (4)

All the packets in in b) are moving along their last direction
I their negative component is already finished, otherwise they would

be in a)

Thus, since each node is the destination of at most one packet, in
b) the packet with maximum remaining length at each
outgoing edge is unique .
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Optimality

Using this algorithm, at each step all the packets with maximum
remaining distance move

→ every step the maximum remaining distance over all packets
decreases by one

→ the total running time is at most `max , meeting the lower
bound .

It is a distributed , oblivious and translation invariant algorithm.

The only involved operation are integer addition and comparison
among the lengths of the addresses of the packets at each node.
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Final example
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Final example (2)
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Summary

We have solved the permutation routing problem for full-duplex
triangular grids

2 factor approximation algorithm for half-duplex triangular grids

2 factor approximation algorithm for full-duplex hexagonal grids
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Further research

(`− k)-routing

Hexagonal grid

Half-duplex case for triangular/hexagonal grids

Permutation routing on 3-circulant graphs

Conceive algorithms under average case analysis
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Thanks!
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