Maximum Degree-Bounded Connected Subgraph:

Hardness and Approximation

Ignasi Sau Valls Joint work with O. Amini, D. Peleg, S. Perénnes, and S. Saurabh

Mascotte Project - INRIA/CNRS-I3S/UNSA - FRANCE Applied Mathematics IV Department of UPC - SPAIN

Outline of the talk

- Definition of the problem
- Example
- State of the art + our results
- Approximation algorithm
- Preliminaries
- Hardness results
- Conclusions and further research

• MAXIMUM DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_d):

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : E \to \mathbb{R}^+$.

Output:

a subset of edges $E' \subseteq E$ of **maximum weight**, s.t. G' = (V, E')

- ▶ is connected, and
- has **maximum degree** $\leq d$.
- It is one of the classical **NP**-complete problems of [Garey and Johnson, Computers and Intractability, 1979].

• If the output subgraph is not required to be connected, the problem is in **P** for any *d* (using matching techniques).

For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)

• MAXIMUM DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_d):

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : \boldsymbol{E} \to \mathbb{R}^+$.

Output:

a subset of edges $E' \subseteq E$ of **maximum weight**, s.t. G' = (V, E')

- is connected, and
- has **maximum degree** $\leq d$.
- It is one of the classical **NP**-complete problems of [Garey and Johnson, Computers and Intractability, 1979].

• If the output subgraph is not required to be connected, the problem is in **P** for any *d* (using matching techniques).

For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)

Ignasi Sau (MASCOTTE)

• MAXIMUM DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_d):

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : E \to \mathbb{R}^+$.

Output:

a subset of edges $E' \subseteq E$ of **maximum weight**, s.t. G' = (V, E')

- is connected, and
- has **maximum degree** $\leq d$.
- It is one of the classical **NP**-complete problems of [Garey and Johnson, Computers and Intractability, 1979].

• If the output subgraph is not required to be connected, the problem is in **P** for any *d* (using matching techniques).

For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)

Ignasi Sau (MASCOTTE)

Degree-Constrained Subgraph Problems

• MAXIMUM DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_d):

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : E \to \mathbb{R}^+$.

Output:

a subset of edges $E' \subseteq E$ of **maximum weight**, s.t. G' = (V, E')

- is connected, and
- has **maximum degree** $\leq d$.
- It is one of the classical **NP**-complete problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).

• For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)

Ignasi Sau (MASCOTTE)

Degree-Constrained Subgraph Problems

• MAXIMUM DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_d):

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : \boldsymbol{E} \to \mathbb{R}^+$.

Output:

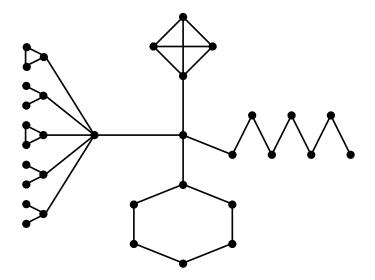
a subset of edges $E' \subseteq E$ of **maximum weight**, s.t. G' = (V, E')

- is connected, and
- has **maximum degree** $\leq d$.
- It is one of the classical **NP**-complete problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)

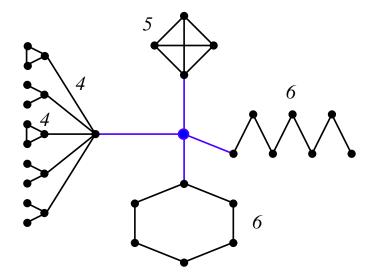
Ignasi Sau (MASCOTTE)

Degree-Constrained Subgraph Problems

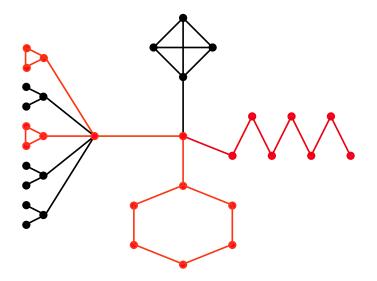
Example with d = 3, $\omega(e) = 1$ for all $e \in E(G)$



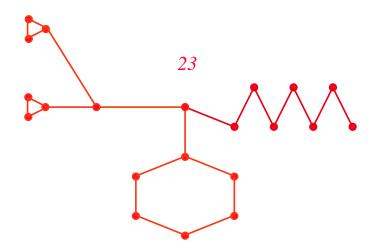
Example with d = 3 (II)



Example with d = 3 (III)



Example with d = 3 (IV)



State of the art

To the best of our knowledge, there were no results in the literature except for the case d = 2, a.k.a. the **LONGEST PATH** problem:

Approximation algorithms:
 \$\mathcal{O}(n/\log n)\$-approximation, using the color-coding method.
 N. Alon, R. Yuster and U. Zwick, STOC'94.

Hardness results:

It does not accept *any* constant-factor approximation.

D. Karger, R. Motwani and G. Ramkumar, Algorithmica'97.

State of the art

To the best of our knowledge, there were no results in the literature except for the case d = 2, a.k.a. the **LONGEST PATH** problem:

Approximation algorithms:

 $O(n/\log n)$ -approximation, using the **color-coding** method. N. Alon, R. Yuster and U. Zwick, STOC'94.

• Hardness results:

It does not accept *any* constant-factor approximation.

D. Karger, R. Motwani and G. Ramkumar, Algorithmica'97.

State of the art

To the best of our knowledge, there were no results in the literature except for the case d = 2, a.k.a. the **LONGEST PATH** problem:

Approximation algorithms:

 $O(n/\log n)$ -approximation, using the **color-coding** method. N. Alon, R. Yuster and U. Zwick, STOC'94.

Hardness results:

It does not accept *any* constant-factor approximation. D. Karger, R. Motwani and G. Ramkumar, Algorithmica'97.

• Approximation algorithms (n = |V(G)|, m = |E(G)|):

• min $\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.

- min $\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

For every fixed $d \ge 2$, MDBCS_d does not accept *any* constant-factor approximation in general graphs.

• Approximation algorithms (n = |V(G)|, m = |E(G)|):

- min $\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.
- $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

For every fixed $d \ge 2$, MDBCS_d does not accept *any* constant-factor approximation in general graphs.

• Approximation algorithms (n = |V(G)|, m = |E(G)|):

- min $\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.
- $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

For every fixed $d \ge 2$, MDBCS_d does not accept *any* constant-factor approximation in general graphs.

• Approximation algorithms (n = |V(G)|, m = |E(G)|):

- min $\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.
- $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

► For every fixed d ≥ 2, MDBCS_d does not accept any constant-factor approximation in general graphs.

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|, and $\rho = \min\{n/2, m/d\}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

- (1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a ρ -approximation.
- (2) If H = (W, F) consists of a collection F of k connected components, we glue them in k - 1 phases. In each phase:
 - For every two components $C, C' \in \mathcal{F}$, compute $d(C, C') = \min\{dist(u, u', G) \mid u \in C, u' \in C'\}.$
 - Take a pair $C, C' \in \mathcal{F}$ attaining the smallest d(C, C').
 - Let $u \in C$ and $u' \in C'$ be two vertices realizing this distance. Let p(u, u') be a shortest path between u and u' in G.
 - ▶ Then we merge C, C', and the path $p(u, u') \rightarrow$ new component \hat{C} .

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|, and $\rho = \min\{n/2, m/d\}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

- (1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a ρ -approximation.
- (2) If H = (W, F) consists of a collection \mathcal{F} of k connected components, we *glue* them in k 1 phases. In each phase:
 - For every two components $C, C' \in \mathcal{F}$, compute $d(C, C') = \min\{dist(u, u', G) \mid u \in C, u' \in C'\}.$
 - Take a pair $C, C' \in \mathcal{F}$ attaining the smallest d(C, C').
 - Let $u \in C$ and $u' \in C'$ be two vertices realizing this distance. Let p(u, u') be a shortest path between u and u' in G.
 - ▶ Then we merge C, C', and the path $p(u, u') \rightarrow$ new component \overline{C} .

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|, and $\rho = \min\{n/2, m/d\}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

- (1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a ρ -approximation.
- (2) If H = (W, F) consists of a collection \mathcal{F} of k connected components, we *glue* them in k 1 phases. In each phase:
 - For every two components $C, C' \in \mathcal{F}$, compute $d(C, C') = \min\{dist(u, u', G) \mid u \in C, u' \in C'\}.$
 - Take a pair $C, C' \in \mathcal{F}$ attaining the smallest d(C, C').
 - Let $u \in C$ and $u' \in C'$ be two vertices realizing this distance. Let p(u, u') be a shortest path between u and u' in G.
 - ▶ Then we merge C, C', and the path $p(u, u') \rightarrow$ new component C.

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|, and $\rho = \min\{n/2, m/d\}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

- (1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a ρ -approximation.
- (2) If H = (W, F) consists of a collection \mathcal{F} of k connected components, we *glue* them in k 1 phases. In each phase:
 - ► For every two components $C, C' \in \mathcal{F}$, compute $d(C, C') = \min\{dist(u, u', G) \mid u \in C, u' \in C'\}.$
 - Take a pair $C, C' \in \mathcal{F}$ attaining the smallest d(C, C').
 - Let $u \in C$ and $u' \in C'$ be two vertices realizing this distance. Let p(u, u') be a shortest path between u and u' in G.
 - ▶ Then we merge C, C', and the path $p(u, u') \rightarrow$ new component \hat{C} .

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|, and $\rho = \min\{n/2, m/d\}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

- (1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a ρ -approximation.
- (2) If H = (W, F) consists of a collection \mathcal{F} of k connected components, we *glue* them in k 1 phases. In each phase:
 - ► For every two components $C, C' \in \mathcal{F}$, compute $d(C, C') = \min\{dist(u, u', G) \mid u \in C, u' \in C'\}.$
 - ▶ Take a pair $C, C' \in \mathcal{F}$ attaining the smallest d(C, C')
 - ▶ Let $u \in C$ and $u' \in C'$ be two vertices realizing this distance. Let p(u, u') be a shortest path between u and u' in G.
 - Then we merge C, C', and the path $p(u, u') \rightarrow$ new component C.

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|, and $\rho = \min\{n/2, m/d\}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases according to H = (W, F):

- (1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a ρ -approximation.
- (2) If H = (W, F) consists of a collection \mathcal{F} of k connected components, we *glue* them in k 1 phases. In each phase:
 - ► For every two components $C, C' \in \mathcal{F}$, compute $d(C, C') = \min\{dist(u, u', G) \mid u \in C, u' \in C'\}.$

► Take a pair $C, C' \in \mathcal{F}$ attaining the smallest d(C, C').

- ▶ Let $u \in C$ and $u' \in C'$ be two vertices realizing this distance. Let p(u, u') be a shortest path between u and u' in G.
- Then we merge C, C', and the path $p(u, u') \rightarrow$ new component C.

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|, and $\rho = \min\{n/2, m/d\}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

- (1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a ρ -approximation.
- (2) If H = (W, F) consists of a collection \mathcal{F} of k connected components, we *glue* them in k 1 phases. In each phase:
 - ► For every two components $C, C' \in \mathcal{F}$, compute $d(C, C') = \min\{dist(u, u', G) \mid u \in C, u' \in C'\}.$
 - ▶ Take a pair $C, C' \in \mathcal{F}$ attaining the smallest d(C, C').
 - ▶ Let $u \in C$ and $u' \in C'$ be two vertices realizing this distance. Let p(u, u') be a shortest path between u and u' in G.
 - ▶ Then we merge *C*, *C'*, and the path $p(u, u') \rightarrow$ new component \tilde{C} .

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|, and $\rho = \min\{n/2, m/d\}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

- (1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a ρ -approximation.
- (2) If H = (W, F) consists of a collection \mathcal{F} of k connected components, we *glue* them in k 1 phases. In each phase:
 - ► For every two components $C, C' \in \mathcal{F}$, compute $d(C, C') = \min\{dist(u, u', G) \mid u \in C, u' \in C'\}.$
 - Take a pair $C, C' \in \mathcal{F}$ attaining the smallest d(C, C').
 - Let *u* ∈ *C* and *u'* ∈ *C'* be two vertices realizing this distance. Let *p*(*u*, *u'*) be a shortest path between *u* and *u'* in *G*.
 - ▶ Then we merge *C*, *C*', and the path $p(u, u') \rightarrow$ new component \hat{C} .

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|, and $\rho = \min\{n/2, m/d\}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

- (1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a ρ -approximation.
- (2) If H = (W, F) consists of a collection \mathcal{F} of k connected components, we *glue* them in k 1 phases. In each phase:
 - ► For every two components $C, C' \in \mathcal{F}$, compute $d(C, C') = \min\{dist(u, u', G) \mid u \in C, u' \in C'\}.$
 - Take a pair $C, C' \in \mathcal{F}$ attaining the smallest d(C, C').
 - Let *u* ∈ *C* and *u'* ∈ *C'* be two vertices realizing this distance. Let *p*(*u*, *u'*) be a shortest path between *u* and *u'* in *G*.
 - ▶ Then we merge *C*, *C*', and the path $p(u, u') \rightarrow$ new component \hat{C} .

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|, and $\rho = \min\{n/2, m/d\}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

- (1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a ρ -approximation.
- (2) If H = (W, F) consists of a collection \mathcal{F} of k connected components, we *glue* them in k 1 phases. In each phase:
 - ► For every two components $C, C' \in \mathcal{F}$, compute $d(C, C') = \min\{dist(u, u', G) \mid u \in C, u' \in C'\}.$
 - Take a pair $C, C' \in \mathcal{F}$ attaining the smallest d(C, C').
 - Let *u* ∈ *C* and *u'* ∈ *C'* be two vertices realizing this distance. Let *p*(*u*, *u'*) be a shortest path between *u* and *u'* in *G*.
 - ▶ Then we merge *C*, *C'*, and the path $p(u, u') \rightarrow$ new component \hat{C} .

(a) Running time: clearly polynomial.

(b) Correctness:

- The output subgraph is connected.
- Claim: after *i* phases, Δ(H) ≤ d − k + i + 1. The proof is done by induction. When i = k − 1 we get Δ(H) ≤ d.

(a) Running time: clearly polynomial.

(b) Correctness:

- The output subgraph is connected.
- Claim: after *i* phases, Δ(H) ≤ d − k + i + 1. The proof is done by induction. When i = k − 1 we get Δ(H) ≤ d.

(a) Running time: clearly polynomial.

(b) Correctness:

- The output subgraph is connected.
- Claim: after *i* phases, Δ(H) ≤ d − k + i + 1. The proof is done by induction. When i = k − 1 we get Δ(H) ≤ d.

(a) Running time: clearly polynomial.

(b) Correctness:

- The output subgraph is connected.
- Claim: after *i* phases, Δ(H) ≤ d − k + i + 1. The proof is done by induction. When i = k − 1 we get Δ(H) ≤ d.

Preliminaries: hardness of approximation

Class APX (Approximable):

an NP-complete optimization problem is in APX if it can be approximated within a constant factor.

Example: VERTEX COVER

• Class PTAS (Polynomial-Time Approximation Scheme):

an NP-complete optimization problem is in PTAS if it can be approximated within a constant factor $1 + \varepsilon$, for *all* $\varepsilon > 0$ (the best one can hope for an NP-complete problem).

Example: MAXIMUM KNAPSACK

Hardness result: idea of the proof

(1) First we prove that MDBCS_d ∉ PTAS: Reduction from TSP(1,2).

(2) Then we prove that $MDBCS_d \notin APX$:

- Let $\alpha > 1$ be the hardness factor of MDBCS_d given by (1).
- We use a technique called error amplification:
 - * We build a sequence of families of graphs \mathcal{G}^k , such that MDBCS_d is hard to approximate in \mathcal{G}^k within a factor α^k , unless P = NP.
 - * This proves that the problem is not in APX.

(for any constant *C*, $\exists k > 0$ such that $\alpha^k > C$).

Let G¹ = G. We explain the construction of G²: first take our graph G and.

Hardness result: idea of the proof

- (1) First we prove that MDBCS_d ∉ PTAS: Reduction from TSP(1,2).
- (2) Then we prove that $MDBCS_d \notin APX$:
 - Let $\alpha > 1$ be the hardness factor of MDBCS_d given by (1).
 - We use a technique called error amplification:
 - * We build a sequence of families of graphs \mathcal{G}^k , such that MDBCS_d is hard to approximate in \mathcal{G}^k within a factor α^k , unless P = NP.
 - ★ This proves that the problem is not in APX.

(for any constant *C*, $\exists k > 0$ such that $\alpha^k > C$).

Let G¹ = G. We explain the construction of G²: first take our graph G and...

Hardness result: idea of the proof

- (1) First we prove that MDBCS_d ∉ PTAS: Reduction from TSP(1,2).
- (2) Then we prove that $MDBCS_d \notin APX$:
 - Let $\alpha > 1$ be the hardness factor of MDBCS_d given by (1).
 - We use a technique called error amplification:
 - * We build a sequence of families of graphs \mathcal{G}^k , such that MDBCS_d is hard to approximate in \mathcal{G}^k within a factor α^k , unless P = NP.
 - ★ This proves that the problem is not in APX.

(for any constant *C*, $\exists k > 0$ such that $\alpha^k > C$).

Let $G^1 = G$. We explain the construction of G^2 : first take our graph G and...

Hardness result: idea of the proof

- (1) First we prove that MDBCS_d ∉ PTAS: Reduction from TSP(1,2).
- (2) Then we prove that $MDBCS_d \notin APX$:
 - Let $\alpha > 1$ be the hardness factor of MDBCS_d given by (1).
 - We use a technique called error amplification:
 - * We build a sequence of families of graphs \mathcal{G}^k , such that MDBCS_d is hard to approximate in \mathcal{G}^k within a factor α^k , unless P = NP.
 - This proves that the problem is not in APX.

(for any constant C, $\exists k > 0$ such that $\alpha^k > C$).

Let G¹ = G. We explain the construction of G²: first take our graph G and...

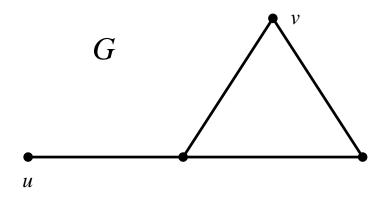
Hardness result: idea of the proof

- (1) First we prove that MDBCS_d ∉ PTAS: Reduction from TSP(1,2).
- (2) Then we prove that $MDBCS_d \notin APX$:
 - Let $\alpha > 1$ be the hardness factor of MDBCS_d given by (1).
 - We use a technique called error amplification:
 - * We build a sequence of families of graphs \mathcal{G}^k , such that MDBCS_d is hard to approximate in \mathcal{G}^k within a factor α^k , unless P = NP.
 - ★ This proves that the problem is not in APX.

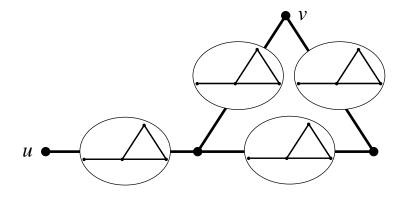
(for any constant C, $\exists k > 0$ such that $\alpha^k > C$).

Let G¹ = G. We explain the construction of G²: first take our graph G and...

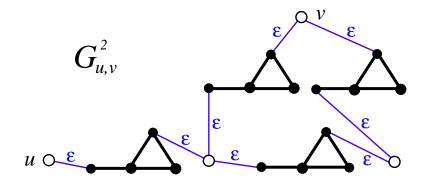
For each pair of vertices $\{u, v\} \in V^2$, $u \neq v$, we build the graph $G_{u,v}^2$ in the following way:



Error amplification to prove that $MDBCS_d \notin APX$ (II) We replace each edge $e_i = (x, y) \in E(G)$ with a copy G_i of G, i = 1, ..., m:



The copy of the vertex $u \in V(G)$ in G_i is labeled u_i . For each $e_i = (x, y) \in E(G)$, we add the edges (x, u_i) and (y, v_i) with weight ε , $0 < \varepsilon << 1$.



- Suppose we have an approx. algo C with ratio ρ. We define G² as the graph G²_{u,v} for which algorithm C gives the best solution.
- Claim 1: $OPT_2 \ge OPT_1^2 + 2\varepsilon \cdot OPT_1 \approx OPT_1^2$.
- Claim 2: Given any solution S₂ in G² with weight x, it is possible to find a solution S₁ in G with weight at least √x.
 To prove the claim, we distinguish two cases:
 - Case a: S₂ intersects at least √x copies of G.
 Let S₁ be the subgraph of G induced by the edges corresponding to these copies of G in G².
 - Case b: S₂ intersects strictly fewer than √x copies of G.
 Let S₁ be S₂ ∩ G_i, with G_i being the copy of G in G² such that |E(S₂ ∩ G_i)| is maximized.
 - In both cases S_1 is connected, has maximum degree at most d, and has at least \sqrt{x} edges.
- Combining Claims 1 and 2: if there exists a ρ -approximation in G^2 , then it is possible to find a solution for G with weight at least
 - $\frac{OPI_2}{\rho} \geq \frac{OPI_1}{\sqrt{\rho}} \Rightarrow$ we have a $\sqrt{\rho}$ -approximation in G.

- Suppose we have an approx. algo C with ratio ρ. We define G² as the graph G²_{u,v} for which algorithm C gives the best solution.
- Claim 1: $OPT_2 \ge OPT_1^2 + 2\varepsilon \cdot OPT_1 \approx OPT_1^2$.
- Claim 2: Given any solution S₂ in G² with weight x, it is possible to find a solution S₁ in G with weight at least √x. To prove the claim, we distinguish two cases:
 - Case a: S₂ intersects at least √x copies of G.
 Let S₁ be the subgraph of G induced by the edges corresponding to these copies of G in G².
 - Case b: S₂ intersects strictly fewer than √x copies of G.
 Let S₁ be S₂ ∩ G_i, with G_i being the copy of G in G² such that |E(S₂ ∩ G_i)| is maximized.
 - In both cases S_1 is connected, has maximum degree at most d, and has at least \sqrt{x} edges.
- Combining Claims 1 and 2: if there exists a ρ -approximation in G^2 , then it is possible to find a solution for *G* with weight at least
 - $\frac{OPI_2}{\rho} \geq \frac{OPI_1}{\sqrt{\rho}} \Rightarrow$ we have a $\sqrt{\rho}$ -approximation in G.

- Suppose we have an approx. algo C with ratio ρ. We define G² as the graph G²_{u,v} for which algorithm C gives the best solution.
- Claim 1: $OPT_2 \ge OPT_1^2 + 2\varepsilon \cdot OPT_1 \approx OPT_1^2$.
- **Claim 2**: Given any solution S_2 in G^2 with weight *x*, it is possible to find a solution S_1 in *G* with weight at least \sqrt{x} .

To prove the claim, we distinguish two cases:

- Case a: S₂ intersects at least √x copies of G.
 Let S₁ be the subgraph of G induced by the edges corresponding to these copies of G in G².
- Case b: S₂ intersects strictly fewer than √x copies of G.
 Let S₁ be S₂ ∩ G_i, with G_i being the copy of G in G² such that |E(S₂ ∩ G_i)| is maximized.

In both cases S_1 is connected, has maximum degree at most d, and has at least \sqrt{x} edges.

 Combining Claims 1 and 2: if there exists a ρ-approximation in G², then it is possible to find a solution for G with weight at least

 $\frac{1}{2} \frac{OPT_1}{\sqrt{\rho}} \ge \frac{OPT_1}{\sqrt{\rho}} \Rightarrow$ we have a $\sqrt{\rho}$ -approximation in G.

- Suppose we have an approx. algo C with ratio ρ. We define G² as the graph G²_{U,V} for which algorithm C gives the best solution.
- Claim 1: $OPT_2 \ge OPT_1^2 + 2\varepsilon \cdot OPT_1 \approx OPT_1^2$.
- Claim 2: Given any solution S₂ in G² with weight x, it is possible to find a solution S₁ in G with weight at least √x.
 To prove the claim, we distinguish two cases:
 - Case a: S₂ intersects at least √x copies of G.
 Let S₁ be the subgraph of G induced by the edges corresponding to these copies of G in G².
 - Case b: S₂ intersects strictly fewer than √x copies of G.
 Let S₁ be S₂ ∩ G_i, with G_i being the copy of G in G² such that |E(S₂ ∩ G_i)| is maximized.

In both cases S_1 is connected, has maximum degree at most d, and has at least \sqrt{x} edges.

- Suppose we have an approx. algo C with ratio ρ. We define G² as the graph G²_{u,v} for which algorithm C gives the best solution.
- Claim 1: $OPT_2 \ge OPT_1^2 + 2\varepsilon \cdot OPT_1 \approx OPT_1^2$.
- Claim 2: Given any solution S₂ in G² with weight x, it is possible to find a solution S₁ in G with weight at least √x.
 To prove the claim, we distinguish two cases:
 - Case a: S₂ intersects at least √x copies of G.
 Let S₁ be the subgraph of G induced by the edges corresponding to these copies of G in G².
 - **Case b:** S_2 intersects strictly fewer than \sqrt{x} copies of *G*. Let S_1 be $S_2 \cap G_i$, with G_i being the copy of *G* in G^2 such that $|E(S_2 \cap G_i)|$ is maximized.

In both cases S_1 is connected, has maximum degree at most d, and has at least \sqrt{x} edges.

$$\Big/rac{OPT_2}{
ho}\geqrac{OPT_1}{\sqrt{
ho}}\Rightarrow$$
 we have a $\sqrt{
ho}$ -approximation in $G.$

- Suppose we have an approx. algo C with ratio ρ. We define G² as the graph G²_{u,v} for which algorithm C gives the best solution.
- Claim 1: $OPT_2 \ge OPT_1^2 + 2\varepsilon \cdot OPT_1 \approx OPT_1^2$.
- Claim 2: Given any solution S₂ in G² with weight x, it is possible to find a solution S₁ in G with weight at least √x.
 To prove the claim, we distinguish two cases:
 - Case a: S₂ intersects at least √x copies of G.
 Let S₁ be the subgraph of G induced by the edges corresponding to these copies of G in G².
 - **Case b:** S_2 intersects strictly fewer than \sqrt{x} copies of G. Let S_1 be $S_2 \cap G_i$, with G_i being the copy of G in G^2 such that $|E(S_2 \cap G_i)|$ is maximized.

In both cases S_1 is connected, has maximum degree at most d, and has at least \sqrt{x} edges.

$$\left/ rac{OPT_2}{
ho} \geq rac{OPT_1}{\sqrt{
ho}} \Rightarrow$$
 we have a $\sqrt{
ho}$ -approximation in *G*.

- Suppose we have an approx. algo C with ratio ρ. We define G² as the graph G²_{u,v} for which algorithm C gives the best solution.
- Claim 1: $OPT_2 \ge OPT_1^2 + 2\varepsilon \cdot OPT_1 \approx OPT_1^2$.
- Claim 2: Given any solution S₂ in G² with weight x, it is possible to find a solution S₁ in G with weight at least √x.
 To prove the claim, we distinguish two cases:
 - Case a: S₂ intersects at least √x copies of G.
 Let S₁ be the subgraph of G induced by the edges corresponding to these copies of G in G².
 - **Case b:** S_2 intersects strictly fewer than \sqrt{x} copies of G. Let S_1 be $S_2 \cap G_i$, with G_i being the copy of G in G^2 such that $|E(S_2 \cap G_i)|$ is maximized.

In both cases S_1 is connected, has maximum degree at most d, and has at least \sqrt{x} edges.

$$\sqrt{\frac{OPT_2}{\rho}} \ge \frac{OPT_1}{\sqrt{\rho}} \Rightarrow$$
 we have a $\sqrt{\rho}$ -approximation in *G*.

• We have proved that $MDBCS_d$, $d \ge 2$, is not in APX.

• We have provided approximation algorithms for any *d*:

- min $\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
- min $\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs.
- We have also proved that when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor in unweighted graphs.

• Further Research:

- Close the huge complexity gap of $MDBCS_d$, $d \ge 2$.
- Find polynomial cases or better approximation algorithms for specific classes of graphs.
- Consider a parameterized version of the problem.

- We have proved that $MDBCS_d$, $d \ge 2$, is not in APX.
- We have provided approximation algorithms for any *d*:
 - min $\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.
 - min $\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs.
 - We have also proved that when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor in unweighted graphs.
- Further Research:
 - Close the huge complexity gap of $MDBCS_d$, $d \ge 2$.
 - Find polynomial cases or better approximation algorithms for specific classes of graphs.
 - Consider a parameterized version of the problem.

- We have proved that $MDBCS_d$, $d \ge 2$, is not in APX.
- We have provided approximation algorithms for any *d*:
 - $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
 - $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs.
 - We have also proved that when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor in unweighted graphs.
- Further Research:
 - Close the huge complexity gap of $MDBCS_d$, $d \ge 2$.
 - Find polynomial cases or better approximation algorithms for specific classes of graphs.
 - Consider a parameterized version of the problem.

• We have proved that $MDBCS_d$, $d \ge 2$, is not in APX.

• We have provided approximation algorithms for any *d*:

- $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
- min $\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs.
- We have also proved that when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor in unweighted graphs.

• Further Research:

- Close the huge complexity gap of $MDBCS_d$, $d \ge 2$.
- Find polynomial cases or better approximation algorithms for specific classes of graphs.
- Consider a parameterized version of the problem.

• We have proved that $MDBCS_d$, $d \ge 2$, is not in APX.

• We have provided approximation algorithms for any *d*:

- $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
- min $\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs.
- We have also proved that when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor in unweighted graphs.

• Further Research:

- Close the huge complexity gap of $MDBCS_d$, $d \ge 2$.
- Find polynomial cases or better approximation algorithms for specific classes of graphs.
- Consider a parameterized version of the problem.

Moltes gràcies!

Força Barça!!

20h45: Manchester United - F.C. Barcelona

Ignasi Sau (MASCOTTE)

Degree-Constrained Subgraph Problems