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Definition of the problem
MAXIMUM DEGREE-BOUNDED CONNECTED SUBGRAPH
(MDBCSd ):

Input:
I an undirected graph G = (V ,E),
I an integer d ≥ 2, and
I a weight function ω : E → R+.

Output:
a subset of edges E ′ ⊆ E of maximum weight, s.t. G′ = (V ,E ′)

I is connected, and
I has maximum degree ≤ d .

It is one of the classical NP-complete problems of [Garey and
Johnson, Computers and Intractability, 1979].

If the output subgraph is not required to be connected, the
problem is in P for any d (using matching techniques).

For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)
problem.Ignasi Sau (MASCOTTE) Degree-Constrained Subgraph Problems 29th April 2008 3 / 19
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Example with d = 3, ω(e) = 1 for all e ∈ E(G)
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Example with d = 3 (II)
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Example with d = 3 (III)
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Example with d = 3 (IV)

23
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State of the art

To the best of our knowledge, there were no results in the literature
except for the case d = 2, a.k.a. the LONGEST PATH problem:

Approximation algorithms:
O(n/ log n)-approximation, using the color-coding method.
N. Alon, R. Yuster and U. Zwick, STOC’94.

Hardness results:
It does not accept any constant-factor approximation.
D. Karger, R. Motwani and G. Ramkumar, Algorithmica’97.
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Our results

Approximation algorithms (n = |V (G)|, m = |E(G)|):

I min{ n
2 ,

m
d }-approximation algorithm for weighted graphs.

I min{ m
log n ,

nd
2 log n}-approximation algorithm for unweighted graphs.

I when G accepts a low-degree spanning tree, in terms of d , then
MDBCSd can be approximated within a small constant factor.

Hardness results:
I For every fixed d ≥ 2, MDBCSd does not accept any

constant-factor approximation in general graphs.
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Approximation algorithm for weighted graphs
Input: undirected graph G = (V ,E), a weight function ω : E → R+,
and an integer d ≥ 2. Let n = |V |, m = |E |, and ρ = min{n/2,m/d}.

F : set of d heaviest edges in G, with weight ω(F ).
W : set of endpoints of those edges. Let H = (W ,F ).

Description of the algorithm: Two cases according to H = (W ,F ):

(1) If H = (W ,F ) is connected, the algorithm returns H.
Claim: this yields a ρ-approximation.

(2) If H = (W ,F ) consists of a collection F of k connected
components, we glue them in k − 1 phases. In each phase:

I For every two components C,C′ ∈ F , compute
d(C,C′) = min{dist(u,u′,G) | u ∈ C,u′ ∈ C′}.

I Take a pair C,C′ ∈ F attaining the smallest d(C,C′).
I Let u ∈ C and u′ ∈ C′ be two vertices realizing this distance.

Let p(u,u′) be a shortest path between u and u′ in G.
I Then we merge C, C′, and the path p(u,u′)→ new component Ĉ.
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Ignasi Sau (MASCOTTE) Degree-Constrained Subgraph Problems 29th April 2008 10 / 19



Approximation algorithm for weighted graphs
Input: undirected graph G = (V ,E), a weight function ω : E → R+,
and an integer d ≥ 2. Let n = |V |, m = |E |, and ρ = min{n/2,m/d}.

F : set of d heaviest edges in G, with weight ω(F ).
W : set of endpoints of those edges. Let H = (W ,F ).

Description of the algorithm: Two cases according to H = (W ,F ):

(1) If H = (W ,F ) is connected, the algorithm returns H.
Claim: this yields a ρ-approximation.

(2) If H = (W ,F ) consists of a collection F of k connected
components, we glue them in k − 1 phases. In each phase:

I For every two components C,C′ ∈ F , compute
d(C,C′) = min{dist(u,u′,G) | u ∈ C,u′ ∈ C′}.

I Take a pair C,C′ ∈ F attaining the smallest d(C,C′).
I Let u ∈ C and u′ ∈ C′ be two vertices realizing this distance.

Let p(u,u′) be a shortest path between u and u′ in G.
I Then we merge C, C′, and the path p(u,u′)→ new component Ĉ.
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Analysis of the algorithm

(a) Running time: clearly polynomial.

(b) Correctness:
I The output subgraph is connected.
I Claim: after i phases, ∆(H) ≤ d − k + i + 1.

The proof is done by induction. When i = k − 1 we get ∆(H) ≤ d .

(c) Approximation ratio: follows from case (1).
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Preliminaries: hardness of approximation

Class APX (Approximable):

an NP-complete optimization problem is in APX if it can be
approximated within a constant factor.

Example: VERTEX COVER

Class PTAS (Polynomial-Time Approximation Scheme):

an NP-complete optimization problem is in PTAS if it can be
approximated within a constant factor 1 + ε, for all ε > 0
(the best one can hope for an NP-complete problem).

Example: MAXIMUM KNAPSACK
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Hardness result: idea of the proof

(1) First we prove that MDBCSd /∈ PTAS:
Reduction from TSP(1,2).

(2) Then we prove that MDBCSd /∈ APX:
I Let α > 1 be the hardness factor of MDBCSd given by (1).
I We use a technique called error amplification:

F We build a sequence of families of graphs Gk , such that MDBCSd is
hard to approximate in Gk within a factor αk , unless P = NP.

F This proves that the problem is not in APX.

(for any constant C, ∃ k > 0 such that αk > C).

I Let G1 = G.
We explain the construction of G2: first take our graph G and...
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Error amplification to prove that MDBCSd /∈ APX
For each pair of vertices {u, v} ∈ V 2, u 6= v , we build the graph G2

u,v in
the following way:

u

v

G
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Error amplification to prove that MDBCSd /∈ APX (II)
We replace each edge ei = (x , y) ∈ E(G) with a copy Gi of G,
i = 1, . . . ,m:

u

v
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Error amplification to prove that MDBCSd /∈ APX (III)
The copy of the vertex u ∈ V (G) in Gi is labeled ui . For each
ei = (x , y) ∈ E(G), we add the edges (x ,ui) and (y , vi) with weight ε,
0 < ε << 1.

u

v

ε
ε

ε

ε ε

ε

ε ε

Gu,v
2
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Error amplification to prove that MDBCSd /∈ APX (IV)
Suppose we have an approx. algo C with ratio ρ. We define G2 as
the graph G2

u,v for which algorithm C gives the best solution.
Claim 1: OPT2 ≥ OPT 2

1 + 2ε ·OPT1 ≈ OPT 2
1 .

Claim 2: Given any solution S2 in G2 with weight x , it is possible
to find a solution S1 in G with weight at least

√
x .

To prove the claim, we distinguish two cases:
• Case a: S2 intersects at least

√
x copies of G.

Let S1 be the subgraph of G induced by the edges corresponding to
these copies of G in G2.

• Case b: S2 intersects strictly fewer than
√

x copies of G.
Let S1 be S2 ∩Gi , with Gi being the copy of G in G2 such that
|E(S2 ∩Gi )| is maximized.

In both cases S1 is connected, has maximum degree at most d ,
and has at least

√
x edges.

Combining Claims 1 and 2: if there exists a ρ-approximation in G2,
then it is possible to find a solution for G with weight at least√

OPT2
ρ ≥ OPT1√

ρ ⇒ we have a
√
ρ-approximation in G.
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Conclusions and further research

We have proved that MDBCSd , d ≥ 2, is not in APX.

We have provided approximation algorithms for any d :

I min{ n
2 ,

m
d }-approximation algorithm for weighted graphs.

I min{ m
log n ,

nd
2 log n}-approximation algorithm for unweighted graphs.

I We have also proved that when G accepts a low-degree
spanning tree, in terms of d , then MDBCSd can be approximated
within a small constant factor in unweighted graphs.

Further Research:
I Close the huge complexity gap of MDBCSd , d ≥ 2.
I Find polynomial cases or better approximation algorithms for

specific classes of graphs.
I Consider a parameterized version of the problem.
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Moltes gràcies!

Força Barça!!

20h45: Manchester United - F.C. Barcelona
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