Compound Logics for Modification Problems

Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos arXiv 2111.02755, ICALP 2023

FPT Fest, Bergen
June 15th, 2023

Thanks Dimitrios for many of the slides!!

Plan of the talk

(1) Motivation for algorithmic meta-theorems based on logic
(2) Definition of the new $\operatorname{logic}(\mathrm{s})$ and our results
(3) Necessity of the ingredients of the logic
(1) Sketch of some ideas of the proofs
(6) Further research

Our setting: graph modification problems

Our setting: graph modification problems

Let \mathcal{C} be a target graph class (planar graphs, bounded degree, ...).
Let \mathcal{M} be a set of allowed graph modification operations (vertex deletion, edge deletion/addition/contraction, elimination distance...).

```
M-Modification to \mathcal{C}
Input: A graph G and an integer k ("amount of modification").
Question: Can we transform G to a graph in \mathcal{C}}\mathrm{ by applying at most \(k\) operations from \(\mathcal{M}\) ?
```

This meta-problem has a huge expressive power.

Our setting: graph modification problems

Let \mathcal{C} be a target graph class (planar graphs, bounded degree, ...).
Let \mathcal{M} be a set of allowed graph modification operations (vertex deletion, edge deletion/addition/contraction, elimination distance...).

```
M-Modification to \mathcal{C}
Input: A graph G and an integer k ("amount of modification").
Question: Can we transform G to a graph in \mathcal{C}}\mathrm{ by applying at most \(k\) operations from \(\mathcal{M}\) ?
```

This meta-problem has a huge expressive power.

As we are in this session: suppose that \mathcal{C} and \mathcal{M} are definable in some logic(s).

Our setting: graph modification problems

Let \mathcal{C} be a target graph class (planar graphs, bounded degree, ...).
Let \mathcal{M} be a set of allowed graph modification operations (vertex deletion, edge deletion/addition/contraction, elimination distance...).

```
M-Modification to \mathcal{C}
Input: A graph G and an integer k ("amount of modification").
Question: Can we transform G to a graph in \mathcal{C}}\mathrm{ by applying at most \(k\) operations from \(\mathcal{M}\) ?
```

This meta-problem has a huge expressive power.

As we are in this session: suppose that \mathcal{C} and \mathcal{M} are definable in some logic(s).
Goal: We define logics L that capture large families of modification problems.

Our setting: graph modification problems

Let \mathcal{C} be a target graph class (planar graphs, bounded degree, ...).
Let \mathcal{M} be a set of allowed graph modification operations (vertex deletion, edge deletion/addition/contraction, elimination distance...).

```
M-Modification to \mathcal{C}
Input: A graph G and an integer k ("amount of modification").
Question: Can we transform G to a graph in \mathcal{C by applying} at most \(k\) operations from \(\mathcal{M}\) ?
```

This meta-problem has a huge expressive power.

As we are in this session: suppose that \mathcal{C} and \mathcal{M} are definable in some logic(s).
Goal: We define logics L that capture large families of modification problems.
Amount of modification: given by the size of the formula $\varphi \in \mathrm{L}$.

Our setting: graph modification problems

Let \mathcal{C} be a target graph class (planar graphs, bounded degree, ...).
Let \mathcal{M} be a set of allowed graph modification operations (vertex deletion, edge deletion/addition/contraction, elimination distance...).
\mathcal{M}-Modification to \mathcal{C}
Input: A graph G and an integer k ("amount of modification").
Question: Can we transform G to a graph in \mathcal{C} by applying at most k operations from \mathcal{M} ?

This meta-problem has a huge expressive power.

As we are in this session: suppose that \mathcal{C} and \mathcal{M} are definable in some logic(s).
Goal: We define logics L that capture large families of modification problems.
Amount of modification: given by the size of the formula $\varphi \in \mathrm{L}$.
Want: algorithms in time $f(\varphi) \cdot n^{\mathcal{O}(1)}$, where $n=|V(G)|$.

Algorithmic Meta-Theorems (AMTs)

For some logic L and some class \mathcal{C} of combinatorial structures, every algorithmic problem Π that is expressible in L , there is an efficient algorithm solving Π for inputs that belong in \mathcal{C}.

Algorithmic Meta-Theorems (AMTs)

For some logic L and some class \mathcal{C} of combinatorial structures, every algorithmic problem Π that is expressible in L , there is an efficient algorithm solving Π for inputs that belong in \mathcal{C}.

A constructive viewpoint of AMTs:

an algorithm

Algorithmic Meta-Theorems (AMTs)

For some logic L and some class \mathcal{C} of combinatorial structures, every algorithmic problem Π that is expressible in L , there is an efficient algorithm solving Π for inputs that belong in \mathcal{C}.

A constructive viewpoint of AMTs:

Two main logics for φ :

- FOL: First Order Logic
- quantification on vertices or edges
- CMSOL: Counting Monadic Second Order Logic
- quantification on sets of vertices or edges

Famous AMTs for model-checking in time FPT

treewidth: $\mathbf{t w}(G) \approx \max$ grid-minor of the graph G

Famous AMTs for model-checking in time FPT

treewidth: $\mathbf{t w}(G) \approx$ max grid-minor of the graph G
Hadwiger number: $\mathbf{h w}(G)=\max$ clique-minor of the graph G

A typical problem that is not captured by the mentioned AMTs:
Vertex Deletion to Planarity
Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar?

A typical problem that is not captured by the mentioned AMTs:
Vertex Deletion to Planarity Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar?

Or, given G, k, ask whether $G \in \operatorname{Mod}\left(\varphi_{k}\right)$, where $\varphi_{k}=\exists x_{1}, \ldots, x_{k} G \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ is planar.

A typical problem that is not captured by the mentioned AMTs:
Vertex Deletion to Planarity Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar?

Or, given G, k, ask whether $G \in \operatorname{Mod}\left(\varphi_{k}\right)$, where $\varphi_{k}=\exists x_{1}, \ldots, x_{k} G \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ is planar.

- $\varphi_{k} \in$ CMSOL, but yes-instances have unbounded treewidth.
- yes-instances have bounded Hadwiger number but $\varphi_{k} \notin$ FOL.

A typical problem that is not captured by the mentioned AMTs:
Vertex Deletion to Planarity
Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar?

Or, given G, k, ask whether $G \in \operatorname{Mod}\left(\varphi_{k}\right)$, where $\varphi_{k}=\exists x_{1}, \ldots, x_{k} G \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ is planar.

- $\varphi_{k} \in$ CMSOL, but yes-instances have unbounded treewidth.
- yes-instances have bounded Hadwiger number but $\varphi_{k} \notin$ FOL.

Modulator: $X=\left\{x_{1}, \ldots, x_{k}\right\}$
Target property: minor-exclusion of $\mathcal{H}=\left\{K_{5}, K_{3,3}\right\}$

Vertex Deletion to Planarity

 Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar?
Vertex Deletion to Planarity

 Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar?... can be solved in time $f(k) \cdot n^{2}$.
Because: For every k, the set of yes-instances is minor-closed.

Vertex Deletion to Planarity

 Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar?... can be solved in time $f(k) \cdot n^{2}$.
Because: For every k, the set of yes-instances is minor-closed.
... the same if the target is any minor-closed graph class \mathcal{G}.

Vertex Deletion to Planarity Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar?
... can be solved in time $f(k) \cdot n^{2}$.
Because: For every k, the set of yes-instances is minor-closed.
... the same if the target is any minor-closed graph class \mathcal{G}.
[Adler, Grohe, Kreutzer, SODA 2008]
[Marx and Schlotter, Algorithmica 2012]
[Kawarabayashi, FOCS 2009]
[Jansen, Lokshtanov, Saurabh, SODA 2014]
[Kociumaka and Pilipczuk, Algorithmica 2019]
[S., Stamoulis, Thilikos, ACM Trans. Alg. 2022]
[Morelle, S., Stamoulis, Thilikos, ICALP 2023]

Vertex Deletion to Planarity Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar?
... can be solved in time $f(k) \cdot n^{2}$.
Because: For every k, the set of yes-instances is minor-closed.
... the same if the target is any minor-closed graph class \mathcal{G}.
[Adler, Grohe, Kreutzer, SODA 2008]
[Marx and Schlotter, Algorithmica 2012]
[Kawarabayashi, FOCS 2009]
[Jansen, Lokshtanov, Saurabh, SODA 2014]
[Kociumaka and Pilipczuk, Algorithmica 2019]
[S., Stamoulis, Thilikos, ACM Trans. Alg. 2022]
[Morelle, S., Stamoulis, Thilikos, ICALP 2023]
Topological minor exclusion:
[Golovach, Stamoulis, Thilikos, SODA 2020]
[Fomin, Lokshtanov, Panolan, Saurabh, Zehavi, STOC 2020]

Vertex Deletion to Planarity + more Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar+more?

- What if we add further (non-hereditary) conditions on top of planarity? Such conditions might be FOL-conditions (even CMSOL-conditions)

Vertex Deletion to Planarity + more Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar+more?

- What if we add further (non-hereditary) conditions on top of planarity? Such conditions might be FOL-conditions (even CMSOL-conditions)
planarity + any FOL condition:
[Fomin, Golovach, Stamoulis, Thilikos, ESA 2020]
planarity + bipartiteness:
[Fiorini, Hardy, Reed, Vetta, DAM 2008]

Vertex Deletion to Planarity + more Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar+more?

- What if we add further (non-hereditary) conditions on top of planarity? Such conditions might be FOL-conditions (even CMSOL-conditions)
planarity + any FOL condition:
[Fomin, Golovach, Stamoulis, Thilikos, ESA 2020]
planarity + bipartiteness:
[Fiorini, Hardy, Reed, Vetta, DAM 2008]
- What if we apply other modifications, apart from vertex removals?

Vertex Deletion to Planarity + more Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar+more?

- What if we add further (non-hereditary) conditions on top of planarity? Such conditions might be FOL-conditions (even CMSOL-conditions)
planarity + any FOL condition:
[Fomin, Golovach, Stamoulis, Thilikos, ESA 2020]
planarity + bipartiteness:
[Fiorini, Hardy, Reed, Vetta, DAM 2008]
- What if we apply other modifications, apart from vertex removals?

Edge removal to planarity: [Kawarabayashi and Reed, STOC 2007]

Vertex Deletion to Planarity + more Given G and k, is there an $X \subseteq V(G)^{\leq k}$ such that $G \backslash X$ is planar+more?

- What if we add further (non-hereditary) conditions on top of planarity? Such conditions might be FOL-conditions (even CMSOL-conditions)
planarity + any FOL condition:
[Fomin, Golovach, Stamoulis, Thilikos, ESA 2020]
planarity + bipartiteness:
[Fiorini, Hardy, Reed, Vetta, DAM 2008]
- What if we apply other modifications, apart from vertex removals?

Edge removal to planarity: [Kawarabayashi and Reed, STOC 2007]

AMTs:
edge removals, edge contractions, edge additions (to planarity) [Fomin, Golovach, Stamoulis, Thilikos, ESA 2020]
Other local transformations (to planarity)
[Fomin, Golovach, Thilikos, STACS 2019]

```
Vertex Deletion to Planarity + more Given \(G\) and \(k\), is there an \(X \subseteq V(G)^{\leq k}\) such that \(G \backslash X\) is planar+more?
```

- What if we add further (non-hereditary) conditions on top of planarity? Such conditions might be FOL-conditions (even CMSOL-conditions)
planarity + any FOL condition:
[Fomin, Golovach, Stamoulis, Thilikos, ESA 2020]
planarity + bipartiteness:
[Fiorini, Hardy, Reed, Vetta, DAM 2008]
- What if we apply other modifications, apart from vertex removals?

Edge removal to planarity: [Kawarabayashi and Reed, STOC 2007]

AMTs:
edge removals, edge contractions, edge additions (to planarity) [Fomin, Golovach, Stamoulis, Thilikos, ESA 2020]
Other local transformations (to planarity) [Fomin, Golovach, Thilikos, STACS 2019]

- Extensions to general minor-closed target classes \mathcal{G} ?

Recent powerful extensions of FOL

Recent powerful extensions of FOL

First-Order Logic with Connectivity Operators (FOL+conn) [Schirrmacher, Siebertz, Vigny, CSL 2022] + [Bojańczyk, 2021]
FPT model-checking on topological-minor-free graphs. [Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, Vigny, ICALP 2022]

Recent powerful extensions of FOL

First-Order Logic with Connectivity Operators (FOL+conn) [Schirrmacher, Siebertz, Vigny, CSL 2022] + [Bojańczyk, 2021]
FPT model-checking on topological-minor-free graphs. [Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, Vigny, ICALP 2022]
Elimination Distance to FOL+conn is FPT on topological-minor-free graphs.

Recent powerful extensions of FOL

First-Order Logic with Connectivity Operators (FOL+conn)
[Schirrmacher, Siebertz, Vigny, CSL 2022] + [Bojańczyk, 2021]
FPT model-checking on topological-minor-free graphs.
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, Vigny, ICALP 2022]
Elimination Distance to FOL+conn is FPT on topological-minor-free graphs.

First-Order Logic with Disjoint Paths (FOL+DP) [Schirrmacher, Siebertz, Vigny, CSL 2022]

FPT model-checking on minor-free graphs.
[Golovach, Stamoulis, Thilikos, SODA 2023]

Recent powerful extensions of FOL

First-Order Logic with Connectivity Operators (FOL+conn)
[Schirrmacher, Siebertz, Vigny, CSL 2022] + [Bojańczyk, 2021]
FPT model-checking on topological-minor-free graphs.
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, Vigny, ICALP 2022]
Elimination Distance to FOL+conn is FPT on topological-minor-free graphs.

First-Order Logic with Disjoint Paths (FOL+DP)
[Schirrmacher, Siebertz, Vigny, CSL 2022]
FPT model-checking on minor-free graphs.
[Golovach, Stamoulis, Thilikos, SODA 2023]
Elimination Distance to FOL+DP is FPT on minor-free graphs.

Recent powerful extensions of FOL

First-Order Logic with Connectivity Operators (FOL+conn) [Schirrmacher, Siebertz, Vigny, CSL 2022] + [Bojańczyk, 2021]

FPT model-checking on topological-minor-free graphs. [Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, Vigny, ICALP 2022]

Elimination Distance to FOL+conn is FPT on topological-minor-free graphs.

First-Order Logic with Disjoint Paths (FOL+DP)
[Schirrmacher, Siebertz, Vigny, CSL 2022]
FPT model-checking on minor-free graphs.
[Golovach, Stamoulis, Thilikos, SODA 2023]
Elimination Distance to FOL+DP is FPT on minor-free graphs.
FPT model-checking on topological-minor-free graphs. [Schirrmacher, Siebertz, Stamoulis,Thilikos, Vigny, arXiv 2023]

Recent powerful extensions of FOL

First-Order Logic with Connectivity Operators (FOL+conn) [Schirrmacher, Siebertz, Vigny, CSL 2022] + [Bojańczyk, 2021]

FPT model-checking on topological-minor-free graphs. [Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, Vigny, ICALP 2022]

Elimination Distance to FOL+conn is FPT on topological-minor-free graphs.

First-Order Logic with Disjoint Paths (FOL+DP)
[Schirrmacher, Siebertz, Vigny, CSL 2022]
FPT model-checking on minor-free graphs.
[Golovach, Stamoulis, Thilikos, SODA 2023]
Elimination Distance to FOL+DP is FPT on minor-free graphs.
FPT model-checking on topological-minor-free graphs. [Schirrmacher, Siebertz, Stamoulis,Thilikos, Vigny, arXiv 2023]

- More general modification operations do not seem to be captured...झ

λ-Modification то \mathcal{G}

Given G and k, is there an $X \subseteq V(G)$ such that $\lambda(G, X) \leq k$ and $G \backslash X \in \mathcal{G}$?

- Modulator: X.
- $\lambda(G, X)$: some (global) measure of modification.
- \mathcal{G} : target graph class (example: planar +3 -regular).
λ-Modification to \mathcal{G}
Given G and k, is there an $X \subseteq V(G)$ such that $\lambda(G, X) \leq k$ and $G \backslash X \in \mathcal{G}$?
- Modulator: X.
- $\lambda(G, X)$: some (global) measure of modification.
- \mathcal{G} : target graph class (example: planar +3 -regular).
- Can we define successive target properties?
- Hierarchical clustering?
- Multi-level modification?
- Consider different modification scenarios?
- We may demand target conditions to be satisfied by the connected components (or even the blocks) of $G \backslash X$ (CMSOL-demand).
- Multiway Cut or Multicut to some target property \mathcal{G}.
- We may demand vertex/edge removals with prescribed adjacencies.
- ...

λ-Modification to \mathcal{G}

Given G and k, is there an $X \subseteq V(G)$ such that $\lambda(G, X) \leq k$ and $G \backslash X \in \mathcal{G}$?

- Main challenge: "meta-algorithmize" the modulator operation $\lambda(G, X)$.

λ-Modification to \mathcal{G}

Given G and k, is there an $X \subseteq V(G)$ such that $\lambda(G, X) \leq k$ and $G \backslash X \in \mathcal{G}$?

- Main challenge: "meta-algorithmize" the modulator operation $\lambda(G, X)$.
- Typically $\lambda(G, X)=\mathbf{p}($ torso $(G, X))$, where \mathbf{p} is some graph parameter.

λ-Modification to \mathcal{G}
Given G and k, is there an $X \subseteq V(G)$ such that $\lambda(G, X) \leq k$ and $G \backslash X \in \mathcal{G}$?
- Main challenge: "meta-algorithmize" the modulator operation $\lambda(G, X)$.
- Typically $\lambda(G, X)=\mathbf{p}$ (torso $(G, X))$, where \mathbf{p} is some graph parameter.
- $\mathbf{p}=$ tree-depth: \mathcal{G}-elimination distance
$\mathcal{G}=$ minor-excluding:
[Bulian and Dawar, Algorithmica 2017] [Morelle, S., Stamoulis, Thilikos, arXiv 2022]
$\mathcal{G}=$ planar + bounded degree:

[Lindermayr, Siebertz, Vigny, MFCS 2020]
λ-Modification to \mathcal{G}
Given G and k, is there an $X \subseteq V(G)$ such that $\lambda(G, X) \leq k$ and $G \backslash X \in \mathcal{G}$?
- Main challenge: "meta-algorithmize" the modulator operation $\lambda(G, X)$.
- Typically $\lambda(G, X)=\mathbf{p}$ (torso $(G, X))$, where \mathbf{p} is some graph parameter.
- $\mathbf{p}=$ tree-depth: \mathcal{G}-elimination distance
$\mathcal{G}=$ minor-excluding:
[Bulian and Dawar, Algorithmica 2017] [Morelle, S., Stamoulis, Thilikos, arXiv 2022]
$\mathcal{G}=$ planar + bounded degree:

[Lindermayr, Siebertz, Vigny, MFCS 2020]
- $\mathbf{p}=$ treewidth: \mathcal{G}-treewidth:
[Eiben, Ganian, Hamm, Kwon, JCSS 2021]
[Jansen, de Kroon, Włodarczyk, STOC 2021]
[Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, Zehavi, SODA 2022]
λ-Modification to \mathcal{G}
Given G and k, is there an $X \subseteq V(G)$ such that $\lambda(G, X) \leq k$ and $G \backslash X \in \mathcal{G}$?
- Main challenge: "meta-algorithmize" the modulator operation $\lambda(G, X)$.
- Typically $\lambda(G, X)=\mathbf{p}$ (torso $(G, X))$, where \mathbf{p} is some graph parameter.
- $\mathbf{p}=$ tree-depth: \mathcal{G}-elimination distance
$\mathcal{G}=$ minor-excluding:
[Bulian and Dawar, Algorithmica 2017] [Morelle, S., Stamoulis, Thilikos, arXiv 2022]
$\mathcal{G}=$ planar + bounded degree:

[Lindermayr, Siebertz, Vigny, MFCS 2020]
- $\mathbf{p}=$ treewidth: \mathcal{G}-treewidth:
[Eiben, Ganian, Hamm, Kwon, JCSS 2021]
[Jansen, de Kroon, Włodarczyk, STOC 2021]
[Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, Zehavi, SODA 2022]
- $\mathbf{p}=$ bridge-depth: \mathcal{G}-bridge-depth:
[Bougeret, Jansen, S., ICALP 2020]
λ-Modification to \mathcal{G} Given G and k, is there an $X \subseteq V(G)$ such that $\lambda(G, X) \leq k$ and $G \backslash X \in \mathcal{G}$?
$\lambda(G, X)=\mathbf{p}$ (torso $(G, X))$, where \mathbf{p} is parametrically bigger than tw
- $\mathbf{p}=$ tree-depth
- $p=$ treewidth
- $\mathbf{p}=$ bridge-depth
λ-Modification to \mathcal{G} Given G and k, is there an $X \subseteq V(G)$ such that $\lambda(G, X) \leq k$ and $G \backslash X \in \mathcal{G}$?
$\lambda(G, X)=\mathbf{p}$ (torso $(G, X))$, where \mathbf{p} is parametrically bigger than tw
- $\mathbf{p}=$ tree-depth
- $p=$ treewidth
- $\mathbf{p}=$ bridge-depth
- $\mathbf{p}=$ pathwidth, cutwidth, tree-cut-width, branchwidth, carving width, block tree-depth...?
λ-Modification to \mathcal{G} Given G and k, is there an $X \subseteq V(G)$ such that $\lambda(G, X) \leq k$ and $G \backslash X \in \mathcal{G}$?
$\lambda(G, X)=\mathbf{p}$ (torso $(G, X))$, where \mathbf{p} is parametrically bigger than tw
- $\mathbf{p}=$ tree-depth
- $p=$ treewidth
- $\mathbf{p}=$ bridge-depth
- $\mathbf{p}=$ pathwidth, cutwidth, tree-cut-width, branchwidth, carving width, block tree-depth... ?

Is is possible to ask more about the modulator?

- Can we additionally ask the modulator $G[X]$ to be, e.g., Hamiltonian?
λ-Modification to \mathcal{G}
Given G and k, is there an $X \subseteq V(G)$ such that $\lambda(G, X) \leq k$ and $G \backslash X \in \mathcal{G}$?
$\lambda(G, X)=\mathbf{p}$ (torso (G, X)), where \mathbf{p} is parametrically bigger than tw
- $\mathbf{p}=$ tree-depth
- $p=$ treewidth
- $\mathbf{p}=$ bridge-depth
- $\mathbf{p}=$ pathwidth, cutwidth, tree-cut-width, branchwidth, carving width, block tree-depth... ?

Is is possible to ask more about the modulator?

- Can we additionally ask the modulator $G[X]$ to be, e.g., Hamiltonian?
$>$ or just $G[X]=\beta_{k}$ for some $\beta_{k} \in \mathrm{CMSOL}^{\mathrm{tw}}$?
- CMSOL ${ }^{\text {tw }}[E, X]$ (on annotated graphs): every $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ for which there exists some \boldsymbol{c}_{β} such that the torsos of all the models of β have treewidth at most c_{β}.

Is there one meta－theorem that deals with all these cases？

We define a compound logic for modification problems

We define a compound logic for modification problems

Let $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ and $\gamma \in \mathrm{CMSOL}[\mathrm{E}]$.
β : modulator sentence on annotated graphs.
γ : target sentence on graphs.

We define a compound logic for modification problems

Let $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ and $\gamma \in \mathrm{CMSOL}[\mathrm{E}]$.
β : modulator sentence on annotated graphs.
γ : target sentence on graphs.

Compound logic We define $\beta \triangleright \gamma$ so that

We define a compound logic for modification problems

Let $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ and $\gamma \in \mathrm{CMSOL}[\mathrm{E}]$.
β : modulator sentence on annotated graphs.
γ : target sentence on graphs.

Compound logic We define $\beta \triangleright \gamma$ so that

$$
G \models \beta \triangleright \gamma \text { if } \exists X \subseteq V(G) \text { so that }
$$

We define a compound logic for modification problems

Let $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ and $\gamma \in \mathrm{CMSOL}[\mathrm{E}]$.
β : modulator sentence on annotated graphs.
γ : target sentence on graphs.

Compound logic We define $\beta \triangleright \gamma$ so that

$$
G \models \beta \triangleright \gamma \text { if } \exists X \subseteq V(G) \text { so that }(\operatorname{stell}(G, X), X) \models \beta
$$

We define a compound logic for modification problems

Let $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ and $\gamma \in \mathrm{CMSOL}[\mathrm{E}]$.
β : modulator sentence on annotated graphs.
γ : target sentence on graphs.

Compound logic We define $\beta \triangleright \gamma$ so that

$$
G \models \beta \triangleright \gamma \text { if } \exists X \subseteq V(G) \text { so that }(\text { stell }(G, X), X) \models \beta \text { and } G \backslash X \models \gamma \text {. }
$$

We define a compound logic for modification problems

Let $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ and $\gamma \in \mathrm{CMSOL}[\mathrm{E}]$.
β : modulator sentence on annotated graphs.
γ : target sentence on graphs.

Compound logic We define $\beta \triangleright \gamma$ so that

$$
G \models \beta \triangleright \gamma \text { if } \exists X \subseteq V(G) \text { so that }(\text { stell }(G, X), X) \models \beta \text { and } G \backslash X \models \gamma \text {. }
$$

$\Theta_{0}[\mathrm{E}]$: every sentence $\sigma \wedge \mu$, where $\sigma \in \mathrm{FOL}[\mathrm{E}]$ and μ expresses minor-exclusion.

We define a compound logic for modification problems

Let $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ and $\gamma \in \mathrm{CMSOL}[\mathrm{E}]$.
β : modulator sentence on annotated graphs.
γ : target sentence on graphs.

Compound logic We define $\beta \triangleright \gamma$ so that

$$
G \models \beta \triangleright \gamma \text { if } \exists X \subseteq V(G) \text { so that }(\text { stell }(G, X), X) \models \beta \text { and } G \backslash X \models \gamma \text {. }
$$

$\Theta_{0}[\mathrm{E}]$: every sentence $\sigma \wedge \mu$, where $\sigma \in \mathrm{FOL}[\mathrm{E}]$ and μ expresses minor-exclusion.
Theorem (our result, in its simplest form)
For every $\beta \in \mathrm{CMSOL}^{\mathrm{tw}}$ and every $\gamma \in \Theta_{0}$, there is an algorithm deciding $\operatorname{Mod}(\beta \triangleright \gamma)$ in quadratic time.

We define a compound logic for modification problems

Let $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ and $\gamma \in \mathrm{CMSOL}[\mathrm{E}]$.
β : modulator sentence on annotated graphs.
γ : target sentence on graphs.

Compound logic We define $\beta \triangleright \gamma$ so that

$$
G \models \beta \triangleright \gamma \text { if } \exists X \subseteq V(G) \text { so that }(\text { stell }(G, X), X) \models \beta \text { and } G \backslash X \models \gamma \text {. }
$$

$\Theta_{0}[\mathrm{E}]$: every sentence $\sigma \wedge \mu$, where $\sigma \in \mathrm{FOL}[\mathrm{E}]$ and μ expresses minor-exclusion.
Theorem (our result, in its simplest form)
For every $\beta \in \mathrm{CMSOL}^{\mathrm{tw}}$ and every $\gamma \in \Theta_{0}$, there is an algorithm deciding $\operatorname{Mod}(\beta \triangleright \gamma)$ in quadratic time.

- If γ is void, this gives the theorem of Courcelle.

We define a compound logic for modification problems

Let $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ and $\gamma \in \mathrm{CMSOL}[\mathrm{E}]$.
β : modulator sentence on annotated graphs.
γ : target sentence on graphs.

Compound logic We define $\beta \triangleright \gamma$ so that

$$
G \models \beta \triangleright \gamma \text { if } \exists X \subseteq V(G) \text { so that }(\text { stell }(G, X), X) \models \beta \text { and } G \backslash X \models \gamma \text {. }
$$

$\Theta_{0}[\mathrm{E}]$: every sentence $\sigma \wedge \mu$, where $\sigma \in \mathrm{FOL}[\mathrm{E}]$ and μ expresses minor-exclusion.
Theorem (our result, in its simplest form)
For every $\beta \in \mathrm{CMSOL}^{\mathrm{tw}}$ and every $\gamma \in \Theta_{0}$, there is an algorithm deciding $\operatorname{Mod}(\beta \triangleright \gamma)$ in quadratic time.

- If γ is void, this gives the theorem of Courcelle.
- If β is void, this gives the theorem of Grohe and Flum.

We define a compound logic for modification problems

Let $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ and $\gamma \in \mathrm{CMSOL}[\mathrm{E}]$.
β : modulator sentence on annotated graphs.
γ : target sentence on graphs.

Compound logic We define $\beta \triangleright \gamma$ so that
 $G \models \beta \triangleright \gamma$ if $\exists X \subseteq V(G)$ so that (stell $(G, X), X) \models \beta$ and $G \backslash X \models \gamma$.
$\Theta_{0}[\mathrm{E}]$: every sentence $\sigma \wedge \mu$, where $\sigma \in \mathrm{FOL}[\mathrm{E}]$ and μ expresses minor-exclusion.

Theorem (our result, in a less simple form)

For every $\beta \in \mathrm{CMSOL}^{\text {tw }}$ and every $\gamma \in \Theta_{0}^{(\mathrm{c})}$, there is an algorithm deciding $\operatorname{Mod}(\beta \triangleright \gamma)$ in quadratic time.

- for $\varphi \in \mathrm{CMSOL}$, define $\varphi^{(\mathrm{c})}: G \models \varphi^{(\mathrm{c})}$ if $\forall C \in \mathrm{cc}(G), C \models \varphi$.
- for $L \subseteq C M S O L$, define $L^{(c)}=L \cup\left\{\varphi^{(c)} \mid \varphi \in L\right\}$.

We define a compound logic for modification problems

Let $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ and $\gamma \in \mathrm{CMSOL}[\mathrm{E}]$.
β : modulator sentence on annotated graphs.
γ : target sentence on graphs.

Compound logic We define $\beta \triangleright \gamma$ so that

$$
G \models \beta \triangleright \gamma \text { if } \exists X \subseteq V(G) \text { so that }(\text { stell }(G, X), X) \models \beta \text { and } G \backslash X \models \gamma \text {. }
$$

$\Theta_{0}[\mathrm{E}]$: every sentence $\sigma \wedge \mu$, where $\sigma \in \mathrm{FOL}[\mathrm{E}]$ and μ expresses minor-exclusion.
Theorem (our result, in a simple form)
For every $\beta \in \mathrm{CMSOL}^{\text {tw }}$ and every $\gamma \in \mathrm{MB}\left(\Theta_{0}^{(\mathrm{c})}\right)$, there is an algorithm deciding $\operatorname{Mod}(\beta \triangleright \gamma)$ in quadratic time.

- $\mathrm{MB}(\mathrm{L})$: all monotone Boolean combinations of sentences in L .

We define a compound logic for modification problems

Let $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ and $\gamma \in \mathrm{CMSOL}[\mathrm{E}]$.
β : modulator sentence on annotated graphs.
γ : target sentence on graphs.

Compound logic We define $\beta \triangleright \gamma$ so that

$$
G \models \beta \triangleright \gamma \text { if } \exists X \subseteq V(G) \text { so that }(\text { stell }(G, X), X) \models \beta \text { and } G \backslash X \models \gamma \text {. }
$$

$\Theta_{0}[\mathrm{E}]$: every sentence $\sigma \wedge \mu$, where $\sigma \in \mathrm{FOL}[\mathrm{E}]$ and μ expresses minor-exclusion.

Theorem (our result, in a simple form)

For every $\beta \in \mathrm{CMSOL}^{\mathrm{tw}}$ and every $\gamma \in \mathrm{MB}\left(\Theta_{0}^{(\mathrm{c})}\right)$, there is an algorithm deciding $\operatorname{Mod}(\beta \triangleright \gamma)$ in quadratic time.

- This automatically implies algorithms in all aforementioned directions, beyond the applicability of the theorems of Courcelle and Grohe and Flum.

The Θ-hierarchy

Recall that

Θ_{0} : sentences $\sigma \wedge \mu$ where $\sigma \in \mathrm{FOL}$ and μ expresses minor-exclusion.

The ©-hierarchy

Recall that
Θ_{0} : sentences $\sigma \wedge \mu$ where $\sigma \in \mathrm{FOL}$ and μ expresses minor-exclusion.
We recursively define, for every $i \geq 1$,

$$
\Theta_{i}=\left\{\beta \triangleright \gamma \mid \beta \in \mathrm{CMSOL}^{\mathrm{tw}} \text { and } \gamma \in \mathbf{M B}\left(\Theta_{i-1}^{(\mathrm{c})}\right)\right\} .
$$

The ©-hierarchy

Recall that
Θ_{0} : sentences $\sigma \wedge \mu$ where $\sigma \in \mathrm{FOL}$ and μ expresses minor-exclusion.
We recursively define, for every $i \geq 1$,

$$
\Theta_{i}=\left\{\beta \triangleright \gamma \mid \beta \in \mathrm{CMSOL}^{\text {tw }} \text { and } \gamma \in \mathbf{M B}\left(\Theta_{i-1}^{(\mathrm{c})}\right)\right\} .
$$

We finally set: $\Theta=\bigcup_{i \geq 1} \Theta_{i}$.

The ©-hierarchy

Recall that
Θ_{0} : sentences $\sigma \wedge \mu$ where $\sigma \in \mathrm{FOL}$ and μ expresses minor-exclusion.
We recursively define, for every $i \geq 1$,

$$
\Theta_{i}=\left\{\beta \triangleright \gamma \mid \beta \in \mathrm{CMSOL}^{\mathrm{tw}} \text { and } \gamma \in \mathbf{M B}\left(\Theta_{i-1}^{(\mathrm{c})}\right)\right\} .
$$

We finally set: $\Theta=\bigcup_{i \geq 1} \Theta_{i} . \quad$ Observe: $\Theta \subseteq C M S O L$

The Θ-hierarchy

Recall that

Θ_{0} : sentences $\sigma \wedge \mu$ where $\sigma \in \mathrm{FOL}$ and μ expresses minor-exclusion.
We recursively define, for every $i \geq 1$,

$$
\Theta_{i}=\left\{\beta \triangleright \gamma \mid \beta \in \mathrm{CMSOL}^{\text {tw }} \text { and } \gamma \in \mathbf{M B}\left(\Theta_{i-1}^{(\mathrm{c})}\right)\right\} .
$$

We finally set: $\Theta=\bigcup_{i \geq 1} \Theta_{i} . \quad$ Observe: $\Theta \subseteq C M S O L$

The O-hierarchy

Recall that

Θ_{0} : sentences $\sigma \wedge \mu$ where $\sigma \in \mathrm{FOL}$ and μ expresses minor-exclusion.
We recursively define, for every $i \geq 1$,

$$
\Theta_{i}=\left\{\beta \triangleright \gamma \mid \beta \in \mathrm{CMSOL}^{\mathrm{tw}} \text { and } \gamma \in \mathbf{M B}\left(\Theta_{i-1}^{(\mathrm{c})}\right)\right\} .
$$

We finally set: $\Theta=\bigcup_{i \geq 1} \Theta_{i} . \quad$ Observe: $\Theta \subseteq C M S O L$

Theorem (our result, in its general form on graphs)

For $\theta \in \Theta$, there is an algorithm \mathbf{A}_{θ} deciding $\operatorname{Mod}(\theta)$ in quadratic time.

The Ө-hierarchy

Recall that

Θ_{0} : sentences $\sigma \wedge \mu$ where $\sigma \in \mathrm{FOL}$ and μ expresses minor-exclusion.
We recursively define, for every $i \geq 1$,

$$
\Theta_{i}=\left\{\beta \triangleright \gamma \mid \beta \in \mathrm{CMSOL}^{\mathrm{tw}} \text { and } \gamma \in \mathbf{M B}\left(\Theta_{i-1}^{(\mathrm{c})}\right)\right\} .
$$

We finally set: $\Theta=\bigcup_{i \geq 1} \Theta_{i} . \quad$ Observe: $\Theta \subseteq C M S O L$

Theorem (our result, in its general form on graphs)

For $\theta \in \Theta$, there is an algorithm \mathbf{A}_{θ} deciding $\operatorname{Mod}(\theta)$ in quadratic time.

Our results are constructive:

Theorem

There is a Meta-Algorithm M that, with input a sentence $\theta \in \Theta$ and an upper bound c_{θ} on $\mathbf{h w}(\operatorname{Mod}(\theta))$, returns as output the algorithm \mathbf{A}_{θ}.

The ©̃-hierarchy

The ©̃-hierarchy

We set $\tilde{\Theta}_{0}:=$ FOL (i.e., remove minor-exclusion)

The $\tilde{\Theta}$-hierarchy

We set $\tilde{\Theta}_{0}:=$ FOL (i.e., remove minor-exclusion)
We recursively define, for every $i \geq 1$,

$$
\tilde{\Theta}_{i}=\left\{\beta \triangleright \gamma \mid \beta \in \mathrm{CMSOL}^{\text {tw }} \text { and } \gamma \in \mathbf{M B}\left(\tilde{\Theta}_{i-1}^{(\mathrm{c})}\right)\right\} .
$$

The $\tilde{\Theta}$-hierarchy

We set $\tilde{\Theta}_{0}:=$ FOL (i.e., remove minor-exclusion)
We recursively define, for every $i \geq 1$,

$$
\tilde{\Theta}_{i}=\left\{\beta \triangleright \gamma \mid \beta \in \mathrm{CMSOL}^{\text {tw }} \text { and } \gamma \in \mathbf{M B}\left(\tilde{\Theta}_{i-1}^{(\mathrm{c})}\right)\right\} .
$$

We finally set: $\tilde{\Theta}=\bigcup_{i \geq 1} \tilde{\Theta}_{i}$.

The $\tilde{\Theta}$-hierarchy

We set $\tilde{\Theta}_{0}:=$ FOL (i.e., remove minor-exclusion)
We recursively define, for every $i \geq 1$,

$$
\tilde{\Theta}_{i}=\left\{\beta \triangleright \gamma \mid \beta \in \mathrm{CMSOL}^{\mathrm{tw}} \text { and } \gamma \in \mathbf{M B}\left(\tilde{\Theta}_{i-1}^{(\mathrm{c})}\right)\right\} .
$$

We finally set: $\tilde{\Theta}=\bigcup_{i \geq 1} \tilde{\Theta}_{i} . \quad$ Observe: $F O L \subseteq \tilde{\Theta} \subseteq C M S O L$

The ©̃-hierarchy

We set $\tilde{\Theta}_{0}:=F O L$ (i.e., remove minor-exclusion)
We recursively define, for every $i \geq 1$,

$$
\tilde{\Theta}_{i}=\left\{\beta \triangleright \gamma \mid \beta \in \mathrm{CMSOL}^{\mathrm{tw}} \text { and } \gamma \in \mathbf{M B}\left(\tilde{\Theta}_{i-1}^{(\mathrm{c})}\right)\right\} .
$$

We finally set: $\tilde{\Theta}=\bigcup_{i \geq 1} \tilde{\Theta}_{i} . \quad$ Observe: $F O L \subseteq \tilde{\Theta} \subseteq C M S O L$

Corollary (a promise version of our result, using $\tilde{\Theta}$)
For every $\tilde{\theta} \in \tilde{\Theta}$, there is an algorithm deciding $\operatorname{Mod}(\tilde{\theta})$ in quadratic time on graphs of fixed Hadwiger number.

The ©̃-hierarchy

We set $\tilde{\Theta}_{0}:=F O L$ (i.e., remove minor-exclusion)
We recursively define, for every $i \geq 1$,

$$
\tilde{\Theta}_{i}=\left\{\beta \triangleright \gamma \mid \beta \in \mathrm{CMSOL}^{\mathrm{tw}} \text { and } \gamma \in \mathbf{M B}\left(\tilde{\Theta}_{i-1}^{(\mathrm{c})}\right)\right\} .
$$

We finally set: $\tilde{\Theta}=\bigcup_{i \geq 1} \tilde{\Theta}_{i} . \quad$ Observe: $\mathrm{FOL} \subseteq \tilde{\Theta} \subseteq C M S O L$

Corollary (a promise version of our result, using $\tilde{\Theta}$)

For every $\tilde{\theta} \in \tilde{\Theta}$, there is an algorithm deciding $\operatorname{Mod}(\tilde{\theta})$ in quadratic time on graphs of fixed Hadwiger number.

Structure	
nowhere dense / bounded twin-width	[Grohe, Kreutzer, Siebertz] / [Bonnet, Kim, Thomassé, Watrigant]
bounded Hadwiger number	Our results for $\tilde{\Theta}$
bounded Treewidth	[Courcelle] and [Borie, Parker, Tovey] and [Arnborg, Lagergren, Seese]
	O CMSOL Logic ロ 司

Generalization to extensions of FOL

First-Order Logic with Connectivity Operators
[Schirrmacher, Siebertz, Vigny, CSL 2022] + [Bojańczyk, 2021]
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, Vigny, ICALP 2022]
First-Order Logic with Disjoint Paths (FOL + DP)
[Schirrmacher, Siebertz, Vigny, CSL 2022]
[Golovach, Stamoulis, Thilikos, SODA 2023]
[Schirrmacher, Siebertz, Stamoulis,Thilikos, Vigny, arXiv 2023]

Generalization to extensions of FOL

First-Order Logic with Connectivity Operators
[Schirrmacher, Siebertz, Vigny, CSL 2022] + [Bojańczyk, 2021]
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, Vigny, ICALP 2022]
First-Order Logic with Disjoint Paths (FOL + DP)
[Schirrmacher, Siebertz, Vigny, CSL 2022]
[Golovach, Stamoulis, Thilikos, SODA 2023]
[Schirrmacher, Siebertz, Stamoulis,Thilikos, Vigny, arXiv 2023]
Define $\Theta^{\text {DP }}$ (resp. $\tilde{\Theta}^{\text {DP }}$): like Θ (resp. $\tilde{\Theta}$) but replacing FOL with FOL + DP in the target sentences.

Generalization to extensions of FOL

First-Order Logic with Connectivity Operators
[Schirrmacher, Siebertz, Vigny, CSL 2022] + [Bojańczyk, 2021]
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, Vigny, ICALP 2022]
First-Order Logic with Disjoint Paths (FOL + DP)
[Schirrmacher, Siebertz, Vigny, CSL 2022]
[Golovach, Stamoulis, Thilikos, SODA 2023]
[Schirrmacher, Siebertz, Stamoulis,Thilikos, Vigny, arXiv 2023]
Define $\Theta^{\text {DP }}$ (resp. $\tilde{\Theta}^{\text {DP }}$): like Θ (resp. $\tilde{\Theta}$) but replacing FOL with FOL + DP in the target sentences.

Theorem (a generalized promise version)

For every $\tilde{\theta} \in \tilde{\Theta}^{\mathrm{DP}}$, there is an algorithm deciding $\operatorname{Mod}(\tilde{\theta})$ in quadratic time on graphs of fixed Hadwiger number.

The current meta-algorithmic landscape

Missing: FOL + DP, FPT model-checking up to bounded Hajós number. [Schirrmacher, Siebertz, Stamoulis,Thilikos, Vigny, arXiv 2023]

Necessity of the ingredients of our logic

Theorem (our result, in its simplest form)

For every $\beta \in \mathrm{CMSOL}^{\mathrm{tw}}$ and every $\gamma \in \Theta_{0}$, there is an algorithm deciding $\operatorname{Mod}(\beta \triangleright \gamma)$ in quadratic time.

- $G \models \beta \triangleright \gamma$ if $\exists X \subseteq V(G)$ s.t. $($ stell $(G, X), X) \models \beta+G \backslash X \vDash \gamma$.
- $\mathrm{CMSOL}^{\mathrm{tw}}[\mathrm{E}, \mathrm{X}]$ (on annotated graphs): every $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ for which there exists some \boldsymbol{c}_{β} such that the torsos of all the models of β have treewidth at most c_{β}.
- Θ_{0} : sentences $\sigma \wedge \mu$ where $\sigma \in$ FOL and μ expresses minor-exclusion.

Necessity of the ingredients of our logic

Theorem (our result, in its simplest form)

For every $\beta \in \mathrm{CMSOL}^{\mathrm{tw}}$ and every $\gamma \in \Theta_{0}$, there is an algorithm deciding $\operatorname{Mod}(\beta \triangleright \gamma)$ in quadratic time.

- $G \models \beta \triangleright \gamma$ if $\exists X \subseteq V(G)$ s.t. $($ stell $(G, X), X) \models \beta+G \backslash X \models \gamma$.
- $\mathrm{CMSOL}^{\mathrm{tw}}[\mathrm{E}, \mathrm{X}]$ (on annotated graphs): every $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ for which there exists some \boldsymbol{c}_{β} such that the torsos of all the models of β have treewidth at most c_{β}.
- Θ_{0} : sentences $\sigma \wedge \mu$ where $\sigma \in$ FOL and μ expresses minor-exclusion.
(1) Why bounded treewidth of torso of modulator? $\beta \in \mathrm{CMSOL}^{\mathrm{tw}}$.
(2) Why the target sentence $\sigma \in \mathrm{FOL}$ (or extensions)?
(3) Why the target sentence μ expresses minor-exclusion?
- $\mathrm{CMSOL}^{\text {tw }}[\mathrm{E}, \mathrm{X}]$: every $\beta \in \operatorname{CMSOL}[\mathrm{E}, \mathrm{X}]$ for which $\exists c_{\beta}$ such that the torsos of all the models of β have treewidth at most c_{β}.
- $G \models \beta \triangleright \gamma$ if $\exists X \subseteq V(G)$ s.t. $($ stell $(G, X), X) \models \beta+G \backslash X \models \gamma$.

1. Why bounded treewidth of the torso of the modulator? $\beta \in \mathrm{CMSOL}^{\mathrm{tw}}$.

- $\mathrm{CMSOL}^{\text {tw }}[\mathrm{E}, \mathrm{X}]$: every $\beta \in \operatorname{CMSOL}[\mathrm{E}, \mathrm{X}]$ for which $\exists c_{\beta}$ such that the torsos of all the models of β have treewidth at most c_{β}.
- $G \models \beta \triangleright \gamma$ if $\exists X \subseteq V(G)$ s.t. $($ stell $(G, X), X) \models \beta+G \backslash X \models \gamma$.

1. Why bounded treewidth of the torso of the modulator? $\beta \in \mathrm{CMSOL}^{\text {tw }}$.

- CMSOL-model-checking is not FPT if treewidth is unbounded. [Kreutzer and Tazari, LICS 2010] [Ganian, Hliněný, Langer, Obdržálek, Rossmanith, Sikdar, JCSS 2014]
- $\mathrm{CMSOL}^{\text {tw }}[\mathrm{E}, \mathrm{X}]$: every $\beta \in \operatorname{CMSOL}[\mathrm{E}, \mathrm{X}]$ for which $\exists c_{\beta}$ such that the torsos of all the models of β have treewidth at most c_{β}.
- $G \models \beta \triangleright \gamma$ if $\exists X \subseteq V(G)$ s.t. $($ stell $(G, X), X) \models \beta+G \backslash X \models \gamma$.

1. Why bounded treewidth of the torso of the modulator? $\beta \in \mathrm{CMSOL}^{\text {tw }}$.

- CMSOL-model-checking is not FPT if treewidth is unbounded. [Kreutzer and Tazari, LICS 2010] [Ganian, Hlinĕný, Langer, Obdržálek, Rossmanith, Sikdar, JCSS 2014]
- But why caring about the torso of the modulator?
- $\mathrm{CMSOL}^{\mathrm{tw}}[\mathrm{E}, \mathrm{X}]$: every $\beta \in \mathrm{CMSOL}[\mathrm{E}, \mathrm{X}]$ for which $\exists c_{\beta}$ such that the torsos of all the models of β have treewidth at most c_{β}.
- $G \models \beta \triangleright \gamma$ if $\exists X \subseteq V(G)$ s.t. $($ stell $(G, X), X) \models \beta+G \backslash X \models \gamma$.

1. Why bounded treewidth of the torso of the modulator? $\beta \in \mathrm{CMSOL}^{\text {tw }}$.

- CMSOL-model-checking is not FPT if treewidth is unbounded. [Kreutzer and Tazari, LICS 2010] [Ganian, Hlinĕný, Langer, Obdržálek, Rossmanith, Sikdar, JCSS 2014]
- But why caring about the torso of the modulator?

- G Hamiltonian $\Leftrightarrow G^{\prime}$ has a vertex set S such that $G^{\prime}[S]$ is a cycle and $G^{\prime} \backslash S$ is edgeless.
- $\operatorname{tw}\left(G^{\prime}[S]\right)=2$ but $\mathrm{tw}\left(\mathrm{torso}\left(G^{\prime}, S\right)\right)=\mathrm{tw}(G)$ unbounded.
- $G \models \beta \triangleright \gamma$ if $\exists X \subseteq V(G)$ s.t. $($ stell $(G, X), X) \models \beta+G \backslash X \models \gamma$.
- Θ_{0} : target sentences $\gamma=\sigma \wedge \mu$ where $\sigma \in$ FOL and μ minor-exclusion.

2. Why the target sentence $\sigma \in \mathrm{FOL}$ (or extensions)?

- $G \models \beta \triangleright \gamma$ if $\exists X \subseteq V(G)$ s.t. $($ stell $(G, X), X) \models \beta+G \backslash X \models \gamma$.
- Θ_{0} : target sentences $\gamma=\sigma \wedge \mu$ where $\sigma \in \mathrm{FOL}$ and μ minor-exclusion.

2. Why the target sentence $\sigma \in$ FOL (or extensions)?

Hamiltonicity is CMSOL-definable and NP-complete on planar graphs (consider a void modulator).

Thus, $\sigma \in \mathrm{CMSOL}$ is not possible (although can be more general than FOL).

- $G \models \beta \triangleright \gamma$ if $\exists X \subseteq V(G)$ s.t. $($ stell $(G, X), X) \models \beta+G \backslash X \models \gamma$.
- Θ_{0} : target sentences $\gamma=\sigma \wedge \mu$ where $\sigma \in \mathrm{FOL}$ and μ minor-exclusion.

2. Why the target sentence $\sigma \in$ FOL (or extensions)?

Hamiltonicity is CMSOL-definable and NP-complete on planar graphs (consider a void modulator).

Thus, $\sigma \in \mathrm{CMSOL}$ is not possible (although can be more general than FOL).
3. Why the target sentence μ expresses proper minor-exclusion?

- $G \models \beta \triangleright \gamma$ if $\exists X \subseteq V(G)$ s.t. $($ stell $(G, X), X) \models \beta+G \backslash X \models \gamma$.
- Θ_{0} : target sentences $\gamma=\sigma \wedge \mu$ where $\sigma \in$ FOL and μ minor-exclusion.

2. Why the target sentence $\sigma \in$ FOL (or extensions)?

Hamiltonicity is CMSOL-definable and NP-complete on planar graphs (consider a void modulator).

Thus, $\sigma \in \mathrm{CMSOL}$ is not possible (although can be more general than FOL).
3. Why the target sentence μ expresses proper minor-exclusion?

Expressing whether a graph G contains a clique on k vertices is FOL-expressible, while k-Clique is W[1]-hard on general graphs (again, consider a void modulator).

Basic ingredients and techniques of the proof(s)

Basic ingredients and techniques of the proof(s)

- Some (suitable) variant of Courcelle's theorem + CMSOL transductions to deal with the "meta-algorithmic" modulator operation.

Basic ingredients and techniques of the proof(s)

- Some (suitable) variant of Courcelle's theorem + CMSOL transductions to deal with the "meta-algorithmic" modulator operation.
- Some (non-trivial) adaptation of Gaifman's theorem working on proper minor-excluding classes.

Basic ingredients and techniques of the proof(s)

- Some (suitable) variant of Courcelle's theorem + CMSOL transductions to deal with the "meta-algorithmic" modulator operation.
- Some (non-trivial) adaptation of Gaifman's theorem working on proper minor-excluding classes.
- The combinatorial/algorithmic results in
(1) Ken-ichi Kawarabayashi, Robin Thomas, and Paul Wollan. A new proof of the flat wall theorem. Journal of Combinatorial Theory, Series B, 129:204-238, 2018.
(2) Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. A more accurate view of the Flat Wall Theorem, 2021. arXiv:2102.06463.
(3) Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. Hitting topological minor models in planar graphs is fixed parameter tractable. In Proc. of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), pages 931-950, 2020.

4 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary. In Proc. of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 951-970, 2020.
(5) Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. k-apices of minor-closed graph classes. I. Bounding the obstructions. Transactions on Algorithms 2022.
6) Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. An algorithmic meta-theorem for graph modification to planarity and FOL. In Proc. of the 28th Annual European Symposium on Algorithms (ESA), volume 173 of LIPlcs, pages 51:1-51:17, 2020.

Basic ingredients and techniques of the proof(s)

- Some (suitable) variant of Courcelle's theorem + CMSOL transductions to deal with the "meta-algorithmic" modulator operation.
- Some (non-trivial) adaptation of Gaifman's theorem working on proper minor-excluding classes.

Irrelevant Vertex Technique

- Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths problem. Journal of Comb. Theory, Ser. B, 63(1):65-110, 1995.

Ultra-sketch of proof

Given $\theta \in \Theta$ and a graph G :

Ultra-sketch of proof

Given $\theta \in \Theta$ and a graph G :

- If the treewidth of G is "small" (as a function of θ): Courcelle.

Ultra-sketch of proof

Given $\theta \in \Theta$ and a graph G :

- If the treewidth of G is "small" (as a function of θ): Courcelle.
- Otherwise: find an irrelevant vertex.

Ultra-sketch of proof

Given $\theta \in \Theta$ and a graph G :

- If the treewidth of G is "small" (as a function of θ): Courcelle.
- Otherwise: find an irrelevant vertex.

Crucial fact: the fact that the modulator sentence $\beta \in \mathrm{CMSOL}^{\mathrm{tw}}$ allows to prove that the removal of the modulator X does not destroy a flat wall too much.

High-level sketch of proof

High-level sketch of proof

Theorem (Flat Wall Theorem. Robertson and Seymour. 1995)
There exist recursive functions $f_{1}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ and $f_{2}: \mathbb{N} \rightarrow \mathbb{N}$, such that for every graph G and every $q, r \in \mathbb{N}$, one of the following holds:

High-level sketch of proof

Theorem (Flat Wall Theorem. Robertson and Seymour. 1995)
There exist recursive functions $f_{1}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ and $f_{2}: \mathbb{N} \rightarrow \mathbb{N}$, such that for every graph G and every $q, r \in \mathbb{N}$, one of the following holds:
(1) K_{q} is a minor of G.

High-level sketch of proof

Theorem (Flat Wall Theorem. Robertson and Seymour. 1995)

There exist recursive functions $f_{1}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ and $f_{2}: \mathbb{N} \rightarrow \mathbb{N}$, such that for every graph G and every $q, r \in \mathbb{N}$, one of the following holds:
(1) K_{q} is a minor of G.
(2) The treewidth of G is at most $f_{1}(q, r)$.

High-level sketch of proof

Theorem (Flat Wall Theorem. Robertson and Seymour. 1995)

There exist recursive functions $f_{1}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ and $f_{2}: \mathbb{N} \rightarrow \mathbb{N}$, such that for every graph G and every $q, r \in \mathbb{N}$, one of the following holds:
(1) K_{q} is a minor of G.
(2) The treewidth of G is at most $f_{1}(q, r)$.
(3) There exists $A \subseteq V(G)$ (apices) with $|A| \leq f_{2}(q)$ such that $G \backslash A$ contains as a subgraph a flat wall W of height r.

High-level sketch of proof

Theorem (Flat Wall Theorem. Robertson and Seymour. 1995)

There exist recursive functions $f_{1}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ and $f_{2}: \mathbb{N} \rightarrow \mathbb{N}$, such that for every graph G and every $q, r \in \mathbb{N}$, one of the following holds:
(1) K_{q} is a minor of G.
(2) The treewidth of G is at most $f_{1}(q, r)$.
(3) There exists $A \subseteq V(G)$ (apices) with $|A| \leq f_{2}(q)$ such that $G \backslash A$ contains as a subgraph a flat wall W of height r.

There are several different variants and optimizations of this theorem...
[Chuzhoy. 2015]
[Kawarabayashi, Thomas, Wollan. 2018]
[S., Stamoulis, Thilikos. 2021]

High-level sketch of proof

Theorem (Flat Wall Theorem. Robertson and Seymour. 1995)

There exist recursive functions $f_{1}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ and $f_{2}: \mathbb{N} \rightarrow \mathbb{N}$, such that for every graph G and every $q, r \in \mathbb{N}$, one of the following holds:
(1) K_{q} is a minor of G.
(2) The treewidth of G is at most $f_{1}(q, r)$.
(3) There exists $A \subseteq V(G)$ (apices) with $|A| \leq f_{2}(q)$ such that $G \backslash A$ contains as a subgraph a flat wall W of height r.

There are several different variants and optimizations of this theorem...
[Chuzhoy. 2015]
[Kawarabayashi, Thomas, Wollan. 2018] [S., Stamoulis, Thilikos. 2021]

Important: possible to find one of the outputs in time $f(q, r) \cdot|V(G)|$.

How does a flat wall look like?

[Figures by Dimitrios M. Thilikos]

How does a flat wall look like?

[Figures by Dimitrios M. Thilikos]

How does a flat wall look like?

[Figures by Dimitrios M. Thilikos]

How does a flat wall look like?

[Figures by Dimitrios M. Thilikos]

How does a flat wall look like?

[Figures by Dimitrios M. Thilikos]

We apply the Flat Wall Theorem

Given $\theta \in \Theta$ and a graph G :

We apply the Flat Wall Theorem

Given $\theta \in \Theta$ and a graph G :

- The definition of our logic Θ implies that models of Θ are K_{c}-minor-free, where c depends only on θ.

We apply the Flat Wall Theorem

Given $\theta \in \Theta$ and a graph G :

- The definition of our logic Θ implies that models of Θ are K_{c}-minor-free, where c depends only on θ.
- If the treewidth of G is "small" (as a function of θ): Courcelle.

We apply the Flat Wall Theorem

Given $\theta \in \Theta$ and a graph G :

- The definition of our logic Θ implies that models of Θ are K_{c}-minor-free, where c depends only on θ.
- If the treewidth of G is "small" (as a function of θ): Courcelle.
- Otherwise: find an irrelevant vertex inside the flat wall.

Rerouting inside a flat wall can be painful...

Crucial notion: homogeneity

In order to declare a vertex irrelevant for some problem, usually we need to consider a homogenous flat wall, which we proceed to define.

Crucial notion: homogeneity

We consider a flap-coloring encoding the relevant information of our favorite problem inside each flap (similar to tables of DP).

Crucial notion: homogeneity

We consider a flap-coloring encoding the relevant information of our favorite problem inside each flap (similar to tables of DP).

Crucial notion: homogeneity
For every brick of the wall, we define its palette as the colors appearing in the flaps it contains.

Crucial notion: homogeneity
A flat wall is homogenous if every (internal) brick has the same palette.
Fact: every brick of a homogenous flat wall has the same "behavior".

Crucial notion: homogeneity
Price of homogeneity to obtain a homogenous flat r-wall (zooming):
If we have c colors, we need to start with a flat r^{c}-wall. (why?)

Back to the proof: zooming and zooming inside a flat wall

W_{0}

Back to the proof: zooming and zooming inside a flat wall

- We apply the Flat Wall Theorem to the input graph G : flat wall W_{0}.

Back to the proof: zooming and zooming inside a flat wall

- We apply the Flat Wall Theorem to the input graph G : flat wall W_{0}.

Important: we can ask that W_{0} has treewidth bounded by a function of θ.

Back to the proof: zooming and zooming inside a flat wall

- We apply the Flat Wall Theorem to the input graph G : flat wall W_{0}.

Important: we can ask that W_{0} has treewidth bounded by a function of θ.

- We find a subwall W_{1} that is λ-homogeneous with respect to the minor-exclusion part of θ, where λ depends only on θ.
[S., Stamoulis, Thilikos. 2021]

Back to the proof: zooming and zooming inside a flat wall

- We apply the Flat Wall Theorem to the input graph G : flat wall W_{0}.

Important: we can ask that W_{0} has treewidth bounded by a function of θ.

- We find a subwall W_{1} that is λ-homogeneous with respect to the minor-exclusion part of θ, where λ depends only on θ.
[S., Stamoulis, Thilikos. 2021]
- We find a subwall W_{2} that is irrelevant with respect to the minor-exclusion part of θ, after the removal of any candidate for the modulator $X \subseteq V(G)$.
[S., Stamoulis, Thilikos. 2020]

Back to the proof: zooming and zooming inside a flat wall

- We apply the Flat Wall Theorem to the input graph G : flat wall W_{0}.

Important: we can ask that W_{0} has treewidth bounded by a function of θ.

- We find a subwall W_{1} that is λ-homogeneous with respect to the minor-exclusion part of θ, where λ depends only on θ.
[S., Stamoulis, Thilikos. 2021]
- We find a subwall W_{2} that is irrelevant with respect to the minor-exclusion part of θ, after the removal of any candidate for the modulator $X \subseteq V(G)$.
[S., Stamoulis, Thilikos. 2020]

From now on, we can forget the minor-exclusion part of θ.

We keep on zooming...

We keep on zooming...

- We find a subwall W_{3} such that its associated apex set A_{3} is "tightly tied" to W_{3} : the neighbors in W_{3} of every vertex in A_{3} are spread in a "bidimensional" way.

We keep on zooming...

- We find a subwall W_{3} such that its associated apex set A_{3} is "tightly tied" to W_{3} : the neighbors in W_{3} of every vertex in A_{3} are spread in a "bidimensional" way.
- We find, inside W_{3}, a collection \mathcal{W} of many pairwise disjoint subwalls, and associate each of them with a θ-characteristic.

We keep on zooming...

- We find a subwall W_{3} such that its associated apex set A_{3} is "tightly tied" to W_{3} : the neighbors in W_{3} of every vertex in A_{3} are spread in a "bidimensional" way.
- We find, inside W_{3}, a collection \mathcal{W} of many pairwise disjoint subwalls, and associate each of them with a θ-characteristic.

Goal: if there are many subwalls with the same θ-characteristic, then the central part of one of them, say W^{\star}, is irrelevant.

We keep on zooming...

- We find a subwall W_{3} such that its associated apex set A_{3} is "tightly tied" to W_{3} : the neighbors in W_{3} of every vertex in A_{3} are spread in a "bidimensional" way.
- We find, inside W_{3}, a collection \mathcal{W} of many pairwise disjoint subwalls, and associate each of them with a θ-characteristic.

Goal: if there are many subwalls with the same θ-characteristic, then the central part of one of them, say W^{\star}, is irrelevant.

Hardest part of the proof: prove that the central part of W^{*} is indeed irrelevant.

Exploiting the bounded-treewidth property of β

Compound logic We define $\beta \triangleright \gamma$ so that

$$
G \models \beta \triangleright \gamma \text { if } \exists X \subseteq V(G) \text { so that }(\text { stell }(G, X), X) \models \beta \text { and } G \backslash X \models \gamma \text {. }
$$

$\gamma=\sigma \wedge \mu$, where $\sigma \in \mathrm{FOL}[\mathrm{E}]$ and μ expresses minor-exclusion.

Exploiting the bounded-treewidth property of β

Compound logic We define $\beta \triangleright \gamma$ so that

$$
G \models \beta \triangleright \gamma \text { if } \exists X \subseteq V(G) \text { so that }(\text { stell }(G, X), X) \models \beta \text { and } G \backslash X \models \gamma \text {. }
$$

$\gamma=\sigma \wedge \mu$, where $\sigma \in \operatorname{FOL}[\mathrm{E}]$ and μ expresses minor-exclusion.

Crucial fact: the fact that the modulator sentence $\beta \in \mathrm{CMSOL}^{\mathrm{tw}}$ allows to prove that the removal of the modulator X does not destroy a flat wall too much.

Defining the θ-characteristic of a wall: privileged component

Assuming the existence of a large flat wall W_{3} and a modulator X, there is a unique privileged component C in $G \backslash X$ that contains "most" of W_{3}.

Defining the θ-characteristic of a wall: privileged component

Assuming the existence of a large flat wall W_{3} and a modulator X, there is a unique privileged component C in $G \backslash X$ that contains "most" of W_{3}.

We split the formula

$$
\theta=\theta^{\text {in }} \wedge \theta^{\text {out }}
$$

- $\theta^{\text {in }}$: target sentence γ in the privileged component C, that is, the FOL-sentence σ and the minor-exclusion given by μ.
- $\theta^{\text {out }}$: conjunction of the modulator sentence β and the target sentence γ in the non-privileged components of $G \backslash X$.

Defining the θ-characteristic of a wall: privileged component

Assuming the existence of a large flat wall W_{3} and a modulator X, there is a unique privileged component C in $G \backslash X$ that contains "most" of W_{3}.

We split the formula

$$
\theta=\theta^{\text {in }} \wedge \theta^{\text {out }}
$$

- $\theta^{\text {in }}$: target sentence γ in the privileged component C, that is, the FOL-sentence σ and the minor-exclusion given by μ.
- $\theta^{\text {out }}$: conjunction of the modulator sentence β and the target sentence γ in the non-privileged components of $G \backslash X$.

This splitting gives rise to the in-signature and out-signature of a wall.

In-signature of a wall

$\theta^{\text {in }}$: target sentence γ in the privileged component C, that is, the FOL-sentence σ and the minor-exclusion given by μ.

In-signature of a wall

$\theta^{\text {in }}$ target sentence γ in the privileged component C, that is, the FOL-sentence σ and the minor-exclusion given by μ.

Approach inspired from the technique for modification to planarity + FOL.
[Fomin, Golovach, Stamoulis, Thilikos. 2020]

In-signature of a wall

$\theta^{\text {in }}$: target sentence γ in the privileged component C, that is, the FOL-sentence σ and the minor-exclusion given by μ.

Approach inspired from the technique for modification to planarity + FOL.
[Fomin, Golovach, Stamoulis, Thilikos. 2020]

Core tool: Gaifman's locality theorem: every FOL-sentence σ is a Boolean combination of local sentences $\sigma_{1}, \ldots, \sigma_{p}$.

In-signature of a wall

$\theta^{\text {in }}$: target sentence γ in the privileged component C, that is, the FOL-sentence σ and the minor-exclusion given by μ.

Approach inspired from the technique for modification to planarity + FOL.
[Fomin, Golovach, Stamoulis, Thilikos. 2020]

Core tool: Gaifman's locality theorem: every FOL-sentence σ is a Boolean combination of local sentences $\sigma_{1}, \ldots, \sigma_{p}$.

Main new difficulty: deal with the apices corresponding to the flat wall.

Out-signature of a wall

$\theta^{\text {out }}$: conjunction of the modulator sentence β and the target sentence γ in the non-privileged components of $G \backslash X$.

Out-signature of a wall

$\theta^{\text {out }}$: conjunction of the modulator sentence β and the target sentence γ in the non-privileged components of $G \backslash X$.

Out-signature of a wall

$\theta^{\text {out }}$: conjunction of the modulator sentence β and the target sentence γ in the non-privileged components of $G \backslash X$.

Some final remarks

Some final remarks

- Limitations
- are torsos really necessary?
- which are the optimal combinatorial assumptions on FOL+CMSOL?
- Extensions
- irrelevant friendliness (bipartiteness)
- other modification operations (blocks, contractions, ...)
- Open problems
- constants hidden in $\mathcal{O}_{|\theta|}\left(n^{2}\right)$
- is the Θ-hierarchy proper?
- Is quadratic time improvable?
- Further than minor-exclusion?

