
On the existence of polynomial kernels for structural
parameterizations of hitting problems

Ignasi Sau
LIRMM, Université de Montpellier, CNRS

Based on joint work with Marin Bougeret and Bart M. P. Jansen
[arXiv:1609.08095 arXiv:2004.12865 arXiv:2404.16695]

NYUAD, Abu Dhabi
April 23rd, 2025

1

Outline of the talk

1 Introduction to structural parameterizations

2 Graph classes closed under minors

3 Graph classes closed under (induced) subgraphs

4 Some ideas of the techniques
Upper bounds
Lower bounds

2

Next section is...

1 Introduction to structural parameterizations

2 Graph classes closed under minors

3 Graph classes closed under (induced) subgraphs

4 Some ideas of the techniques
Upper bounds
Lower bounds

3

Parameterized complexity in a nutshell

Idea Measure the complexity of an algorithm in terms of the input size
and an additional parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established and very active area.

4

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Clique: Does a graph G contain a set S ⊆ V (G), with |S| ≥ k, of
pairwise adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

5

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Clique: Does a graph G contain a set S ⊆ V (G), with |S| ≥ k, of
pairwise adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

5

Parameterized problems

A parameterized problem is a language L ⊆ Σ∗ ×N,
where Σ is a fixed, finite alphabet.

For an instance (x , k) ∈ Σ∗ ×N, k is called the parameter.

k-Vertex Cover: Does a graph G contain a set S ⊆ V (G), with
|S| ≤ k, containing at least an endpoint of every edge?

k-Clique: Does a graph G contain a set S ⊆ V (G), with |S| ≥ k, of
pairwise adjacent vertices?

Vertex k-Coloring: Can the vertices of a graph be colored with
≤ k colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

5

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n))

= f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk)

= f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

6

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

6

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

6

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

6

They behave quite differently...

k-Vertex Cover: Solvable in time O(2k · (m + n)) = f (k) · nO(1).

The problem is FPT (fixed-parameter tractable)

k-Clique: Solvable in time O(k2 · nk) = f (k) · ng(k).

The problem is XP (slice-wise polynomial)

Vertex k-Coloring: NP-hard for fixed k = 3.

The problem is para-NP-hard

6

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′| + k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

7

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′| + k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

7

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′| + k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

7

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′| + k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

7

Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′| + k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

7

Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels?

NO!

Theorem (Bodlaender, Downey, Fellows, Hermelin. 2009)
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.

Major goal in parameterized complexity:

Which FPT problems admit polynomial kernels?

8

Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels? NO!

Theorem (Bodlaender, Downey, Fellows, Hermelin. 2009)
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.

Major goal in parameterized complexity:

Which FPT problems admit polynomial kernels?

8

Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels? NO!

Theorem (Bodlaender, Downey, Fellows, Hermelin. 2009)
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.

Major goal in parameterized complexity:

Which FPT problems admit polynomial kernels?

8

Structural parameterizations

Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any edge?

Well-known: Vertex Cover admits a linear kernel parameterized by k
(natural parameter).

What about instances whose solution is large? For instance, a path?

Idea: consider parameters that can be smaller than the solution size.

The existence of a polynomial kernel for such a parameter would be a
stronger result: better preprocessing guarantees.

9

Structural parameterizations

Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any edge?

Well-known: Vertex Cover admits a linear kernel parameterized by k
(natural parameter).

What about instances whose solution is large? For instance, a path?

Idea: consider parameters that can be smaller than the solution size.

The existence of a polynomial kernel for such a parameter would be a
stronger result: better preprocessing guarantees.

9

Structural parameterizations

Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any edge?

Well-known: Vertex Cover admits a linear kernel parameterized by k
(natural parameter).

What about instances whose solution is large? For instance, a path?

Idea: consider parameters that can be smaller than the solution size.

The existence of a polynomial kernel for such a parameter would be a
stronger result: better preprocessing guarantees.

9

Structural parameterizations

Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any edge?

Well-known: Vertex Cover admits a linear kernel parameterized by k
(natural parameter).

What about instances whose solution is large? For instance, a path?

Idea: consider parameters that can be smaller than the solution size.

The existence of a polynomial kernel for such a parameter would be a
stronger result: better preprocessing guarantees.

9

Structural parameterizations

Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any edge?

Well-known: Vertex Cover admits a linear kernel parameterized by k
(natural parameter).

What about instances whose solution is large? For instance, a path?

Idea: consider parameters that can be smaller than the solution size.

The existence of a polynomial kernel for such a parameter would be a
stronger result: better preprocessing guarantees.

9

Vertex-deletion distance to some graph class
Very convenient way to describe structural parameterizations:
Vertex-deletion distance to some graph class (“distance to triviality”).

For a fixed graph class C: the vertex-deletion distance of a graph G to C is
the smallest size of a vertex set X ⊆ V (G) such that G − X ∈ C.
The set X is called the C-modulator, or just modulator.

Examples:
vertex cover number: C = independent sets.
feedback vertex set number: C = forests.

Very influential result:

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
feedback vertex set number of the input graph.

Note that, for every graph G , fvs(G) ≤ vc(G).

10

Vertex-deletion distance to some graph class
Very convenient way to describe structural parameterizations:
Vertex-deletion distance to some graph class (“distance to triviality”).

For a fixed graph class C: the vertex-deletion distance of a graph G to C is
the smallest size of a vertex set X ⊆ V (G) such that G − X ∈ C.

The set X is called the C-modulator, or just modulator.

Examples:
vertex cover number: C = independent sets.
feedback vertex set number: C = forests.

Very influential result:

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
feedback vertex set number of the input graph.

Note that, for every graph G , fvs(G) ≤ vc(G).

10

Vertex-deletion distance to some graph class
Very convenient way to describe structural parameterizations:
Vertex-deletion distance to some graph class (“distance to triviality”).

For a fixed graph class C: the vertex-deletion distance of a graph G to C is
the smallest size of a vertex set X ⊆ V (G) such that G − X ∈ C.
The set X is called the C-modulator, or just modulator.

Examples:
vertex cover number: C = independent sets.
feedback vertex set number: C = forests.

Very influential result:

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
feedback vertex set number of the input graph.

Note that, for every graph G , fvs(G) ≤ vc(G).

10

Vertex-deletion distance to some graph class
Very convenient way to describe structural parameterizations:
Vertex-deletion distance to some graph class (“distance to triviality”).

For a fixed graph class C: the vertex-deletion distance of a graph G to C is
the smallest size of a vertex set X ⊆ V (G) such that G − X ∈ C.
The set X is called the C-modulator, or just modulator.

Examples:
vertex cover number:

C = independent sets.
feedback vertex set number: C = forests.

Very influential result:

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
feedback vertex set number of the input graph.

Note that, for every graph G , fvs(G) ≤ vc(G).

10

Vertex-deletion distance to some graph class
Very convenient way to describe structural parameterizations:
Vertex-deletion distance to some graph class (“distance to triviality”).

For a fixed graph class C: the vertex-deletion distance of a graph G to C is
the smallest size of a vertex set X ⊆ V (G) such that G − X ∈ C.
The set X is called the C-modulator, or just modulator.

Examples:
vertex cover number: C = independent sets.

feedback vertex set number: C = forests.

Very influential result:

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
feedback vertex set number of the input graph.

Note that, for every graph G , fvs(G) ≤ vc(G).

10

Vertex-deletion distance to some graph class
Very convenient way to describe structural parameterizations:
Vertex-deletion distance to some graph class (“distance to triviality”).

For a fixed graph class C: the vertex-deletion distance of a graph G to C is
the smallest size of a vertex set X ⊆ V (G) such that G − X ∈ C.
The set X is called the C-modulator, or just modulator.

Examples:
vertex cover number: C = independent sets.
feedback vertex set number:

C = forests.

Very influential result:

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
feedback vertex set number of the input graph.

Note that, for every graph G , fvs(G) ≤ vc(G).

10

Vertex-deletion distance to some graph class
Very convenient way to describe structural parameterizations:
Vertex-deletion distance to some graph class (“distance to triviality”).

For a fixed graph class C: the vertex-deletion distance of a graph G to C is
the smallest size of a vertex set X ⊆ V (G) such that G − X ∈ C.
The set X is called the C-modulator, or just modulator.

Examples:
vertex cover number: C = independent sets.
feedback vertex set number: C = forests.

Very influential result:

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
feedback vertex set number of the input graph.

Note that, for every graph G , fvs(G) ≤ vc(G).

10

Vertex-deletion distance to some graph class
Very convenient way to describe structural parameterizations:
Vertex-deletion distance to some graph class (“distance to triviality”).

For a fixed graph class C: the vertex-deletion distance of a graph G to C is
the smallest size of a vertex set X ⊆ V (G) such that G − X ∈ C.
The set X is called the C-modulator, or just modulator.

Examples:
vertex cover number: C = independent sets.
feedback vertex set number: C = forests.

Very influential result:

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
feedback vertex set number of the input graph.

Note that, for every graph G , fvs(G) ≤ vc(G).
10

Next section is...

1 Introduction to structural parameterizations

2 Graph classes closed under minors

3 Graph classes closed under (induced) subgraphs

4 Some ideas of the techniques
Upper bounds
Lower bounds

11

Graph minors

A graph H is a minor of a graph G , denoted by H ⩽m G , if H can be
obtained by a subgraph of G by contracting edges.

It Xz
this is a test

00

I FTW
ing

I urIip to
t 2

H Ha
12

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

G ∈ C ⇒ H ∈ C for every H ⩽m G .

Examples of minor-closed graph classes:

Independent sets.
Forests.
Series-parallel graphs.
Planar graphs.
Graphs embeddable in a fixed surface.
Linklessly embeddable graphs.
Knotlessly embeddable graphs.
...

13

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

G ∈ C ⇒ H ∈ C for every H ⩽m G .

Examples of minor-closed graph classes:

Independent sets.
Forests.
Series-parallel graphs.
Planar graphs.
Graphs embeddable in a fixed surface.
Linklessly embeddable graphs.
Knotlessly embeddable graphs.
...

13

Characterizing a graph class by excluded minors
Let F be a (possibly infinite) family of graphs. We define exc(F) as the
class of all graphs that do not contain any of the graphs in F as a minor.

If C = independent sets, then C = exc(K2).
If C = forests, then C = exc(K3).
If C = series-parallel graphs, then C = exc(K4).
If C = outerplanar graphs, then C = exc(K4, K2,3).
If C = planar graphs, then C = exc(K5, K3,3). [Kuratowski. 1930]

ii00

Ks k3,3

If C = graphs embeddable in the projective plane, then |FC | = 35.
If C = graphs embeddable in a fixed surface, then FC is finite.

[Archdeacon, Huneke. 1989 + Robertson, Seymour. 1990]

14

Characterizing a graph class by excluded minors
Let F be a (possibly infinite) family of graphs. We define exc(F) as the
class of all graphs that do not contain any of the graphs in F as a minor.

If C = independent sets, then C = exc(K2).
If C = forests, then C = exc(K3).
If C = series-parallel graphs, then C = exc(K4).
If C = outerplanar graphs, then C = exc(K4, K2,3).
If C = planar graphs, then C = exc(K5, K3,3). [Kuratowski. 1930]

ii00

Ks k3,3

If C = graphs embeddable in the projective plane, then |FC | = 35.
If C = graphs embeddable in a fixed surface, then FC is finite.

[Archdeacon, Huneke. 1989 + Robertson, Seymour. 1990]
14

Wagner’s conjecture

Conjecture (Wagner. 1970)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).

15

Wagner’s conjecture... now Robertson-Seymour’s theorem

Theorem (Robertson, Seymour. 1983-2004)
For every minor-closed graph class C, there exists a finite set of graphs FC
such that C = exc(FC).

15

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G , denoted tw(G):
smallest integer k such that G is a partial k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth via k-trees

For k ≥ 1, a k-tree is a graph that can be
built starting from a (k + 1)-clique
and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

Treewidth of a graph G , denoted tw(G):
smallest integer k such that G is a partial k-tree.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a forest.

Construction suggests the notion of tree decomposition: small separators.

16

Treewidth measures the tree-likeness of a graph

17

Treewidth measures the tree-likeness of a graph

17

Treewidth measures the tree-likeness of a graph

17

Treewidth measures the tree-likeness of a graph

17

Treewidth measures the tree-likeness of a graph

17

Treewidth measures the tree-likeness of a graph

17

Treewidth measures the tree-likeness of a graph

17

Back to Vertex Cover

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
feedback vertex set number of the input graph.

Vertex Cover/fvs
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X is a forest.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ ℓ such that
viam G − S does not contain any edge?

Vertex Cover/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ ℓ such that
viam G − S does not contain any edge?

18

Back to Vertex Cover

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a forest.

Vertex Cover/fvs
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X is a forest.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ ℓ such that
viam G − S does not contain any edge?

Vertex Cover/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ ℓ such that
viam G − S does not contain any edge?

18

Back to Vertex Cover

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a forest.

Vertex Cover/fvs
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X is a forest.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ ℓ such that
viam G − S does not contain any edge?

Vertex Cover/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ ℓ such that
viam G − S does not contain any edge?

18

Back to Vertex Cover

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a forest.

Vertex Cover/fvs
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X is a forest.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ ℓ such that
viam G − S does not contain any edge?

Vertex Cover/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ ℓ such that
viam G − S does not contain any edge?

18

Back to Vertex Cover

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a forest.

Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to the class C of...

graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]

pseudo-forests (each component ≤ 1 cycle). [Fomin and Strømme, 2016]

d-pseudo-forests (each component has fvs ≤ d). [Hols and Kratsch, 2016]

graphs of bounded tree-depth. [Bougeret and S., 2017]

All these graph classes are minor-closed.

19

Back to Vertex Cover

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a forest.

Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to the class C of...

graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]

pseudo-forests (each component ≤ 1 cycle). [Fomin and Strømme, 2016]

d-pseudo-forests (each component has fvs ≤ d). [Hols and Kratsch, 2016]

graphs of bounded tree-depth. [Bougeret and S., 2017]

All these graph classes are minor-closed.

19

Back to Vertex Cover

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a forest.

Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to the class C of...

graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]

pseudo-forests (each component ≤ 1 cycle). [Fomin and Strømme, 2016]

d-pseudo-forests (each component has fvs ≤ d). [Hols and Kratsch, 2016]

graphs of bounded tree-depth. [Bougeret and S., 2017]

All these graph classes are minor-closed.

19

Back to Vertex Cover

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a forest.

Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to the class C of...

graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]

pseudo-forests (each component ≤ 1 cycle). [Fomin and Strømme, 2016]

d-pseudo-forests (each component has fvs ≤ d). [Hols and Kratsch, 2016]

graphs of bounded tree-depth. [Bougeret and S., 2017]

All these graph classes are minor-closed.

19

Back to Vertex Cover

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a forest.

Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to the class C of...

graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]

pseudo-forests (each component ≤ 1 cycle). [Fomin and Strømme, 2016]

d-pseudo-forests (each component has fvs ≤ d). [Hols and Kratsch, 2016]

graphs of bounded tree-depth. [Bougeret and S., 2017]

All these graph classes are minor-closed.

19

Back to Vertex Cover

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a forest.

Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to the class C of...

graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]

pseudo-forests (each component ≤ 1 cycle). [Fomin and Strømme, 2016]

d-pseudo-forests (each component has fvs ≤ d). [Hols and Kratsch, 2016]

graphs of bounded tree-depth. [Bougeret and S., 2017]

All these graph classes are minor-closed.

19

Back to Vertex Cover

Theorem (Jansen and Bodlaender, 2011)
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a forest.

Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to the class C of...

graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]

pseudo-forests (each component ≤ 1 cycle). [Fomin and Strømme, 2016]

d-pseudo-forests (each component has fvs ≤ d). [Hols and Kratsch, 2016]

graphs of bounded tree-depth. [Bougeret and S., 2017]

All these graph classes are minor-closed.
19

Tree-depth

For a graph G , define td(G) as
0 if G is the empty graph,
maxCi td(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) td(G − v) otherwise.

Idea: equivalent to the existence of long paths.

Treewidth: measures how far it is from being a tree.
Tree-depth: measures how far a graph is from being a star.

For any graph G it holds that

tw(G) ≤ pw(G) ≤ td(G) − 1.

20

Tree-depth

For a graph G , define td(G) as
0 if G is the empty graph,
maxCi td(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) td(G − v) otherwise.

Idea: equivalent to the existence of long paths.

Treewidth: measures how far it is from being a tree.
Tree-depth: measures how far a graph is from being a star.

For any graph G it holds that

tw(G) ≤ pw(G) ≤ td(G) − 1.

20

Tree-depth

For a graph G , define td(G) as
0 if G is the empty graph,
maxCi td(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) td(G − v) otherwise.

Idea: equivalent to the existence of long paths.

Treewidth: measures how far it is from being a tree.
Tree-depth: measures how far a graph is from being a star.

For any graph G it holds that

tw(G) ≤ pw(G) ≤ td(G) − 1.

20

Tree-depth

For a graph G , define td(G) as
0 if G is the empty graph,
maxCi td(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) td(G − v) otherwise.

Idea: equivalent to the existence of long paths.

Treewidth: measures how far it is from being a tree.
Tree-depth: measures how far a graph is from being a star.

For any graph G it holds that

tw(G) ≤ pw(G) ≤ td(G) − 1.

20

Only good news?

Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a...

forest. [Jansen and Bodlaender, 2011]

graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]

pseudo-forest (each component ≤ 1 cycle). [Fomin and Strømme, 2016]

d-pseudo-forest (each component has fvs ≤ d). [Hols and Kratsch, 2016]

graphs of bounded tree-depth. [Bougeret and S., 2017]

Vertex Cover does not admit a polynomial kernel parameterized by the
vertex-deletion distance to a graph of treewidth 2, unless NP ⊆ coNP/poly.

[Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh, 2014]

⋆ Which is the most general (minor-closed) graph class C such that
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to C?

21

Only good news? No!

Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a...

forest. [Jansen and Bodlaender, 2011]

graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]

pseudo-forest (each component ≤ 1 cycle). [Fomin and Strømme, 2016]

d-pseudo-forest (each component has fvs ≤ d). [Hols and Kratsch, 2016]

graphs of bounded tree-depth. [Bougeret and S., 2017]

Vertex Cover does not admit a polynomial kernel parameterized by the
vertex-deletion distance to a graph of treewidth 2, unless NP ⊆ coNP/poly.

[Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh, 2014]

⋆ Which is the most general (minor-closed) graph class C such that
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to C?

21

Only good news? No! Where is the limit?

Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to a...

forest. [Jansen and Bodlaender, 2011]

graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]

pseudo-forest (each component ≤ 1 cycle). [Fomin and Strømme, 2016]

d-pseudo-forest (each component has fvs ≤ d). [Hols and Kratsch, 2016]

graphs of bounded tree-depth. [Bougeret and S., 2017]

Vertex Cover does not admit a polynomial kernel parameterized by the
vertex-deletion distance to a graph of treewidth 2, unless NP ⊆ coNP/poly.

[Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh, 2014]

⋆ Which is the most general (minor-closed) graph class C such that
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to C?

21

For minor-closed graph classes, the limit is bridge-depth!

Theorem (Bougeret, Jansen, and S., 2020)
Let C be a minor-closed graph class, and suppose that NP ⊈ coNP/poly.
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to C if and only if C has bounded bridge-depth.

It generalizes all results mentioned so far for Vertex Cover.

A tree of bridges in a graph G is a subgraph T that is a tree and in which
each edge is a bridge in G .

For a graph G , define bd(G) as
0 if G is the empty graph,
maxCi bd(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minT bd(G − T) where T ⊆ G is a tree of bridges, otherwise.

22

For minor-closed graph classes, the limit is bridge-depth!

Theorem (Bougeret, Jansen, and S., 2020)
Let C be a minor-closed graph class, and suppose that NP ⊈ coNP/poly.
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to C if and only if C has bounded bridge-depth.

It generalizes all results mentioned so far for Vertex Cover.

A tree of bridges in a graph G is a subgraph T that is a tree and in which
each edge is a bridge in G .

For a graph G , define bd(G) as
0 if G is the empty graph,
maxCi bd(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minT bd(G − T) where T ⊆ G is a tree of bridges, otherwise.

22

For minor-closed graph classes, the limit is bridge-depth!

Theorem (Bougeret, Jansen, and S., 2020)
Let C be a minor-closed graph class, and suppose that NP ⊈ coNP/poly.
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to C if and only if C has bounded bridge-depth.

It generalizes all results mentioned so far for Vertex Cover.

A tree of bridges in a graph G is a subgraph T that is a tree and in which
each edge is a bridge in G .

For a graph G , define bd(G) as
0 if G is the empty graph,
maxCi bd(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minT bd(G − T) where T ⊆ G is a tree of bridges, otherwise.

22

Tree-depth vs. bridge-depth
For a graph G , define td(G) as

0 if G is the empty graph,
maxCi td(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) td(G − v) otherwise.

For a graph G , define bd(G) as
0 if G is the empty graph,
maxCi bd(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minT bd(G − T) where T ⊆ G is a tree of bridges, otherwise.

[Tree of bridges in G : subgraph T that is a tree and each edge is a bridge.]

For any graph G , it holds that
tw(G) ≤ bd(G) ≤ min{fvs(G) − 1, td(G)}

23

Tree-depth vs. bridge-depth
For a graph G , define td(G) as

0 if G is the empty graph,
maxCi td(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) td(G − v) otherwise.

For a graph G , define bd(G) as
0 if G is the empty graph,
maxCi bd(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minT bd(G − T) where T ⊆ G is a tree of bridges, otherwise.

[Tree of bridges in G : subgraph T that is a tree and each edge is a bridge.]

For any graph G , it holds that
tw(G) ≤ bd(G) ≤ min{fvs(G) − 1, td(G)}

23

Back to the statement

Theorem (Bougeret, Jansen, and S., 2020)
Let C be a minor-closed graph class, and suppose that NP ⊈ coNP/poly.
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to C if and only if C has bounded bridge-depth.

It generalizes all results mentioned so far for Vertex Cover.

For any graph G , it holds that

tw(G) ≤ bd(G) ≤ min{fvs(G) − 1, td(G)}

It is easy too see that bridge-depth is minor-closed.

Bridge-depth ultimate common generalization of feedback vertex set
number and tree-depth (which are incomparable) in the
context of polynomial kernels for Vertex Cover.

24

Back to the statement

Theorem (Bougeret, Jansen, and S., 2020)
Let C be a minor-closed graph class, and suppose that NP ⊈ coNP/poly.
Vertex Cover admits a polynomial kernel parameterized by the
vertex-deletion distance to C if and only if C has bounded bridge-depth.

It generalizes all results mentioned so far for Vertex Cover.

For any graph G , it holds that

tw(G) ≤ bd(G) ≤ min{fvs(G) − 1, td(G)}

It is easy too see that bridge-depth is minor-closed.

Bridge-depth ultimate common generalization of feedback vertex set
number and tree-depth (which are incomparable) in the
context of polynomial kernels for Vertex Cover.

24

Beyond Vertex Cover

Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any edge?

Let F be a fixed finite family of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any of the graphs in F as a minor?

25

Beyond Vertex Cover

Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain K2 as a minor?

Let F be a fixed finite family of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any of the graphs in F as a minor?

25

Beyond Vertex Cover

Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain K2 as a minor?

Let F be a fixed finite family of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any of the graphs in F as a minor?

25

What is known about kernels for F-M-Deletion
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any of the graphs in F as a minor?

A randomized polynomial kernel exists when F contains a planar graph.
[Fomin, Lokshtanov, Misra, and Saurabh, 2012]

For F containing only non-planar graphs, the existence of polynomial
kernels is wide open (even for the natural parameter!).

For F = {K5, K3,3} (the Planarization problem), an approximate
polynomial kernel is known. [Jansen and Wlodarczyk, 2022]

Thus, polynomial kernels for structural parameterizations of
F-M-Deletion are currently out of reach .

26

What is known about kernels for F-M-Deletion
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any of the graphs in F as a minor?

A randomized polynomial kernel exists when F contains a planar graph.
[Fomin, Lokshtanov, Misra, and Saurabh, 2012]

For F containing only non-planar graphs, the existence of polynomial
kernels is wide open (even for the natural parameter!).

For F = {K5, K3,3} (the Planarization problem), an approximate
polynomial kernel is known. [Jansen and Wlodarczyk, 2022]

Thus, polynomial kernels for structural parameterizations of
F-M-Deletion are currently out of reach .

26

What is known about kernels for F-M-Deletion
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any of the graphs in F as a minor?

A randomized polynomial kernel exists when F contains a planar graph.
[Fomin, Lokshtanov, Misra, and Saurabh, 2012]

For F containing only non-planar graphs, the existence of polynomial
kernels is wide open (even for the natural parameter!).

For F = {K5, K3,3} (the Planarization problem), an approximate
polynomial kernel is known. [Jansen and Wlodarczyk, 2022]

Thus, polynomial kernels for structural parameterizations of
F-M-Deletion are currently out of reach .

26

What is known about kernels for F-M-Deletion
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any of the graphs in F as a minor?

A randomized polynomial kernel exists when F contains a planar graph.
[Fomin, Lokshtanov, Misra, and Saurabh, 2012]

For F containing only non-planar graphs, the existence of polynomial
kernels is wide open (even for the natural parameter!).

For F = {K5, K3,3} (the Planarization problem), an approximate
polynomial kernel is known. [Jansen and Wlodarczyk, 2022]

Thus, polynomial kernels for structural parameterizations of
F-M-Deletion are currently out of reach .

26

What is known about kernels for F-M-Deletion
F-M-Deletion
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any of the graphs in F as a minor?

A randomized polynomial kernel exists when F contains a planar graph.
[Fomin, Lokshtanov, Misra, and Saurabh, 2012]

For F containing only non-planar graphs, the existence of polynomial
kernels is wide open (even for the natural parameter!).

For F = {K5, K3,3} (the Planarization problem), an approximate
polynomial kernel is known. [Jansen and Wlodarczyk, 2022]

Thus, polynomial kernels for structural parameterizations of
F-M-Deletion are currently out of reach .

26

Some good news: Feedback Vertex Set
Feedback Vertex Set/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ ℓ such that
viam G − S is a forest?

Theorem (Dekker and Jansen, 2020)
Let C be a minor-closed graph class, and suppose that NP ⊈ coNP/poly.
Feedback Vertex Set admits a polynomial kernel parameterized by
the vertex-deletion distance to C if and only if C has bounded elimination
distance to a forest.

For a graph G , define edfor(G) as
0 if G is a forest,
maxCi edfor(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) edfor(G − v) otherwise.

By definition, for any graph G is holds that

tw(G) − 1 ≤ bd(G) − 1 ≤ edfor(G) ≤ min{fvs(G), td(G)}

27

Some good news: Feedback Vertex Set
Feedback Vertex Set/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ ℓ such that
viam G − S is a forest?

Theorem (Dekker and Jansen, 2020)
Let C be a minor-closed graph class, and suppose that NP ⊈ coNP/poly.
Feedback Vertex Set admits a polynomial kernel parameterized by
the vertex-deletion distance to C if and only if C has bounded elimination
distance to a forest.

For a graph G , define edfor(G) as
0 if G is a forest,
maxCi edfor(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) edfor(G − v) otherwise.

By definition, for any graph G is holds that

tw(G) − 1 ≤ bd(G) − 1 ≤ edfor(G) ≤ min{fvs(G), td(G)}

27

Some good news: Feedback Vertex Set

Theorem (Dekker and Jansen, 2020)
Let C be a minor-closed graph class, and suppose that NP ⊈ coNP/poly.
Feedback Vertex Set admits a polynomial kernel parameterized by
the vertex-deletion distance to C if and only if C has bounded elimination
distance to a forest.

For a graph G , define edfor(G) as
0 if G is a forest,
maxCi edfor(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) edfor(G − v) otherwise.

By definition, for any graph G is holds that

tw(G) − 1 ≤ bd(G) − 1 ≤ edfor(G) ≤ min{fvs(G), td(G)}

27

Some good news: Feedback Vertex Set

Theorem (Dekker and Jansen, 2020)
Let C be a minor-closed graph class, and suppose that NP ⊈ coNP/poly.
Feedback Vertex Set admits a polynomial kernel parameterized by
the vertex-deletion distance to C if and only if C has bounded elimination
distance to a forest.

For a graph G , define edfor(G) as
0 if G is a forest,
maxCi edfor(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) edfor(G − v) otherwise.

By definition, for any graph G is holds that

tw(G) − 1 ≤ bd(G) − 1 ≤ edfor(G) ≤ min{fvs(G), td(G)}
27

Beyond Feedback Vertex Set?
For a graph G , define edfor(G) as

0 if G is a forest,
maxCi edfor(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) edfor(G − v) otherwise.

For a fixed graph class L and a graph G , define edL(G) as
0 if G ∈ L,
maxCi edL(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) edL(G − v) otherwise.

Conjecture (Bougeret, Brandwein, and S.)
Let C be a minor-closed graph class, let F be a set of 2-connected graphs
containing a planar graph, and suppose that NP ⊈ coNP/poly.
F-M-Deletion admits a poly kernel parameterized by the vertex-deletion
distance to C if and only if C has bounded exc(F)-elimination distance.

28

Beyond Feedback Vertex Set?
For a graph G , define edfor(G) as

0 if G is a forest,
maxCi edfor(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) edfor(G − v) otherwise.

For a fixed graph class L and a graph G , define edL(G) as
0 if G ∈ L,
maxCi edL(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) edL(G − v) otherwise.

Conjecture (Bougeret, Brandwein, and S.)
Let C be a minor-closed graph class, let F be a set of 2-connected graphs
containing a planar graph, and suppose that NP ⊈ coNP/poly.
F-M-Deletion admits a poly kernel parameterized by the vertex-deletion
distance to C if and only if C has bounded exc(F)-elimination distance.

28

Beyond Feedback Vertex Set?
For a graph G , define edfor(G) as

0 if G is a forest,
maxCi edfor(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) edfor(G − v) otherwise.

For a fixed graph class L and a graph G , define edL(G) as
0 if G ∈ L,
maxCi edL(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) edL(G − v) otherwise.

Conjecture (Bougeret, Brandwein, and S.)
Let C be a minor-closed graph class, let F be a set of 2-connected graphs
containing a planar graph, and suppose that NP ⊈ coNP/poly.

F-M-Deletion admits a poly kernel parameterized by the vertex-deletion
distance to C if and only if C has bounded exc(F)-elimination distance.

28

Beyond Feedback Vertex Set?
For a graph G , define edfor(G) as

0 if G is a forest,
maxCi edfor(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) edfor(G − v) otherwise.

For a fixed graph class L and a graph G , define edL(G) as
0 if G ∈ L,
maxCi edL(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) edL(G − v) otherwise.

Conjecture (Bougeret, Brandwein, and S.)
Let C be a minor-closed graph class, let F be a set of 2-connected graphs
containing a planar graph, and suppose that NP ⊈ coNP/poly.
F-M-Deletion admits a poly kernel parameterized by the vertex-deletion
distance to C if and only if C has bounded exc(F)-elimination distance.

28

Next section is...

1 Introduction to structural parameterizations

2 Graph classes closed under minors

3 Graph classes closed under (induced) subgraphs

4 Some ideas of the techniques
Upper bounds
Lower bounds

29

What about hereditary or monotone graph classes?

A graph class C is hereditary if it is closed under induced subgraphs.
A graph class C is monotone if it is closed under subgraphs.

What is known about the existence of polynomial kernels for
Vertex Cover parameterized by the vertex-deletion distance to a
hereditary/monotone graph class C?

Randomized poly kernel for C = bipartite graphs, König graphs.
[Kratsch and Wahlström, 2012]

[Kratsch, 2018]

Also, parameterizations based on the LP relaxation of Vertex Cover.
[Kratsch, 2018]

[Hols, Kratsch, and Pieterse, 2020]

Finding the right characterization for Vertex Cover for
hereditary/monotone graph class C seems currently out of reach .

30

What about hereditary or monotone graph classes?

A graph class C is hereditary if it is closed under induced subgraphs.
A graph class C is monotone if it is closed under subgraphs.

What is known about the existence of polynomial kernels for
Vertex Cover parameterized by the vertex-deletion distance to a
hereditary/monotone graph class C?

Randomized poly kernel for C = bipartite graphs, König graphs.
[Kratsch and Wahlström, 2012]

[Kratsch, 2018]

Also, parameterizations based on the LP relaxation of Vertex Cover.
[Kratsch, 2018]

[Hols, Kratsch, and Pieterse, 2020]

Finding the right characterization for Vertex Cover for
hereditary/monotone graph class C seems currently out of reach .

30

What about hereditary or monotone graph classes?

A graph class C is hereditary if it is closed under induced subgraphs.
A graph class C is monotone if it is closed under subgraphs.

What is known about the existence of polynomial kernels for
Vertex Cover parameterized by the vertex-deletion distance to a
hereditary/monotone graph class C?

Randomized poly kernel for C = bipartite graphs, König graphs.
[Kratsch and Wahlström, 2012]

[Kratsch, 2018]

Also, parameterizations based on the LP relaxation of Vertex Cover.
[Kratsch, 2018]

[Hols, Kratsch, and Pieterse, 2020]

Finding the right characterization for Vertex Cover for
hereditary/monotone graph class C seems currently out of reach .

30

What about hereditary or monotone graph classes?

A graph class C is hereditary if it is closed under induced subgraphs.
A graph class C is monotone if it is closed under subgraphs.

What is known about the existence of polynomial kernels for
Vertex Cover parameterized by the vertex-deletion distance to a
hereditary/monotone graph class C?

Randomized poly kernel for C = bipartite graphs, König graphs.
[Kratsch and Wahlström, 2012]

[Kratsch, 2018]

Also, parameterizations based on the LP relaxation of Vertex Cover.
[Kratsch, 2018]

[Hols, Kratsch, and Pieterse, 2020]

Finding the right characterization for Vertex Cover for
hereditary/monotone graph class C seems currently out of reach .

30

What about hereditary or monotone graph classes?

A graph class C is hereditary if it is closed under induced subgraphs.
A graph class C is monotone if it is closed under subgraphs.

What is known about the existence of polynomial kernels for
Vertex Cover parameterized by the vertex-deletion distance to a
hereditary/monotone graph class C?

Randomized poly kernel for C = bipartite graphs, König graphs.
[Kratsch and Wahlström, 2012]

[Kratsch, 2018]

Also, parameterizations based on the LP relaxation of Vertex Cover.
[Kratsch, 2018]

[Hols, Kratsch, and Pieterse, 2020]

Finding the right characterization for Vertex Cover for
hereditary/monotone graph class C seems currently out of reach .

30

Beyond Vertex Cover

Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain any edge?

Let H be a fixed graph.

H-Subgraph Hitting
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain H as a subgraph?

31

Beyond Vertex Cover

Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain K2 as an (induced) subgraph?

Let H be a fixed graph.

H-Subgraph Hitting
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain H as a subgraph?

31

Beyond Vertex Cover

Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain K2 as an (induced) subgraph?

Let H be a fixed graph.

H-Subgraph Hitting
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain H as a subgraph?

31

Beyond Vertex Cover

Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain K2 as an (induced) subgraph?

Let H be a fixed graph.

H-Induced Subgraph Hitting
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain H as an induced subgraph?

31

These problems behave better than for minors

Let H be a fixed graph.

H-(Induced) Subgraph Hitting
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain H as an (induced) subgraph?

For every fixed H, H-(Induced) Subgraph Hitting admits a
polynomial kernel parameterized by the solution size. [Abu-Khzam, 2010]

⋆ Fix a graph H. Which is the most general hereditary/monotone graph
class C such that H-(Induced) Subgraph Hitting admits a
polynomial kernel parameterized by the vertex-deletion distance to C?

This seems really hard!

32

These problems behave better than for minors

Let H be a fixed graph.

H-(Induced) Subgraph Hitting
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain H as an (induced) subgraph?

For every fixed H, H-(Induced) Subgraph Hitting admits a
polynomial kernel parameterized by the solution size. [Abu-Khzam, 2010]

⋆ Fix a graph H. Which is the most general hereditary/monotone graph
class C such that H-(Induced) Subgraph Hitting admits a
polynomial kernel parameterized by the vertex-deletion distance to C?

This seems really hard!

32

These problems behave better than for minors

Let H be a fixed graph.

H-(Induced) Subgraph Hitting
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ k such that
viam G − S does not contain H as an (induced) subgraph?

For every fixed H, H-(Induced) Subgraph Hitting admits a
polynomial kernel parameterized by the solution size. [Abu-Khzam, 2010]

⋆ Fix a graph H. Which is the most general hereditary/monotone graph
class C such that H-(Induced) Subgraph Hitting admits a
polynomial kernel parameterized by the vertex-deletion distance to C?

This seems really hard!

32

Trying to find the right measure...

⋆ Fix a graph H. Which is the most general hereditary/monotone graph
class C such that H-(Induced) Subgraph Hitting admits a
polynomial kernel parameterized by the vertex-deletion distance to C?

Can we characterize C by some measure being bounded in C?

Natural candidate: tree-depth.

Theorem (Bougeret, Jansen, and S., 2024)
Let H be a graph on h vertices that is not a clique and that has no stable
cutset. H-Subgraph Hitting and H-Induced Subgraph Hitting
do not admit a polynomial kernel parameterized by the size of a given
vertex set X of the input graph G such that td(G − X) = O(h), unless
NP ⊈ coNP/poly.

33

Trying to find the right measure...

⋆ Fix a graph H. Which is the most general hereditary/monotone graph
class C such that H-(Induced) Subgraph Hitting admits a
polynomial kernel parameterized by the vertex-deletion distance to C?

Can we characterize C by some measure being bounded in C?

Natural candidate: tree-depth.

Theorem (Bougeret, Jansen, and S., 2024)
Let H be a graph on h vertices that is not a clique and that has no stable
cutset. H-Subgraph Hitting and H-Induced Subgraph Hitting
do not admit a polynomial kernel parameterized by the size of a given
vertex set X of the input graph G such that td(G − X) = O(h), unless
NP ⊈ coNP/poly.

33

Trying to find the right measure...

⋆ Fix a graph H. Which is the most general hereditary/monotone graph
class C such that H-(Induced) Subgraph Hitting admits a
polynomial kernel parameterized by the vertex-deletion distance to C?

Can we characterize C by some measure being bounded in C?

Natural candidate: tree-depth.

Theorem (Bougeret, Jansen, and S., 2024)
Let H be a graph on h vertices that is not a clique and that has no stable
cutset. H-Subgraph Hitting and H-Induced Subgraph Hitting
do not admit a polynomial kernel parameterized by the size of a given
vertex set X of the input graph G such that td(G − X) = O(h), unless
NP ⊈ coNP/poly.

33

Trying to find the right measure...
To get positive results, we need to focus on the case where H is a clique.

Let FH̄ (resp. F ind
H̄) be the class of graphs that exclude H as a subgraph

(resp. induced subgraph).

Recall FH̄ -elimination distance: in the last round, graphs in FH̄ “for free”.

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

ved+
F ind

H̄
: the same, but for induced copies of H.

34

Trying to find the right measure...
To get positive results, we need to focus on the case where H is a clique.

Let FH̄ (resp. F ind
H̄) be the class of graphs that exclude H as a subgraph

(resp. induced subgraph).

Recall FH̄ -elimination distance: in the last round, graphs in FH̄ “for free”.

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

ved+
F ind

H̄
: the same, but for induced copies of H.

34

Trying to find the right measure...
To get positive results, we need to focus on the case where H is a clique.

Let FH̄ (resp. F ind
H̄) be the class of graphs that exclude H as a subgraph

(resp. induced subgraph).

Recall FH̄ -elimination distance: in the last round, graphs in FH̄ “for free”.

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

ved+
F ind

H̄
: the same, but for induced copies of H.

34

Trying to find the right measure...
To get positive results, we need to focus on the case where H is a clique.

Let FH̄ (resp. F ind
H̄) be the class of graphs that exclude H as a subgraph

(resp. induced subgraph).

Recall FH̄ -elimination distance: in the last round, graphs in FH̄ “for free”.

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

ved+
F ind

H̄
: the same, but for induced copies of H.

34

Trying to find the right measure...
To get positive results, we need to focus on the case where H is a clique.

Let FH̄ (resp. F ind
H̄) be the class of graphs that exclude H as a subgraph

(resp. induced subgraph).

Recall FH̄ -elimination distance: in the last round, graphs in FH̄ “for free”.

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

ved+
F ind

H̄
: the same, but for induced copies of H.

34

We obtain a new kind of dichotomy: in terms of H

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

Theorem (Bougeret, Jansen, and S., 2024)
Let H be a 2-connected graph, let λ ≥ 1 be an integer, and assume that
NP ⊈ coNP/poly. H-Subgraph Hitting (resp. H-Induced
Subgraph Hitting) admits a polynomial kernel parameterized by the
size of a given vertex set X of the input graph G such that
ved+

FH̄
(G − X) ≤ λ (resp. ved+

F ind
H̄

(G − X) ≤ λ) if and only if H is a clique.

35

We obtain a new kind of dichotomy: in terms of H

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

Theorem (Bougeret, Jansen, and S., 2024)
Let H be a 2-connected graph, let λ ≥ 1 be an integer, and assume that
NP ⊈ coNP/poly. H-Subgraph Hitting (resp. H-Induced
Subgraph Hitting) admits a polynomial kernel parameterized by the
size of a given vertex set X of the input graph G such that
ved+

FH̄
(G − X) ≤ λ (resp. ved+

F ind
H̄

(G − X) ≤ λ) if and only if

H is a clique.

35

We obtain a new kind of dichotomy: in terms of H

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

Theorem (Bougeret, Jansen, and S., 2024)
Let H be a 2-connected graph, let λ ≥ 1 be an integer, and assume that
NP ⊈ coNP/poly. H-Subgraph Hitting (resp. H-Induced
Subgraph Hitting) admits a polynomial kernel parameterized by the
size of a given vertex set X of the input graph G such that
ved+

FH̄
(G − X) ≤ λ (resp. ved+

F ind
H̄

(G − X) ≤ λ) if and only if H is a clique.

35

Our positive results hold even for a stronger parameter

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

Inspired by bridge-depth: can we remove more than just one vertex?

What we can remove: vertex sets T ⊆ V (G) that induce connected
subgraphs that do not contain H as a subgraph (or induced subgraph) and
that are “weakly attached” to the rest of the graph, meaning that each
connected component of G − T has at most one neighbor in T .

We call the resulting parameter bed+
FH̄

(or bed+
F ind

H̄
),

where ‘b’ stands for the removal of blocks.

36

Our positive results hold even for a stronger parameter

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

Inspired by bridge-depth: can we remove more than just one vertex?

What we can remove: vertex sets T ⊆ V (G) that induce connected
subgraphs that do not contain H as a subgraph (or induced subgraph) and
that are “weakly attached” to the rest of the graph, meaning that each
connected component of G − T has at most one neighbor in T .

We call the resulting parameter bed+
FH̄

(or bed+
F ind

H̄
),

where ‘b’ stands for the removal of blocks.

36

Our positive results hold even for a stronger parameter

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

Inspired by bridge-depth: can we remove more than just one vertex?

What we can remove: vertex sets T ⊆ V (G) that induce connected
subgraphs that do not contain H as a subgraph (or induced subgraph) and
that are “weakly attached” to the rest of the graph, meaning that each
connected component of G − T has at most one neighbor in T .

We call the resulting parameter bed+
FH̄

(or bed+
F ind

H̄
),

where ‘b’ stands for the removal of blocks.

36

Our positive results hold even for a stronger parameter

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

Inspired by bridge-depth: can we remove more than just one vertex?

What we can remove: vertex sets T ⊆ V (G) that induce connected
subgraphs that do not contain H as a subgraph (or induced subgraph) and
that are “weakly attached” to the rest of the graph, meaning that each
connected component of G − T has at most one neighbor in T .

We call the resulting parameter bed+
FH̄

(or bed+
F ind

H̄
),

where ‘b’ stands for the removal of blocks.

36

Our positive results hold even for a stronger parameter

Let H be a fixed graph. For a graph G , define ved+
FH̄

(G) as

0 if V (G) = ∅,
ved+

FH̄
(G − v) if v is a vertex that is not in any copy of H,

maxCi ved+
FH̄

(Ci) if G has conn. comp. C1, . . . , Cc , c ≥ 2,
1 + minv∈V (G) ved+

FH̄
(G − v) otherwise.

Inspired by bridge-depth: can we remove more than just one vertex?

What we can remove: vertex sets T ⊆ V (G) that induce connected
subgraphs that do not contain H as a subgraph (or induced subgraph) and
that are “weakly attached” to the rest of the graph, meaning that each
connected component of G − T has at most one neighbor in T .

We call the resulting parameter bed+
FH̄

(or bed+
F ind

H̄
),

where ‘b’ stands for the removal of blocks.
36

Our positive results hold even for a stronger parameter

For any two graphs G and H, the following holds:

bed+
FH̄

(G) ≤ ved+
FH̄

(G) ≤ edFH̄
(G) ≤ td(G).

Theorem (Bougeret, Jansen, and S., 2024)
Let t ≥ 3 and λ ≥ 1 be fixed integers. The Kt-Subgraph Hitting
problem admits a polynomial kernel parameterized by the size of a given
vertex set X of the input graph G such that bed+

FK̄t
(G − X) ≤ λ.

37

Our positive results hold even for a stronger parameter

For any two graphs G and H, the following holds:

bed+
FH̄

(G) ≤ ved+
FH̄

(G) ≤ edFH̄
(G) ≤ td(G).

Theorem (Bougeret, Jansen, and S., 2024)
Let t ≥ 3 and λ ≥ 1 be fixed integers. The Kt-Subgraph Hitting
problem admits a polynomial kernel parameterized by the size of a given
vertex set X of the input graph G such that bed+

FK̄t
(G − X) ≤ λ.

37

Next section is...

1 Introduction to structural parameterizations

2 Graph classes closed under minors

3 Graph classes closed under (induced) subgraphs

4 Some ideas of the techniques
Upper bounds
Lower bounds

38

Next subsection is...

1 Introduction to structural parameterizations

2 Graph classes closed under minors

3 Graph classes closed under (induced) subgraphs

4 Some ideas of the techniques
Upper bounds
Lower bounds

39

Crucial notion: blocking sets
Vertex Cover/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩽ ℓ such that
viam G − S does not contain any edge?

α(G): maximum size of a set of pairwise nonadjacent vertices in G .

Blocking set in a graph G : Y ⊆ V (G) such that α(G − Y) < α(G).

Crucial for all positive and negative results: [Jansen and Bodlaender, 2011]
maximum size of inclusion-minimal blocking sets for graphs in C.

mmbs(G): maximum size of a minimal blocking set of G .

Parameterized complexity of computing mmbs(G).
[Araújo, Bougeret, Campos, and S., 2023]

40

Crucial notion: blocking sets

Independent Set/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩾ ℓ such that
viam G [S] does not contain any edge?

α(G): maximum size of a set of pairwise nonadjacent vertices in G .

Blocking set in a graph G : Y ⊆ V (G) such that α(G − Y) < α(G).

Crucial for all positive and negative results: [Jansen and Bodlaender, 2011]
maximum size of inclusion-minimal blocking sets for graphs in C.

mmbs(G): maximum size of a minimal blocking set of G .

Parameterized complexity of computing mmbs(G).
[Araújo, Bougeret, Campos, and S., 2023]

40

Crucial notion: blocking sets

Independent Set/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩾ ℓ such that
viam G [S] does not contain any edge?

α(G): maximum size of a set of pairwise nonadjacent vertices in G .

Blocking set in a graph G : Y ⊆ V (G) such that α(G − Y) < α(G).

Crucial for all positive and negative results: [Jansen and Bodlaender, 2011]
maximum size of inclusion-minimal blocking sets for graphs in C.

mmbs(G): maximum size of a minimal blocking set of G .

Parameterized complexity of computing mmbs(G).
[Araújo, Bougeret, Campos, and S., 2023]

40

Crucial notion: blocking sets

Independent Set/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩾ ℓ such that
viam G [S] does not contain any edge?

α(G): maximum size of a set of pairwise nonadjacent vertices in G .

Blocking set in a graph G : Y ⊆ V (G) such that α(G − Y) < α(G).

Crucial for all positive and negative results: [Jansen and Bodlaender, 2011]
maximum size of inclusion-minimal blocking sets for graphs in C.

mmbs(G): maximum size of a minimal blocking set of G .

Parameterized complexity of computing mmbs(G).
[Araújo, Bougeret, Campos, and S., 2023]

40

Crucial notion: blocking sets

Independent Set/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩾ ℓ such that
viam G [S] does not contain any edge?

α(G): maximum size of a set of pairwise nonadjacent vertices in G .

Blocking set in a graph G : Y ⊆ V (G) such that α(G − Y) < α(G).

Crucial for all positive and negative results: [Jansen and Bodlaender, 2011]
maximum size of inclusion-minimal blocking sets for graphs in C.

mmbs(G): maximum size of a minimal blocking set of G .

Parameterized complexity of computing mmbs(G).
[Araújo, Bougeret, Campos, and S., 2023]

40

Crucial notion: blocking sets

Independent Set/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩾ ℓ such that
viam G [S] does not contain any edge?

α(G): maximum size of a set of pairwise nonadjacent vertices in G .

Blocking set in a graph G : Y ⊆ V (G) such that α(G − Y) < α(G).

Crucial for all positive and negative results: [Jansen and Bodlaender, 2011]
maximum size of inclusion-minimal blocking sets for graphs in C.

mmbs(G): maximum size of a minimal blocking set of G .

Parameterized complexity of computing mmbs(G).
[Araújo, Bougeret, Campos, and S., 2023]

40

Crucial notion: blocking sets

Independent Set/C-modulator
Input: A graph G , an integer ℓ, and a set X ⊆ V (G) such that

G − X ∈ C.
Parameter: |X |.
Question: Does G contain a set S ⊆ V (G) with |S| ⩾ ℓ such that
viam G [S] does not contain any edge?

α(G): maximum size of a set of pairwise nonadjacent vertices in G .

Blocking set in a graph G : Y ⊆ V (G) such that α(G − Y) < α(G).

Crucial for all positive and negative results: [Jansen and Bodlaender, 2011]
maximum size of inclusion-minimal blocking sets for graphs in C.

mmbs(G): maximum size of a minimal blocking set of G .

Parameterized complexity of computing mmbs(G).
[Araújo, Bougeret, Campos, and S., 2023]

40

Maximum minimal blocking sets: examples

If G is bipartite with at least one edge, then mmbs(G) = 2.

41

Maximum minimal blocking sets: examples
If G is bipartite with at least one edge, then mmbs(G) = 2.

41

Maximum minimal blocking sets: examples

41

Maximum minimal blocking sets: examples

41

Maximum minimal blocking sets: examples

41

Maximum minimal blocking sets: examples

41

Maximum minimal blocking sets: examples

41

Exploiting bounded mmbs: conflicts and chunks

Let C be such that mmbs(G) ≤ c for every G ∈ C (like in all known cases).

Recall that we are given a modulator X ⊆ V (G) such that G − X ∈ C.

Let X ′ ⊆ X and R ⊆ V (G) \ X .

confR(X ′) = α(G [R]) − α(G [R \ NG(X ′)]).

That is, confR(X ′) measures how much smaller α(G [R]) becomes when
one is forbidden from picking vertices that are adjacent to X ′ in G .

A chunk is a set X ′ ⊆ X with |X | ≤ c such that G [X] is edgeless.

Why chunks are useful: Let R ⊆ V (G) \ X .
For every independent set SX ⊆ X such that confR(SX) > 0 there exists a
chunk X ′, with X ′ ⊆ SX , such that confR(X ′) > 0.

42

Exploiting bounded mmbs: conflicts and chunks

Let C be such that mmbs(G) ≤ c for every G ∈ C (like in all known cases).

Recall that we are given a modulator X ⊆ V (G) such that G − X ∈ C.

Let X ′ ⊆ X and R ⊆ V (G) \ X .

confR(X ′) = α(G [R]) − α(G [R \ NG(X ′)]).

That is, confR(X ′) measures how much smaller α(G [R]) becomes when
one is forbidden from picking vertices that are adjacent to X ′ in G .

A chunk is a set X ′ ⊆ X with |X | ≤ c such that G [X] is edgeless.

Why chunks are useful: Let R ⊆ V (G) \ X .
For every independent set SX ⊆ X such that confR(SX) > 0 there exists a
chunk X ′, with X ′ ⊆ SX , such that confR(X ′) > 0.

42

Exploiting bounded mmbs: conflicts and chunks

Let C be such that mmbs(G) ≤ c for every G ∈ C (like in all known cases).

Recall that we are given a modulator X ⊆ V (G) such that G − X ∈ C.

Let X ′ ⊆ X and R ⊆ V (G) \ X .

confR(X ′) = α(G [R]) − α(G [R \ NG(X ′)]).

That is, confR(X ′) measures how much smaller α(G [R]) becomes when
one is forbidden from picking vertices that are adjacent to X ′ in G .

A chunk is a set X ′ ⊆ X with |X | ≤ c such that G [X] is edgeless.

Why chunks are useful: Let R ⊆ V (G) \ X .
For every independent set SX ⊆ X such that confR(SX) > 0 there exists a
chunk X ′, with X ′ ⊆ SX , such that confR(X ′) > 0.

42

Exploiting bounded mmbs: conflicts and chunks

Let C be such that mmbs(G) ≤ c for every G ∈ C (like in all known cases).

Recall that we are given a modulator X ⊆ V (G) such that G − X ∈ C.

Let X ′ ⊆ X and R ⊆ V (G) \ X .

confR(X ′) = α(G [R]) − α(G [R \ NG(X ′)]).

That is, confR(X ′) measures how much smaller α(G [R]) becomes when
one is forbidden from picking vertices that are adjacent to X ′ in G .

A chunk is a set X ′ ⊆ X with |X | ≤ c such that G [X] is edgeless.

Why chunks are useful: Let R ⊆ V (G) \ X .
For every independent set SX ⊆ X such that confR(SX) > 0 there exists a
chunk X ′, with X ′ ⊆ SX , such that confR(X ′) > 0.

42

Exploiting bounded mmbs: conflicts and chunks

Let C be such that mmbs(G) ≤ c for every G ∈ C (like in all known cases).

Recall that we are given a modulator X ⊆ V (G) such that G − X ∈ C.

Let X ′ ⊆ X and R ⊆ V (G) \ X .

confR(X ′) = α(G [R]) − α(G [R \ NG(X ′)]).

That is, confR(X ′) measures how much smaller α(G [R]) becomes when
one is forbidden from picking vertices that are adjacent to X ′ in G .

A chunk is a set X ′ ⊆ X with |X | ≤ c such that G [X] is edgeless.

Why chunks are useful: Let R ⊆ V (G) \ X .
For every independent set SX ⊆ X such that confR(SX) > 0 there exists a
chunk X ′, with X ′ ⊆ SX , such that confR(X ′) > 0.

42

Exploiting bounded mmbs: general approach
To bound the size of G − X as a polynomial in |X |, two steps:

(1) Bounding the number of connected components of G − X .

(2) Bounding the size of each connected component of G − X .

Typically done by a marking algorithm of the components of G − X with
positive conflict, exploiting that the number of chunks in X is ≤ |X |c .

Let us focus on the first item, which is much easier:

For every chunk X ′ ⊆ X , mark at most |X | + 1 components R of
G − X such that confR(X ′) > 0.

Reduction rule: if R is non-marked, remove it and update
ℓ′ := ℓ − α(G [R]).

We keep at most |X |c · (|X | + 1) connected components of G − X .

The second item needs ad-hoc reduction rules...

43

Exploiting bounded mmbs: general approach
To bound the size of G − X as a polynomial in |X |, two steps:

(1) Bounding the number of connected components of G − X .

(2) Bounding the size of each connected component of G − X .

Typically done by a marking algorithm of the components of G − X with
positive conflict, exploiting that the number of chunks in X is ≤ |X |c .

Let us focus on the first item, which is much easier:

For every chunk X ′ ⊆ X , mark at most |X | + 1 components R of
G − X such that confR(X ′) > 0.

Reduction rule: if R is non-marked, remove it and update
ℓ′ := ℓ − α(G [R]).

We keep at most |X |c · (|X | + 1) connected components of G − X .

The second item needs ad-hoc reduction rules...

43

Exploiting bounded mmbs: general approach
To bound the size of G − X as a polynomial in |X |, two steps:

(1) Bounding the number of connected components of G − X .

(2) Bounding the size of each connected component of G − X .

Typically done by a marking algorithm of the components of G − X with
positive conflict, exploiting that the number of chunks in X is ≤ |X |c .

Let us focus on the first item, which is much easier:

For every chunk X ′ ⊆ X , mark at most |X | + 1 components R of
G − X such that confR(X ′) > 0.

Reduction rule: if R is non-marked, remove it and update
ℓ′ := ℓ − α(G [R]).

We keep at most |X |c · (|X | + 1) connected components of G − X .

The second item needs ad-hoc reduction rules...

43

Exploiting bounded mmbs: general approach
To bound the size of G − X as a polynomial in |X |, two steps:

(1) Bounding the number of connected components of G − X .

(2) Bounding the size of each connected component of G − X .

Typically done by a marking algorithm of the components of G − X with
positive conflict, exploiting that the number of chunks in X is ≤ |X |c .

Let us focus on the first item, which is much easier:

For every chunk X ′ ⊆ X , mark at most |X | + 1 components R of
G − X such that confR(X ′) > 0.

Reduction rule: if R is non-marked, remove it and update
ℓ′ := ℓ − α(G [R]).

We keep at most |X |c · (|X | + 1) connected components of G − X .

The second item needs ad-hoc reduction rules...

43

Exploiting bounded mmbs: general approach
To bound the size of G − X as a polynomial in |X |, two steps:

(1) Bounding the number of connected components of G − X .

(2) Bounding the size of each connected component of G − X .

Typically done by a marking algorithm of the components of G − X with
positive conflict, exploiting that the number of chunks in X is ≤ |X |c .

Let us focus on the first item, which is much easier:

For every chunk X ′ ⊆ X , mark at most |X | + 1 components R of
G − X such that confR(X ′) > 0.

Reduction rule: if R is non-marked, remove it and update
ℓ′ := ℓ − α(G [R]).

We keep at most |X |c · (|X | + 1) connected components of G − X .

The second item needs ad-hoc reduction rules...

43

Exploiting bounded mmbs: general approach
To bound the size of G − X as a polynomial in |X |, two steps:

(1) Bounding the number of connected components of G − X .

(2) Bounding the size of each connected component of G − X .

Typically done by a marking algorithm of the components of G − X with
positive conflict, exploiting that the number of chunks in X is ≤ |X |c .

Let us focus on the first item, which is much easier:

For every chunk X ′ ⊆ X , mark at most |X | + 1 components R of
G − X such that confR(X ′) > 0.

Reduction rule: if R is non-marked, remove it and update
ℓ′ := ℓ − α(G [R]).

We keep at most |X |c · (|X | + 1) connected components of G − X .

The second item needs ad-hoc reduction rules...

43

Exploiting bounded mmbs: general approach
To bound the size of G − X as a polynomial in |X |, two steps:

(1) Bounding the number of connected components of G − X .

(2) Bounding the size of each connected component of G − X .

Typically done by a marking algorithm of the components of G − X with
positive conflict, exploiting that the number of chunks in X is ≤ |X |c .

Let us focus on the first item, which is much easier:

For every chunk X ′ ⊆ X , mark at most |X | + 1 components R of
G − X such that confR(X ′) > 0.

Reduction rule: if R is non-marked, remove it and update
ℓ′ := ℓ − α(G [R]).

We keep at most |X |c · (|X | + 1) connected components of G − X .

The second item needs ad-hoc reduction rules...

43

Exploiting bounded mmbs: general approach
To bound the size of G − X as a polynomial in |X |, two steps:

(1) Bounding the number of connected components of G − X .

(2) Bounding the size of each connected component of G − X .

Typically done by a marking algorithm of the components of G − X with
positive conflict, exploiting that the number of chunks in X is ≤ |X |c .

Let us focus on the first item, which is much easier:

For every chunk X ′ ⊆ X , mark at most |X | + 1 components R of
G − X such that confR(X ′) > 0.

Reduction rule: if R is non-marked, remove it and update
ℓ′ := ℓ − α(G [R]).

We keep at most |X |c · (|X | + 1) connected components of G − X .

The second item needs ad-hoc reduction rules...

43

Exploiting bounded mmbs: general approach
To bound the size of G − X as a polynomial in |X |, two steps:

(1) Bounding the number of connected components of G − X .

(2) Bounding the size of each connected component of G − X .

Typically done by a marking algorithm of the components of G − X with
positive conflict, exploiting that the number of chunks in X is ≤ |X |c .

Let us focus on the first item, which is much easier:

For every chunk X ′ ⊆ X , mark at most |X | + 1 components R of
G − X such that confR(X ′) > 0.

Reduction rule: if R is non-marked, remove it and update
ℓ′ := ℓ − α(G [R]).

We keep at most |X |c · (|X | + 1) connected components of G − X .

The second item needs ad-hoc reduction rules...
43

Next subsection is...

1 Introduction to structural parameterizations

2 Graph classes closed under minors

3 Graph classes closed under (induced) subgraphs

4 Some ideas of the techniques
Upper bounds
Lower bounds

44

Useful tool: polynomial parameter transformations

Let A, B ⊆ Σ∗ ×N be two parameterized problems.

A polynomial parameter transformation (PPT) from A to B is an
algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ poly(k).

If A does not admit a polynomial kernel (under some hypothesis such as
NP ⊈ coNP/poly), then neither does B. [Bodlaender, Thomassé, Yeo. 2011]

45

Useful tool: polynomial parameter transformations

Let A, B ⊆ Σ∗ ×N be two parameterized problems.

A polynomial parameter transformation (PPT) from A to B is an
algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ poly(k).

If A does not admit a polynomial kernel (under some hypothesis such as
NP ⊈ coNP/poly), then neither does B. [Bodlaender, Thomassé, Yeo. 2011]

45

Example: a reduction from CNF-SAT

Theorem (Bougeret, Jansen, and S., 2024)
Let H be a biconnected graph that is not a clique. The H-Subgraph
Hitting problem does not admit a polynomial kernel parameterized by
the size of a given vertex set X of the input graph G such that
ved+

FH̄
(G − X) ≤ 1, unless NP ⊆ coNP/poly.

CNF-SAT does not admit a polynomial kernel parameterized by the
number of variables of the input formula, unless NP ⊆ coNP/poly.

[Dell and van Melkebeek, 2014]

46

Example: a reduction from CNF-SAT

Theorem (Bougeret, Jansen, and S., 2024)
Let H be a biconnected graph that is not a clique. The H-Subgraph
Hitting problem does not admit a polynomial kernel parameterized by
the size of a given vertex set X of the input graph G such that
ved+

FH̄
(G − X) ≤ 1, unless NP ⊆ coNP/poly.

CNF-SAT does not admit a polynomial kernel parameterized by the
number of variables of the input formula, unless NP ⊆ coNP/poly.

[Dell and van Melkebeek, 2014]

46

Idea of the reduction from CNF-SAT to H-Subgraph Hitting

x1 x2 x3 x4

C1 C2

u0
1 v11 u1

1 v21 u0
2 v12 u1

2 v22 u2
2 v32 u3

2 v42

z+1 z−1 z+2 z−2 z+3 z−3 z+4 z−4
X

H is the diamond.

ϕ consists of two clauses C1 = (x1 ∨ x2) and C2 = (x̄1 ∨ x̄2 ∨ x̄3 ∨ x̄4).

Satisfying assignment: α(x1) = 1, α(x2) = 0, α(x3) = 1, and α(x4) = 0.

47

Idea of the reduction from CNF-SAT to H-Subgraph Hitting

x1 x2 x3 x4

C1 C2

u0
1 v11 u1

1 v21 u0
2 v12 u1

2 v22 u2
2 v32 u3

2 v42

z+1 z−1 z+2 z−2 z+3 z−3 z+4 z−4
X

H is the diamond.

ϕ consists of two clauses C1 = (x1 ∨ x2) and C2 = (x̄1 ∨ x̄2 ∨ x̄3 ∨ x̄4).

Satisfying assignment: α(x1) = 1, α(x2) = 0, α(x3) = 1, and α(x4) = 0.
47

Gràcies!

48

	Introduction to structural parameterizations
	Graph classes closed under minors
	Graph classes closed under (induced) subgraphs
	Some ideas of the techniques
	Upper bounds
	Lower bounds

