On the complexity of finding large odd induced subgraphs and odd colorings

Ignasi Sau

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Joint work with **Rémy Belmonte** University of Electro-Communications, Chofu, Japan

> Séminaire AIGCo June 18th, 2020

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへ() 2

う P C 加 F A 用 F A 用 F A 日 F

Theorem (Gallai \sim 1960)

For every graph G, V(G) can be partitioned into two sets

• V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even,

<ロ> (四) (四) (三) (三) (三) (三)

Theorem (Gallai \sim 1960)

- V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Theorem (Gallai \sim 1960)

- V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Theorem (Gallai \sim 1960)

- V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Theorem (Gallai \sim 1960)

For every graph G, V(G) can be partitioned into two sets

- V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

< ロ > < 同 > < 回 > < 回 >

Theorem (Gallai \sim 1960)

- V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Theorem (Gallai \sim 1960)

- V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Theorem (Gallai \sim 1960)

For every graph G, V(G) can be partitioned into two sets

- V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Corollary

Every graph G contains an even induced subgraph with at least |V(G)|/2 vertices.

For a graph G, let

mos(G): order of a largest odd induced subgraph of G.

For a graph G, let

mos(G): order of a largest odd induced subgraph of G.

 $\chi_{\text{odd}}(G)$: minimum number of odd induced subgraphs of G that partition V(G).

For a graph G, let

mos(G): order of a largest odd induced subgraph of G.

 $\chi_{\text{odd}}(G)$: minimum number of odd induced subgraphs of G that partition V(G).

For $\chi_{odd}(G)$ to be well-defined, each connected component of G must have even order.

For a graph G, let

mos(G): order of a largest odd induced subgraph of G.

 $\chi_{odd}(G)$: minimum number of odd induced subgraphs of G that partition V(G).

For $\chi_{odd}(G)$ to be well-defined, each connected component of G must have even order.

mes(G) and $\chi_{even}(G)$: symmetric parameters for the even version.

For a graph G, let

mos(G): order of a largest odd induced subgraph of G.

 $\chi_{\text{odd}}(G)$: minimum number of odd induced subgraphs of G that partition V(G).

For $\chi_{odd}(G)$ to be well-defined, each connected component of G must have even order.

mes(G) and $\chi_{\text{even}}(G)$: symmetric parameters for the even version. Hence, for every graph G on n vertices: mes(G) $\geq n/2$ and $\chi_{\text{even}}(G) \leq 2$.

For a graph G, let

mos(G): order of a largest odd induced subgraph of G.

 $\chi_{\text{odd}}(G)$: minimum number of odd induced subgraphs of G that partition V(G).

For $\chi_{odd}(G)$ to be well-defined, each connected component of G must have even order.

mes(G) and $\chi_{\text{even}}(G)$: symmetric parameters for the even version. Hence, for every graph G on n vertices: mes(G) $\geq n/2$ and $\chi_{\text{even}}(G) \leq 2$.

What about mos(G) and $\chi_{odd}(G)$?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

• For every "good" G, $mos(G) \ge (1 - o(1))\sqrt{n/6}$. [Caro. 1994]

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

- For every "good" G, $mos(G) \ge (1 o(1))\sqrt{n/6}$. [Caro. 1994]
- For every "good" G, $mos(G) \ge \frac{cn}{\log n}$ for some c > 0. [Scott. 1992]

There exists a constant c > 0 such that, for every *n*-vertex graph G without isolated vertices, $mos(G) > c \cdot n$.

- For every "good" G, $mos(G) \ge (1 o(1))\sqrt{n/6}$. [Caro. 1994]
- For every "good" G, $mos(G) \ge \frac{cn}{\log n}$ for some c > 0. [Scott. 1992]
- The conjecture has been proved for particular graph classes:
 - Trees. [Radcliffe, Scott. 1995] • Graphs G with bounded $\chi(G)$. [Scott. 1992] • Graphs G with $\Delta(G) < 3$. [Berman, Wang, Wargo. 1997] [Hou, Yu, Li, Liu. 2018]
 - Graphs G with $tw(G) \leq 2$.

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

- For every "good" G, $mos(G) \ge (1 o(1))\sqrt{n/6}$. [Caro. 1994]
- For every "good" G, $mos(G) \ge \frac{cn}{\log n}$ for some c > 0. [Scott. 1992]
- The conjecture has been proved for particular graph classes:
 - Trees.[Radcliffe, Scott. 1995]• Graphs G with bounded $\chi(G)$.[Scott. 1992]• Graphs G with $\Delta(G) \leq 3$.[Berman, Wang, Wargo. 1997]• Graphs G with tw(G) ≤ 2 .[Hou, Yu, Li, Liu. 2018]

In these articles, they obtain best possible constants c > 0.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

- For every "good" G, $mos(G) \ge (1 o(1))\sqrt{n/6}$. [Caro. 1994]
- For every "good" G, $mos(G) \ge \frac{cn}{\log n}$ for some c > 0. [Scott. 1992]
- The conjecture has been proved for particular graph classes:
 - Trees.[Radcliffe, Scott. 1995]• Graphs G with bounded $\chi(G)$.[Scott. 1992]• Graphs G with $\Delta(G) \leq 3$.[Berman, Wang, Wargo. 1997]• Graphs G with tw(G) ≤ 2 .[Hou, Yu, Li, Liu. 2018]

In these articles, they obtain best possible constants c > 0.

The conjecture is still open.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

For $\chi_{odd}(G)$ to be well-defined, each connected component of G must have even order.

For $\chi_{odd}(G)$ to be well-defined, each connected component of *G* must have even order.

This necessary condition is also sufficient. [Scott. 2001]

For $\chi_{odd}(G)$ to be well-defined, each connected component of *G* must have even order.

This necessary condition is also sufficient.[Scott. 2001]

Upper and lower bounds on $\chi_{odd}(G)$: [Scott. 2001]

For $\chi_{odd}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.

Upper and lower bounds on $\chi_{odd}(G)$: [Scott. 2001]

• For every "good" graph G on n vertices,

 $\chi_{\mathrm{odd}}(G) \leq \frac{cn}{\sqrt{\log\log n}} = o(n).$

For $\chi_{odd}(G)$ to be well-defined, each connected component of *G* must have even order.

This necessary condition is also sufficient.

Upper and lower bounds on $\chi_{odd}(G)$: [Scott. 2001]

• For every "good" graph G on n vertices,

$$\chi_{\mathrm{odd}}(G) \leq \frac{cn}{\sqrt{\log\log n}} = o(n).$$

• There are "good" graphs G on n vertices for which $\chi_{ ext{odd}}(G) \geq (1+o(1))\sqrt{2n} = \Omega(\sqrt{n}).$

For $\chi_{odd}(G)$ to be well-defined, each connected component of *G* must have even order.

This necessary condition is also sufficient.

Upper and lower bounds on $\chi_{odd}(G)$: [Scott. 2001]

• For every "good" graph G on n vertices,

$$\chi_{\mathrm{odd}}(G) \leq \frac{cn}{\sqrt{\log\log n}} = o(n).$$

• There are "good" graphs G on n vertices for which

 $\chi_{\text{odd}}(G) \ge (1 + o(1))\sqrt{2n} = \Omega(\sqrt{n}).$ $G = \text{subdivided } n\text{-clique with } n \equiv 0, 3 \pmod{4} \equiv 0.3$

For $\chi_{odd}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.

Upper and lower bounds on $\chi_{odd}(G)$: [Scott. 2001]

• For every "good" graph G on n vertices,

$$\chi_{\mathrm{odd}}(G) \leq \frac{cn}{\sqrt{\log\log n}} = o(n).$$

• There are "good" graphs G on n vertices for which

And what about the complexity of computing these parameters?

And what about the complexity of computing these parameters?

Computing mes(G) and mos(G) is NP-hard.

[Cai, Yang. 2011]

And what about the complexity of computing these parameters?

Computing mes(G) and mos(G) is NP-hard.

[Cai, Yang. 2011]

For every graph G, $\chi_{\text{even}}(G) \leq 2$, so it is easy.
And what about the complexity of computing these parameters?

Computing mes(G) and mos(G) is NP-hard.

[Cai, Yang. 2011]

For every graph G, $\chi_{\text{even}}(G) \leq 2$, so it is easy.

As for $\chi_{odd}(G)$, no complexity results were known so far.

And what about the complexity of computing these parameters?

Computing mes(G) and mos(G) is NP-hard.

[Cai, Yang. 2011]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

For every graph G, $\chi_{\text{even}}(G) \leq 2$, so it is easy.

As for $\chi_{odd}(G)$, no complexity results were known so far.

Our goal Computational aspects of the parameters mos and χ_{odd} .

4日 + 4日 + 4日 + 4日 + 日 - 9000 9

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

Since computing mos(G) and $\chi_{odd}(G)$ are NP-hard, we focus on its parameterized complexity,

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

Since computing mos(G) and $\chi_{odd}(G)$ are NP-hard, we focus on its parameterized complexity, in particular on structural parameters.

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

Since computing mos(G) and $\chi_{odd}(G)$ are NP-hard, we focus on its parameterized complexity, in particular on structural parameters.

イロト 不得 トイヨト イヨト 三日

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

Since computing mos(G) and $\chi_{odd}(G)$ are NP-hard, we focus on its parameterized complexity, in particular on structural parameters.

- $2^{\mathcal{O}(\mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\mathsf{mes}(G)$ and $\mathsf{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\mathrm{odd}}(G) \leq q$,

- $2^{\mathcal{O}(\mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\mathsf{mes}(G)$ and $\mathsf{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$,

for an *n*-vertex graph G, given a decomposition tree of width at most rw.

• Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]

- $2^{\mathcal{O}(\mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\mathsf{mes}(G)$ and $\mathsf{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\mathsf{odd}}(G) \leq q$,

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.

- $2^{\mathcal{O}(\mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\mathsf{mes}(G)$ and $\mathsf{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\mathsf{odd}}(G) \leq q$,

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(rw)}$ optimal under the ETH? ($\nexists 2^{o(n)}$ algo for 3-SAT)

- $2^{\mathcal{O}(\mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\mathsf{mes}(G)$ and $\mathsf{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\mathsf{odd}}(G) \leq q$,

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(rw)}$ optimal under the ETH? ($\nexists 2^{o(n)}$ algo for 3-SAT)
 - For deciding whether *χ*_{odd}(*G*) ≤ *q*, our NP-hardness reduction implies that [‡] 2^{o(n)} algo under the ETH

- $2^{\mathcal{O}(\mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\mathsf{mes}(G)$ and $\mathsf{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\mathsf{odd}}(G) \leq q$,

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(rw)}$ optimal under the ETH? ($\nexists 2^{o(n)}$ algo for 3-SAT)
 - For deciding whether $\chi_{odd}(G) \leq q$, our NP-hardness reduction implies that $\frac{3}{2} 2^{o(n)}$ algo under the ETH $\Rightarrow \frac{3}{2} 2^{o(rw)} \cdot n^{\mathcal{O}(1)} \checkmark$

- $2^{\mathcal{O}(\mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\mathsf{mes}(G)$ and $\mathsf{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\mathsf{odd}}(G) \leq q$,

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(rw)}$ optimal under the ETH? ($\nexists 2^{o(n)}$ algo for 3-SAT)
 - For deciding whether $\chi_{odd}(G) \leq q$, our NP-hardness reduction implies that $\nexists 2^{o(n)}$ algo under the ETH $\Rightarrow \nexists 2^{o(rw)} \cdot n^{\mathcal{O}(1)} \checkmark$
 - For computing mes(G) and mos(G), existing NP-hardness reduction implies only that [‡]/₂ 2^{o(√n)} algo under the ETH. [Cai, Yang. 2011]

- $2^{\mathcal{O}(\mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\mathsf{mes}(G)$ and $\mathsf{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\mathsf{odd}}(G) \leq q$,

for an *n*-vertex graph G, given a decomposition tree of width at most rw.

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(rw)}$ optimal under the ETH? ($\nexists 2^{o(n)}$ algo for 3-SAT)
 - For deciding whether $\chi_{odd}(G) \leq q$, our NP-hardness reduction implies that $\nexists 2^{o(n)}$ algo under the ETH $\Rightarrow \nexists 2^{o(rw)} \cdot n^{\mathcal{O}(1)} \checkmark$
 - For computing mes(G) and mos(G), existing NP-hardness reduction implies only that [‡] 2^{o(√n)} algo under the ETH. [Cai, Yang. 2011]

We provide a linear NP-hardness reduction for mes(G) and mos(G),

- $2^{\mathcal{O}(\mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\mathsf{mes}(G)$ and $\mathsf{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\mathsf{odd}}(G) \leq q$,

for an *n*-vertex graph G, given a decomposition tree of width at most rw.

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(rw)}$ optimal under the ETH? ($\nexists 2^{o(n)}$ algo for 3-SAT)
 - For deciding whether $\chi_{odd}(G) \leq q$, our NP-hardness reduction implies that $\nexists 2^{o(n)}$ algo under the ETH $\Rightarrow \nexists 2^{o(rw)} \cdot n^{\mathcal{O}(1)} \checkmark$
 - For computing mes(G) and mos(G), existing NP-hardness reduction implies only that [‡]/₂ 2^{o(√n)} algo under the ETH. [Cai, Yang. 2011]

We provide a linear NP-hardness reduction for mes(G) and mos(G), hence $\nexists 2^{o(n)}$ algo under ETH

- $2^{\mathcal{O}(\mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\mathsf{mes}(G)$ and $\mathsf{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathsf{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\mathsf{odd}}(G) \leq q$,

for an *n*-vertex graph G, given a decomposition tree of width at most rw.

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(rw)}$ optimal under the ETH? ($\nexists 2^{o(n)}$ algo for 3-SAT)
 - For deciding whether $\chi_{odd}(G) \leq q$, our NP-hardness reduction implies that $\nexists 2^{o(n)}$ algo under the ETH $\Rightarrow \nexists 2^{o(rw)} \cdot n^{\mathcal{O}(1)} \checkmark$
 - For computing mes(G) and mos(G), existing NP-hardness reduction implies only that [‡]/₂ 2^{o(√n)} algo under the ETH. [Cai, Yang. 2011]

We provide a linear NP-hardness reduction for mes(G) and mos(G), hence $\nexists 2^{o(n)}$ algo under ETH $\Rightarrow \nexists 2^{o(rw)} \cdot n^{\mathcal{O}(1)} \checkmark$

() We prove that, for every graph G with all components of even order,

 $\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$

() We prove that, for every graph G with all components of even order,

 $\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$

This bound is tight and has some consequences.

() We prove that, for every graph G with all components of even order,

 $\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$

This bound is tight and has some consequences.

Recall the "folklore" conjecture about mos(G):

Conjecture

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

() We prove that, for every graph G with all components of even order,

 $\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$

This bound is tight and has some consequences.

Recall the "folklore" conjecture about mos(G):

Conjecture

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

• \mathcal{G}_k : graphs of treewidth at most k without isolated vertices.

() We prove that, for every graph G with all components of even order,

 $\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$

This bound is tight and has some consequences.

Recall the "folklore" conjecture about mos(G):

Conjecture

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

- \mathcal{G}_k : graphs of treewidth at most k without isolated vertices.
- $c_k = \min_{G \in \mathcal{G}_k} \frac{\max(G)}{|V(G)|}$.

() We prove that, for every graph G with all components of even order,

 $\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$

This bound is tight and has some consequences.

Recall the "folklore" conjecture about mos(G):

Conjecture

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

- \mathcal{G}_k : graphs of treewidth at most k without isolated vertices.
- $c_k = \min_{G \in \mathcal{G}_k} \frac{\max(G)}{|V(G)|}$.
- So, $c_k > 0$ if and only if the conjecture is true for \mathcal{G}_k .

(日)

() We prove that, for every graph G with all components of even order,

 $\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$

This bound is tight and has some consequences.

Recall the "folklore" conjecture about mos(G):

Conjecture

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

- \mathcal{G}_k : graphs of treewidth at most k without isolated vertices.
- $c_k = \min_{G \in \mathcal{G}_k} \frac{\max(G)}{|V(G)|}$.
- So, $c_k > 0$ if and only if the conjecture is true for \mathcal{G}_k .
- It is known that $c_k \geq \frac{1}{2(k+1)}$. [Scott. 1992]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

() We prove that, for every graph G with all components of even order,

 $\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$

This bound is tight and has some consequences.

Recall the "folklore" conjecture about mos(G):

Conjecture

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

- \mathcal{G}_k : graphs of treewidth at most k without isolated vertices.
- $c_k = \min_{G \in \mathcal{G}_k} \frac{\max(G)}{|V(G)|}$.
- So, $c_k > 0$ if and only if the conjecture is true for \mathcal{G}_k .
- It is known that $c_k \geq \frac{1}{2(k+1)}$. [Scott. 1992]

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Our bound implies that $c_k \geq \frac{1}{k+1}$.

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

Proved for particular graph classes, with best possible constant c > 0:

- Trees.[Radcliffe, Scott. 1995]• Graphs G with bounded $\chi(G)$.[Scott. 1992]• Graphs G with $\Delta(G) \leq 3$.[Berman, Wang, Wargo. 1997]
- Graphs G with $tw(G) \leq 2$.

[Hou, Yu, Li, Liu. 2018]

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

Proved for particular graph classes, with best possible constant c > 0:

- Trees. [Radcliffe, Scott. 1995]
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $tw(G) \leq 2$.

[Scott. 1992]

13

[Berman, Wang, Wargo. 1997]

(日)

- [Hou, Yu, Li, Liu. 2018]
- We prove that if $cw(G) \leq 2$ (cographs), then

$$mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil,$$

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

Proved for particular graph classes, with best possible constant c > 0:

- Trees. [Radcliffe, Scott. 1995]
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $tw(G) \leq 2$.
- We prove that if $cw(G) \leq 2$ (cographs), then

$$mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$$
, and this bound is tight.

[Scott. 1992]

[Berman, Wang, Wargo. 1997]

[Hou, Yu, Li, Liu. 2018]

There exists a constant c > 0 such that, for every *n*-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

Proved for particular graph classes, with best possible constant c > 0:

- Trees. [Radcliffe, Scott. 1995] [Scott. 1992]
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $tw(G) \leq 2$.
- We prove that if $cw(G) \leq 2$ (cographs), then

 $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

• We prove that, if G is a cograph, then $\chi_{odd}(G) \leq 3$, and this is tight.

[Berman, Wang, Wargo. 1997]

[Hou, Yu, Li, Liu. 2018]

There exists a constant c > 0 such that, for every *n*-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

Proved for particular graph classes, with best possible constant c > 0:

- Trees. [Radcliffe, Scott. 1995] [Scott. 1992]
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $tw(G) \leq 2$.
- We prove that if $cw(G) \leq 2$ (cographs), then

 $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

- We prove that, if G is a cograph, then $\chi_{odd}(G) \leq 3$, and this is tight.
- Note that cographs are exactly P_4 -free graphs.

[Berman, Wang, Wargo. 1997]

[Hou, Yu, Li, Liu. 2018]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

There exists a constant c > 0 such that, for every *n*-vertex graph *G* without isolated vertices, $mos(G) \ge c \cdot n$.

Proved for particular graph classes, with best possible constant c > 0:

- Trees. [Radcliffe, Scott. 1995]
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $tw(G) \leq 2$.
- We prove that if $cw(G) \leq 2$ (cographs), then

 $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

- We prove that, if G is a cograph, then $\chi_{odd}(G) \leq 3$, and this is tight.
- Note that cographs are exactly P_4 -free graphs. We show that χ_{odd} is unbounded for P_5 -free graphs.

[Scott. 1992]

[Berman, Wang, Wargo. 1997]

[Hou, Yu, Li, Liu. 2018]

Introduction

2 Our results

3 Some proofs

<ロト < 部 > < 言 > < 言 > うへで 14
For an integer $q \ge 1$, deciding whether $\chi_{odd}(G) \le q$ is

• polynomial-time solvable if $q \leq 2$, and

• NP-complete if $q \ge 3$.

For an integer $q \ge 1$, deciding whether $\chi_{odd}(G) \le q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

For q = 1 the problem is trivial: G needs to be an odd graph itself.

For an integer $q \ge 1$, deciding whether $\chi_{odd}(G) \le q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

For an integer $q \ge 1$, deciding whether $\chi_{odd}(G) \le q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

For $q = 2 \equiv$ feasibility of a system of linear equations over GF[2]:

・ロット (雪) (日) (日) (日)

15

• $V(G) = \{v_1, \ldots, v_n\}.$

For an integer $q \ge 1$, deciding whether $\chi_{odd}(G) \le q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

For $q = 2 \equiv$ feasibility of a system of linear equations over GF[2]:

• $V(G) = \{v_1, \ldots, v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.

- For an integer $q \ge 1$, deciding whether $\chi_{\text{odd}}(G) \le q$ is
 - polynomial-time solvable if $q \leq 2$, and
 - NP-complete if $q \ge 3$.

- $V(G) = \{v_1, ..., v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.
- For every vertex v_i, create a binary variable x_i.
 For every edge v_iv_i, create a binary variable x_{i,i}.

- For an integer $q \ge 1$, deciding whether $\chi_{odd}(G) \le q$ is
 - polynomial-time solvable if $q \leq 2$, and
 - NP-complete if $q \ge 3$.

- $V(G) = \{v_1, ..., v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.
- For every vertex v_i, create a binary variable x_i.
 For every edge v_iv_j, create a binary variable x_{i,j}.
- x_i : indicates whether $v_i \in V_0$ or $v_i \in V_1$.

- For an integer $q \ge 1$, deciding whether $\chi_{odd}(G) \le q$ is
 - polynomial-time solvable if $q \leq 2$, and
 - NP-complete if $q \ge 3$.

- $V(G) = \{v_1, ..., v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.
- For every vertex v_i, create a binary variable x_i.
 For every edge v_iv_j, create a binary variable x_{i,j}.
- x_i : indicates whether $v_i \in V_0$ or $v_i \in V_1$. $x_{i,j}$: indicates whether $v_i v_j$ is monochromatic (1) or not (0).

- For an integer $q \ge 1$, deciding whether $\chi_{odd}(G) \le q$ is
 - polynomial-time solvable if $q \leq 2$, and
 - NP-complete if $q \geq 3$.

For $q = 2 \equiv$ feasibility of a system of linear equations over GF[2]:

- $V(G) = \{v_1, ..., v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.
- For every vertex v_i, create a binary variable x_i.
 For every edge v_iv_j, create a binary variable x_{i,j}.
- x_i : indicates whether $v_i \in V_0$ or $v_i \in V_1$. $x_{i,j}$: indicates whether $v_i v_j$ is monochromatic (1) or not (0).

$$\begin{cases} x_i + x_j + x_{i,j} \equiv 1 & \text{for every edge } \mathbf{v}_i \mathbf{v}_j \in E(G) \end{cases}$$

・ロット (雪) (日) (日) (日)

- For an integer $q \ge 1$, deciding whether $\chi_{odd}(G) \le q$ is
 - polynomial-time solvable if $q \leq 2$, and
 - NP-complete if $q \geq 3$.

For $q = 2 \equiv$ feasibility of a system of linear equations over GF[2]:

- $V(G) = \{v_1, ..., v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.
- For every vertex v_i, create a binary variable x_i.
 For every edge v_iv_j, create a binary variable x_{i,j}.
- x_i : indicates whether $v_i \in V_0$ or $v_i \in V_1$. $x_{i,j}$: indicates whether $v_i v_j$ is monochromatic (1) or not (0).

$$\begin{cases} x_i + x_j + x_{i,j} \equiv 1 & \text{for every edge } v_i v_j \in E(G) \\ \sum_{j:v_j \in N(v_i)} x_{i,j} \equiv 1 & \text{for every vertex } v_i \in V(G) \end{cases}$$

イロト 不得 トイヨト イヨト 三日

- For an integer $q \ge 1$, deciding whether $\chi_{odd}(G) \le q$ is
 - polynomial-time solvable if $q \leq 2$, and
 - NP-complete if $q \geq 3$.

For $q = 2 \equiv$ feasibility of a system of linear equations over GF[2]:

- $V(G) = \{v_1, ..., v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.
- For every vertex v_i, create a binary variable x_i.
 For every edge v_iv_j, create a binary variable x_{i,j}.
- x_i : indicates whether $v_i \in V_0$ or $v_i \in V_1$. $x_{i,j}$: indicates whether $v_i v_j$ is monochromatic (1) or not (0).

$$\begin{cases} x_i + x_j + x_{i,j} \equiv 1 & \text{for every edge } v_i v_j \in E(G) \\ \sum_{j: v_j \in N(v_i)} x_{i,j} \equiv 1 & \text{for every vertex } v_i \in V(G) \end{cases}$$

• $\chi_{odd}(G) \leq 2 \iff$ the above system is feasible.

(日)

We reduce from *q*-COLORING.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

★ Any graph G = (V, E) such that |V| + |E| is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Thus, G is 3-colorable $\iff \chi_{odd}(G') \leq 3.$

16

For every graph G with all components of even order we have that $\chi_{odd}(G) \leq tw(G) + 1$, and this bound is tight.

For every graph G with all components of even order we have that $\chi_{odd}(G) \leq tw(G) + 1$, and this bound is tight.

★ Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

For every graph G with all components of even order we have that $\chi_{odd}(G) \leq tw(G) + 1$, and this bound is tight.

★ Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

Given G, consider a partition of V(G) into induced odd trees.

For every graph G with all components of even order we have that $\chi_{odd}(G) \leq tw(G) + 1$, and this bound is tight.

★ Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

Let G' be obtained from G by contracting each tree to a single vertex.

For every graph *G* with all components of even order we have that $\chi_{odd}(G) \leq tw(G) + 1$, and this bound is <u>tight</u>.

★ Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

Consider a proper vertex coloring of G' using $\chi(G')$ colors.

For every graph G with all components of even order we have that $\chi_{odd}(G) \leq tw(G) + 1$, and this bound is tight.

★ Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

We have that $\chi_{odd}(G) \leq \chi(G')$

A D > A P > A B > A B >

For every graph *G* with all components of even order we have that $\chi_{odd}(G) \leq tw(G) + 1$, and this bound is <u>tight</u>.

★ Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

We have that $\chi_{\mathsf{odd}}(G) \leq \chi(G') \leq \mathsf{tw}(G') + 1$

・ロト ・ 戸 ト ・ 田 ト ・ 田 ト

For every graph G with all components of even order we have that $\chi_{odd}(G) \leq tw(G) + 1$, and this bound is tight.

★ Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

We have that $\chi_{\text{odd}}(G) \leq \chi(G') \leq \text{tw}(G') + 1 \leq \text{tw}(G) + 1$.
For every graph G with all components of even order we have that $\chi_{odd}(G) \leq tw(G) + 1$, and this bound is tight.

★ Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

Bound is tight: let G be subdivided *n*-clique with $n \equiv 0, 3 \pmod{4}$.

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$.

If $cw(G) \leq 2$ (cograph), then $mos(G) \geq 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

Every *n*-vertex graph G that admits a join satisfies $mos(G) \ge 2 \cdot \left\lfloor \frac{n-2}{4} \right\rfloor$.

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

Every *n*-vertex graph G that admits a join satisfies $mos(G) \ge 2 \cdot \left\lfloor \frac{n-2}{4} \right\rfloor$.

If $cw(G) \leq 2$ (cograph), then $mos(G) \geq 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lfloor \frac{n-2}{4} \right\rfloor$.

This bound is tight even for cographs:

If $cw(G) \leq 2$ (cograph), then $mos(G) \geq 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lfloor \frac{n-2}{4} \right\rfloor$.

This bound is tight even for cographs:

If $cw(G) \leq 2$ (cograph), then $mos(G) \geq 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$.

This bound is tight even for cographs:

Odd graphs on four vertices: K_4 , $K_{1,3}$, and $2K_2$.

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$.

This bound is tight even for cographs:

Odd graphs on four vertices: K_4 , $K_{1,3}$, and $2K_2$. Thus, $mos(K_{2,2,2}) = mos(C_5^+) = 2$

イロト 不得 トイヨト イヨト 三日

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

Every *n*-vertex graph G that admits a join satisfies $mos(G) \ge 2 \cdot \left\lfloor \frac{n-2}{4} \right\rfloor$.

This bound is tight even for cographs:

Odd graphs on four vertices: K_4 , $K_{1,3}$, and $2K_2$. Thus, $mos(K_{2,2,2}) = mos(C_5^+) = 2 = 2 \cdot \left\lceil \frac{6-2}{4} \right\rceil = 2 \cdot \left\lceil \frac{5-2}{4} \right\rceil$.

<ロト < 部 ト < 三 ト < 三 ト 三 の < で 19 • Algo in time $2^{\mathcal{O}(q \cdot rw)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{odd}(G) \leq q$.

Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?

- Algo in time 2^{O(q⋅rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- **2** We proved that $\chi_{odd}(G) \leq tw(G) + 1$.

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that $\chi_{odd}(G) \leq tw(G) + 1$. $\chi_{odd}(G) \leq f(rw(G))$ for some f?

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that *χ*_{odd}(*G*) ≤ tw(*G*) + 1.
 *χ*_{odd}(*G*) ≤ *f*(rw(*G*)) for some *f*? Would imply FPT algorithm.

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that $\chi_{odd}(G) \leq tw(G) + 1$. $\chi_{odd}(G) \leq f(rw(G))$ for some f? Would imply FPT algorithm. $\chi_{odd}(G) \leq f(rw(G)) \cdot \log n$ for some f?

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that \(\chi_{odd}(G) ≤ tw(G) + 1\). \(\chi_{odd}(G) ≤ f(rw(G))\) for some f? Would imply FPT algorithm. \(\chi_{odd}(G) ≤ f(rw(G)) \cdot log n\) for some f? Would imply XP algorithm.

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that \(\chi_{odd}(G) ≤ tw(G) + 1\).
 \(\chi_{odd}(G) ≤ f(rw(G))\) for some f? Would imply FPT algorithm.
 \(\chi_{odd}(G) ≤ f(rw(G)) \cdot log n\) for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that \(\chi_{odd}(G) ≤ tw(G) + 1\).
 \(\chi_{odd}(G) ≤ f(rw(G))\) for some f? Would imply FPT algorithm.
 \(\chi_{odd}(G) ≤ f(rw(G)) \cdot log n\) for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that \(\chi_{odd}(G) ≤ tw(G) + 1\).
 \(\chi_{odd}(G) ≤ f(rw(G))\) for some f? Would imply FPT algorithm.
 \(\chi_{odd}(G) ≤ f(rw(G)) \cdot log n\) for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

• Deciding whether $\chi_{odd}(G) \leq q$ parameterized by tw:

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that \(\chi_{odd}(G) ≤ tw(G) + 1\).
 \(\chi_{odd}(G) ≤ f(rw(G))\) for some f? Would imply FPT algorithm.
 \(\chi_{odd}(G) ≤ f(rw(G)) \cdot log n\) for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

- Deciding whether $\chi_{odd}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{\text{tw}} \cdot n^{\mathcal{O}(1)}$

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that \(\chi_{odd}(G) ≤ tw(G) + 1\).
 \(\chi_{odd}(G) ≤ f(rw(G))\) for some f? Would imply FPT algorithm.
 \(\chi_{odd}(G) ≤ f(rw(G)) \cdot log n\) for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

- Deciding whether $\chi_{odd}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{\text{tw}} \cdot n^{\mathcal{O}(1)} \leq (2\text{tw} + 2)^{\text{tw}} \cdot n^{\mathcal{O}(1)}$.

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that \(\chi_{odd}(G) ≤ tw(G) + 1\).
 \(\chi_{odd}(G) ≤ f(rw(G))\) for some f? Would imply FPT algorithm.
 \(\chi_{odd}(G) ≤ f(rw(G)) \cdot log n\) for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

- Deciding whether $\chi_{odd}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{\text{tw}} \cdot n^{\mathcal{O}(1)} \leq (2\text{tw} + 2)^{\text{tw}} \cdot n^{\mathcal{O}(1)}$.
 - It can be proved that $\nexists \operatorname{tw}^{o(\operatorname{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark

(日)

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that \(\chi_{odd}(G) ≤ tw(G) + 1\).
 \(\chi_{odd}(G) ≤ f(rw(G))\) for some f? Would imply FPT algorithm.
 \(\chi_{odd}(G) ≤ f(rw(G)) \cdot log n\) for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

- Deciding whether $\chi_{odd}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{\text{tw}} \cdot n^{\mathcal{O}(1)} \leq (2\text{tw} + 2)^{\text{tw}} \cdot n^{\mathcal{O}(1)}$.
 - It can be proved that $\nexists \operatorname{tw}^{o(\operatorname{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
 - Right constants under the SETH?

(日)

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that \(\chi_{odd}(G) ≤ tw(G) + 1\).
 \(\chi_{odd}(G) ≤ f(rw(G))\) for some f? Would imply FPT algorithm.
 \(\chi_{odd}(G) ≤ f(rw(G)) \cdot log n\) for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

- Deciding whether $\chi_{odd}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{\text{tw}} \cdot n^{\mathcal{O}(1)} \leq (2\text{tw} + 2)^{\text{tw}} \cdot n^{\mathcal{O}(1)}$.
 - It can be proved that $\nexists \operatorname{tw}^{o(\operatorname{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
 - Right constants under the SETH?
- We know $mes(G) \ge n/2$.

(日)

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that \(\chi_{odd}(G) ≤ tw(G) + 1\).
 \(\chi_{odd}(G) ≤ f(rw(G))\) for some f? Would imply FPT algorithm.
 \(\chi_{odd}(G) ≤ f(rw(G)) \cdot log n\) for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

- Deciding whether $\chi_{odd}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{\text{tw}} \cdot n^{\mathcal{O}(1)} \leq (2\text{tw} + 2)^{\text{tw}} \cdot n^{\mathcal{O}(1)}$.
 - It can be proved that $\nexists \operatorname{tw}^{o(\operatorname{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
 - Right constants under the SETH?

• We know $mes(G) \ge n/2$. Deciding $mes(G) \ge n/2 + k$ with param. k?

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that \(\chi_{odd}(G) ≤ tw(G) + 1\).
 \(\chi_{odd}(G) ≤ f(rw(G))\) for some f? Would imply FPT algorithm.
 \(\chi_{odd}(G) ≤ f(rw(G)) \cdot log n\) for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

- Deciding whether $\chi_{odd}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{\text{tw}} \cdot n^{\mathcal{O}(1)} \leq (2\text{tw} + 2)^{\text{tw}} \cdot n^{\mathcal{O}(1)}$.
 - It can be proved that $\nexists \operatorname{tw}^{o(\operatorname{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
 - Right constants under the SETH?
- We know $mes(G) \ge n/2$. Deciding $mes(G) \ge n/2 + k$ with param. k?
- The problems that we considered can be seen as the "parity version" of INDEPENDENT SET and q-COLORING.

- Algo in time 2^{O(q·rw)} · n^{O(1)} for deciding whether χ_{odd}(G) ≤ q.
 Computing χ_{odd}(G) parameterized by rw is FPT, W[1]-hard, XP?
- We proved that \(\chi_{odd}(G) ≤ tw(G) + 1\).
 \(\chi_{odd}(G) ≤ f(rw(G))\) for some f? Would imply FPT algorithm.
 \(\chi_{odd}(G) ≤ f(rw(G)) \cdot log n\) for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

- Deciding whether $\chi_{odd}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{\text{tw}} \cdot n^{\mathcal{O}(1)} \leq (2\text{tw} + 2)^{\text{tw}} \cdot n^{\mathcal{O}(1)}$.
 - It can be proved that $\nexists \operatorname{tw}^{o(\operatorname{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
 - Right constants under the SETH?
- We know $mes(G) \ge n/2$. Deciding $mes(G) \ge n/2 + k$ with param. k?
- The problems that we considered can be seen as the "parity version" of INDEPENDENT SET and q-COLORING. Other problems?

