Optimization in Graphs Under Degree Constraints.
Application to Telecommunication Networks

Ignasi Sau Valls
Mascotte – MA4

Advisors:
Jean-Claude Bermond, David Coudert, Xavier Muñoz

October 16, 2009
Outline of the talk

Traffic grooming

Degree-constrained subgraph problems
Outline of the talk

- Traffic grooming
 - Motivation
 - Overview of the results

- Degree-constrained subgraph problems
 - Motivation
 - Overview of the results
Outline of the talk

Traffic grooming

• Motivation
• Overview of the results
• Some details on one aspect

Degree-constrained subgraph problems

• Motivation
• Overview of the results
• Some details on one aspect
Outline of the talk

Traffic grooming

Degree-constrained subgraph problems
General idea

- **WDM (Wavelength Division Multiplexing) networks**
 - 1 wavelength (or frequency) = up to 40 Gb/s
 - 1 fiber = hundreds of wavelengths = Tb/s

- **Traffic grooming** consists in packing low-speed traffic flows into higher speed streams

 → we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

- **Objectives:**
 - Better use of bandwidth
 - Reduce the equipment cost (mostly given by electronics)
General idea

- WDM (Wavelength Division Multiplexing) networks
 - 1 wavelength (or frequency) = up to 40 Gb/s
 - 1 fiber = hundreds of wavelengths = Tb/s

- Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 → we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

- Objectives:
 - Better use of bandwidth
 - Reduce the equipment cost (mostly given by electronics)
General idea

- WDM (Wavelength Division Multiplexing) networks
 - 1 wavelength (or frequency) = up to 40 Gb/s
 - 1 fiber = hundreds of wavelengths = Tb/s

- Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 → we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

- Objectives:
 - Better use of bandwidth
 - Reduce the equipment cost (mostly given by electronics)
Definitions

- **Request** \((i, j)\): two vertices \((i, j)\) that want to exchange (low-speed) traffic

- **Grooming factor** \(C\):

\[
C = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}
\]

- Typical values of the grooming factor:
 - SDH: 4, 16, 64, 256, ...
 - SONET: 3, 12, 48, ...

Example:
Capacity of one wavelength = 2.5 Gb/s
Capacity used by a request = 640 Mb/s \(\Rightarrow C = 4\)

- **Load** of an arc in a wavelength: number of requests using this arc in this wavelength \((\leq C)\)
Definitions

- **Request** \((i, j)\): two vertices \((i, j)\) that want to exchange (low-speed) traffic

- **Grooming factor** \(C\):

\[
C = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}
\]

- Typical values of the grooming factor:
 - SDH: 4, 16, 64, 256, ...
 - SONET: 3, 12, 48, ...

Example:
Capacity of one wavelength = 2.5 Gb/s
Capacity used by a request = 640 Mb/s \(\Rightarrow\) \(C = 4\)

- **Load** of an arc in a wavelength: number of requests using this arc in this wavelength \((\leq C)\)
Definitions

- **Request** (i, j): two vertices (i, j) that want to exchange (low-speed) traffic

- **Grooming factor** C:

 \[C = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}} \]

 - Typical values of the grooming factor:
 - **SDH**: 4, 16, 64, 256, \ldots
 - **SONET**: 3, 12, 48, \ldots

- **Example**:
 - Capacity of one wavelength = 2.5 Gb/s
 - Capacity used by a request = 640 Mb/s \[\Rightarrow C = 4 \]

- **Load** of an arc in a wavelength: number of requests using this arc in this wavelength ($\leq C$)
Definitions

- **Request** \((i, j)\): two vertices \((i, j)\) that want to exchange (low-speed) traffic

- **Grooming factor** \(C\):

 \[
 C = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}
 \]

- Typical values of the grooming factor:
 - **SDH**: 4, 16, 64, 256, \ldots
 - **SONET**: 3, 12, 48, \ldots

Example:
Capacity of one wavelength = 2.5 \(Gb/s\)
Capacity used by a request = 640 \(Mb/s\) \(\Rightarrow C = 4\)

- **Load** of an arc in a wavelength: number of requests using this arc in this wavelength \((\leq C)\)
ADM and OADM

- **OADM** (Optical Add/Drop Multiplexer) = insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer) = insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

We want to **minimize the number of ADMs**

We need to use an **ADM only at the endpoints of a request (lightpaths)** in order to save as many ADMs as possible
ADM and OADM

- **OADM** (Optical Add/Drop Multiplexer) = insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer) = insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

We want to **minimize the number of ADMs**

We need to use an ADM only at the endpoints of a request (lightpaths) in order to save as many ADMs as possible
ADM and OADM

- **OADM** (Optical Add/Drop Multiplexer) = insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer) = insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

We want to **minimize the number of ADMs**
We need to use an **ADM only at the endpoints of a request (lightpaths)** in order to save as many ADMs as possible
To fix ideas...

- Model:

 - Topology → graph G
 - Request set → graph R
 - Grooming factor → integer C
 - Wavelength → Subgraph of R
 - Requests in a wavelength → edges in a subgraph of R
 - ADM in a wavelength → vertex in a subgraph of R

- A fundamental case is when $G = \vec{C}_n$ (unidirectional ring)

- It is also natural to consider symmetric requests
To fix ideas...

- Model:

 - Topology \rightarrow graph G
 - Request set \rightarrow graph R
 - Grooming factor \rightarrow integer C
 - Wavelength \rightarrow Subgraph of R
 - Requests in a wavelength \rightarrow edges in a subgraph of R
 - ADM in a wavelength \rightarrow vertex in a subgraph of R

- A fundamental case is when $G = \mathcal{C}_n$ (unidirectional ring)

- It is also natural to consider symmetric requests
To fix ideas...

- **Model:**

 - Topology \rightarrow graph G
 - Request set \rightarrow graph R
 - Grooming factor \rightarrow integer C
 - **Wavelength** \rightarrow **Subgraph** of R
 - Requests in a **wavelength** \rightarrow edges in a **subgraph** of R
 - ADM in a wavelength \rightarrow vertex in a subgraph of R

- A fundamental case is when $G = \overrightarrow{C}_n$ (**unidirectional ring**)

- It is also natural to consider **symmetric requests**
Symmetric requests: whenever there is the request \((i, j)\), there is also the request \((j, i)\).

W.l.o.g. requests \((i, j)\) and \((j, i)\) are in the same subgraph

→ each pair of symmetric requests induces load 1

→ grooming factor \(C \Leftrightarrow\) each subgraph has \(\leq C\) edges.
Symmetric requests: whenever there is the request \((i, j)\), there is also the request \((j, i)\).

W.l.o.g. requests \((i, j)\) and \((j, i)\) are in the same subgraph

→ each pair of symmetric requests induces load 1

→ grooming factor \(C \Leftrightarrow \) each subgraph has \(\leq C\) edges.
Unidirectional ring with symmetric requests

- **Symmetric requests**: whenever there is the request \((i, j)\), there is also the request \((j, i)\).

- W.l.o.g. requests \((i, j)\) and \((j, i)\) are in the same subgraph
 → each pair of symmetric requests induces load 1
 → grooming factor \(C\) ⇔ each subgraph has \(\leq C\) edges.
Symmetric requests: whenever there is the request \((i, j)\), there is also the request \((j, i)\).

W.l.o.g. requests \((i, j)\) and \((j, i)\) are in the same subgraph

→ each pair of symmetric requests induces load 1

→ grooming factor \(C \iff\) each subgraph has \(\leq C\) edges.
Traffic Grooming in Unidirectional Rings (with symmetric requests)

Input
An *undirected* graph R on n nodes (request set);
A grooming factor C.

Output
A partition of $E(R)$ into subgraphs R_1, \ldots, R_W with $|E(R_i)| \leq C$, $i=1,\ldots,W$.

Objective
Minimize $\sum_{i=1}^{W} |V(R_i)|$.
Example (unidirectional ring with symmetric requests)

\[n = 4 \]
\[R = K_4 \]
\[C = 3 \]
Example (unidirectional ring with symmetric requests)

\[n = 4 \]
\[R = K_4 \]
\[C = 3 \]
Example (unidirectional ring with symmetric requests)

\[n = 4 \]
\[R = K_4 \]
\[C = 3 \]

8 ADMs
Example (unidirectional ring with symmetric requests)

\[n = 4 \]
\[R = K_4 \]
\[C = 3 \]
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems
Graph of the thesis

Part

Traffic grooming

Subpart (chapter)

Hardness and approximation

Degree-constrained subgraph problems
Graph of the thesis

Part

Traffic grooming

Subpart (chapter)

Hardness and approximation

Techniques used

Degree-constrained subgraph problems

hardness of approximation

approximation algorithms
Given a (typically NP-hard) minimization problem Π, ALG is an α-approximation algorithm for Π (with $\alpha \geq 1$) if for any instance I of Π,

\[
\text{ALG}(I) \leq \alpha \cdot \text{OPT}(I).
\]

Class APX (Approximable):

An NP-hard optimization problem is in APX if it can be approximated within a constant factor.

Example: MINIMUM VERTEX COVER has a 2-approximation.

Class PTAS (Polynomial-Time Approximation Scheme):

An NP-hard optimization problem is in PTAS if it can be approximated within a constant factor $1 + \varepsilon$, for all $\varepsilon > 0$ (the best one can hope for an NP-hard problem).

Example: MAXIMUM KNAPSACK.
Preliminaries: approximation algorithms

- Given a (typically NP-hard) **minimization** problem Π, ALG is an α-**approximation algorithm** for Π (with $\alpha \geq 1$) if for any instance I of Π,

 $$\text{ALG}(I) \leq \alpha \cdot \text{OPT}(I).$$

- **Class APX (Approximable):**

 an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

 Example: $\text{MINIMUM VERTEX COVER}$ has a 2-approximation.

- **Class PTAS (Polynomial-Time Approximation Scheme):**

 an NP-hard optimization problem is in PTAS if it can be approximated within a constant factor $1 + \varepsilon$, for all $\varepsilon > 0$ (the best one can hope for an NP-hard problem).

 Example: MAXIMUM KNAPSACK.
Preliminaries: approximation algorithms

- Given a (typically NP-hard) minimization problem Π, ALG is an α-approximation algorithm for Π (with $\alpha \geq 1$) if for any instance I of Π,

$$\text{ALG}(I) \leq \alpha \cdot \text{OPT}(I).$$

- **Class APX (Approximable):**

an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

 Example: $\text{MINIMUM VERTEX COVER}$ has a 2-approximation.

- **Class PTAS (Polynomial-Time Approximation Scheme):**

an NP-hard optimization problem is in PTAS if it can be approximated within a constant factor $1 + \varepsilon$, for all $\varepsilon > 0$

 (the best one can hope for an NP-hard problem).

 Example: MAXIMUM KNAPSACK.
Hardness of **Ring Traffic Grooming**

1. **NP-complete** if C is part of the input
 [Chiu and Modiano. *IEEE JLT’00*]

2. **Not in APX** if C is part of the input
 [Huang, Dutta, and Rouskas. *IEEE JSAC’06*]

3. Remains **NP-complete** for fixed $C \geq 1$
 (the proof assumes a bounded number of wavelengths)
 [Shalom, Unger, and Zaks. *FUN’07*]

★ **Open problem:** inapproximability for fixed C?

 Conjecture: Not in PTAS for fixed C.
 [Wan, Calinescu, Liu, and Frieder. *IEEE JSAC’00*]
 [Chow and Lin. *Networks’04*]

Theorem (Amini, Pérennes, and S.)

Ring Traffic Grooming is **not in PTAS** for any fixed $C \geq 1$.

Path Traffic Grooming is **not in PTAS** for any fixed $C \geq 2$.
Hardness of Ring Traffic Grooming

1. **NP-complete** if C is part of the input
 [Chiu and Modiano. *IEEE JLT’00*]

2. Not in APx if C is part of the input
 [Huang, Dutta, and Rouskas. *IEEE JSAC’06*]

3. Remains **NP-complete** for fixed $C \geq 1$
 (the proof assumes a bounded number of wavelengths)
 [Shalom, Unger, and Zaks. *FUN’07*]

★ **Open problem:** inapproximability for fixed C?
- Conjecture: Not in PTAS for fixed C.
 [Wan, Calinescu, Liu, and Frieder. *IEEE JSAC’00*]
 [Chow and Lin. *Networks’04*]

Theorem (Amini, Pérennes, and S.)

- Ring Traffic Grooming is **not in PTAS** for any fixed $C \geq 1$.
- Path Traffic Grooming is **not in PTAS** for any fixed $C \geq 2$.

Hardness of Ring Traffic Grooming

1. **NP-complete** if C is part of the input
 [Chiu and Modiano. *IEEE JLT’00*]

2. **Not in APx** if C is part of the input
 [Huang, Dutta, and Rouskas. *IEEE JSAC’06*]

3. Remains **NP-complete** for fixed $C \geq 1$
 (the proof assumes a bounded number of wavelengths)
 [Shalom, Unger, and Zaks. *FUN’07*]

Open problem: inapproximability for fixed C?

Conjecture: Not in PTAS for fixed C.

[Wan, Calinescu, Liu, and Frieder. *IEEE JSAC’00*]

[Chow and Lin. *Networks’04*]

Theorem (Amini, Pèrennes, and S.)

Ring Traffic Grooming is not in PTAS for any fixed $C \geq 1$.

Path Traffic Grooming is not in PTAS for any fixed $C \geq 2$.
Hardness of Ring Traffic Grooming

1. **NP-complete** if C is part of the input
 [Chiu and Modiano. *IEEE JLT’00*]
2. **Not in APX** if C is part of the input
 [Huang, Dutta, and Rouskas. *IEEE JSAC’06*]
3. Remains **NP-complete** for fixed $C \geq 1$
 (the proof assumes a bounded number of wavelengths)
 [Shalom, Unger, and Zaks. *FUN’07*]

★ **Open problem:** inapproximability for fixed C?

Conjecture: Not in PTAS for fixed C.
[Wan, Calinescu, Liu, and Frieder. *IEEE JSAC’00*]
[Chow and Lin. *Networks’04*]

Theorem (Amini, Pérennes, and S.)

Ring Traffic Grooming is *not in PTAS* for any fixed $C \geq 1$.
Path Traffic Grooming is *not in PTAS* for any fixed $C \geq 2$.
Hardness of **Ring Traffic Grooming**

1. **NP-complete** if C is part of the input
 [Chiu and Modiano. *IEEE JLT’00*]
2. **Not in APx** if C is part of the input
 [Huang, Dutta, and Rouskas. *IEEE JSAC’06*]
3. Remains **NP-complete** for fixed $C \geq 1$
 (the proof assumes a bounded number of wavelengths)
 [Shalom, Unger, and Zaks. *FUN’07*]

Open problem: inapproximability for fixed C?

- Conjecture: Not in PTAS for fixed C.
 [Wan, Calinescu, Liu, and Frieder. *IEEE JSAC’00*]
 [Chow and Lin. *Networks’04*]

Theorem (Amini, Pérennes, and S.):
RING TRAFFIC GROOMING is not in PTAS for any fixed $C \geq 1$.
PATH TRAFFIC GROOMING is not in PTAS for any fixed $C \geq 2$.

Ignasi Sau Valls (Mascotte – MA4)
Ph.D defense
October 16, 2009
12 / 54
Hardness of **Ring Traffic Grooming**

1. **NP-complete** if C is part of the input
 [Chiu and Modiano. *IEEE JLT’00*]

2. **Not in \(\text{APx} \)** if C is part of the input
 [Huang, Dutta, and Rouskas. *IEEE JSAC’06*]

3. Remains **NP-complete** for fixed $C \geq 1$
 (the proof assumes a bounded number of wavelengths)
 [Shalom, Unger, and Zaks. *FUN’07*]

Open problem: inapproximability for fixed C?

Conjecture: Not in PTAS for fixed C.

[Chow and Lin. *Networks’04*]

[Shalom, Unger, and Zaks. *FUN’07*]

Theorem (Amini, Pérennes, and S.)

Ring Traffic Grooming is **not in PTAS** for any fixed $C \geq 1$.

Path Traffic Grooming is **not in PTAS** for any fixed $C \geq 2$.

Ignasi Sau Valls (Mascotte – MA4) Ph.D defense October 16, 2009 12 / 54
Hardness of **Ring Traffic Grooming**

1. **NP-complete** if C is part of the input
 [Chiu and Modiano. *IEEE JLT’00*]

2. **Not in APX** if C is part of the input
 [Huang, Dutta, and Rouskas. *IEEE JSAC’06*]

3. Remains **NP-complete** for fixed $C \geq 1$
 (the proof assumes a bounded number of wavelengths)
 [Shalom, Unger, and Zaks. *FUN’07*]

✓ **Open problem:** inapproximability for fixed C?

Conjecture: Not in PTAS for fixed C.

[Wan, Calinescu, Liu, and Frieder. *IEEE JSAC’00*]
[Chow and Lin. *Networks’04*]

Theorem (Amini, Pérennes, and S.)

Ring Traffic Grooming *is not in PTAS for any fixed $C \geq 1$.*

Path Traffic Grooming *is not in PTAS for any fixed $C \geq 2$.*
Hardness of **RING TRAFFIC GROOMING**

1. **NP-complete** if C is part of the input
 [Chiu and Modiano. *IEEE JLT’00*]
2. **Not in APx** if C is part of the input
 [Huang, Dutta, and Rouskas. *IEEE JSAC’06*]
3. Remains **NP-complete** for fixed $C \geq 1$
 (the proof assumes a bounded number of wavelengths)
 [Shalom, Unger, and Zaks. *FUN’07*]

✓ **Open problem:** inapproximability for fixed C?
Conjecture: Not in PTAS for fixed C.

[Wan, Calinescu, Liu, and Frieder. *IEEE JSAC’00*]
[Chow and Lin. *Networks’04*]

Theorem (Amini, Pérennes, and S.)
RING TRAFFIC GROOMING is **not in PTAS** for any fixed $C \geq 1$.
PATH TRAFFIC GROOMING is **not in PTAS** for any fixed $C \geq 2$.
Approximation of Ring Traffic Grooming

1. \sqrt{C}-approximation is trivial (in poly-time in both n and C)

2. $O(\log C)$-approximation algorithm, with running time $O(n^C)$
 [Flammini et al. ISAAC’05, JDA’08]

3. But in backbone networks, it is usually the case that $C \geq n$.

★ Open problem: approximation algorithm in poly-time in both C and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $O(n^{1/3} \log^2 n)$ for any $C \geq 1$.

Outline of the algorithm:

1. partition the requests into groups of similar length
2. in each group, extract “dense” subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem
Approximation of Ring Traffic Grooming

1. \sqrt{C}-approximation is trivial (in poly-time in both n and C)
2. $O(\log C)$-approximation algorithm, with running time $O(n^C)$ [Flammini et al. ISAAC’05, JDA’08]
3. But in backbone networks, it is usually the case that $C \geq n$.

Open problem: approximation algorithm in poly-time in both C and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $O(n^{1/3}\log^2 n)$ for any $C \geq 1$.

Outline of the algorithm:
1. partition the requests into groups of similar length
2. in each group, extract “dense” subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem
Approximation of Ring Traffic Grooming

1. \(\sqrt{C} \)-approximation is trivial (in poly-time in both \(n \) and \(C \))
2. \(\mathcal{O}(\log C) \)-approximation algorithm, with running time \(\mathcal{O}(n^C) \)
 [Flammini et al. *ISAAC'05, JDA'08*]
3. But in backbone networks, it is usually the case that \(C \geq n \).

Open problem: approximation algorithm in poly-time in both \(C \) and \(n \), and with approximation factor independent of \(C \).

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor \(\mathcal{O}(n^{1/3} \log^2 n) \) for any \(C \geq 1 \).

Outline of the algorithm:
- partition the requests into groups of similar length
- in each group, extract “dense” subgraphs greedily using an algorithm for the DENSE \(k \)-SUBGRAPH problem
Approximation of Ring Traffic Grooming

1. \sqrt{C}-approximation is trivial (in poly-time in both n and C)
2. $O(\log C)$-approximation algorithm, with running time $O(n^C)$ [Flammini et al. ISAAC’05, JDA’08]
3. But in backbone networks, it is usually the case that $C \geq n$.

★ **Open problem:** approximation algorithm in poly-time in both C and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $O(n^{1/3} \log^2 n)$ for any $C \geq 1$.

Outline of the algorithm:

1. partition the requests into groups of similar length
2. in each group, extract “dense” subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem
Approximation of Ring Traffic Grooming

1. \sqrt{C}-approximation is trivial (in poly-time in both n and C)
2. $O(\log C)$-approximation algorithm, with running time $O(n^C)$ [Flammini et al. ISAAC’05, JDA’08]
3. But in backbone networks, it is usually the case that $C \geq n$.

★ Open problem: approximation algorithm in poly-time in both C and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $O(n^{1/3} \log^2 n)$ for any $C \geq 1$.

Outline of the algorithm:

1. partition the requests into groups of similar length
2. in each group, extract “dense” subgraphs greedily using an algorithm for the Dense k-Subgraph problem
Approximation of Ring Traffic Grooming

1. \sqrt{C}-approximation is trivial (in poly-time in both n and C)

2. $O(\log C)$-approximation algorithm, with running time $O(n^C)$
 [Flammini et al. ISAAC’05, JDA’08]

3. But in backbone networks, it is usually the case that $C \geq n$.

✓ Open problem: approximation algorithm in poly-time in both C and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $O(n^{1/3} \log^2 n)$ for any $C \geq 1$.

Outline of the algorithm:

1. partition the requests into groups of similar length
2. in each group, extract “dense” subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem
Approximation of Ring Traffic Grooming

1. \sqrt{C}-approximation is trivial (in poly-time in both n and C)

2. $O(\log C)$-approximation algorithm, with running time $O(n^C)$ [Flammini et al. ISAAC’05, JDA’08]

3. But in backbone networks, it is usually the case that $C \geq n$.

✓ Open problem: approximation algorithm in poly-time in both C and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $O(n^{1/3} \log^2 n)$ for any $C \geq 1$.

Outline of the algorithm:
1. partition the requests into groups of similar length
2. in each group, extract “dense” subgraphs greedily using an algorithm for the Dense k-Subgraph problem
Approximation of Ring Traffic Grooming

1. \sqrt{C}-approximation is trivial (in poly-time in both n and C)
2. $O(\log C)$-approximation algorithm, with running time $O(n^C)$ [Flammini et al. ISAAC’05, JDA’08]
3. But in backbone networks, it is usually the case that $C \geq n$.

Open problem: approximation algorithm in poly-time in both C and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)
There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $O(n^{1/3} \log^2 n)$ for any $C \geq 1$.

Outline of the algorithm:
1. partition the requests into groups of similar length [factor $\log n$]
2. in each group, extract “dense” subgraphs greedily using an algorithm for the Dense k-Subgraph problem
Approximation of Ring Traffic Grooming

1. \sqrt{C}-approximation is trivial (in poly-time in both n and C)
2. $O(\log C)$-approximation algorithm, with running time $O(n^C)$ [Flammini et al. ISAAC’05, JDA’08]
3. But in backbone networks, it is usually the case that $C \geq n$.

Open problem: approximation algorithm in poly-time in both C and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $O(n^{1/3} \log^2 n)$ for any $C \geq 1$.

Outline of the algorithm:

1. partition the requests into groups of similar length [factor $\log n$]
2. in each group, extract “dense” subgraphs greedily using an algorithm for the Dense k-Subgraph problem [factor $\log n$]
Approximation of **Ring Traffic Grooming**

1. \sqrt{C}-approximation is trivial (in poly-time in both n and C)
2. $O(\log C)$-approximation algorithm, with running time $O(n^C)$
 [Flammini et al. *ISAAC’05, JDA’08*]
3. But in backbone networks, it is usually the case that $C \geq n$.

✓ **Open problem:** approximation algorithm in poly-time in both C and n, and with approximation factor independent of C.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $O(n^{1/3} \log^2 n)$ for any $C \geq 1.

Outline of the algorithm:

1. partition the requests into groups of similar length [factor $\log n$]
2. in each group, extract “dense” subgraphs greedily using an algorithm for the Dense k-Subgraph problem [factor $\log n$] [factor $n^{1/3}$]
Traffic grooming

Hardness and approximation

Degree-constrained subgraph problems

Hardness of approximation

Approximation algorithms
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

Bounded-degree request graph

Hardness and approximation

hardness of approximation

approximation algorithms
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

Bounded-degree request graph

Hardness and approximation

graph partitioning

hardness of approximation

approximation algorithms

Ignasi Sau Valls (Mascotte – MA4)
New model of traffic grooming

- In the literature so far: place ADMs at nodes for a **fixed request graph**.
 \[\rightarrow \text{placement of ADMs \textit{a posteriori}}.\]

- **New model** [With Xavier Muñoz]: place the ADMs at nodes such that the network can support any request graph with maximum degree at most \(\Delta\).
 \[\rightarrow \text{placement of ADMs \textit{a priori}}.\]

- As the network must support any degree-bounded graph, due to symmetry we place the same number of ADMs at each node.

- The objective is then to minimize this number.
In the literature so far:
place ADMs at nodes for a **fixed request graph**.
→ placement of ADMs *a posteriori*.

New model [With Xavier Muñoz]:
place the ADMs at nodes such that the network can support any request graph with maximum degree at most Δ.
→ placement of ADMs *a priori*.

As the network must support any degree-bounded graph, due to symmetry we place the same number of ADMs at each node.

The objective is then to minimize this number.
In the literature so far:
place ADMs at nodes for a \textit{fixed} request graph.
→ placement of ADMs \textit{a posteriori}.

\textbf{New model} [With Xavier Muñoz]:
place the ADMs at nodes such that the network can support \textit{any} request graph with maximum degree at most Δ.
→ placement of ADMs \textit{a priori}.

As the network must support any degree-bounded graph, due to symmetry we place the \textit{same number of ADMs at each node}.
The objective is then to minimize this number.
In the literature so far:
place ADMs at nodes for a **fixed request graph**.
→ placement of ADMs **a posteriori**.

New model [With Xavier Muñoz]:
place the ADMs at nodes such that the network can support **any request graph with maximum degree at most** Δ.
→ placement of ADMs **a priori**.

As the network must support any degree-bounded graph, due to symmetry we place the **same number of ADMs at each node**.

The objective is then to minimize this number.
New model of traffic grooming

- In the literature so far:
 place ADMs at nodes for a **fixed request graph**.
 → placement of ADMs *a posteriori*.

- **New model** [With Xavier Muñoz]:
 place the ADMs at nodes such that the network can support **any request graph with maximum degree at most** Δ.
 → placement of ADMs *a priori*.

- As the network must support any degree-bounded graph, due to symmetry we place the **same number of ADMs at each node**.

- The objective is then to minimize this number.
In the literature so far:
place ADMs at nodes for a \textit{fixed} request graph.
\rightarrow \text{placement of ADMs \textit{a posteriori}}.

\textbf{New model [With Xavier Muñoz]}:
place the ADMs at nodes such that the network can support \textit{any} request graph with maximum degree at most Δ.
\rightarrow \text{placement of ADMs \textit{a priori}}.

As the network must support any degree-bounded graph, due to symmetry we place the \textbf{same number of ADMs at each node}.

The objective is then to minimize this number.
The parameter $M(C, \Delta)$

- **Δ-graph**: graph with maximum degree at most Δ.
- **C-edge partition** of G: partition of $E(G)$ into subgraphs with $\leq C$ edges.
- The problem is equivalent to determining the following parameter:

Therefore, we focus on determining $M(C, \Delta)$.

W.l.o.g. we can assume that R has regular degree Δ.

Proposition (Lower Bound – Muñoz and S.)

For all $C, \Delta \geq 1$, $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.
The parameter $M(C, \Delta)$

- **Δ-graph**: graph with maximum degree at most Δ.
- **C-edge partition** of G: partition of $E(G)$ into subgraphs with $\leq C$ edges.

The problem is equivalent to determining the following parameter:

Therefore, we focus on determining $M(C, \Delta)$.

W.l.o.g. we can assume that R has regular degree Δ.

Proposition (Lower Bound – Muñoz and S.)

For all $C, \Delta \geq 1$, $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.
The parameter $M(C, \Delta)$

- **Δ-graph**: graph with maximum degree at most Δ.
- **C-edge partition** of G: partition of $E(G)$ into subgraphs with $\leq C$ edges.

The problem is equivalent to determining the following parameter:

$M(C, \Delta)$: smallest integer M s.t. any Δ-graph has a C-edge-partition s.t. each vertex appears in $\leq M$ subgraphs.

Therefore, we focus on determining $M(C, \Delta)$.

W.l.o.g. we can assume that R has regular degree Δ.

Proposition (Lower Bound – Muñoz and S.)

For all $C, \Delta \geq 1$, $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.
The parameter $M(C, \Delta)$

- **Δ-graph**: graph with maximum degree at most Δ.
- **C-edge partition** of G: partition of $E(G)$ into subgraphs with $\leq C$ edges.

The problem is equivalent to determining the following parameter:

$M(C, \Delta)$: smallest integer M s.t. any Δ-graph has a C-edge-partition s.t. each vertex appears in $\leq M$ subgraphs.

Therefore, we focus on determining $M(C, \Delta)$.

W.l.o.g. we can assume that R has *regular degree* Δ.

Proposition (Lower Bound – Muñoz and S.)

For all $C, \Delta \geq 1$, $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.
The parameter $M(C, \Delta)$

- **Δ-graph**: graph with maximum degree at most Δ.
- **C-edge partition** of G: partition of $E(G)$ into subgraphs with $\leq C$ edges.
- The problem is equivalent to determining the following parameter:

$$M(C, \Delta): \text{smallest integer } M \text{ s.t. any } \Delta\text{-graph has a } C\text{-edge-partition s.t. each vertex appears in } \leq M\text{ subgraphs.}$$

Therefore, we focus on determining $M(C, \Delta)$.

W.l.o.g. we can assume that R has regular degree Δ.

Proposition (Lower Bound – Muñoz and S.)

For all $C, \Delta \geq 1$, $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.
Case $\Delta \geq 2$ even

Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have just seen the lower bound. Construction:
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \Delta/2 = \Delta/2$ times.
 - The number of occurrences of each vertex in this partition is
 $$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$
Case $\Delta \geq 2$ even

Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have just seen the lower bound. Construction:
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \Delta/2 = \Delta/2$ times.
 - The number of occurrences of each vertex in this partition is
 \[
 \left\lfloor \frac{\Delta}{2C} \right\rfloor + \frac{\Delta}{2} = \left\lfloor \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rfloor = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.
 \]
Case $\Delta \geq 2$ even

Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have just seen the lower bound. Construction:
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \Delta/2 = \Delta/2$ times.
 - The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$
Case $\Delta \geq 2$ even

Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have just seen the lower bound. Construction:
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \Delta/2 = \Delta/2$ times.
 - The number of occurrences of each vertex in this partition is

 $$
 \left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.
 $$

 \square
Case $\Delta \geq 2$ even

Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have just seen the lower bound. Construction:
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \frac{\Delta}{2} = \Delta/2$ times.

The number of occurrences of each vertex in this partition is

\[
\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.
\]
Case $\Delta \geq 2$ even

Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have just seen the lower bound. Construction:
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \Delta/2 = \Delta/2$ times.
- The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$
Case $\Delta \geq 2$ even

Theorem (Li and S.)

Let $\Delta \geq 2$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{2} \cdot \frac{\Delta}{2} \right\rceil$.

Proof.

- We have just seen the lower bound. Construction:
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \Delta/2 = \Delta/2$ times.
 - The number of occurrences of each vertex in this partition is
 \[
 \left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rceil = \left\lceil \frac{C+1}{C} \cdot \frac{\Delta}{2} \right\rceil.
 \]
Case $\Delta \geq 3$ odd

Proposition (Upper Bound – Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \cdot \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

Corollary (Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \cdot \frac{\Delta}{2} \right\rceil + 1$.

Question: is the lower bound $\left\lceil \frac{C+1}{C} \cdot \frac{\Delta}{2} \right\rceil$ always attained?

Theorem (Li and S.)

Let $\Delta \geq 3$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \cdot \frac{\Delta}{2} \right\rceil + 1$.

Ignasi Sau Valls (Mascotte – MA4)
Ph.D defense
October 16, 2009 18 / 54
Case $\Delta \geq 3$ odd

Proposition (Upper Bound – Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

Corollary (Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.

Question: is the lower bound $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ always attained?

Theorem (Li and S.)

Let $\Delta \geq 3$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
Case $\Delta \geq 3$ odd

Proposition (Upper Bound – Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

Corollary (Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.

Question: is the lower bound $\left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor$ always attained?

Theorem (Li and S.)

Let $\Delta \geq 3$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
Case $\Delta \geq 3$ odd

Proposition (Upper Bound – Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lceil \frac{C+1}{2} \frac{\Delta}{C} + \frac{C-1}{2C} \right\rceil$.

Corollary (Li and S.)

Let $\Delta \geq 3$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lceil \frac{C+1}{2} \frac{\Delta}{C} \right\rceil + 1$.

Question: is the lower bound $\left\lceil \frac{C+1}{2} \frac{\Delta}{C} \right\rceil$ always attained? NO!!

Theorem (Li and S.)

Let $\Delta \geq 3$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lceil \frac{C+1}{2} \frac{\Delta}{C} \right\rceil + 1$.

Ignasi Sau Valls (Mascotte – MA4)
Summarizing, we established the value of $M(C, \Delta)$ for “almost” all values of C and Δ, leaving open only the case where:

- $\Delta \geq 5$ is odd; and
- $C \geq 4$; and
- $3 \leq \Delta \pmod{2C} \leq C - 1$; and
- the request graph does not contain a perfect matching.
Summarizing, we established the value of $M(C, \Delta)$ for “almost” all values of C and Δ, leaving open only the case where:

- $\Delta \geq 5$ is odd; and
- $C \geq 4$; and
- $3 \leq \Delta \pmod{2C} \leq C - 1$; and
- the request graph does not contain a perfect matching.
Summarizing, we established the value of $M(C, \Delta)$ for “almost” all values of C and Δ, leaving **open** only the case where:

- $\Delta \geq 5$ is odd; and
- $C \geq 4$; and
- $3 \leq \Delta \pmod{2C} \leq C - 1$; and
- the request graph does not contain a perfect matching.
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

Bounded-degree request graph
Hardness and approximation

Graph partitioning
hardness of approximation

approximation algorithms
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

Bidirectional ring

Bounded-degree request graph

Hardness and approximation

Hardness of approximation

Graph partitioning

Approximation algorithms
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

Bidirectional ring

Bounded-degree request graph

Hardness and approximation

Hardness of approximation

Approximation algorithms

Combinatorial designs

Graph partitioning
Bidirectional rings

With Jean-Claude Bermond and Xavier Muñoz

- Most of the research had been done for **unidirectional rings**.

- We consider the bidirectional ring with
 - all-to-all requests.
 - shortest path routing.

- We provide:
 1. Statement of the problem and general lower bounds.
 2. Exhaustive study of the cases $C \in \{1, 2, 3\}$.
 3. Optimal solutions for some infinite families when $C = k(k + 1)/2$.
 4. Asymptotically optimal or approximated solutions.
Bidirectional rings

With Jean-Claude Bermond and Xavier Muñoz

- Most of the research had been done for unidirectional rings.

- We consider the bidirectional ring with
 * all-to-all requests.
 * shortest path routing.

- We provide:
 1. Statement of the problem and general lower bounds.
 2. Exhaustive study of the cases $C \in \{1, 2, 3\}$.
 3. Optimal solutions for some infinite families when $C = k(k + 1)/2$.
 4. Asymptotically optimal or approximated solutions.
Most of the research had been done for **unidirectional rings**.

We consider the **bidirectional ring** with
- all-to-all requests.
- shortest path routing.

We provide:

1. Statement of the problem and general lower bounds.
2. Exhaustive study of the cases \(C \in \{1, 2, 3\} \).
3. Optimal solutions for some infinite families when \(C = k(k+1)/2 \).
4. Asymptotically optimal or approximated solutions.
Most of the research had been done for unidirectional rings.

We consider the bidirectional ring with
 - all-to-all requests.
 - shortest path routing.

We provide:

1. Statement of the problem and general lower bounds.
2. Exhaustive study of the cases $C \in \{1, 2, 3\}$.
3. Optimal solutions for some infinite families when $C = k(k + 1)/2$.
4. Asymptotically optimal or approximated solutions.
Most of the research had been done for unidirectional rings.

We consider the bidirectional ring with
- all-to-all requests.
- shortest path routing.

We provide:
1. Statement of the problem and general lower bounds.
2. Exhaustive study of the cases $C \in \{1, 2, 3\}$.
3. Optimal solutions for some infinite families when $C = k(k+1)/2$.
4. Asymptotically optimal or approximated solutions.
Bidirectional rings

With Jean-Claude Bermond and Xavier Muñoz

Most of the research had been done for unidirectional rings.

We consider the bidirectional ring with

- all-to-all requests.
- shortest path routing.

We provide:

1. Statement of the problem and general lower bounds.
2. Exhaustive study of the cases $C \in \{1, 2, 3\}$.
3. Optimal solutions for some infinite families when $C = k(k + 1)/2$.
4. Asymptotically optimal or approximated solutions.
Graph of the thesis

Traffic grooming

- Bidirectional ring
- Bounded-degree request graph
- Hardness and approximation

- Combinatorial designs
- Graph partitioning
- Hardness of approximation
- Parameterized reductions
- Approximation algorithms

Degree-constrained subgraph problems
Graph of the thesis

Traffic grooming

Two-period grooming

Degree-constrained subgraph problems

- Bidirectional ring
- Bounded-degree request graph
- Hardness and approximation

- Combinatorial designs
- Hardness of approximation
- Parameterized reductions
- Graph partitioning
- Approximation algorithms
- Approximation algorithms
- Parameterized reductions
- Hardness of approximation
- Combinatorial designs

Ignasi Sau Valls (Mascotte – MA4)
Graph of the thesis

- Traffic grooming
 - Two-period grooming
 - Bidirectional ring
 - Bounded-degree request graph
 - Hardness and approximation
 - Hardness of approximation
 - Parameterized reductions
 - Approximation algorithms

- Degree-constrained subgraph problems

- Combinatorial designs
- Graph partitioning
We consider a pseudo-dynamic scenario in unidirectional rings:

- in the 1st period of time, there is all-to-all traffic among \(n \) nodes, each request using \(1/C \) of the bandwidth.
- in the 2nd period, there is all-to-all traffic among a subset of \(n' < n \) nodes, each request using \(1/C' \) of the bandwidth, with \(C' < C \).

The problem consists in finding a \(C \)-edge-partition of \(K_n \) that embeds a \(C' \)-edge-partition of \(K_{n'} \).

- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. *Networks’08*]. They solved the cases \(C = 2 \) and \(C = 3 \) (\(C' \in \{1, 2\} \)).
- We solve the case \(C = 4 \) (that is, \(C' \in \{1, 2, 3\} \)).
- In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.
We consider a pseudo-dynamic scenario in unidirectional rings:

- in the 1st period of time, there is all-to-all traffic among n nodes, each request using $1/C$ of the bandwidth.
- in the 2nd period, there is all-to-all traffic among a subset of $n' < n$ nodes, each request using $1/C'$ of the bandwidth, with $C' < C$.

The problem consists in finding a C-edge-partition of K_n that embeds a C'-edge-partition of $K_{n'}$.

Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks’08]. They solved the cases $C = 2$ and $C = 3$ ($C' \in \{1, 2\}$).

We solve the case $C = 4$ (that is, $C' \in \{1, 2, 3\}$).

In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.
2-period traffic grooming in unidirectional rings

With J-C. Bermond, C.J. Colbourn, L. Gionfriddo, and G. Quattrocchi

- We consider a **pseudo-dynamic scenario** in unidirectional rings:
 - in the 1st period of time, there is all-to-all traffic among \(n \) nodes, each request using \(1/C \) of the bandwidth.
 - in the 2nd period, there is all-to-all traffic among a subset of \(n' < n \) nodes, each request using \(1/C' \) of the bandwidth, with \(C' < C \).

- The problem consists in finding a \(C \)-edge-partition of \(K_n \) that embeds a \(C' \)-edge-partition of \(K_{n'} \).

- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. *Networks’08*]. They solved the cases \(C = 2 \) and \(C = 3 \) (\(C' \in \{1, 2\} \)).

- We solve the case \(C = 4 \) (that is, \(C' \in \{1, 2, 3\} \)).

- In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.
We consider a **pseudo-dynamic scenario** in unidirectional rings:

- in the 1st period of time, there is all-to-all traffic among \(n \) nodes, each request using \(1/C \) of the bandwidth.
- in the 2nd period, there is all-to-all traffic among a subset of \(n' < n \) nodes, each request using \(1/C' \) of the bandwidth, with \(C' < C \).

The problem consists in finding a **\(C \)-edge-partition of \(K_n \)** that embeds a **\(C' \)-edge-partition of \(K_{n'} \)**.

- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. *Networks’08*]. They solved the cases \(C = 2 \) and \(C = 3 \) (\(C' \in \{1, 2\} \)).
- We solve the case \(C = 4 \) (that is, \(C' \in \{1, 2, 3\} \)).
- In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.
We consider a pseudo-dynamic scenario in unidirectional rings:

- in the 1st period of time, there is all-to-all traffic among n nodes, each request using $1/C$ of the bandwidth.
- in the 2nd period, there is all-to-all traffic among a subset of $n' < n$ nodes, each request using $1/C'$ of the bandwidth, with $C' < C$.

The problem consists in finding a C-edge-partition of K_n that embeds a C'-edge-partition of $K_{n'}$.

Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks’08]. They solved the cases $C = 2$ and $C = 3$ ($C' \in \{1, 2\}$).

We solve the case $C = 4$ (that is, $C' \in \{1, 2, 3\}$).

In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.
We consider a pseudo-dynamic scenario in unidirectional rings:

- in the 1st period of time, there is all-to-all traffic among n nodes, each request using $1/C$ of the bandwidth.
- in the 2nd period, there is all-to-all traffic among a subset of $n' < n$ nodes, each request using $1/C'$ of the bandwidth, with $C' < C$.

The problem consists in finding a C-edge-partition of K_n that embeds a C'-edge-partition of $K_{n'}$.

Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks’08]. They solved the cases $C = 2$ and $C = 3$ ($C' \in \{1, 2\}$).

We solve the case $C = 4$ (that is, $C' \in \{1, 2, 3\}$).

In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.
We consider a pseudo-dynamic scenario in unidirectional rings:

- in the 1st period of time, there is all-to-all traffic among \(n \) nodes, each request using \(1/C \) of the bandwidth.
- in the 2nd period, there is all-to-all traffic among a subset of \(n' < n \) nodes, each request using \(1/C' \) of the bandwidth, with \(C' < C \).

The problem consists in finding a \(C \)-edge-partition of \(K_n \) that embeds a \(C' \)-edge-partition of \(K_{n'} \).

Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks’08]. They solved the cases \(C = 2 \) and \(C = 3 \) (\(C' \in \{1, 2\} \)).

We solve the case \(C = 4 \) (that is, \(C' \in \{1, 2, 3\} \)).

In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

Two-period grooming
Bidirectional ring
Bounded-degree request graph
Hardness and approximation

Combinatorial designs
Graph partitioning
Hardness of approximation
Approximation algorithms
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

- Two-period grooming
- Bidirectional ring
- Bounded-degree request graph
- Hardness and approximation

- Combinatorial designs
- Graph partitioning
- Hardness of approximation
- Approximation algorithms
Remember from the first subpart:

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor $O(n^{1/3} \log^2 n)$ for any $C \geq 1$.

1. Partition the requests into groups of similar length $\lfloor \log n \rfloor$.
2. In each group, extract subgraphs greedily using an algorithm for the **DENSE k-SUBGRAPH** problem $[\log n] \ [n^{1/3}]$.

DENSE k-SUBGRAPH (DkS)

Input: An undirected graph $G = (V, E)$ and a positive integer k.

Output: A subset $S \subseteq V$, with $|S| = k$, such that $|E(G[S])|$ is maximized.

Summarizing, a β-approximation for the DkS problems yields a $(\beta \cdot \log^2 n)$-approximation for RING TRAFFIC GROOMING.
Remember from the first subpart:

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $O(n^{1/3} \log^2 n)$ for any $C \geq 1$.

1. partition the requests into groups of similar length $[\log n]$
2. in each group, extract subgraphs greedily using an algorithm for the Dense k-Subgraph problem $[\log n]$ $[n^{1/3}]$

Dense k-Subgraph (DkS)

Input: An undirected graph $G = (V, E)$ and a positive integer k.

Output: A subset $S \subseteq V$, with $|S| = k$, such that $|E(G[S])|$ is maximized.

Summarizing, a β-approximation for the DkS problems yields a $(\beta \cdot \log^2 n)$-approximation for Ring Traffic Grooming.
Remember from the first subpart:

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates \(\text{RING TRAFFIC GROOMING} \) within a factor \(O(n^{1/3} \log^2 n) \) for any \(C \geq 1 \).

1. partition the requests into groups of similar length \(\text{[factor log } n\text{]} \)
2. in each group, extract subgraphs greedily using an algorithm for the \(\text{DENSE k-SUBGRAPH} \) problem \(\text{[factor log } n\text{]} \) \(\text{[factor } n^{1/3}\text{]} \)

DENSE k-SUBGRAPH (DkS)

Input: An undirected graph \(G = (V, E) \) and a positive integer \(k \).

Output: A subset \(S \subseteq V \), with \(|S| = k \), such that \(|E(G[S])| \) is maximized.

Summarizing, a \(\beta \)-approximation for the \(\text{DkS} \) problems yields a \((\beta \cdot \log^2 n) \)-approximation for \(\text{RING TRAFFIC GROOMING} \).
Remember from the first subpart:

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates Ring Traffic Grooming within a factor $O(n^{1/3} \log^2 n)$ for any $C \geq 1$.

1. partition the requests into groups of similar length $\lceil \log n \rceil$
2. in each group, extract subgraphs greedily using an algorithm for the Dense k-Subgraph problem $[\log n]$ $[n^{1/3}]$

Dense k-Subgraph (DkS)

Input: An undirected graph $G = (V, E)$ and a positive integer k.

Output: A subset $S \subseteq V$, with $|S| = k$, such that $|E(G[S])|$ is maximized.

Summarizing, a β-approximation for the DkS problems yields a $(\beta \cdot \log^2 n)$-approximation for Ring Traffic Grooming.
Unfortunately, the DkS problem is a very “hard” problem:

- Best approximation algorithm: $O(n^{1/3-\varepsilon})$-approximation. [Feige, Kortsarz, and Peleg. Algorithmica’01]
- Best hardness result: No PTAS, unless P = NP. [Khot. SIAM J. Comp’06]

What about trying to find dense subgraphs differently?

- In DkS, the objective is to maximize the average degree
- What about the minimum degree...?
Finding dense subgraphs is difficult...

- Unfortunately, the DkS problem is a very “hard” problem:
 - Best approximation algorithm: $O(n^{1/3-\varepsilon})$-approximation. [Feige, Kortsarz, and Peleg. Algorithmica’01]
 - Best hardness result: No PTAS, unless P=NP. [Khot. SIAM J. Comp’06]

- What about trying to find dense subgraphs differently?
 - In DkS, the objective is to maximize the average degree
 - What about the minimum degree...?
Finding dense subgraphs is difficult...

Unfortunately, the DkS problem is a very “hard” problem:

- Best approximation algorithm: $O(n^{1/3-\epsilon})$-approximation. [Feige, Kortsarz, and Peleg. Algorithmica’01]
- Best hardness result: No PTAS, unless P=NP. [Khot. SIAM J. Comp’06]

What about trying to find dense subgraphs differently?

In DkS, the objective is to maximize the average degree

What about the minimum degree...?
Finding dense subgraphs is difficult...

- Unfortunately, the DkS problem is a very “hard” problem:
 - Best approximation algorithm: $O(n^{1/3-\varepsilon})$-approximation. [Feige, Kortsarz, and Peleg. *Algorithmica*’01]
 - Best hardness result: No PTAS, unless P=NP. [Khot. *SIAM J. Comp*’06]

- What about trying to find dense subgraphs differently?
- In DkS, the objective is to maximize the average degree
- What about the minimum degree...?
Traffic grooming

Two-period grooming
Bidirectional ring
Bounded-degree request graph
Hardness and approximation

Degree-constrained subgraph problems

Hardness of approximation
Approximation algorithms
Graph partitioning
Combinatorial designs
Graph of the thesis

Traffic grooming

- Two-period grooming
- Bidirectional ring
- Bounded-degree request graph
- Hardness and approximation

Degree-constrained subgraph problems

- Combinatorial designs
- Graph partitioning
- Hardness of approximation
- Approximation algorithms
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

Hardness and approximation

Two-period grooming
Bidirectional ring
Bounded-degree request graph

combinatorial designs

Hardness of approximation

graph partitioning

approximation algorithms

Hardness and approximation
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

Two-period grooming
Bidirectional ring
Bounded-degree request graph
Hardness and approximation

Hardness and approximation

Combinatorial designs
Graph partitioning

Approximation algorithms
Graph minors
Treewidth, branchwidth
A typical **Degree-constrained subgraph problem**:

Input:
- a *(weighted or unweighted)* graph G, and
- an integer d.

Output:
- a *(connected)* subgraph H of G,
- satisfying some degree constraints ($\Delta(H) \leq d$ or $\delta(H) \geq d$),
- and optimizing some parameter ($|V(H)|$ or $|E(H)|$).

Several problems in this broad family are classical widely studied NP-hard problems.

They have a number of applications in interconnection networks, routing algorithms, chemistry, ...
A typical **Degree-constrained Subgraph Problem**:

Input:
- a (weighted or unweighted) graph G, and
- an integer d.

Output:
- a (connected) subgraph H of G,
- satisfying some degree constraints ($\Delta(H) \leq d$ or $\delta(H) \geq d$),
- and optimizing some parameter ($|V(H)|$ or $|E(H)|$).

Several problems in this broad family are classical widely studied NP-hard problems.

They have a number of applications in interconnection networks, routing algorithms, chemistry, ...
A typical **Degree-Constrained Subgraph Problem**:

Input:
- a (weighted or unweighted) graph G, and
- an integer d.

Output:
- a (connected) subgraph H of G,
- satisfying some degree constraints ($\Delta(H) \leq d$ or $\delta(H) \geq d$),
- and optimizing some parameter ($|V(H)|$ or $|E(H)|$).

Several problems in this broad family are classical widely studied NP-hard problems.

They have a number of applications in interconnection networks, routing algorithms, chemistry, ...
A typical **Degree-constrained subgraph problem**:

Input:
- a (weighted or unweighted) graph G, and
- an integer d.

Output:
- a (connected) subgraph H of G,
- satisfying some degree constraints ($\Delta(H) \leq d$ or $\delta(H) \geq d$),
- and optimizing some parameter ($|V(H)|$ or $|E(H)|$).

Several problems in this broad family are classical widely studied NP-hard problems.

They have a number of applications in interconnection networks, routing algorithms, chemistry, ...
MINIMUM SUBGRAPH OF MINIMUM DEGREE $\geq d$ (MSMD$_d$):

Input: an undirected graph $G = (V, E)$ and an integer $d \geq 3$.

Output: a subset $S \subseteq V$ with $\delta(G[S]) \geq d$, s.t. $|S|$ is minimum.

- For $d = 2$ it is exactly the GIRTH problem, which is in P.
- Therefore, it can be seen as a generalization of GIRTH.
- Is it also in P for $d \geq 3$?
MINIMUM SUBGRAPH OF MINIMUM DEGREE \(\geq d \) (MSMD\(_d\)):

Input: an undirected graph \(G = (V, E) \) and an integer \(d \geq 3 \).

Output: a subset \(S \subseteq V \) with \(\delta(G[S]) \geq d \), s.t. \(|S| \) is minimum.

- For \(d = 2 \) it is exactly the **GIRTH** problem, which is in \(\text{P} \).
- Therefore, it can be seen as a generalization of **GIRTH**.
- Is it also in \(\text{P} \) for \(d \geq 3 \) ?
MINIMUM SUBGRAPH OF MINIMUM DEGREE \(\geq d \) (MSMD\(_d\)):

Input: an undirected graph \(G = (V, E) \) and an integer \(d \geq 3 \).

Output: a subset \(S \subseteq V \) with \(\delta(G[S]) \geq d \), s.t. \(|S| \) is minimum.

- For \(d = 2 \) it is exactly the Girth problem, which is in \(\mathbf{P} \).
- Therefore, it can be seen as a generalization of Girth.
- Is it also in \(\mathbf{P} \) for \(d \geq 3 \) ?
Minimum Subgraph of Minimum Degree $\geq d$ (MSMD$_d$):

Input: an undirected graph $G = (V, E)$ and an integer $d \geq 3$.

Output: a subset $S \subseteq V$ with $\delta(G[S]) \geq d$, s.t. $|S|$ is minimum.

- For $d = 2$ it is exactly the Girth problem, which is in P.
- Therefore, it can be seen as a generalization of Girth.
- Is it also in P for $d \geq 3$?
1. MSMD\(_d\) is not in \(\text{APX}\) for any \(d \geq 3\), using the error amplification technique:
 - first we prove that MSMD\(_d\) is not in PTAS (unless \(P=NP\)).
 - then we prove that MSMD\(_d\) does not accept any constant factor approximation.

2. \(O(n/ \log n)\)-approximation algorithm for minor-free classes of graphs, using dynamic programming techniques and a known structural result on graph minors.
 (In particular, this applied to planar graphs and graphs of bounded genus.)
MSMD$_d$ is not in APX for any $d \geq 3$, using the error amplification technique:

- first we prove that MSMD$_d$ is not in PTAS (unless P=NP).
- then we prove that MSMD$_d$ does not accept any constant factor approximation.

$O(n/ \log n)$-approximation algorithm for minor-free classes of graphs, using dynamic programming techniques and a known structural result on graph minors.

(In particular, this applied to planar graphs and graphs of bounded genus.)
1. MSMD$_d$ is not in APX for any $d \geq 3$, using the error amplification technique:
 - first we prove that MSMD$_d$ is not in PTAS (unless P$=$NP).
 - then we prove that MSMD$_d$ does not accept any constant factor approximation.

2. $O(n/ \log n)$-approximation algorithm for minor-free classes of graphs, using dynamic programming techniques and a known structural result on graph minors.
 (In particular, this applied to planar graphs and graphs of bounded genus.)
MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS$_d$):

Input:
- an undirected graph $G = (V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega : E \rightarrow \mathbb{R}^+$.

Output:
- a subset of edges $E' \subseteq E$ of maximum weight, s.t. $G' = (V, E')$
 - is connected (except isolated vertices), and
 - satisfies $\Delta(G') \leq d$.

It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979]. If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques). [Lovász, 70's] For fixed $d = 2$ it corresponds to the LONGEST PATH problem.
Maximum d-Degree-Bounded Connected Subgraph (MDBCS$_d$):

Input:
- an undirected graph $G = (V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega : E \rightarrow \mathbb{R}^+$.

Output:
- a subset of edges $E' \subseteq E$ of maximum weight, s.t. $G' = (V, E')$ is connected (except isolated vertices), and
- satisfies $\Delta(G') \leq d$.

It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].

If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques). [Lovász, 70’s]

For fixed $d = 2$ it corresponds to the Longest Path problem.
Second problem

MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_d):

Input:
- an undirected graph \(G = (V, E) \),
- an integer \(d \geq 2 \), and
- a weight function \(\omega : E \rightarrow \mathbb{R}^+ \).

Output:
- a subset of edges \(E' \subseteq E \) of **maximum weight**, s.t. \(G' = (V, E') \)
 - is connected (except isolated vertices), and
 - satisfies \(\Delta(G') \leq d \).

It is one of the classical **NP-hard** problems of

[Garey and Johnson, Computers and Intractability, 1979].

If the output subgraph is not required to be connected, the problem is in **P** for any \(d \) (using matching techniques). [Lovász, 70’s]

For fixed \(d = 2 \) it corresponds to the **LONGEST PATH** problem.
Second problem

MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS$_d$):

Input:
- an undirected graph $G = (V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega : E \to \mathbb{R}^+$.

Output:
a subset of edges $E' \subseteq E$ of **maximum weight**, s.t. $G' = (V, E')$
- is **connected** (except isolated vertices), and
- satisfies $\Delta(G') \leq d$.

- It is one of the classical **NP**-hard problems of
 Garey and Johnson, Computers and Intractability, 1979.
- If the output subgraph is not required to be connected, the problem is in **P** for any d (using matching techniques). *Lovász, 70’s*
- For fixed $d = 2$ it corresponds to the **LONGEST PATH** problem.
MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS$_d$):

Input:
- an undirected graph $G = (V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega : E \to \mathbb{R}^+$.

Output:
a subset of edges $E' \subseteq E$ of maximum weight, s.t. $G' = (V, E')$
- is connected (except isolated vertices), and
- satisfies $\Delta(G') \leq d$.

- It is one of the classical **NP**-hard problems of
 Garey and Johnson, Computers and Intractability, 1979.
- If the output subgraph is not required to be connected, the problem is in **P** for any d (using matching techniques). *Lovász, 70’s*
- For fixed $d = 2$ it corresponds to the **LONGEST PATH** problem.
Example with $d = 3$, $\omega(e) = 1$ for all $e \in E(G)$
Example with $d = 3$, $\omega(e) = 1$ for all $e \in E(G)$
Example with $d = 3$, $\omega(e) = 1$ for all $e \in E(G)$
Example with $d = 3$, $\omega(e) = 1$ for all $e \in E(G)$
Hardness and approximation

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

1. not in APX for any fixed \(d \geq 2 \).

2. if there is a polynomial time algorithm for \(\text{MDBCS}_d \), \(d \geq 2 \), with performance ratio \(2^{O(\sqrt{\log n})} \), then \(\text{NP} \subseteq \text{DTIME}(2^{O(\log^5 n)}) \).

3. \(\min\{m/\log n, \, nd/(2 \log n)\} \)-approximation algorithm for unweighted graphs. (\(n = |V(G)| \) and \(m = |E(G)| \))

4. \(\min\{n/2, \, m/d\} \)-approximation algorithm for weighted graphs.

5. if \(G \) has a low-degree spanning tree (in terms of \(d \)) it can be approximated within a small constant factor.
Hardness and approximation

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

1. not in \(\text{APX} \) for any fixed \(d \geq 2 \).

2. if there is a polynomial time algorithm for \(\text{MDBCS}_d \), \(d \geq 2 \), with performance ratio \(2^{O(\sqrt{\log n})} \), then \(\text{NP} \subseteq \text{DTIME}(2^{O(\log^5 n)}) \).

3. \(\min\{ m/\log n, \ nd/(2\log n) \} \)-approximation algorithm for unweighted graphs. \((n = |V(G)| \text{ and } m = |E(G)|) \)

4. \(\min\{ n/2, \ m/d \} \)-approximation algorithm for weighted graphs.

5. if \(G \) has a low-degree spanning tree (in terms of \(d \)) it can be approximated within a small constant factor.
1. not in \textsc{APX} for any fixed $d \geq 2$.

2. if there is a polynomial time algorithm for \textsc{MDBCS}_d, $d \geq 2$, with performance ratio $2^{O(\sqrt{\log n})}$, then \text{NP} \subseteq \text{DTIME}(2^{O(\log^5 n)})$.

3. min\{m/\log n, nd/(2 \log n)\}-approximation algorithm for unweighted graphs. ($n = |V(G)|$ and $m = |E(G)|$)

4. min\{n/2, m/d\}-approximation algorithm for weighted graphs.

5. if G has a low-degree spanning tree (in terms of d) it can be approximated within a small constant factor.
Hardness and approximation

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

1. not in \(\text{APX} \) for any fixed \(d \geq 2 \).

2. if there is a polynomial time algorithm for \(\text{MDBCS}_d \), \(d \geq 2 \), with performance ratio \(2^{O(\sqrt{\log n})} \), then \(\text{NP} \subseteq \text{DTIME}(2^{O(\log^5 n)}) \).

3. \(\min\{m/\log n, \ nd/(2 \log n)\}\)-approximation algorithm for unweighted graphs. \((n = |V(G)| \text{ and } m = |E(G)|) \)

4. \(\min\{n/2, \ m/d\}\)-approximation algorithm for weighted graphs.

5. if \(G \) has a low-degree spanning tree (in terms of \(d \)) it can be approximated within a small constant factor.
Hardness and approximation

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

1. not in \(\text{APX} \) for any fixed \(d \geq 2 \).

2. if there is a polynomial time algorithm for \(\text{MDBCS}_d \), \(d \geq 2 \), with performance ratio \(2^{O(\sqrt{\log n})} \), then \(\text{NP} \subseteq \text{DTIME}(2^{O(\log^5 n)}) \).

3. \(\min\{m/\log n, nd/(2 \log n)\} \)-approximation algorithm for unweighted graphs. \((n = |V(G)| \text{ and } m = |E(G)|)\)

4. \(\min\{n/2, m/d\} \)-approximation algorithm for weighted graphs.

5. if \(G \) has a low-degree spanning tree (in terms of \(d \)) it can be approximated within a small constant factor.
Graph of the thesis

Traffic grooming

Two-period grooming
Bidirectional ring
Bounded-degree request graph
Hardness and approximation
Hardness and approximation

Parameterized complexity

Degree-constrained subgraph problems

Combinatorial designs
Graph partitioning
Hardness of approximation
Approximation algorithms
Graph minors
Treewidth, branchwidth
Graph of the thesis

Traffic grooming

- Two-period grooming
- Bidirectional ring
- Bounded-degree request graph
- Hardness and approximation

Parameterized complexity

- Hardness and approximation
- Parameterized reductions
- Graph minors
- Treewidth, branchwidth

Degree-constrained subgraph problems

- Dynamic programming
- FPT algorithms

Approximation algorithms

Combinatorial designs

Graph partitioning

Hardness of approximation
Some words on parameterized complexity

- **Idea**: given an NP-hard problem, fix one parameter of the input to see if the problem gets more “tractable”.

 Example: the size of a **Vertex Cover**.

- Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

 $$f(k) \cdot n^{O(1)}, \text{ for some function } f.$$

 Examples: k-**Vertex Cover**, k-**Longest Path**.

- Barometer of intractability:

 $$\text{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots \subseteq \text{XP}$$
Some words on parameterized complexity

- **Idea**: given an NP-hard problem, fix one parameter of the input to see if the problem gets more “tractable”.

 Example: the size of a **VERTEX COVER**.

- Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

 \[f(k) \cdot n^{O(1)}, \text{ for some function } f. \]

 Examples: k-**VERTEX COVER**, k-**LONGEST PATH**.

- Barometer of intractability:

 \[\text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \text{W}[3] \subseteq \cdots \subseteq \text{XP} \]
Some words on parameterized complexity

- **Idea**: given an NP-hard problem, fix one parameter of the input to see if the problem gets more “tractable”.

 Example: the size of a **Vertex Cover**.

- **Given a (NP-hard) problem with input of size** n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

 $f(k) \cdot n^{O(1)}$, for some function f.

 Examples: k-**Vertex Cover**, k-**Longest Path**.

- **Barometer of intractability**:

 \[
 \text{FPT} \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \text{W}[3] \subseteq \cdots \subseteq \text{XP}
 \]
Some words on parameterized complexity

- **Idea**: given an NP-hard problem, fix one parameter of the input to see if the problem gets more “tractable”.

Example: the size of a **Vertex Cover**.

- Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

 $$f(k) \cdot n^{O(1)},$$

 for some function f.

Examples: k-**Vertex Cover**, k-**Longest Path**.

- Barometer of intractability:

 $$\text{FPT } \subseteq \text{W}[1] \subseteq \text{W}[2] \subseteq \text{W}[3] \subseteq \cdots \subseteq \text{XP}$$
Some words on parameterized complexity

- **Idea**: given an NP-hard problem, fix one parameter of the input to see if the problem gets more “tractable”.

Example: the size of a VERTEX COVER.

- Given a (NP-hard) problem with input of size n and a parameter k, a **fixed-parameter tractable** (FPT) algorithm runs in

$$f(k) \cdot n^{O(1)}, \text{ for some function } f.$$

Examples: k-VERTEX COVER, k-LONGEST PATH.

- Barometer of intractability:

$$\text{FPT } \subseteq \ W[1] \subseteq \ W[2] \subseteq \ W[3] \subseteq \ \cdots \ \subseteq \ XP$$
Some words on parameterized complexity

- **Idea**: given an NP-hard problem, fix one parameter of the input to see if the problem gets more “tractable”.

 Example: the size of a **Vertex Cover**.

- Given a (NP-hard) problem with input of size n and a parameter k, a **fixed-parameter tractable (FPT)** algorithm runs in

 $$f(k) \cdot n^{O(1)}, \text{ for some function } f.$$

 Examples: k-**Vertex Cover**, k-**Longest Path**.

- Barometer of intractability:

 $$\text{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots \subseteq \text{XP}$$
We have studied the parameterized complexity of finding degree-constrained subgraphs, with parameter = number of vertices of the desired subgraph.

Namely, given two integers d and k, the problems of finding

1. a d-regular subgraph (induced or not) with at most $\leq k$ vertices.
2. a subgraph with at most $\leq k$ vertices and of minimum degree $\geq d$.

We prove that these problems are $W[1]$-hard in general graphs.

We then provide explicit FPT algorithms to solve both problems in graphs with bounded local treewidth and graphs with excluded minors, using a dynamic programming approach.
We have studied the parameterized complexity of finding degree-constrained subgraphs, with parameter \(= \) number of vertices of the desired subgraph.

Namely, given two integers \(d \) and \(k \), the problems of finding

1. a \(d \)-regular subgraph (induced or not) with at most \(\leq k \) vertices.
2. a subgraph with at most \(\leq k \) vertices and of minimum degree \(\geq d \).

We prove that

1. these problems are \(W[1] \)-hard in general graphs.
2. We then provide explicit FPT algorithms to solve both problems in graphs with bounded local treewidth and graphs with excluded minors, using a dynamic programming approach.
We have studied the parameterized complexity of finding degree-constrained subgraphs, with

parameter = number of vertices of the desired subgraph

Namely, given two integers d and k, the problems of finding

1. a d-regular subgraph (induced or not) with at most $\leq k$ vertices.
2. a subgraph with at most $\leq k$ vertices and of minimum degree $\geq d$.

We prove that

1. these problems are $W[1]$-hard in general graphs.
2. We then provide explicit FPT algorithms to solve both problems in graphs with bounded local treewidth and graphs with excluded minors, using a dynamic programming approach.
Parameterized complexity of finding degree-constrained subgraphs
With Omid Amini and Saket Saurabh

We have studied the parameterized complexity of finding degree-constrained subgraphs, with
parameter = number of vertices of the desired subgraph

Namely, given two integers d and k, the problems of finding

1. a d-regular subgraph (induced or not) with at most $\leq k$ vertices.
2. a subgraph with at most $\leq k$ vertices and of minimum degree $\geq d$.

We prove that

1. these problems are $W[1]$-hard in general graphs.
2. We then provide explicit FPT algorithms to solve both problems in graphs with bounded local treewidth and graphs with excluded minors, using a dynamic programming approach.
Parameterized complexity of finding degree-constrained subgraphs

With Omid Amini and Saket Saurabh

- We have studied the parameterized complexity of finding degree-constrained subgraphs, with parameter $= \text{number of vertices of the desired subgraph}$

- Namely, given two integers d and k, the problems of finding
 1. a d-regular subgraph (induced or not) with at most $\leq k$ vertices.
 2. a subgraph with at most $\leq k$ vertices and of minimum degree $\geq d$.

- We prove that
 1. these problems are $W[1]$-hard in general graphs.
 2. We then provide explicit FPT algorithms to solve both problems in graphs with bounded local treewidth and graphs with excluded minors, using a dynamic programming approach.
Graph of the thesis

Traffic grooming

- Two-period grooming
- Bidirectional ring
- Bounded-degree request graph
- Hardness and approximation

Degree-constrained subgraph problems

- Hardness and approximation
- Parameterized complexity

Subexponential algorithms

- Graph partitioning
- Hardness of approximation
- Parameterized reductions
- Approximation algorithms
- Graph minors
- Treewidth, branchwidth
- Dynamic programming
- FPT algorithms

Combinatorial designs
Graph of the thesis

- Traffic grooming
 - Two-period grooming
 - Bidirectional ring
 - Bounded-degree request graph
 - Hardness and approximation

- Degree-constrained subgraph problems
 - Hardness and approximation
 - Parameterized complexity
 - Subexponential algorithms
 - graph minors
 - bidimensionality
 - FPT algorithms
 - treewidth, branchwidth
 - dynamic programming
 - graph partitioning
 - combinatorial designs
 - hardness of approximation
 - parameterized reductions
 - approximation algorithms

Ignasi Sau Valls (Mascotte – MA4)
Ph.D defense
October 16, 2009
Graph of the thesis

Traffic grooming

- Two-period grooming
- Bidirectional ring
- Bounded-degree request graph
- Hardness and approximation

- Graph partitioning
- Approximation algorithms
- Parameterized reductions
- Hardness of approximation

K_{3,3}

- Combinatorial designs
- Bidimensionality
- Dynamic programming
- FPT algorithms

Ignasi Sau Valls (Mascotte – MA4)
Ph.D defense
October 16, 2009
FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k:

- A **fixed-parameter tractable** (FPT) algorithm runs in

 $$f(k) \cdot n^{O(1)},$$
 for some function f.

 Examples: k-**VERTEX COVER**, k-**LONGEST PATH**.

- Problem: $f(k)$ can be huge!!! (for instance, $f(k) = 2^{3456^k}$)

- A subexponential parameterized algorithm is a FPT algo s.t.

 $$f(k) = 2^{o(k)}.$$

- Typically $f(k) = 2^{O(\sqrt{k})}$.
Given a (NP-hard) problem with input of size n and a parameter k:

- A **fixed-parameter tractable** (FPT) algorithm runs in $f(k) \cdot n^{O(1)}$, for some function f.

Examples: k-VERTEX COVER, k-LONGEST PATH.

- Problem: $f(k)$ can be huge!!! (for instance, $f(k) = 2^{3456k}$)

- A subexponential parameterized algorithm is a FPT algo s.t. $f(k) = 2^{o(k)}$.

- Typically $f(k) = 2^{O(\sqrt{k})}$.
Given a (NP-hard) problem with input of size \(n \) and a parameter \(k \):

- **A fixed-parameter tractable** (FPT) algorithm runs in
 \[
 f(k) \cdot n^{O(1)}, \quad \text{for some function } f.
 \]

Examples: \(k\text{-VERTEX COVER}, k\text{-LONGEST PATH} \).

- **Problem:** \(f(k) \) can be huge!!! (for instance, \(f(k) = 2^{3456^k} \))

- **A subexponential parameterized algorithm** is a FPT algo s.t.
 \[
 f(k) = 2^{o(k)}.
 \]

- Typically \(f(k) = 2^{O(\sqrt{k})} \).
FPT and subexponential algorithms

Given a (NP-hard) problem with input of size n and a parameter k:

- A **fixed-parameter tractable** (FPT) algorithm runs in $f(k) \cdot n^{O(1)}$, for some function f.

Examples: k-VERTEX COVER, k-LONGEST PATH.

- **Problem:** $f(k)$ can be huge!!! (for instance, $f(k) = 2^{3456^k}$)

- A **subexponential parameterized algorithm** is a FPT algo s.t.
 $$f(k) = 2^{o(k)}.$$

- Typically $f(k) = 2^{O(\sqrt{k})}$.
General idea / meta-algorithmic framework

Given a parameter P defined in a planar graph G, $P(G) \leq k$?

First we compute $bw(G)$. [Seymour and Thomas. Combinatorica’94]

(A) Combinatorial bounds via Graph Minor theorems:

- $bw(G)$ is “big” \Rightarrow P is also “big” (typically, $P = \Omega(bw^2)$).

 - Bidimensionality: use square grids as “certificates”.
 [Demaine, Fomin, Hajiaghayi, Thilikos. SODA’04, J.ACM’05]

(B) Dynamic programming which uses graph structure:

- If $bw(G)$ is “small”, we decide P by “fast” dynamic programming.

 - Catalan structures.
 [Dorn, Fomin, Thilikos. ICALP’07, SODA’08]

★ With D.M. Thilikos we have adapted this framework to $MDBCS_d$, as well as for a few variants, introducing some general techniques.
Given a parameter P defined in a planar graph G, $P(G) \leq k$?

First we compute $bw(G)$. [Seymour and Thomas. *Combinatorica’94*]

A Combinatorial bounds via Graph Minor theorems:

$bw(G)$ is “big” \Rightarrow P is also “big” (typically, $P = \Omega(bw^2)$).

- Bidimensionality: use square grids as “certificates”.
 [Demaine, Fomin, Hajiaghayi, Thilikos. *SODA’04, J.ACM’05*]

B Dynamic programming which uses graph structure:

If $bw(G)$ is “small”, we decide P by “fast” dynamic programming.

- Catalan structures.
 [Dorn, Fomin, Thilikos. *ICALP’07, SODA’08*]

★ With D.M. Thilikos we have adapted this framework to MDBCS$_d$, as well as for a few variants, introducing some general techniques.
General idea / *meta-algorithmic* framework

Given a parameter P defined in a planar graph G, $P(G) \leq k$?

First we compute $bw(G)$. [Seymour and Thomas. *Combinatorica’94*]

(A) Combinatorial bounds via Graph Minor theorems:

\[bw(G) \text{ is “big” } \Rightarrow P \text{ is also “big” } (\text{typically, } P = \Omega(bw^2)). \]

- **Bidimensionality:** use square grids as “certificates”.
 [Demaine, Fomin, Hajiaghayi, Thilikos. *SODA’04, J.ACM’05*]

(B) Dynamic programming which uses graph structure:

If $bw(G)$ is “small”, we decide P by “fast” dynamic programming.

- **Catalan structures.**
 [Dorn, Fomin, Thilikos. *ICALP’07, SODA’08*]

★ With D.M. Thilikos we have adapted this framework to MDBCS
to MDBCS as well as for a few variants, introducing some general techniques.
Given a parameter P defined in a planar graph G, $P(G) \leq k$?

First we compute $bw(G)$. [Seymour and Thomas. *Combinatorica’94*]

(A) Combinatorial bounds via Graph Minor theorems:

$bw(G)$ is “big” \Rightarrow P is also “big” (typically, $P = \Omega(bw^2)$).

- **Bidimensionality**: use square grids as “certificates”.
 [Demaine, Fomin, Hajiaghayi, Thilikos. *SODA’04, J.ACM’05*]

(B) Dynamic programming which uses graph structure:

If $bw(G)$ is “small”, we decide P by “fast” dynamic programming.

- **Catalan structures**.
 [Dorn, Fomin, Thilikos. *ICALP’07, SODA’08*]

With D.M. Thilikos we have adapted this framework to MDBCS$_d$, as well as for a few variants, introducing some general techniques.
Given a parameter P defined in a planar graph G, $P(G) \leq k$?

First we compute $bw(G)$. [Seymour and Thomas. Combinatorica’94]

(A) Combinatorial bounds via Graph Minor theorems:

$bw(G)$ is “big” \Rightarrow P is also “big” (typically, $P = \Omega(bw^2)$).

- Bidimensionality: use square grids as “certificates”.
 [Demaine, Fomin, Hajiaghayi, Thilikos. SODA’04, J.ACM’05]

(B) Dynamic programming which uses graph structure:

If $bw(G)$ is “small”, we decide P by “fast” dynamic programming.

- Catalan structures.
 [Dorn, Fomin, Thilikos. ICALP’07, SODA’08]

★ With D.M. Thilikos we have adapted this framework to MDBCS$_d$, as well as for a few variants, introducing some general techniques.
General idea / meta-algorithmic framework

Given a parameter P defined in a planar graph G, $P(G) \leq k$?

First we compute $bw(G)$. [Seymour and Thomas. Combinatorica’94]

(A) Combinatorial bounds via Graph Minor theorems:

$bw(G)$ is “big” \Rightarrow P is also “big” (typically, $P = \Omega(bw^2)$).

- Bidimensionality: use square grids as “certificates”.
 [Demaine, Fomin, Hajiaghayi, Thilikos. SODA’04, J.ACM’05]

(B) Dynamic programming which uses graph structure:

If $bw(G)$ is “small”, we decide P by “fast” dynamic programming.

- Catalan structures.
 [Dorn, Fomin, Thilikos. ICALP’07, SODA’08]

\star With D.M. Thilikos we have adapted this framework to MDBCS$_d$, as well as for a few variants, introducing some general techniques.
General idea / meta-algorithmic framework

Given a parameter P defined in a planar graph G, $P(G) \leq k$?
First we compute $bw(G)$. [Seymour and Thomas. *Combinatorica’94*]

A Combinatorial bounds via Graph Minor theorems:

\[
\text{bw}(G) \text { is “big” } \Rightarrow P \text { is also “big” (typically, } P = \Omega(bw^2)).
\]

- **Bidimensionality:** use square grids as “certificates”.
 [Demaine, Fomin, Hajiaghayi, Thilikos. *SODA’04, J.ACM’05*]

B Dynamic programming which uses graph structure:

If $bw(G)$ is “small”, we decide P by “fast” dynamic programming.

- **Catalan structures.**
 [Dorn, Fomin, Thilikos. *ICALP’07, SODA’08*]

☆ With D.M. Thilikos we have adapted this framework to MDBCS_d, as well as for a few variants, introducing some general techniques.
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

Two-period grooming
Bidirectional ring
Bounded-degree request graph
Hardness and approximation
Hardness and approximation
Parameterized complexity
Subexponential algorithms

Graphs on surfaces

combinatorial designs
graph approximation
hardness of approximation
parameterized reductions
approximation algorithms
graph minors

approximation algorithms

FPT algorithms
bidimensionality
dynamic programming

treewidth, branchwidth

Ignași Sau Valls (Mascotte – MA4)
A **Surface** is a connected compact 2-manifold.
Handles
Cross-caps
Genus of a surface

- **The surface classification Theorem**: any compact, connected and without boundary surface can be obtained from the sphere S^2 by adding **handles** and **cross-caps**.

- **Orientable surfaces**: obtained by adding $g \geq 0$ handles to the sphere S^2, obtaining the g-torus T_g with Euler genus $\text{eg}(T_g) = 2g$.

- **Non-orientable surfaces**: obtained by adding $h > 0$ cross-caps to the sphere S^2, obtaining a non-orientable surface \mathbb{P}_h with Euler genus $\text{eg}(\mathbb{P}_h) = h$.
Genus of a surface

- **The surface classification Theorem:** any compact, connected and without boundary surface can be obtained from the sphere S^2 by adding handles and cross-caps.

- **Orientable surfaces:** obtained by adding $g \geq 0$ handles to the sphere S^2, obtaining the g-torus T_g with Euler genus $eg(T_g) = 2g$.

- **Non-orientable surfaces:** obtained by adding $h > 0$ cross-caps to the sphere S^2, obtaining a non-orientable surface P_h with Euler genus $eg(P_h) = h$.
The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere S^2 by adding handles and cross-caps.

Orientable surfaces: obtained by adding $g \geq 0$ handles to the sphere S^2, obtaining the g-torus T_g with Euler genus $eg(T_g) = 2g$.

Non-orientable surfaces: obtained by adding $h > 0$ cross-caps to the sphere S^2, obtaining a non-orientable surface P_h with Euler genus $eg(P_h) = h$.
An embedding of a graph G on a surface Σ is a drawing of G on Σ without edge crossings.

An embedding defines vertices, edges, and faces.

The Euler genus of a graph G, $\text{eg}(G)$, is the least Euler genus of the surfaces in which G can be embedded.
An embedding of a graph G on a surface Σ is a drawing of G on Σ without edge crossings.

An embedding defines vertices, edges, and faces.

The Euler genus of a graph G, $\text{eg}(G)$, is the least Euler genus of the surfaces in which G can be embedded.
Let G be a graph on n vertices with branchwidth at most k.

We consider graph problems for which dynamic programming uses tables encoding vertex partitions ("Category (C)"). For instance, our approach applies to Maximum d-Degree-Bounded Connected Subgraph, Maximum d-Degree-Bounded Connected Induced Subgraph and several variants, Connected Dominating Set, Connected r-Domination, Connected FVS, Maximum Leaf Spanning Tree, Maximum Full-Degree Spanning Tree, Maximum Eulerian Subgraph, Steiner Tree, Maximum Leaf Tree, ...

For general graphs, the best known algorithms for such problems run in $k^{O(k)} \cdot n$ steps.
Let G be a graph on n vertices with branchwidth at most k.

We consider graph problems for which dynamic programming uses tables encoding vertex partitions ("Category (C)").

For instance, our approach applies to \textsc{Maximum d-Degree-Bounded Connected Subgraph}, \textsc{Maximum d-Degree-Bounded Connected Induced Subgraph} and several variants, \textsc{Connected Dominating Set}, \textsc{Connected r-Domination}, \textsc{Connected FVS}, \textsc{Maximum Leaf Spanning Tree}, \textsc{Maximum Full-Degree Spanning Tree}, \textsc{Maximum Eulerian Subgraph}, \textsc{Steiner Tree}, \textsc{Maximum Leaf Tree}, \ldots

For general graphs, the best known algorithms for such problems run in $k^{O(k)} \cdot n$ steps.
Let G be a graph on n vertices with branchwidth at most k.

We consider graph problems for which dynamic programming uses tables encoding vertex partitions ("Category (C)").

For instance, our approach applies to Maximum d-Degree-Bounded Connected Subgraph, Maximum d-Degree-Bounded Connected Induced Subgraph and several variants, Connected Dominating Set, Connected r-Domination, Connected FVS, Maximum Leaf Spanning Tree, Maximum Full-Degree Spanning Tree, Maximum Eulerian Subgraph, Steiner Tree, Maximum Leaf Tree, . . .

For general graphs, the best known algorithms for such problems run in $k^{O(k)} \cdot n$ steps.
Let G be a graph on n vertices with branchwidth at most k.

We consider graph problems for which dynamic programming uses tables encoding vertex partitions ("Category (C)").

For instance, our approach applies to Maximum d-Degree-Bounded Connected Subgraph, Maximum d-Degree-Bounded Connected Induced Subgraph and several variants, Connected Dominating Set, Connected r-Domination, Connected FVS, Maximum Leaf Spanning Tree, Maximum Full-Degree Spanning Tree, Maximum Eulerian Subgraph, Steiner Tree, Maximum Leaf Tree, ...

For general graphs, the best known algorithms for such problems run in $k^{O(k)} \cdot n$ steps.
From sphere to surface cut decompositions

- We build a framework for the design of $2^{O(k)} \cdot n$ step dynamic programming algorithms on surface-embedded graphs.

- In particular, our results imply and improve all the results in [Dorn, Fomin, and Thilikos. SWAT’06]

- Our approach is based on a new type of branch decomposition, called surface cut decomposition.

- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs. [Seymour and Thomas. Combinatorica’94]
We build a framework for the design of $2^{O(k)} \cdot n$ step dynamic programming algorithms on surface-embedded graphs.

In particular, our results imply and improve all the results in [Dorn, Fomin, and Thilikos. SWAT’06]

Our approach is based on a new type of branch decomposition, called surface cut decomposition.

Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs. [Seymour and Thomas. Combinatorica’94]
We build a framework for the design of $2^{O(k)} \cdot n$ step dynamic programming algorithms on \textbf{surface-embedded} graphs.

In particular, our results imply and improve all the results in [Dorn, Fomin, and Thilikos. \textit{SWAT’06}]

Our approach is based on a new type of branch decomposition, called \textbf{surface cut decomposition}.

Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs. [Seymour and Thomas. \textit{Combinatorica’94}]
We build a framework for the design of $2^{O(k)} \cdot n$ step dynamic programming algorithms on surface-embedded graphs.

In particular, our results imply and improve all the results in [Dorn, Fomin, and Thilikos. SWAT’06]

Our approach is based on a new type of branch decomposition, called surface cut decomposition.

Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs. [Seymour and Thomas. Combinatorica’94]
Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to S^1 that meets G only at vertices.
Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to S^1 that meets G only at vertices.
Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to S^1 that meets G only at vertices.
Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to S^1 that meets G only at vertices.
Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to S^1 that meets G only at vertices.
Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to S^1 that meets G only at vertices.
Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to \mathbb{S}^1 that meets G only at vertices.
Sphere cut decompositions

- **Sphere cut decomposition**: Branch decomposition where the vertices in each \(\text{mid}(e) \) are situated around a noose.

- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect \(\text{mid}(e) \).

- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?

- Exactly the number of non-crossing partitions over \(\ell \) elements, which is given by the \(\ell \)-th Catalan number:

\[
\text{CN}(\ell) = \frac{1}{\ell + 1} \binom{2\ell}{\ell} \sim \frac{4^\ell}{\sqrt{\pi \ell^{3/2}}} \approx 4^\ell.
\]
Sphere cut decompositions

- **Sphere cut decomposition**: Branch decomposition where the vertices in each \(\text{mid}(e) \) are situated around a noose.

- The **size of the tables** of a dynamic programming algorithm depend on how many ways a partial solution can intersect \(\text{mid}(e) \).

- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?

- Exactly the number of **non-crossing partitions** over \(\ell \) elements, which is given by the \(\ell \)-th Catalan number:

\[
\text{CN}(\ell) = \frac{1}{\ell + 1} \binom{2\ell}{\ell} \sim \frac{4^\ell}{\sqrt{\pi} \ell^{3/2}} \approx 4^\ell.
\]
Sphere cut decompositions

- **Sphere cut decomposition**: Branch decomposition where the vertices in each \(\text{mid}(e) \) are situated around a noose.

- The **size of the tables** of a dynamic programming algorithm depend on how many ways a partial solution can intersect \(\text{mid}(e) \).

- In how many ways we can draw **polygons** inside a **circle** such that they touch the circle only on its vertices and they do not intersect?

- Exactly the number of **non-crossing partitions** over \(\ell \) elements, which is given by the \(\ell \)-th Catalan number:

\[
CN(\ell) = \frac{1}{\ell + 1} \binom{2\ell}{\ell} \sim \frac{4^\ell}{\sqrt{\pi} \ell^{3/2}} \approx 4^\ell.
\]
Sphere cut decompositions

- **Sphere cut decomposition**: Branch decomposition where the vertices in each \(\text{mid}(e)\) are situated around a noose.

- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect \(\text{mid}(e)\).

- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?

Exactly the number of *non-crossing partitions* over \(\ell\) elements, which is given by the \(\ell\)-th Catalan number:

\[
\text{CN}(\ell) = \frac{1}{\ell + 1} \binom{2\ell}{\ell} \sim \frac{4^\ell}{\sqrt{\pi} \ell^{3/2}} \approx 4^\ell.
\]
Sphere cut decompositions

- **Sphere cut decomposition**: Branch decomposition where the vertices in each $\text{mid}(e)$ are situated around a noose.

- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect $\text{mid}(e)$.

- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?

\[\text{Exactly the number of non-crossing partitions over } \ell \text{ elements, which is given by the } \ell\text{-th Catalan number:} \]

\[\text{CN}(\ell) = \frac{1}{\ell + 1} \binom{2\ell}{\ell} \sim \frac{4^\ell}{\sqrt{\pi} \ell^{3/2}} \approx 4^\ell. \]
Let G be a graph embedded in a surface Σ, with $\text{eg}(\Sigma) = g$.

A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A| = \mathcal{O}(g)$, s.t. for all $e \in E(T)$

- either $|\text{mid}(e) \setminus A| \leq 2$,
- or
 - the vertices in $\text{mid}(e) \setminus A$ are contained in a set N of $\mathcal{O}(g)$ nooses;
 - these nooses intersect in $\mathcal{O}(g)$ vertices;
 - $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.
Let G be a graph embedded in a surface Σ, with $\text{eg}(\Sigma) = g$.

A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A| = \mathcal{O}(g)$, s.t. for all $e \in E(T)$

- either $|\text{mid}(e) \setminus A| \leq 2$,
- or
 - the vertices in $\text{mid}(e) \setminus A$ are contained in a set N of $\mathcal{O}(g)$ nooses;
 - these nooses intersect in $\mathcal{O}(g)$ vertices;
 - $\Sigma \setminus \bigcup_{N \in N} N$ contains exactly two connected components.
Let G be a graph embedded in a surface Σ, with $\text{eg}(\Sigma) = g$.

A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A| = \mathcal{O}(g)$, s.t. for all $e \in E(T)$

- either $|\text{mid}(e) \setminus A| \leq 2$,
- or
 - the vertices in $\text{mid}(e) \setminus A$ are contained in a set \mathcal{N} of $\mathcal{O}(g)$ nooses;
 - these nooses intersect in $\mathcal{O}(g)$ vertices;
 - $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.
Let G be a graph embedded in a surface Σ, with $\text{eg}(\Sigma) = g$.

A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A| = \mathcal{O}(g)$, s.t. for all $e \in E(T)$

- either $|\text{mid}(e) \setminus A| \leq 2$,
- or
 - the vertices in $\text{mid}(e) \setminus A$ are contained in a set \mathcal{N} of $\mathcal{O}(g)$ nooses;
 - these nooses intersect in $\mathcal{O}(g)$ vertices;
 - $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.
Let G be a graph embedded in a surface Σ, with $\text{eg}(\Sigma) = g$.

A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A| = \mathcal{O}(g)$, s.t. for all $e \in E(T)$

- either $|\text{mid}(e) \setminus A| \leq 2$,
- or
 - the vertices in $\text{mid}(e) \setminus A$ are contained in a set \mathcal{N} of $\mathcal{O}(g)$ nooses;
 - these nooses intersect in $\mathcal{O}(g)$ vertices;
 - $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.
Let G be a graph embedded in a surface Σ, with $\text{eg}(\Sigma) = g$.

A **surface cut decomposition** of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A| = \mathcal{O}(g)$, s.t. for all $e \in E(T)$

- either $|\text{mid}(e) \setminus A| \leq 2$,
- or
 - the vertices in $\text{mid}(e) \setminus A$ are contained in a set \mathcal{N} of $\mathcal{O}(g)$ nooses;
 - these nooses intersect in $\mathcal{O}(g)$ vertices;
 - $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.
How to use surface cut decompositions?

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus g, with $bw(G) \leq k$, one can construct in $2^{3k+O(\log k)} \cdot n^3$ time a surface cut decomposition (T, μ) of G of width at most $27k + O(g)$.

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

Theorem (Rué, Thilikos, and S.)

Given a problem P belonging to Category (C) in a graph G embedded in a surface of Euler genus g, with $bw(G) \leq k$, the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by $2^{O(k)} \cdot k^{O(g)} \cdot g^{O(g)}$.

This fact is proved using topological graph theory and analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.
How to use surface cut decompositions?

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus g, with $bw(G) \leq k$, one can construct in $2^{3k+O(\log k)} \cdot n^3$ time a surface cut decomposition (T, μ) of G of width at most $27k + O(g)$.

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

Theorem (Rué, Thilikos, and S.)

Given a problem P belonging to Category (C) in a graph G embedded in a surface of Euler genus g, with $bw(G) \leq k$, the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by $2^{O(k)} \cdot k^{O(g)} \cdot g^{O(g)}$.

This fact is proved using topological graph theory and analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.
How to use surface cut decompositions?

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

> Given a G on n vertices embedded in a surface of Euler genus g, with $bw(G) \leq k$, one can construct in $2^{3k + O(\log k)} \cdot n^3$ time a surface cut decomposition (T, μ) of G of width at most $27k + O(g)$.

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

Theorem (Rué, Thilikos, and S.)

> Given a problem P belonging to Category (C) in a graph G embedded in a surface of Euler genus g, with $bw(G) \leq k$, the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by $2^{O(k)} \cdot k^{O(g)} \cdot g^{O(g)}$.

This fact is proved using topological graph theory and analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.
How to use surface cut decompositions?

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus g, with $\text{bw}(G) \leq k$, one can construct in $2^{3k + O(\log k)} \cdot n^3$ time a surface cut decomposition (T, μ) of G of width at most $27k + O(g)$.

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is *single exponential*:

Theorem (Rué, Thilikos, and S.)

Given a problem P belonging to Category (C) in a graph G embedded in a surface of Euler genus g, with $\text{bw}(G) \leq k$, the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by $2^{O(k)} \cdot k^{O(g)} \cdot g^{O(g)}$.

This fact is proved using topological graph theory and analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.
How to use surface cut decompositions?

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus g, with $bw(G) \leq k$, one can construct in $2^{3k+O(\log k) \cdot n^3}$ time a surface cut decomposition (T, μ) of G of width at most $27k + O(g)$.

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

Theorem (Rué, Thilikos, and S.)

Given a problem P belonging to Category (C) in a graph G embedded in a surface of Euler genus g, with $bw(G) \leq k$, the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by $2^{O(k)} \cdot k^{O(g)} \cdot g^{O(g)}$.

This fact is proved using topological graph theory and analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

Two-period grooming
Bidirectional ring
Bounded-degree request graph
Hardness and approximation

Hardness and approximation
Parameterized complexity
Subexponential algorithms
Graphs on surfaces

Combinatorial designs
Hardness of approximation
Parameterized reductions
Graph minors
Treewidth, branchwidth
Topological graph theory
Bidimensionality
Dynamic programming
FPT algorithms

Graph partitioning
Approximation algorithms
Approximation algorithms

Ignasi Sau Valls (Mascotte – MA4)
Ph.D defense
October 16, 2009 52 / 54
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

Two-period grooming Bidirectional ring Bounded-degree request graph Hardness and approximation

Hardness and approximation Parameterized complexity Subexponential algorithms Graphs on surfaces

Combinatorial designs Graph partitioning Parameterized reductions Approximation algorithms

Graph minors Treewidth, branchwidth Topological graph theory

Bidimensionality Dynamic programming FPT algorithms

Graph theory Computational complexity

Ignasi Sau Valls (Mascotte – MA4) Ph.D defense October 16, 2009
Graph of the thesis

Traffic grooming

Degree-constrained subgraph problems

Two-period grooming
Bidirectional ring
Bounded-degree request graph
Hardness and approximation

Hardness and approximation
Parameterized complexity
Subexponential algorithms
Graphs on surfaces

Hardness of approximation
Parameterized reductions
Approximation algorithms
Graph minors
Treewidth, branchwidth
Topological graph theory
Bidimensionality
Dynamic programming
FPT algorithms

Combinatorial designs
Graph partitioning
Graph theory

Computational complexity
Algorithms

Graph of the thesis
Further research

- Open problems and conjectures in each chapter of the manuscript.

- Traffic grooming:
 - Close the *complexity gap* when C is part of the input.
 - In rings, determine the *best routing* for each request graph.
 - Consider other physical topologies.

- Where is the *limit of generalization*? *Algorithmic meta-theorems*

- Better understand the structure and the algorithmic properties of sparse families of graphs.

- Graph coloring, probabilistic method, …
Further research

- Open problems and conjectures in each chapter of the manuscript.

- **Traffic grooming:**
 - Close the *complexity gap* when C is part of the input.
 - In rings, determine the best routing for each request graph.
 - Consider other physical topologies.

- Where is the *limit* of generalization? algorithmic meta-theorems

- Better understand the structure and the algorithmic properties of sparse families of graphs.

- Graph coloring, probabilistic method, …
Further research

- Open problems and conjectures in each chapter of the manuscript.

- **Traffic grooming:**
 - Close the *complexity gap* when C is part of the input.
 - In rings, determine the *best routing* for each request graph.
 - Consider other physical topologies.

- Where is the *limit* of generalization? algorithmic meta-theorems

- Better understand the structure and the algorithmic properties of sparse families of graphs.

- Graph coloring, probabilistic method, ...
Further research

- Open problems and conjectures in each chapter of the manuscript.

- **Traffic grooming:**
 - Close the *complexity gap* when C is part of the input.
 - In rings, determine the *best routing* for each request graph.
 - Consider other physical topologies.

- Where is the *limit* of generalization? *algorithmic meta-theorems*

- Better understand the *structure* and the *algorithmic properties* of sparse families of graphs.

- Graph coloring, probabilistic method, ...
Further research

- Open problems and conjectures in each chapter of the manuscript.

- **Traffic grooming:**
 - Close the complexity gap when C is part of the input.
 - In rings, determine the best routing for each request graph.
 - Consider other physical topologies.

- Where is the limit of generalization? **algorithmic meta-theorems**
 - Better understand the structure and the algorithmic properties of sparse families of graphs.
 - Graph coloring, probabilistic method, ...
Further research

- Open problems and conjectures in each chapter of the manuscript.

- **Traffic grooming:**
 - Close the *complexity gap* when C is part of the input.
 - In rings, determine the *best routing* for each request graph.
 - Consider other physical topologies.

- Where is the *limit* of generalization? *algorithmic meta-theorems*
 - Better understand the *structure* and the *algorithmic properties* of sparse families of graphs.
 - Graph coloring, probabilistic method, …
Further research

- Open problems and conjectures in each chapter of the manuscript.

- **Traffic grooming:**
 - Close the *complexity gap* when C is part of the input.
 - In rings, determine the *best routing* for each request graph.
 - Consider other physical topologies.

- Where is the *limit* of generalization? *Algorithmic meta-theorems*

- Better understand the *structure* and the *algorithmic properties* of *sparse* families of graphs.

- Graph coloring, probabilistic method, . . .
Further research

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
 - Close the complexity gap when C is part of the input.
 - In rings, determine the best routing for each request graph.
 - Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems
- Better understand the structure and the algorithmic properties of sparse families of graphs.
- Graph coloring, probabilistic method, ...
Gràcies!