Hitting and Harvesting Pumpkins

Gwenaél Joret Christophe Paul Ignasi Sau*
Saket Saurabh Stéphan Thomassé

*CNRS, LIRMM, Montpellier, France.
ESA 2011. Saarbriicken, Germany.

Outline of the talk

Introduction and summary of results
Hitting pumpkins
Harvesting (=packing) pumpkins

FPT algorithms

Approximation algorithms

Conclusions and further research

Next section is...

Introduction and summary of results

Pumpkins @

Pumpkins @

c-pumpkin:

N.B: “graph” = multigraph

Graphs with no c-pumpkin minor

Graphs with no c-pumpkin minor

» ¢ = 1: empty graphs

Graphs with no c-pumpkin minor

» ¢ = 1: empty graphs

(o)
o
;é [o]
» ¢ = 2: forests

A

Graphs with no c-pumpkin minor

» ¢ = 1: empty graphs

(o)
o
;é [o]
» ¢ = 2: forests

A

» ¢ = 3: no two cycles share an edge

%

> etc.

Next subsection is...

Introduction and summary of results
Hitting pumpkins

Hitting pumpkins
For the whole talk:
> ¢ > 1 fixed integer
» G input graph
> n:=|V(G)|

Hitting pumpkins
For the whole talk:
> ¢ > 1 fixed integer
» G input graph
> n:=|V(G)|

c-pumpkin hitting set:
vertex subset X C V(G) s.t. G — X has no c-pumpkin minor

Hitting pumpkins
For the whole talk:
> ¢ > 1 fixed integer
» G input graph
> n:=|V(G)|

c-pumpkin hitting set:
vertex subset X C V(G) s.t. G — X has no c-pumpkin minor

Hitting set (or transversal) number:
min. size of a c-pumpkin hitting set

c-PUMPKIN HITTING SET problem:
Find a c-pumpkin hitting set of minimum size.

NP-hard Ve > 1

c-PUMPKIN HITTING SET problem:
Find a c-pumpkin hitting set of minimum size.

NP-hard Ve > 1

Interested in FPT and approximation algorithms

In parameterized version:
> extra parameter k

» goal: decide if 3 c-pumpkin hitting set of size < k

Some special cases

¢ =1: VERTEX COVER

» 2-approximation algorithm
» O(1.2738% + kn)-time FPT algorithm [Chen, Kanj, Xia '10]

Some special cases

c =1: VERTEX COVER
» 2-approximation algorithm
» O(1.2738% + kn)-time FPT algorithm [Chen, Kanj, Xia '10]

¢ = 2: FEEDBACK VERTEX SET
» 2-approximation algorithms [Bafman, Berman, Fujito '99, Becker & Geiger '96]
» 0(3.83% - k - n?)-time FPT algorithm [Cao, Chen, Liu '10]

Some special cases

c =1: VERTEX COVER
» 2-approximation algorithm
» O(1.2738% + kn)-time FPT algorithm [Chen, Kanj, Xia '10]

¢ = 2: FEEDBACK VERTEX SET

» 2-approximation algorithms [Bafman, Berman, Fujito '99, Becker & Geiger '96]
» 0(3.83% - k - n?)-time FPT algorithm [Cao, Chen, Liu '10]

¢ = 3: DIAMOND HITTING SET

> 9—appr0Ximati0n algonthm [Fiorini, Joret, Pietropaoli '10]

VC > 1: [Fomin, Lokshtanov, Misra, Philip, Saurabh "11]
» O(log®? OPT)-approximation algorithm
» 20(klogk) ;O(1)_time FPT algorithm

VC > 1: [Fomin, Lokshtanov, Misra, Philip, Saurabh "11]
» O(log®? OPT)-approximation algorithm
» 20(klogk) ;O(1)_time FPT algorithm

Question: Does there exist a 20(K) nO(1)_time FPT algorithm
Ve > 17 (called single-exponential algorithm)

VC > 1: [Fomin, Lokshtanov, Misra, Philip, Saurabh '11]
» O(log®? OPT)-approximation algorithm
» 20(klogk) ;O(1)_time FPT algorithm

Question: Does there exist a 20(K) nO(1)_time FPT algorithm
Ve > 17 (called single-exponential algorithm)

Theorem (Joret, Paul, S., Saurabh, Thomassé)
There is a single-exponential FPT algorithm V¢ > 1

N.B: no 2°(K) nO(1)_time FPT algorithm unless ETH fails

Next subsection is...

Introduction and summary of results

Harvesting (=packing) pumpkins

Packing pumpkins

c-pumpkin packing:
collection of vertex-disjoint subgraphs of G, each containing a
c-pumpkin minor

(9]
1}
N

Packing pumpkins

c-pumpkin packing:
collection of vertex-disjoint subgraphs of G, each containing a
c-pumpkin minor

(9]
1}
N

Packing number: max. cardinality of a c-pumpkin packing

c-PUMPKIN PACKING problem:
Find a c-pumpkin packing of max. cardinality.

NP-hard Vc > 2

c-PUMPKIN PACKING problem:
Find a c-pumpkin packing of max. cardinality.

NP-hard Vc > 2

c=1: MAXIMUM MATCHING

c-PUMPKIN PACKING problem:

Find a c-pumpkin packing of max. cardinality.

NP-hard Vc > 2

c=1: MAXIMUM MATCHING

c =2 : MAXIMUM CYCLE PACKING

v

Q(log!/?7¢ n)-inapproximability

v

O(log n)-approximation algorithm [Krivelevich, Nutov, Salavatipour '07]

[Friggstad, Salavatipour '11]

c-PUMPKIN PACKING problem:
Find a c-pumpkin packing of max. cardinality.

NP-hard Vc > 2
c=1: MAXIMUM MATCHING

c =2 : MAXIMUM CYCLE PACKING
» O(log n)-approximation algorithm [Krivelevich, Nutov, Salavatipour 07]

> Q(|Og1/2_€ n)-ina pprOXImabI|Ity [Friggstad, Salavatipour '11]

Question: approximation algorithms for ¢ > 37

Approximate min-max relation for packings and hitting sets:

Theorem (Joret, Paul, S., Saurabh, Thomassé)
There exist

» a c-pumpkin packing M, and

> a c-pumpkin hitting set X
s.t. |X| < Oc(log n) - | M|, for every fixed ¢ > 1

Approximate min-max relation for packings and hitting sets:

Theorem (Joret, Paul, S., Saurabh, Thomassé)
There exist

» a c-pumpkin packing M, and

> a c-pumpkin hitting set X
s.t. | X| < Oc(logn) - |M

, for every fixed c > 1

= Oc(log n)-approximation algorithm for c-PUMPKIN HITTING
SET and c-PUMPKIN PACKING for every fixed ¢ > 1

Next section is...

FPT algorithms

FPT algorithm

Goal: Single-exponential FPT algo for c-PUMPKIN HITTING SET

We use the technique of iterative compression

FPT algorithm

Goal: Single-exponential FPT algo for c-PUMPKIN HITTING SET
We use the technique of iterative compression

Switch to DISJOINT ¢c-PUMPKIN HITTING SET problem:
» Input: G, hitting set X with |[X| < k+1

» Question: is there a hitting set X" with |X’| < k that is
disjoint from X7

FPT algorithm

Goal: Single-exponential FPT algo for c-PUMPKIN HITTING SET
We use the technique of iterative compression

Switch to DISJOINT c-PUMPKIN HITTING SET problem:
» Input: G, hitting set X with |[X| < k+1

» Question: is there a hitting set X’ with |X’| < k that is
disjoint from X7

Lemma
dk - n°M) algorithm for DISJIOINT c-PUMPKIN HITTING SET =

(d + 1)k - n°) ajgorithm for c-PUMPKIN HITTING SET

Main ingredients of FPT algorithm:

» poly-time (simple) ad-hoc reduction rules
> protrusion-based reduction rule
» branching rule (with single-exponential # of subproblems)

» linear kernel in a special case

Next section is...

Approximation algorithms

Approximation algorithms

Goal: Finding
» a c-pumpkin packing M and
> a c-pumpkin hitting set X
s.t. |[X]| < Oc(logn) - | M|

Reduction rules
Goal: smaller graph with same packing and hitting set numbers

Reduction rules
Goal: smaller graph with same packing and hitting set numbers

> u, v minimal 2-separator, C a connected component of G \ {u, v}

v

d-pumpkin-model: two disjoint sets of vertices A, B, each inducing
a connected subgraph of G, with at least d edges between them
a(C,u,v): largest integer d such that G[C, u, v]\ uv has a
d-pumpkin-model {A, B} with ue€ Aand v e B

B(C,u,v): largest integer d such that G[C, u,v] 4+ uv has a
d-pumpkin-model {A, B} with u,v € A

» Two cases: > S and o < (8

LB\~
PO A

v

v

Small pumpkins

Subgraph small if of size < h(c) - logn

(where is h some fixed, computable function)

Small pumpkins

Subgraph small if of size < h(c) - logn

(where is h some fixed, computable function)

d*(G) := average degree of underlying simple graph of G

If d*(G) = 2t then 3G’ C G with |V(G')| = O(logn) s.t. G

contains a Ky-minor [Fiorini, Joret, Theis, Wood '10]

Small pumpkins

Subgraph small if of size < h(c) - logn

(where is h some fixed, computable function)

d*(G) := average degree of underlying simple graph of G

If d*(G) = 2t then 3G’ C G with |V(G')| = O(logn) s.t. G

contains a Ky-minor [Fiorini, Joret, Theis, Wood '10]

= if d*(G) > 22V then G has a small subgraph containing a
c-pumpkin minor

Theorem

Either G has a small c-pumpkin minor or some reduction rule can
be applied

Proof idea:
A ,
LA i
W . _C

Approximation algorithm:

M—0; X0
If G not reduced:
Apply reduction rule on G
Call algorithm on resulting graph
Else:
Compute a small c-pumpkin minor M
Call algorithm on G \ V(M), giving a packing M’
and a hitting set X’
M~ M U{M}
X+ XU V(M)

Next section is...

Conclusions and further research

Conclusions and further research

% we provided an FPT algorithm running in time 20() . (1)
time for c-PUMPKIN HITTING SET

Conclusions and further research

% we provided an FPT algorithm running in time 20() . (1)
time for c-PUMPKIN HITTING SET

» can we avoid protrusions?

Conclusions and further research

% we provided an FPT algorithm running in time 20() . (1)
time for c-PUMPKIN HITTING SET

» can we avoid protrusions?
» optimizing the constants

Conclusions and further research

% we provided an FPT algorithm running in time 20() . (1)
time for c-PUMPKIN HITTING SET
» can we avoid protrusions?

» optimizing the constants
> provide lower bounds

Conclusions and further research

% we provided an FPT algorithm running in time 20() . (1)
time for c-PUMPKIN HITTING SET

can we avoid protrusions?
optimizing the constants

provide lower bounds

faster algorithms for sparse graphs?

vV vy vy

Conclusions and further research

% we provided an FPT algorithm running in time 20() . (1)
time for c-PUMPKIN HITTING SET

vV VY VY VvVYy

can we avoid protrusions?

optimizing the constants

provide lower bounds

faster algorithms for sparse graphs?

Challenging: deleting at most k vertices from a given graph
so that the resulting graph has tree-width bounded by some
constant ¢

Conclusions and further research

% we provided an FPT algorithm running in time 20() . (1)
time for c-PUMPKIN HITTING SET

vV VY VY VvVYy

can we avoid protrusions?

optimizing the constants

provide lower bounds

faster algorithms for sparse graphs?

Challenging: deleting at most k vertices from a given graph
so that the resulting graph has tree-width bounded by some
constant ¢ (OK, single-exponential for ¢ =2) [kim, Paul, Philip 1]

Conclusions and further research

% we provided an FPT algorithm running in time 20() . (1)
time for c-PUMPKIN HITTING SET

can we avoid protrusions?

optimizing the constants

provide lower bounds

faster algorithms for sparse graphs?

Challenging: deleting at most k vertices from a given graph
so that the resulting graph has tree-width bounded by some
constant ¢ (OK, single-exponential for ¢ =2) [kim, Paul, Philip 1]

vV VY VY VvVYy

% we provided an O.(log n)-approximation algorithm for
c-PuMPKIN HITTING SET and c-PUMPKIN PACKING

Conclusions and further research

% we provided an FPT algorithm running in time 20() . (1)
time for c-PUMPKIN HITTING SET

can we avoid protrusions?

optimizing the constants

provide lower bounds

faster algorithms for sparse graphs?

Challenging: deleting at most k vertices from a given graph
so that the resulting graph has tree-width bounded by some
constant ¢ (OK, single-exponential for ¢ =2) [kim, Paul, Philip 1]

vV VY VY VvVYy

% we provided an O.(log n)-approximation algorithm for
c-PuMPKIN HITTING SET and c-PUMPKIN PACKING

» constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for ¢ < 3)

Conclusions and further research

% we provided an FPT algorithm running in time 20() . (1)
time for c-PUMPKIN HITTING SET

can we avoid protrusions?

optimizing the constants

provide lower bounds

faster algorithms for sparse graphs?

Challenging: deleting at most k vertices from a given graph
so that the resulting graph has tree-width bounded by some
constant ¢ (OK, single-exponential for ¢ =2) [kim, Paul, Philip 1]

vV VY VY VvVYy

% we provided an O.(log n)-approximation algorithm for
c-PuMPKIN HITTING SET and c-PUMPKIN PACKING
» constant-factor approximation for the hitting version?

(so far, such an algorithm is only known for ¢ < 3)
» packing edge-disjoint c-pumpkin models

Conclusions and further research

% we provided an FPT algorithm running in time 20() . (1)
time for c-PUMPKIN HITTING SET

can we avoid protrusions?

optimizing the constants

provide lower bounds

faster algorithms for sparse graphs?

Challenging: deleting at most k vertices from a given graph
so that the resulting graph has tree-width bounded by some
constant ¢ (OK, single-exponential for ¢ =2) [kim, Paul, Philip 1]

vV VY VY VvVYy

% we provided an O.(log n)-approximation algorithm for
c-PuMPKIN HITTING SET and c-PUMPKIN PACKING

» constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for ¢ < 3)
» packing edge-disjoint c-pumpkin models
» find explicit (small?) function for the Erdés-Pdsa property

Gracies!

	Introduction and summary of results
	Hitting pumpkins
	Harvesting (=packing) pumpkins

	FPT algorithms
	Approximation algorithms
	Conclusions and further research

