
Hitting and Harvesting Pumpkins

Gwenaël Joret Christophe Paul Ignasi Sau∗

Saket Saurabh Stéphan Thomassé

∗CNRS, LIRMM, Montpellier, France.

ESA 2011. Saarbrücken, Germany.

Outline of the talk

Introduction and summary of results
Hitting pumpkins
Harvesting (=packing) pumpkins

FPT algorithms

Approximation algorithms

Conclusions and further research

Next section is...

Introduction and summary of results
Hitting pumpkins
Harvesting (=packing) pumpkins

FPT algorithms

Approximation algorithms

Conclusions and further research

Pumpkins

c-pumpkin:

c

N.B: “graph” = multigraph

Pumpkins

c-pumpkin:

c

N.B: “graph” = multigraph

Graphs with no c-pumpkin minor

I c = 1: empty graphs

I c = 2: forests

I c = 3: no two cycles share an edge

I etc.

Graphs with no c-pumpkin minor

I c = 1: empty graphs

I c = 2: forests

I c = 3: no two cycles share an edge

I etc.

Graphs with no c-pumpkin minor

I c = 1: empty graphs

I c = 2: forests

I c = 3: no two cycles share an edge

I etc.

Graphs with no c-pumpkin minor

I c = 1: empty graphs

I c = 2: forests

I c = 3: no two cycles share an edge

I etc.

Next subsection is...

Introduction and summary of results
Hitting pumpkins
Harvesting (=packing) pumpkins

FPT algorithms

Approximation algorithms

Conclusions and further research

Hitting pumpkins
For the whole talk:

I c > 1 fixed integer
I G input graph
I n := |V (G)|

c-pumpkin hitting set:
vertex subset X ⊆ V (G) s.t. G − X has no c-pumpkin minor

X
c = 3

Hitting set (or transversal) number:
min. size of a c-pumpkin hitting set

Hitting pumpkins
For the whole talk:

I c > 1 fixed integer
I G input graph
I n := |V (G)|

c-pumpkin hitting set:
vertex subset X ⊆ V (G) s.t. G − X has no c-pumpkin minor

X
c = 3

Hitting set (or transversal) number:
min. size of a c-pumpkin hitting set

Hitting pumpkins
For the whole talk:

I c > 1 fixed integer
I G input graph
I n := |V (G)|

c-pumpkin hitting set:
vertex subset X ⊆ V (G) s.t. G − X has no c-pumpkin minor

X
c = 3

Hitting set (or transversal) number:
min. size of a c-pumpkin hitting set

c-Pumpkin Hitting Set problem:
Find a c-pumpkin hitting set of minimum size.

NP-hard ∀c > 1

Interested in FPT and approximation algorithms

In parameterized version:

I extra parameter k

I goal: decide if ∃ c-pumpkin hitting set of size 6 k

c-Pumpkin Hitting Set problem:
Find a c-pumpkin hitting set of minimum size.

NP-hard ∀c > 1

Interested in FPT and approximation algorithms

In parameterized version:

I extra parameter k

I goal: decide if ∃ c-pumpkin hitting set of size 6 k

Some special cases

c = 1: Vertex Cover

I 2-approximation algorithm

I O(1.2738k + kn)-time FPT algorithm [Chen, Kanj, Xia ’10]

c = 2: Feedback Vertex Set

I 2-approximation algorithms [Bafman, Berman, Fujito ’99, Becker & Geiger ’96]

I O(3.83k · k · n2)-time FPT algorithm [Cao, Chen, Liu ’10]

c = 3: Diamond Hitting Set

I 9-approximation algorithm [Fiorini, Joret, Pietropaoli ’10]

Some special cases

c = 1: Vertex Cover

I 2-approximation algorithm

I O(1.2738k + kn)-time FPT algorithm [Chen, Kanj, Xia ’10]

c = 2: Feedback Vertex Set

I 2-approximation algorithms [Bafman, Berman, Fujito ’99, Becker & Geiger ’96]

I O(3.83k · k · n2)-time FPT algorithm [Cao, Chen, Liu ’10]

c = 3: Diamond Hitting Set

I 9-approximation algorithm [Fiorini, Joret, Pietropaoli ’10]

Some special cases

c = 1: Vertex Cover

I 2-approximation algorithm

I O(1.2738k + kn)-time FPT algorithm [Chen, Kanj, Xia ’10]

c = 2: Feedback Vertex Set

I 2-approximation algorithms [Bafman, Berman, Fujito ’99, Becker & Geiger ’96]

I O(3.83k · k · n2)-time FPT algorithm [Cao, Chen, Liu ’10]

c = 3: Diamond Hitting Set

I 9-approximation algorithm [Fiorini, Joret, Pietropaoli ’10]

∀c > 1: [Fomin, Lokshtanov, Misra, Philip, Saurabh ’11]

I O(log3/2 OPT)-approximation algorithm

I 2O(k log k)nO(1)-time FPT algorithm

Question: Does there exist a 2O(k)nO(1)-time FPT algorithm
∀c > 1? (called single-exponential algorithm)

Theorem (Joret, Paul, S., Saurabh, Thomassé)

There is a single-exponential FPT algorithm ∀c > 1

N.B: no 2o(k)nO(1)-time FPT algorithm unless ETH fails

∀c > 1: [Fomin, Lokshtanov, Misra, Philip, Saurabh ’11]

I O(log3/2 OPT)-approximation algorithm

I 2O(k log k)nO(1)-time FPT algorithm

Question: Does there exist a 2O(k)nO(1)-time FPT algorithm
∀c > 1? (called single-exponential algorithm)

Theorem (Joret, Paul, S., Saurabh, Thomassé)

There is a single-exponential FPT algorithm ∀c > 1

N.B: no 2o(k)nO(1)-time FPT algorithm unless ETH fails

∀c > 1: [Fomin, Lokshtanov, Misra, Philip, Saurabh ’11]

I O(log3/2 OPT)-approximation algorithm

I 2O(k log k)nO(1)-time FPT algorithm

Question: Does there exist a 2O(k)nO(1)-time FPT algorithm
∀c > 1? (called single-exponential algorithm)

Theorem (Joret, Paul, S., Saurabh, Thomassé)

There is a single-exponential FPT algorithm ∀c > 1

N.B: no 2o(k)nO(1)-time FPT algorithm unless ETH fails

Next subsection is...

Introduction and summary of results
Hitting pumpkins
Harvesting (=packing) pumpkins

FPT algorithms

Approximation algorithms

Conclusions and further research

Packing pumpkins

c-pumpkin packing:
collection of vertex-disjoint subgraphs of G , each containing a
c-pumpkin minor

c = 2

Packing number: max. cardinality of a c-pumpkin packing

Packing pumpkins

c-pumpkin packing:
collection of vertex-disjoint subgraphs of G , each containing a
c-pumpkin minor

c = 2

Packing number: max. cardinality of a c-pumpkin packing

c-Pumpkin Packing problem:
Find a c-pumpkin packing of max. cardinality.

NP-hard ∀c > 2

c = 1 : Maximum Matching

c = 2 : Maximum Cycle Packing

I O(log n)-approximation algorithm [Krivelevich, Nutov, Salavatipour ’07]

I Ω(log1/2−ε n)-inapproximability [Friggstad, Salavatipour ’11]

Question: approximation algorithms for c > 3?

c-Pumpkin Packing problem:
Find a c-pumpkin packing of max. cardinality.

NP-hard ∀c > 2

c = 1 : Maximum Matching

c = 2 : Maximum Cycle Packing

I O(log n)-approximation algorithm [Krivelevich, Nutov, Salavatipour ’07]

I Ω(log1/2−ε n)-inapproximability [Friggstad, Salavatipour ’11]

Question: approximation algorithms for c > 3?

c-Pumpkin Packing problem:
Find a c-pumpkin packing of max. cardinality.

NP-hard ∀c > 2

c = 1 : Maximum Matching

c = 2 : Maximum Cycle Packing

I O(log n)-approximation algorithm [Krivelevich, Nutov, Salavatipour ’07]

I Ω(log1/2−ε n)-inapproximability [Friggstad, Salavatipour ’11]

Question: approximation algorithms for c > 3?

c-Pumpkin Packing problem:
Find a c-pumpkin packing of max. cardinality.

NP-hard ∀c > 2

c = 1 : Maximum Matching

c = 2 : Maximum Cycle Packing

I O(log n)-approximation algorithm [Krivelevich, Nutov, Salavatipour ’07]

I Ω(log1/2−ε n)-inapproximability [Friggstad, Salavatipour ’11]

Question: approximation algorithms for c > 3?

Approximate min-max relation for packings and hitting sets:

Theorem (Joret, Paul, S., Saurabh, Thomassé)

There exist

I a c-pumpkin packing M, and

I a c-pumpkin hitting set X

s.t. |X | 6 Oc(log n) · |M|, for every fixed c > 1

⇒ Oc(log n)-approximation algorithm for c-Pumpkin Hitting
Set and c-Pumpkin Packing for every fixed c > 1

Approximate min-max relation for packings and hitting sets:

Theorem (Joret, Paul, S., Saurabh, Thomassé)

There exist

I a c-pumpkin packing M, and

I a c-pumpkin hitting set X

s.t. |X | 6 Oc(log n) · |M|, for every fixed c > 1

⇒ Oc(log n)-approximation algorithm for c-Pumpkin Hitting
Set and c-Pumpkin Packing for every fixed c > 1

Next section is...

Introduction and summary of results
Hitting pumpkins
Harvesting (=packing) pumpkins

FPT algorithms

Approximation algorithms

Conclusions and further research

FPT algorithm
Goal: Single-exponential FPT algo for c-Pumpkin Hitting Set

We use the technique of iterative compression

Switch to Disjoint c-Pumpkin Hitting Set problem:

I Input: G , hitting set X with |X | 6 k + 1

I Question: is there a hitting set X ′ with |X ′| 6 k that is
disjoint from X ?

X
c = 3
k = 4

FPT algorithm
Goal: Single-exponential FPT algo for c-Pumpkin Hitting Set

We use the technique of iterative compression

Switch to Disjoint c-Pumpkin Hitting Set problem:

I Input: G , hitting set X with |X | 6 k + 1

I Question: is there a hitting set X ′ with |X ′| 6 k that is
disjoint from X ?

X
c = 3
k = 4

FPT algorithm
Goal: Single-exponential FPT algo for c-Pumpkin Hitting Set

We use the technique of iterative compression

Switch to Disjoint c-Pumpkin Hitting Set problem:

I Input: G , hitting set X with |X | 6 k + 1

I Question: is there a hitting set X ′ with |X ′| 6 k that is
disjoint from X ?

X
c = 3
k = 4

X'

Lemma
dk · nO(1) algorithm for Disjoint c-Pumpkin Hitting Set ⇒
(d + 1)k · nO(1) algorithm for c-Pumpkin Hitting Set

Main ingredients of FPT algorithm:

I poly-time (simple) ad-hoc reduction rules

I protrusion-based reduction rule

I branching rule (with single-exponential # of subproblems)

I linear kernel in a special case

Next section is...

Introduction and summary of results
Hitting pumpkins
Harvesting (=packing) pumpkins

FPT algorithms

Approximation algorithms

Conclusions and further research

Approximation algorithms

Goal: Finding

I a c-pumpkin packing M and

I a c-pumpkin hitting set X

s.t. |X | 6 Oc(log n) · |M|

Reduction rules
Goal: smaller graph with same packing and hitting set numbers

I u, v minimal 2-separator, C a connected component of G \ {u, v}
I d-pumpkin-model: two disjoint sets of vertices A,B, each inducing

a connected subgraph of G , with at least d edges between them

I α(C , u, v): largest integer d such that G [C , u, v] \ uv has a

d-pumpkin-model {A,B} with u ∈ A and v ∈ B

I β(C , u, v): largest integer d such that G [C , u, v] + uv has a

d-pumpkin-model {A,B} with u, v ∈ A

I Two cases: α > β and α < β

u v

u v

Reduction rules
Goal: smaller graph with same packing and hitting set numbers

I u, v minimal 2-separator, C a connected component of G \ {u, v}
I d-pumpkin-model: two disjoint sets of vertices A,B, each inducing

a connected subgraph of G , with at least d edges between them

I α(C , u, v): largest integer d such that G [C , u, v] \ uv has a

d-pumpkin-model {A,B} with u ∈ A and v ∈ B

I β(C , u, v): largest integer d such that G [C , u, v] + uv has a

d-pumpkin-model {A,B} with u, v ∈ A

I Two cases: α > β and α < β

u v

u v

Small pumpkins

Subgraph small if of size 6 h(c) · log n
(where is h some fixed, computable function)

d∗(G) := average degree of underlying simple graph of G

If d∗(G) > 2t then ∃G ′ ⊆ G with |V (G ′)| = Ot(log n) s.t. G ′

contains a Kt-minor [Fiorini, Joret, Theis, Wood ’10]

⇒ if d∗(G) > 22
√
c+1 then G has a small subgraph containing a

c-pumpkin minor

Small pumpkins

Subgraph small if of size 6 h(c) · log n
(where is h some fixed, computable function)

d∗(G) := average degree of underlying simple graph of G

If d∗(G) > 2t then ∃G ′ ⊆ G with |V (G ′)| = Ot(log n) s.t. G ′

contains a Kt-minor [Fiorini, Joret, Theis, Wood ’10]

⇒ if d∗(G) > 22
√
c+1 then G has a small subgraph containing a

c-pumpkin minor

Small pumpkins

Subgraph small if of size 6 h(c) · log n
(where is h some fixed, computable function)

d∗(G) := average degree of underlying simple graph of G

If d∗(G) > 2t then ∃G ′ ⊆ G with |V (G ′)| = Ot(log n) s.t. G ′

contains a Kt-minor [Fiorini, Joret, Theis, Wood ’10]

⇒ if d∗(G) > 22
√
c+1 then G has a small subgraph containing a

c-pumpkin minor

Theorem
Either G has a small c-pumpkin minor or some reduction rule can
be applied

Proof idea:

≥ k

{
r

C

P

W

Approximation algorithm:

M← ∅; X ← ∅
If G not reduced:

Apply reduction rule on G
Call algorithm on resulting graph

Else:

Compute a small c-pumpkin minor M
Call algorithm on G \ V (M), giving a packing M′

aaa and a hitting set X ′

M←M′ ∪ {M}
X ← X ′ ∪ V (M)

Next section is...

Introduction and summary of results
Hitting pumpkins
Harvesting (=packing) pumpkins

FPT algorithms

Approximation algorithms

Conclusions and further research

Conclusions and further research

F we provided an FPT algorithm running in time 2O(k) · nO(1)
time for c-Pumpkin Hitting Set

I can we avoid protrusions?
I optimizing the constants
I provide lower bounds
I faster algorithms for sparse graphs?
I Challenging: deleting at most k vertices from a given graph

so that the resulting graph has tree-width bounded by some
constant c (OK, single-exponential for c = 2) [Kim, Paul, Philip ’11]

F we provided an Oc(log n)-approximation algorithm for
c-Pumpkin Hitting Set and c-Pumpkin Packing

I constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3)

I packing edge-disjoint c-pumpkin models
I find explicit (small?) function for the Erdős-Pósa property

Conclusions and further research

F we provided an FPT algorithm running in time 2O(k) · nO(1)
time for c-Pumpkin Hitting Set

I can we avoid protrusions?

I optimizing the constants
I provide lower bounds
I faster algorithms for sparse graphs?
I Challenging: deleting at most k vertices from a given graph

so that the resulting graph has tree-width bounded by some
constant c (OK, single-exponential for c = 2) [Kim, Paul, Philip ’11]

F we provided an Oc(log n)-approximation algorithm for
c-Pumpkin Hitting Set and c-Pumpkin Packing

I constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3)

I packing edge-disjoint c-pumpkin models
I find explicit (small?) function for the Erdős-Pósa property

Conclusions and further research

F we provided an FPT algorithm running in time 2O(k) · nO(1)
time for c-Pumpkin Hitting Set

I can we avoid protrusions?
I optimizing the constants

I provide lower bounds
I faster algorithms for sparse graphs?
I Challenging: deleting at most k vertices from a given graph

so that the resulting graph has tree-width bounded by some
constant c (OK, single-exponential for c = 2) [Kim, Paul, Philip ’11]

F we provided an Oc(log n)-approximation algorithm for
c-Pumpkin Hitting Set and c-Pumpkin Packing

I constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3)

I packing edge-disjoint c-pumpkin models
I find explicit (small?) function for the Erdős-Pósa property

Conclusions and further research

F we provided an FPT algorithm running in time 2O(k) · nO(1)
time for c-Pumpkin Hitting Set

I can we avoid protrusions?
I optimizing the constants
I provide lower bounds

I faster algorithms for sparse graphs?
I Challenging: deleting at most k vertices from a given graph

so that the resulting graph has tree-width bounded by some
constant c (OK, single-exponential for c = 2) [Kim, Paul, Philip ’11]

F we provided an Oc(log n)-approximation algorithm for
c-Pumpkin Hitting Set and c-Pumpkin Packing

I constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3)

I packing edge-disjoint c-pumpkin models
I find explicit (small?) function for the Erdős-Pósa property

Conclusions and further research

F we provided an FPT algorithm running in time 2O(k) · nO(1)
time for c-Pumpkin Hitting Set

I can we avoid protrusions?
I optimizing the constants
I provide lower bounds
I faster algorithms for sparse graphs?

I Challenging: deleting at most k vertices from a given graph
so that the resulting graph has tree-width bounded by some
constant c (OK, single-exponential for c = 2) [Kim, Paul, Philip ’11]

F we provided an Oc(log n)-approximation algorithm for
c-Pumpkin Hitting Set and c-Pumpkin Packing

I constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3)

I packing edge-disjoint c-pumpkin models
I find explicit (small?) function for the Erdős-Pósa property

Conclusions and further research

F we provided an FPT algorithm running in time 2O(k) · nO(1)
time for c-Pumpkin Hitting Set

I can we avoid protrusions?
I optimizing the constants
I provide lower bounds
I faster algorithms for sparse graphs?
I Challenging: deleting at most k vertices from a given graph

so that the resulting graph has tree-width bounded by some
constant c

(OK, single-exponential for c = 2) [Kim, Paul, Philip ’11]

F we provided an Oc(log n)-approximation algorithm for
c-Pumpkin Hitting Set and c-Pumpkin Packing

I constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3)

I packing edge-disjoint c-pumpkin models
I find explicit (small?) function for the Erdős-Pósa property

Conclusions and further research

F we provided an FPT algorithm running in time 2O(k) · nO(1)
time for c-Pumpkin Hitting Set

I can we avoid protrusions?
I optimizing the constants
I provide lower bounds
I faster algorithms for sparse graphs?
I Challenging: deleting at most k vertices from a given graph

so that the resulting graph has tree-width bounded by some
constant c (OK, single-exponential for c = 2) [Kim, Paul, Philip ’11]

F we provided an Oc(log n)-approximation algorithm for
c-Pumpkin Hitting Set and c-Pumpkin Packing

I constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3)

I packing edge-disjoint c-pumpkin models
I find explicit (small?) function for the Erdős-Pósa property

Conclusions and further research

F we provided an FPT algorithm running in time 2O(k) · nO(1)
time for c-Pumpkin Hitting Set

I can we avoid protrusions?
I optimizing the constants
I provide lower bounds
I faster algorithms for sparse graphs?
I Challenging: deleting at most k vertices from a given graph

so that the resulting graph has tree-width bounded by some
constant c (OK, single-exponential for c = 2) [Kim, Paul, Philip ’11]

F we provided an Oc(log n)-approximation algorithm for
c-Pumpkin Hitting Set and c-Pumpkin Packing

I constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3)

I packing edge-disjoint c-pumpkin models
I find explicit (small?) function for the Erdős-Pósa property

Conclusions and further research

F we provided an FPT algorithm running in time 2O(k) · nO(1)
time for c-Pumpkin Hitting Set

I can we avoid protrusions?
I optimizing the constants
I provide lower bounds
I faster algorithms for sparse graphs?
I Challenging: deleting at most k vertices from a given graph

so that the resulting graph has tree-width bounded by some
constant c (OK, single-exponential for c = 2) [Kim, Paul, Philip ’11]

F we provided an Oc(log n)-approximation algorithm for
c-Pumpkin Hitting Set and c-Pumpkin Packing

I constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3)

I packing edge-disjoint c-pumpkin models
I find explicit (small?) function for the Erdős-Pósa property

Conclusions and further research

F we provided an FPT algorithm running in time 2O(k) · nO(1)
time for c-Pumpkin Hitting Set

I can we avoid protrusions?
I optimizing the constants
I provide lower bounds
I faster algorithms for sparse graphs?
I Challenging: deleting at most k vertices from a given graph

so that the resulting graph has tree-width bounded by some
constant c (OK, single-exponential for c = 2) [Kim, Paul, Philip ’11]

F we provided an Oc(log n)-approximation algorithm for
c-Pumpkin Hitting Set and c-Pumpkin Packing

I constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3)

I packing edge-disjoint c-pumpkin models

I find explicit (small?) function for the Erdős-Pósa property

Conclusions and further research

F we provided an FPT algorithm running in time 2O(k) · nO(1)
time for c-Pumpkin Hitting Set

I can we avoid protrusions?
I optimizing the constants
I provide lower bounds
I faster algorithms for sparse graphs?
I Challenging: deleting at most k vertices from a given graph

so that the resulting graph has tree-width bounded by some
constant c (OK, single-exponential for c = 2) [Kim, Paul, Philip ’11]

F we provided an Oc(log n)-approximation algorithm for
c-Pumpkin Hitting Set and c-Pumpkin Packing

I constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3)

I packing edge-disjoint c-pumpkin models
I find explicit (small?) function for the Erdős-Pósa property

Gràcies!

	Introduction and summary of results
	Hitting pumpkins
	Harvesting (=packing) pumpkins

	FPT algorithms
	Approximation algorithms
	Conclusions and further research

