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For the whole talk:

I c > 1 fixed integer
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I n := |V (G )|

c-pumpkin hitting set:
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Find a c-pumpkin hitting set of minimum size.
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In parameterized version:

I extra parameter k

I goal: decide if ∃ c-pumpkin hitting set of size 6 k
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Some special cases

c = 1: Vertex Cover

I 2-approximation algorithm

I O(1.2738k + kn)-time FPT algorithm [Chen, Kanj, Xia ’10]

c = 2: Feedback Vertex Set

I 2-approximation algorithms [Bafman, Berman, Fujito ’99, Becker & Geiger ’96]
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∀c > 1: [Fomin, Lokshtanov, Misra, Philip, Saurabh ’11]

I O(log3/2 OPT )-approximation algorithm

I 2O(k log k)nO(1)-time FPT algorithm

Question: Does there exist a 2O(k)nO(1)-time FPT algorithm
∀c > 1? (called single-exponential algorithm)

Theorem (Joret, Paul, S., Saurabh, Thomassé)

There is a single-exponential FPT algorithm ∀c > 1

N.B: no 2o(k)nO(1)-time FPT algorithm unless ETH fails
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There is a single-exponential FPT algorithm ∀c > 1

N.B: no 2o(k)nO(1)-time FPT algorithm unless ETH fails



Next subsection is...

Introduction and summary of results
Hitting pumpkins
Harvesting (=packing) pumpkins

FPT algorithms

Approximation algorithms

Conclusions and further research



Packing pumpkins

c-pumpkin packing:
collection of vertex-disjoint subgraphs of G , each containing a
c-pumpkin minor

c = 2

Packing number: max. cardinality of a c-pumpkin packing



Packing pumpkins

c-pumpkin packing:
collection of vertex-disjoint subgraphs of G , each containing a
c-pumpkin minor

c = 2

Packing number: max. cardinality of a c-pumpkin packing



c-Pumpkin Packing problem:
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NP-hard ∀c > 2

c = 1 : Maximum Matching
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Approximate min-max relation for packings and hitting sets:

Theorem (Joret, Paul, S., Saurabh, Thomassé)

There exist

I a c-pumpkin packing M, and

I a c-pumpkin hitting set X

s.t. |X | 6 Oc(log n) · |M|, for every fixed c > 1

⇒ Oc(log n)-approximation algorithm for c-Pumpkin Hitting
Set and c-Pumpkin Packing for every fixed c > 1
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FPT algorithm
Goal: Single-exponential FPT algo for c-Pumpkin Hitting Set

We use the technique of iterative compression

Switch to Disjoint c-Pumpkin Hitting Set problem:

I Input: G , hitting set X with |X | 6 k + 1

I Question: is there a hitting set X ′ with |X ′| 6 k that is
disjoint from X ?

X
c = 3
k = 4
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Lemma
dk · nO(1) algorithm for Disjoint c-Pumpkin Hitting Set ⇒
(d + 1)k · nO(1) algorithm for c-Pumpkin Hitting Set

Main ingredients of FPT algorithm:

I poly-time (simple) ad-hoc reduction rules

I protrusion-based reduction rule

I branching rule (with single-exponential # of subproblems)

I linear kernel in a special case
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Approximation algorithms

Goal: Finding

I a c-pumpkin packing M and

I a c-pumpkin hitting set X

s.t. |X | 6 Oc(log n) · |M|



Reduction rules
Goal: smaller graph with same packing and hitting set numbers

I u, v minimal 2-separator, C a connected component of G \ {u, v}
I d-pumpkin-model: two disjoint sets of vertices A,B, each inducing

a connected subgraph of G , with at least d edges between them

I α(C , u, v): largest integer d such that G [C , u, v ] \ uv has a

d-pumpkin-model {A,B} with u ∈ A and v ∈ B

I β(C , u, v): largest integer d such that G [C , u, v ] + uv has a

d-pumpkin-model {A,B} with u, v ∈ A

I Two cases: α > β and α < β

u v

u v
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Small pumpkins

Subgraph small if of size 6 h(c) · log n
(where is h some fixed, computable function)

d∗(G ) := average degree of underlying simple graph of G

If d∗(G ) > 2t then ∃G ′ ⊆ G with |V (G ′)| = Ot(log n) s.t. G ′

contains a Kt-minor [Fiorini, Joret, Theis, Wood ’10]

⇒ if d∗(G ) > 22
√
c+1 then G has a small subgraph containing a

c-pumpkin minor
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Theorem
Either G has a small c-pumpkin minor or some reduction rule can
be applied

Proof idea:

≥ k

{
r

C

P

W



Approximation algorithm:

M← ∅; X ← ∅
If G not reduced:

Apply reduction rule on G
Call algorithm on resulting graph

Else:

Compute a small c-pumpkin minor M
Call algorithm on G \ V (M), giving a packing M′

aaa and a hitting set X ′

M←M′ ∪ {M}
X ← X ′ ∪ V (M)
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Conclusions and further research

F we provided an FPT algorithm running in time 2O(k) · nO(1)
time for c-Pumpkin Hitting Set

I can we avoid protrusions?
I optimizing the constants
I provide lower bounds
I faster algorithms for sparse graphs?
I Challenging: deleting at most k vertices from a given graph

so that the resulting graph has tree-width bounded by some
constant c (OK, single-exponential for c = 2) [Kim, Paul, Philip ’11]

F we provided an Oc(log n)-approximation algorithm for
c-Pumpkin Hitting Set and c-Pumpkin Packing

I constant-factor approximation for the hitting version?
(so far, such an algorithm is only known for c 6 3)

I packing edge-disjoint c-pumpkin models
I find explicit (small?) function for the Erdős-Pósa property
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