Optimal Erdős-Pósa property for pumpkins

Samuel Fiorini Gwenaël Joret Ignasi Sau*

*CNRS, LIRMM, Montpellier (France)

RSME 2012. Santiago de Compostela

1/24

<ロ> < 部 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 通 > < 通 > < 2/24

MIN VERTEX COVER = MAX MATCHING

Min Vertex Cover = Max Matching

min # vertices covering all edges \ge max # of disjoint edges

MIN VERTEX COVER = MAX MATCHING

min # vertices covering all edges \ge max # of disjoint edges min # vertices covering all edges \le max # of disjoint edges

Min Vertex Cover = Max Matching

min # vertices covering all edges \ge max # of disjoint edges

< □ > < @ > < 볼 > < 볼 > 볼 - 옛 < ♡ < ♡ 4/24

Min Vertex Cover = Max Matching

min # vertices covering all $H \in \mathcal{H} \ge \max \#$ of disjoint $H \in \mathcal{H}$

MIN VERTEX COVER = MAX MATCHING

 $\begin{array}{l} \min \ \# \ \text{vertices covering all} \ \hline H \in \mathcal{H} \end{array} \geqslant \ \max \ \# \ \text{of disjoint} \ \hline H \in \mathcal{H} \\ \min \ \# \ \text{vertices covering all} \ \hline H \in \mathcal{H} \end{array} \leqslant \ \max \ \# \ \text{of disjoint} \ \hline H \in \mathcal{H} \end{array} ?$

MIN VERTEX COVER = MAX MATCHING

min # vertices covering all $H \in \mathcal{H} \ge \max \#$ of disjoint $H \in \mathcal{H}$ min # vertices covering all $H \in \mathcal{H} \le f(\max \# \text{ of disjoint } H \in \mathcal{H})$?

MIN VERTEX COVER = MAX MATCHING

If there exists such f for all G, then \mathcal{H} satisfies the **Erdős-Pósa property**. min # vertices covering all $H \in \mathcal{H} \leq f(\max \# \text{ of disjoint } H \in \mathcal{H})$?

Minors and models in graphs

H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.

Minors and models in graphs

H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.

H-model in *G*: collection $\{S_u : u \in V(H)\}$ s.t.

- the S_u 's are vertex-disjoint connected subgraphs of G, and
- there is an edge between S_u and S_v in G for every edge $uv \in E(H)$.

A K₅-model

The S_u 's are called vertex images.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let H be a **fixed** graph. For a graph G, we define:

- $\nu_H(G) := packing number$
 - = max. number of vertex-disjoint H-models in G
- $\tau_H(G) := \text{covering number}$ = min. number of vertices hitting all *H*-models in *G*.

Clearly, $\tau_H(G) \ge \nu_H(G) \quad \forall G.$

Let *H* be a **fixed** graph. For a graph *G*, we define:

- $\nu_H(G) :=$ packing number = max. number of vertex-disjoint *H*-models in *G*
- $\tau_H(G) := \text{covering number}$ = min. number of vertices hitting all *H*-models in *G*.

Clearly, $\tau_H(G) \ge \nu_H(G) \quad \forall G.$

For which $H |\tau_H(G) \leq f(\nu_H(G))| \forall G$, for some function f?

Let H be a **fixed** graph. For a graph G, we define:

- $\nu_H(G) := \text{packing number}$ = max. number of vertex-disjoint *H*-models in *G*
- $\tau_H(G) := \text{covering number}$ = min. number of vertices hitting all *H*-models in *G*.

Clearly, $\tau_H(G) \ge \nu_H(G) \quad \forall G.$

For which H $\tau_H(G) \leq f(\nu_H(G)) \quad \forall G$, for some function f?

This is called the Erdős-Pósa property of H-minors.

Erdős-Pósa property of *H*-minors

Fundamental result:

 $\tau_{H}(G) \leqslant f(\nu_{H}(G)) \quad \forall G \quad \Leftrightarrow \quad H \text{ is planar}$

[Robertson, Seymour ' 86]

Fundamental result:

 $\tau_{H}(G) \leqslant f(\nu_{H}(G)) \quad \forall G \quad \Leftrightarrow \quad H \text{ is planar}$

[Robertson, Seymour ' 86]

Is it the end of the story?

Fundamental result:

 $au_{H}(G) \leqslant f(\nu_{H}(G)) \quad \forall G \quad \Leftrightarrow \quad H \text{ is planar}$

[Robertson, Seymour ' 86]

Is it the end of the story? NO!

• Known upper bounds $\tau_H \leq f(\nu_H)$ are huge: $f(\nu_H) \in \Omega(2^{\nu_H^2})$.

This is because Robertson and Seymour's proof uses the excluded grid theorem from Graph Minors.

Fundamental result:

 $au_{H}(G) \leqslant f(\nu_{H}(G)) \quad \forall G \quad \Leftrightarrow \quad H \text{ is planar}$

[Robertson, Seymour ' 86]

Is it the end of the story? NO!

• Known upper bounds $\tau_H \leq f(\nu_H)$ are huge: $f(\nu_H) \in \Omega(2^{\nu_H^2})$.

This is because Robertson and Seymour's proof uses the excluded grid theorem from Graph Minors.

• Natural objective: optimize $f(\nu_H)$.

The property does NOT hold if H is not planar

$$H = K_5 \mathbf{X}$$

Take a $\sqrt{n} \times \sqrt{n}$ triangulated toroidal grid *G*:

The property does NOT hold if H is not planar

$$H = K_5 \mathbf{X}$$

Take a $\sqrt{n} \times \sqrt{n}$ triangulated toroidal grid *G*:

 $\nu_H(G) = 1$ but $\tau_H(G) = \Theta(\sqrt{n})$

8/24

The property does NOT hold if H is not planar

Therefore, the result of Robertson and Seymour is best possible.

• $\tau_H(G) \leqslant f(\nu_H(G)) \quad \forall G \quad \Leftrightarrow \quad H \text{ is planar}$

[Robertson, Seymour ' 86]

• $\tau_H(G) \leq f(\nu_H(G)) \quad \forall G \quad \Leftrightarrow \quad H \text{ is planar}$

[Robertson, Seymour ' 86]

• Erdős and Pósa seminal result for H = cycle (optimal): $f(k) = O(k \log k)$. [Erdős, Pósa ' 65]

- $\tau_H(G) \leqslant f(\nu_H(G)) \quad \forall G \iff H \text{ is planar}$ [Robertson, Seymour ' 86]
- Erdős and Pósa seminal result for H = cycle (optimal): $f(k) = O(k \log k)$. [Erdős, Pósa ' 65]
- f(k) = O(k) when H is a forest (optimal). [Fiorini, Joret, Wood '12]

- $au_H(G) \leqslant f(\nu_H(G)) \quad \forall G \iff H ext{ is planar}$ [Robertson, Seymour ' 86]
- Erdős and Pósa seminal result for H = cycle (optimal): $f(k) = O(k \log k)$. [Erdős, Pósa ' 65]
- f(k) = O(k) when H is a forest (optimal). [Fiorini, Joret, Wood '12]
- f(k) = O(k) when H is planar and G belongs to a minor-closed graph class (optimal). [Fomin, Saurabh, Thilikos '10]

c-pumpkin:

Can be seen as a natural generalization of a cycle.

(N.B: "graph" = multigraph)

◆□ → < □ → < Ξ → < Ξ → < Ξ → Ξ → ○ Q (~ 12/24)

• c = 1: empty graphs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• c = 1: empty graphs

• c = 1: empty graphs

Covering (or hitting) pumpkins

c-pumpkin hitting set:

vertex subset $X \subseteq V(G)$ s.t. G - X has no *c*-pumpkin minor

Covering (or hitting) pumpkins

c-pumpkin hitting set:

vertex subset $X \subseteq V(G)$ s.t. G - X has no *c*-pumpkin minor

Hitting set number $\tau_c(G)$: min. size of a *c*-pumpkin hitting set

c-pumpkin packing:

collection of vertex-disjoint subgraphs of G, each containing a c-pumpkin minor

c-pumpkin packing:

collection of vertex-disjoint subgraphs of G, each containing a c-pumpkin minor

Packing number $\nu_c(G)$: max. cardinality of a *c*-pumpkin packing

• A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh '12)

For any fixed integer $c \ge 1$ and given an integer $k \ge 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k^2)$.

• A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh '12)

For any fixed integer $c \ge 1$ and given an integer $k \ge 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k^2)$. That is, $\tau_c \le \nu_c^2$

• A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh '12)

For any fixed integer $c \ge 1$ and given an integer $k \ge 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k^2)$. That is, $\tau_c \le \nu_c^2$

• Our main result:

Theorem (Fiorini, Joret, S. '12)

For any fixed integer $c \ge 1$ and given an integer $k \ge 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k \log k)$. That is, $\tau_c \le \nu_c \log \nu_c$

• A recent result on Erdős-Pósa property for pumpkins:

Theorem (Fomin, Lokshtanov, Misra, Philip, Saurabh '12)

For any fixed integer $c \ge 1$ and given an integer $k \ge 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k^2)$. That is, $\tau_c \le \nu_c^2$

\star Their proof uses tree decompositions and brambles.

• Our main result:

Theorem (Fiorini, Joret, S. '12)

For any fixed integer $c \ge 1$ and given an integer $k \ge 1$, every graph G either contains k vertex-disjoint c-pumpkins-models, or has a c-pumpkin hitting set of size at most $f(k) = O(k \log k)$. That is, $\tau_c \le \nu_c \log \nu_c$

* Our proof follows and generalizes Erdős-Pósa's proof for the case $c_{=} = 2_{0,0}$

Theorem: $\exists f(k) \text{ s.t. } \forall G, k$, either $\nu_c(G) \ge k$ or $\tau_c(G) \le f(k)$.

Theorem: $\exists f(k) \text{ s.t. } \forall G, k$, either $\nu_c(G) \ge k$ or $\tau_c(G) \le f(k)$.

The function $f(k) = O(k \log k)$ is asymptotically optimal:

• Let G be an *n*-vertex cubic graph with $tw(G) = \Omega(n)$ and $girth(G) = \Omega(\log n)$. (such graphs are well-known to exist)

Theorem: $\exists f(k) \text{ s.t. } \forall G, k$, either $\nu_c(G) \ge k$ or $\tau_c(G) \le f(k)$.

- Let G be an n-vertex cubic graph with $tw(G) = \Omega(n)$ and $girth(G) = \Omega(\log n)$. (such graphs are well-known to exist)
- Any c-pumpkin-minor-free graph H satisfies tw(H) ≤ d for some constant d, as the c-pumpkin is planar. [Robertson, Seymour '86]
- Thus tw $(G X) \leq d$ for any *c*-pumpkin hitting set *X*, and therefore $\tau_c(G) = \Omega(n)$.

Theorem: $\exists f(k) \text{ s.t. } \forall G, k$, either $\nu_c(G) \ge k$ or $\tau_c(G) \le f(k)$.

- Let G be an n-vertex cubic graph with $tw(G) = \Omega(n)$ and $girth(G) = \Omega(\log n)$. (such graphs are well-known to exist)
- Any c-pumpkin-minor-free graph H satisfies tw(H) ≤ d for some constant d, as the c-pumpkin is planar. [Robertson, Seymour '86]
- Thus tw(G X) $\leq d$ for any *c*-pumpkin hitting set *X*, and therefore $\tau_c(G) = \Omega(n)$.
- On the other hand, every subgraph H of G containing a c-pumpkin-model has a cycle, so $V(H) = O(\log n)$, and therefore $\nu_c(G) = O(n/\log n)$.

Theorem: $\exists f(k) \text{ s.t. } \forall G, k$, either $\nu_c(G) \ge k$ or $\tau_c(G) \le f(k)$.

- Let G be an n-vertex cubic graph with $tw(G) = \Omega(n)$ and $girth(G) = \Omega(\log n)$. (such graphs are well-known to exist)
- Any c-pumpkin-minor-free graph H satisfies tw(H) ≤ d for some constant d, as the c-pumpkin is planar. [Robertson, Seymour '86]
- Thus tw $(G X) \leq d$ for any *c*-pumpkin hitting set *X*, and therefore $\tau_c(G) = \Omega(n)$.
- On the other hand, every subgraph H of G containing a c-pumpkin-model has a cycle, so $V(H) = O(\log n)$, and therefore $\nu_c(G) = O(n/\log n)$.
- This implies that (easy to check) \exists constant b > 0 such that $f(k) > b \cdot k \log k$ (i.e., $f(k) = \Omega(k \log k)$).

Useful reduction rules

We first need two reduction rules **R1** and **R2** dealing with 1-connected and 2-connected components without c-pumpkin minors, respectively, that preserve both $\nu_c(G)$ and $\tau_c(G)$:

Useful reduction rules

• For c = 2:

We first need two reduction rules **R1** and **R2** dealing with 1-connected and 2-connected components without c-pumpkin minors, respectively, that preserve both $\nu_c(G)$ and $\tau_c(G)$:

- For c = 2: **R1** = deleting degree-1 vertices
 - **R2** = suppressing degree-2 vertices

Useful reduction rules

We first need two reduction rules **R1** and **R2** dealing with 1-connected and 2-connected components without c-pumpkin minors, respectively, that preserve both $\nu_c(G)$ and $\tau_c(G)$:

- For c = 2: $\mathbf{R1} =$ deleting degree-1 vertices • For c = 2:
 - R2 = suppressing degree-2 vertices

Lemma

Let $c \ge 2$ be a fixed integer. Suppose that G^* results from the application of **R1** or **R2** on a graph G. Then $\tau_c(G) = \tau_c(G^*)$ and $\nu_c(G) = \nu_c(G^*)$.

• A graph is *c*-reduced if rules **R1** or **R2** cannot be applied anymore.

- A graph is *c*-reduced if rules **R1** or **R2** cannot be applied anymore.
- For a graph *G*, we denote by \overline{G} the *c*-reduced graph obtained from *G* by applying reduction rules **R1** and **R2**.

- A graph is *c*-reduced if rules **R1** or **R2** cannot be applied anymore.
- For a graph *G*, we denote by *G* the *c*-reduced graph obtained from *G* by applying reduction rules **R1** and **R2**.
- Given G, let H be a maximal subgraph of G (w.r.t. # vertices and # edges) such that

 $\Delta(\overline{H}) \leqslant 3,$

where Δ denotes the maximum degree.

- A graph is *c*-reduced if rules **R1** or **R2** cannot be applied anymore.
- For a graph *G*, we denote by \overline{G} the *c*-reduced graph obtained from *G* by applying reduction rules **R1** and **R2**.
- Given G, let H be a maximal subgraph of G (w.r.t. # vertices and # edges) such that

 $\Delta(\overline{H}) \leqslant 3,$

where Δ denotes the maximum degree.

Main Lemma

If $|V(\overline{H})| \ge d \cdot k \log k$ for some constant d (depending only on c), then H contains k vertex-disjoint c-pumpkin-models.

Ingredients in the proof of the Main Lemma

• We prove it by induction on *k*, using that:

Lemma

Every n-vertex c-reduced graph G contains a c-pumpkin-model of size $O(\log n)$.

(Generalization of: If $\delta(G) \ge 3$, then $\operatorname{girth}(G) < 2 \log n$) [Alon, Hoory, Linial '02]

Ingredients in the proof of the Main Lemma

• We prove it by induction on *k*, using that:

Lemma

Every n-vertex c-reduced graph G contains a c-pumpkin-model of size $O(\log n)$.

(Generalization of: If $\delta(G) \geqslant 3$, then $\operatorname{girth}(G) < 2 \log n$) [Alon, Hoory, Linial '02]

 We choose a smallest *c*-pumpkin-model *C*, and to apply induction we need to prove that *H* − *C* contains a subgraph *F* such that
 |*V*(*F*)| ≥ *d* · (*k* − 1) log(*k* − 1).

Ingredients in the proof of the Main Lemma

• We prove it by induction on *k*, using that:

Lemma

Every n-vertex c-reduced graph G contains a c-pumpkin-model of size $O(\log n)$.

(Generalization of: If $\delta(G) \geqslant 3$, then $\operatorname{girth}(G) < 2 \log n$) [Alon, Hoory, Linial '02]

• We choose a smallest *c*-pumpkin-model *C*, and to apply induction we need to prove that $\overline{H} - C$ contains a subgraph *F* such that

 $|V(\overline{F})| \ge d \cdot (k-1) \log(k-1).$

• Crucial: $\forall p \ge 0, \exists f(p) \text{ s.t. every 3-connected graph with } \ge f(p)$ vertices has a minor isomorphic to: [Opprovski, Oxley, Thomas '93]

(Note that for $p \ge c$, both W_p and $K_{3,p}$ contain the *c*-pumpkin as a minor)

20/24

• Given G,

• Given G, we consider the subgraph H defined before:

We can prove that ∃ a set X ∪ U ⊆ V(H), with |X| = O(k), meeting every c-pumpkin-model in G.

- We can prove that ∃ a set X ∪ U ⊆ V(H), with |X| = O(k), meeting every c-pumpkin-model in G.
- As |X| = O(k), it suffices to show that $|U| = O(k \log k)$,

- We can prove that ∃ a set X ∪ U ⊆ V(H), with |X| = O(k), meeting every c-pumpkin-model in G.
- As |X| = O(k), it suffices to show that |U| = O(k log k), unless H contains k disjoint c-pumpkin-models.

- We can prove that ∃ a set X ∪ U ⊆ V(H), with |X| = O(k), meeting every c-pumpkin-model in G.
- As |X| = O(k), it suffices to show that |U| = O(k log k), unless H contains k disjoint c-pumpkin-models.
- This follows from the Main Lemma applied to the graph \overline{H} .

< □ > < @ > < 클 > < 클 > < 클 > 트 - 의익() 22/24

Main open problem: *H* non-acyclic planar, $f_H(k) = O(??)$

Main open problem: *H* non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Main open problem: *H* non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Conjecture

For all non-acyclic planar H, we have $f_H(k) = O(k \log k)$. (optimal)

Main open problem: H non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Conjecture

For all non-acyclic planar H, we have $f_H(k) = O(k \log k)$. (optimal)

Approximation algorithms

- **Goal**: Given a graph *G*, finding
 - \bullet a $\mathit{c}\text{-pumpkin}$ packing $\mathcal M$ and
 - a *c*-pumpkin hitting set *X*

s.t. $|X| \leq f(c, n) \cdot |\mathcal{M}|$ for some approximation ratio f(c, n)

(these problems generalize VERTEX COVER, FEEDBACK VERTEX SET, ...)

Main open problem: H non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Conjecture

For all non-acyclic planar H, we have $f_H(k) = O(k \log k)$. (optimal)

Approximation algorithms

- **Goal**: Given a graph *G*, finding
 - \bullet a $\mathit{c}\text{-pumpkin}$ packing $\mathcal M$ and
 - a *c*-pumpkin hitting set *X*

s.t. $|X| \leq f(c, n) \cdot |\mathcal{M}|$ for some approximation ratio f(c, n)

(these problems generalize VERTEX COVER, FEEDBACK VERTEX SET, \ldots)

★ we provided an *O_c*(log *n*)-approximation algorithm for *c*-PUMPKIN HITTING SET and *c*-PUMPKIN PACKING. [Joret, Paul, S., Saurabh, Thomassé '11]

Main open problem: H non-acyclic planar, $f_H(k) = \Omega(k \log k)$

Conjecture

For all non-acyclic planar H, we have $f_H(k) = O(k \log k)$. (optimal)

Approximation algorithms

- **Goal**: Given a graph *G*, finding
 - $\bullet\,$ a $\mathit{c}\text{-pumpkin}$ packing $\mathcal M$ and
 - a *c*-pumpkin hitting set *X*

s.t. $|X| \leq f(c, n) \cdot |\mathcal{M}|$ for some approximation ratio f(c, n)

(these problems generalize VERTEX COVER, FEEDBACK VERTEX SET, ...)

- ★ we provided an *O_c*(log *n*)-approximation algorithm for *c*-PUMPKIN HITTING SET and *c*-PUMPKIN PACKING. [Joret, Paul, S., Saurabh, Thomassé '11]
- ★ constant-factor (deterministic) approximation for the hitting version? (so far, such an algorithm is only known for $c \leq 3$) [Fiorini, Joret, Pietropaoli 10]

Gràcies!!

<□ ▶ < □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ 24/24