Introd	
000	00

Model Hardness Results

Approximation Algorithms

The Case of the Pat

(日) (部) (注) (注) (言)

Conclusions

1/36

Designing Hypergraph Layouts to GMPLS Routing Strategies

Jean-Claude Bermond, David Coudert, Joanna Moulierac, Stéphane Pérennes, **Ignasi Sau** *INRIA/CNRS/UNSA, Sophia-Antipolis, France* Fernando Solano *Warsaw University of Technology, Poland*

ignasi.sau@gmail.com

SIROCCO 2009 27th of May 2009, Piran, Slovenia

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
00000	0000000	000000000000000000000000000000000000000	0000000		
Outline	`				

2 Model

3 Hardness Results

Approximation Algorithms

5 The Case of the Path

6 Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
0000	0000000	000000000000000000000000000000000000000			
Concepts and Motiv	ations				
Outline					

1 Introduction

• Concepts and Motivations

• The Label Stack

2 Mode

3 Hardness Results

Approximation Algorithms

5 The Case of the Path

6 Conclusions

Introduction

Model Hardness Results

Approximation Algorithms

The Case of the Path

Conclusions

4/36

Concepts and Motivations

Concepts in brief... GMPLS/AOPS

About GMPLS switching...

- $\bullet~{\sf GMPLS}={\sf Generic}~{\sf MultiProtocol}~{\sf Label}~{\sf Switching}.$
- $\bullet~G/MPLS$ is a tag-switching technology (packet-based networks).
- Each packet is tagged (labeled), so it can be associated and treated as a single flow.
- Packet forwarding is based on the content of the label solely.

Concepts and Motivations

Concepts in brief... GMPLS/AOPS

About GMPLS switching...

- GMPLS = Generic MultiProtocol Label Switching.
- G/MPLS is a tag-switching technology (packet-based networks).
- Each packet is tagged (labeled), so it can be associated and treated as a single flow.
- Packet forwarding is based on the content of the label solely.

About AOPS...

 $\label{eq:all-Optical Packet Switching (AOPS) is an all-optical hardware implementation of GMPLS switching for packet forwarding.$

- Label processing and packet forwarding decisions are all performed completely optically
- In No need for OEO regeneration... faster packet forwarding.
- One 'decoding' device is needed for each used label at each node
- Few labels...

Concepts and Motivations

Concepts in brief... GMPLS/AOPS

About GMPLS switching...

- $\bullet \ \mathsf{GMPLS} = \mathsf{Generic} \ \mathsf{MultiProtocol} \ \mathsf{Label} \ \mathsf{Switching}.$
- G/MPLS is a tag-switching technology (packet-based networks).
- Each packet is tagged (labeled), so it can be associated and treated as a single flow.
- Packet forwarding is based on the content of the label solely.

About AOPS...

 $\label{eq:all-Optical Packet Switching (AOPS) is an all-optical hardware implementation of GMPLS switching for packet forwarding.$

- Label processing and packet forwarding decisions are all performed completely optically
- In No need for OEO regeneration... faster packet forwarding.
- One 'decoding' device is needed for each used label at each node
- Sew labels... Labels are extremely valuable resources

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
00000	0000000	000000000000000000000000000000000000000			
The Label Stack					
Outline					

1 Introduction

- Concepts and Motivations
- The Label Stack

2 Model

3 Hardness Results

- Approximation Algorithms
- 5 The Case of the Path

6 Conclusions

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
00000	0000000	000000000000000000000000000000000000000			
The Label Stack					
Handlin	g Labe	els			

Nodes may alter the stack of labels performing one of the following operations:

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
00000	0000000	000000000000000000000000000000000000000			
The Label Stack					
Handling	g Labe	els			

Nodes may alter the stack of labels performing one of the following operations:

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
00000		000000000000000000000000000000000000000			
The Label Stack					
Handling	g Labe	els			

Nodes may alter the stack of labels performing one of the following operations:

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
00000	0000000	000000000000000000000000000000000000000			
The Label Stack					
Handling	g Labe	els			

Nodes may alter the stack of labels performing one of the following operations:

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

6/36

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
00000		0000000000			
The Label Stack					
Handling	g Labe	ls			

Nodes may alter the stack of labels performing one of the following operations:

... but solely the top one can be processed!

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
00000		000000000000000000000000000000000000000			
The Label Stack					
Label S	tackin	g & Tunnels	S		

By pushing a label, we can create a higher hierarchy LSP (Label Switched Path), called **TUNNEL**.

- Using a stack size of 2, the number of used labels can be decreased
- The larger the stack, fewer labels are needed...

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
00000		000000000000000000000000000000000000000			
The Label Stack					
Label S	tackin	g & Tunnels	S		

By pushing a label, we can create a higher hierarchy LSP (Label Switched Path), called **TUNNEL**.

- Using a stack size of 2, the number of used labels can be decreased
- The larger the stack, fewer labels are needed...

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	000000	000000000000000000000000000000000000000			
Modeling the probl	lem				
Outline	<u>.</u>				

- Modeling the problem
- 3 Hardness Results
- 4 Approximation Algorithms
- 5 The Case of the Path

6 Conclusions

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	0000000	000000000000000000000000000000000000000			
Modeling the proble	em				
Some n	otatio	n			

- G = (V, E) is the underlying digraph (which can be symmetric or not).
- |V| = n, and vertices are numbered $1, \ldots, n$.
- r_{ij} is the request from $i \in V$ to $j \in V$, with multiplicity m_{ij} . *R* is the set of all requests.
- P(G) is the set of all simple dipaths in G.
- *t* stands for a tunnel, and *T* is the set of tunnels, that is $t \in T \subseteq P(G)$.
- ℓ is a length function on the arcs, that is $\ell : E \to \mathbb{R}^+$.
- for a tunnel t, $\ell(t) = \sum_{e \in t} \ell(e)$ is its length and w(t) is the amount of traffic it carries.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	0000000	000000000000000000000000000000000000000			
Modeling the prob	lem				
Cost of	⁻ a tunr	nel = numb	er of labels		

Let t be a tunnel.

◆□ → < 部 → < 差 → < 差 → 差 の Q ペ 10/36

 $c(t) = w(t) + (\ell(t) - 1).$

k::PUSH 1,out:AB

kx:PUSH 1.out:A kx:PUSH 1.out:AB 1:1 SWAP 11,out:BC

11:11 SWAP 12.out:CI

12: POP,out:DE

• w(t) is the number of forwarded traffic units (LSPs)

Data Payload

 λ PUSH

• $\ell(t)$ is the length of the tunnel (usually, the number of hops)

Cost Example - Scenario		Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		0000000	000000000000000000000000000000000000000			
Cost Example - Scenario	Modeling the prob	lem				
	Cost E	xample	- Scenario			

We consider the case of a line network with one source and multiple destinations...

With no tunnels we need $l_1 \cdot (w_1 + w_2) + l_2 \cdot w_2$ labels...

With tunnels?? The optimal solution depends on the values of l_i and w_i ...

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	0000000	000000000000000000000000000000000000000			
Modeling the proble	em				
Cost E>	kample	- Solutions			

First Solution...

$$c(T_{(s,u_1)}) = w_1 + l_1 - 1$$

$$c(T_{(s,u_2)}) = w_2 + (l_1 + l_2) - 1$$

Total cost is: $w_1 + w_2 + 2l_1 + l_2 - 2$

↓ □ → ↓ □ → ↓ ■ → ↓ ■ → へ ○
12/36

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	000000	000000000000000000000000000000000000000			
Modeling the proble	m				
Cost E×	cample	e - Solutions			

Second Solution...

$$c(T_{(s,u_1)}) = w_1 + w_2 + l_1 - 1 c(T_{(u_1,u_2)}) = w_2 + l_2 - 1$$

Total cost is: $w_1 + 2w_2 + l_1 + l_2 - 2$

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	000000	● ○○○ @○○○○○○			
Modeling the proble	m				
Cost Ex	cample	e - Solutions			

Which one is the best solution?

If $l_1 \leq w_2$

If $l_1 \ge w_2$

 $c(t) = w(t) + (\ell(t) - 1).$

・ロト ・日下・ ・日下・ ・日下・

15 / 36

- w(t) is the number of forwarded traffic units (LSPs)
- $\ell(t)$ is the length of the tunnel (usually, the number of hops)

 $c(t) = w(t) + (\ell(t) - 1).$

- w(t) is the number of forwarded traffic units (LSPs)
- $\ell(t)$ is the length of the tunnel (usually, the number of hops)

The cost of a set of tunnels T is

$$\sum_{t\in T} (w(t) + \ell(t) - 1).$$

 $c(t) = w(t) + (\ell(t) - 1).$

• w(t) is the number of forwarded traffic units (LSPs)

• $\ell(t)$ is the length of the tunnel (usually, the number of hops)

The cost of a set of tunnels T is

$$\sum_{t\in T} (w(t) + \ell(t) - 1).$$

Each tunnel can be seen as a directed hyperarc on the vertex set of G.

15/36

 $c(t) = w(t) + (\ell(t) - 1).$

• w(t) is the number of forwarded traffic units (LSPs)

• $\ell(t)$ is the length of the tunnel (usually, the number of hops)

The cost of a set of tunnels T is

$$\sum_{t\in T} (w(t) + \ell(t) - 1).$$

Each tunnel can be seen as a directed hyperarc on the vertex set of G. This observation naturally leads to the definition of a hypergraph layout.

15 / 36

	Model	Hardness Results	Approximation Algorithms	The Case of the Path
	000000000	0000000		
Modeling the problem				

Hypergraph layout

Definition (Hypergraph layout)

Given a graph G and a set $T \subseteq P(G)$ of dipaths, the associated hypergraph layout H(T) is the directed hypergraph with V(H(T)) = V(G), and where for each tunnel $t \in T \subseteq P(G)$ there is a directed hyperarc in H(T) connecting any vertex of t to the end of t.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclus
	0000000	000000000000000000000000000000000000000			
Modeling the probl	lem				

Definition (Hypergraph layout)

Hypergraph layout

Given a graph G and a set $T \subseteq P(G)$ of dipaths, the associated hypergraph layout H(T) is the directed hypergraph with V(H(T)) = V(G), and where for each tunnel $t \in T \subseteq P(G)$ there is a directed hyperarc in H(T) connecting any vertex of t to the end of t.

• Note that a hypergraph H(T) defines a virtual topology on G.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path
	000000	000000000000000000000000000000000000000		
Modeling the problem				

Hypergraph layout

Definition (Hypergraph layout)

Given a graph G and a set $T \subseteq P(G)$ of dipaths, the associated hypergraph layout H(T) is the directed hypergraph with V(H(T)) = V(G), and where for each tunnel $t \in T \subseteq P(G)$ there is a directed hyperarc in H(T) connecting any vertex of t to the end of t.

- Note that a hypergraph H(T) defines a virtual topology on G.
- A hypergraph layout H(T) is said to be feasible if for each request $r_{ij} \in R$ there exists a dipath in H(T) from *i* to *j*.

Hypergraph layout

Definition (Hypergraph layout)

Given a graph G and a set $T \subseteq P(G)$ of dipaths, the associated hypergraph layout H(T) is the directed hypergraph with V(H(T)) = V(G), and where for each tunnel $t \in T \subseteq P(G)$ there is a directed hyperarc in H(T) connecting any vertex of t to the end of t.

- Note that a hypergraph H(T) defines a virtual topology on G.
- A hypergraph layout H(T) is said to be feasible if for each request $r_{ij} \in R$ there exists a dipath in H(T) from *i* to *j*.
- The problem can then be simply expressed as finding a **feasible** hypergraph layout of minimum cost.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
00000	0000000	000000000000000000000000000000000000000	0000000		
Modeling the proble	m				
Simplify	ing the	e cost func	tion		

$$\sum_{t \in T} (w(t) + \ell(t) - 1).$$
 (1)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

17 / 36

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	0000000	0000000000			
Modeling the proble	2m				
Simplify	/ing th	e cost func	tion		

٦

$$\sum_{t \in T} (w(t) + \ell(t) - 1).$$
 (1)

◆□ > ◆□ > ◆臣 > ◆臣 > ● ○ ● ● ●

17/36

Given a hypergraph layout H(T),

• let $L(r_{ij})$ be the number of hyperarcs that request r_{ij} uses, and

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
00000	000000	000000000000000000000000000000000000000	0000000		
Modeling the probl	em				
Simplif	ying th	e cost func	tion		

$$\sum_{e \in T} (w(t) + \ell(t) - 1).$$
 (1)

Given a hypergraph layout H(T),

- let $L(r_{ij})$ be the number of hyperarcs that request r_{ij} uses, and
- let $d_H(i,j)$ be the distance from vertex *i* to vertex *j* in H(T).

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	000000000000000000000000000000000000000				
Modeling the probl	em				
Simplify	ving th	e cost func	tion		

$$\sum_{t \in T} (w(t) + \ell(t) - 1).$$
 (1)

17 / 36

Given a hypergraph layout H(T),

- let $L(r_{ij})$ be the number of hyperarcs that request r_{ij} uses, and
- let $d_H(i,j)$ be the distance from vertex *i* to vertex *j* in H(T).

Then the term $\sum_{t \in T} w(t)$ of Equation (1) can be rewritten as

 $\sum_{r_{ij}\in R} L(r_{ij})\cdot m_{ij}.$

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	0000000	000000000000000000000000000000000000000			
Modeling the prob	lem				
Simplif	ving th	e cost func	tion		

$$\sum_{t \in T} (w(t) + \ell(t) - 1).$$
 (1)

Given a hypergraph layout H(T),

- let $L(r_{ij})$ be the number of hyperarcs that request r_{ij} uses, and
- let $d_H(i,j)$ be the distance from vertex *i* to vertex *j* in H(T).

Then the term $\sum_{t \in T} w(t)$ of Equation (1) can be rewritten as

 $\sum_{r_{ij}\in R}L(r_{ij})\cdot m_{ij}.$

Since $L(r_{ij}) \ge d_H(i,j)$, we conclude that in an optimal solution the routing necessarily uses shortest dipaths in the hypergraph layout.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions			
	0000000	000000000000000000000000000000000000000						
Modeling the problem								
Statement of the problem								

It follows that the cost function can be rewritten w.l.o.g. as

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	00000000	000000000			
Modeling the problem					
Stateme	nt of t	he problem	ı		

It follows that the cost function can be rewritten w.l.o.g. as

It follows that the cost function can be rewritten w.l.o.g. as

If G is a symmetric digraph, the problem is denoted MINIMUM COST SYMMETRIC HYPERGRAPH LAYOUT \Rightarrow (\Rightarrow) (\Rightarrow

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	0000000	000000000000000000000000000000000000000			
General (directed)	network				
Outline	2				

1 Introduction

2 Model

Hardness Results
 General (directed) network
 Symmetric Network

Approximation Algorithms

5 The Case of the Path

6 Conclusions

<ロ > < 部 > < 臣 > < 臣 > 臣 の Q () 19 / 36

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	0000000	000000000000000000000000000000000000000			
General (directed) r	network				
General	(direc	ted) networ	ŕk		

The MINIMUM COST HYPERGRAPH LAYOUT problem cannot be approximated within a factor $C \log n$ for some constant C > 0, even if the instance is a partial broadcast, unless P = NP.

¹Given a finite set S and a collection C of subsets of S, the aim is to find a subcollection C' of C of minimum cardinality that covers all the elements of S_{\equiv} .

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions 000000 General (directed) network General (directed) network

Theorem

The MINIMUM COST HYPERGRAPH LAYOUT problem cannot be approximated within a factor $C \log n$ for some constant C > 0, even if the instance is a partial broadcast, unless P = NP.

• The reduction is from MINIMUM SET COVER¹.

¹Given a finite set S and a collection C of subsets of S, the aim is to find a subcollection C' of C of minimum cardinality that covers all the elements of S₌.

Theorem

The MINIMUM COST HYPERGRAPH LAYOUT problem cannot be approximated within a factor $C \log n$ for some constant C > 0, even if the instance is a partial broadcast, unless P = NP.

- The reduction is from MINIMUM Set $COVER^1$.
- MINIMUM SET COVER is not approximable within a factor C log n, for some constant C > 0, unless P = NP.
 [Raz and Safra, STOC 1997]

¹Given a finite set S and a collection C of subsets of S, the aim is to find a subcollection C' of C of minimum cardinality that covers all the elements of S_{\equiv} .

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		0000@0000000			
General (directed)	network				
Idea of	the re	duction			

To a SET COVER instance with sets S_1, S_2, \ldots, S_k , with $S_i \subseteq \{a_1, a_2, \ldots, a_n\}$, we associate the following graph:

• We start with a distinguished node *s*.

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		000000000000000000000000000000000000000			
General (directed)	network				
Idea of	the re	duction (II)			

• For each set S_i we introduce a node v_i and a directed path of length L + 1 (L is a big constant) from s to v_i through L new vertices $p_i^1, p_i^2, \ldots, p_i^L$.

For each element a_j we introduce a vertex u_j and, for each vertex v_i we add the arcs (v_i, u_j) if a_j ∈ S_i.

For each element a_j we introduce a vertex u_j and, for each vertex v_i we add the arcs (v_i, u_j) if a_j ∈ S_i.

For each element a_j we introduce a vertex u_j and, for each vertex v_i we add the arcs (v_i, u_j) if a_j ∈ S_i.

• The requests are from s to u_j , for $i=1,\ldots,n$.

24 / 36

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	0000000	000000000000000000000000000000000000000			
Symmetric Network					
Outline					

Introduction

2 Model

Hardness Results
 General (directed) network

- Symmetric Network
- Approximation Algorithms
- 5 The Case of the Path

6 Conclusions

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		000000000000000000000000000000000000000			
Symmetric Networ	k				
Symme	etric ne	twork			

The MINIMUM COST SYMMETRIC HYPERGRAPH LAYOUT problem is APX-hard even if the instance is a partial broadcast. Therefore, it does not accept a PTAS unless P=NP.

²Given an edge-weighted graph G = (V, E) and a subset $S \subseteq V$, find a connected subgraph with minimum edge-weight containing all the vertices in S.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		000000000000000000000000000000000000000			
Symmetric Networ	k				
Symme	etric ne	twork			

The MINIMUM COST SYMMETRIC HYPERGRAPH LAYOUT problem is APX-hard even if the instance is a partial broadcast. Therefore, it does not accept a PTAS unless P=NP.

- The reduction is from MINIMUM STEINER $TREE^2$.
- MINIMUM STEINER TREE is APX-hard, hence it does not accept a PTAS unless P = NP. [Bern and Plassmann, IPL 1989]

²Given an edge-weighted graph G = (V, E) and a subset $S \subseteq V$, find a connected subgraph with minimum edge-weight containing all the vertices in S.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		000000000000000000000000000000000000000	000000		
Case of the Path					
Outline					

2 Model

3 Hardness Results

Approximation Algorithms
 Case of the Path
 Case of the Tree
 Constant Graph

• General Graph

5 The Case of the Path

6 Conclusions

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	0000000	000000000000000000000000000000000000000	000000		
Case of the Path					
Case of	the pa	ath			

Proposition

When the network is a path, there exists a polynomial-time approximation algorithm for the MINIMUM COST HYPERGRAPH LAYOUT problem with an approximation ratio $\mathcal{O}(\log n)$.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	000000	000000000000000000000000000000000000000	000000		
Case of the Path					
Idea: 2	^k -hops	long tunne	ls		

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		000000000000000000000000000000000000000	000000		
Case of the Path					
Idea: 2	^k -hops	long tunne	ls		

.... then, we route the demands using shortest paths in this layout.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		000000000000000000000000000000000000000	000000		
Case of the Path					
Idea: 2	^k -hops	long tunne	ls		

.... then, we route the demands using shortest paths in this layout.

In this layout:

- Total length: $\mathcal{O}(n \log n)$.
- Hop count: each request can be routed in $\mathcal{O}(\log n)$ hops.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		000000000000000000000000000000000000000	000000		
Case of the Path					
Idea: 2	^k -hops	long tunne	ls		

.... then, we route the demands using shortest paths in this layout.

In this layout:

- Total length: $\mathcal{O}(n \log n)$.
- Hop count: each request can be routed in $\mathcal{O}(\log n)$ hops.

In any solution:

- Total length $\geq n$.
- Hop count $\geq \sum m_{ij}$.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		000000000000000000000000000000000000000	000000		
Case of the Path					
Idea: 2	^k -hops	long tunne	ls		

.... then, we route the demands using shortest paths in this layout.

In this layout:

- Total length: $\mathcal{O}(n \log n)$.
- Hop count: each request can be routed in $\mathcal{O}(\log n)$ hops.

In any solution:

- Total length $\geq n$.
- Hop count $\geq \sum m_{ij}$.

 $\Rightarrow \mathcal{O}(\log n)$ -approximation algorithm.

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	0000000	000000000000000000000000000000000000000	0000000		
Case of the Tree					
Outline					

2 Model

3 Hardness Results

General Graph

5 The Case of the Path

6 Conclusions

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	000000	000000000000000000000000000000000000000	0000000		
Case of the Tree					
Case of	f the tr	ee			

Theorem (Bermond, Marlin, Peleg, and Pérennes, TCS 2003)

In a general tree on n nodes with all-to-all traffic, for each value of $c \in \{1, ..., n\}$ there exists a virtual layout allowing to route all traffic with **diameter** at most $10c \cdot n^{\frac{1}{2c-1}}$ and **load** at most *c*. In addition, such a layout can be constructed in polynomial time.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		000000000000000000000000000000000000000	0000000		
Case of the Tree					
Case of	f the tr	ee			

Theorem (Bermond, Marlin, Peleg, and Pérennes, TCS 2003)

In a general tree on n nodes with all-to-all traffic, for each value of $c \in \{1, ..., n\}$ there exists a virtual layout allowing to route all traffic with **diameter** at most $10c \cdot n^{\frac{1}{2c-1}}$ and **load** at most *c*. In addition, such a layout can be constructed in polynomial time.

In particular, if we set $c = \frac{\log n+1}{2}$, the above implies that we can find in polynomial time a layout with load $\mathcal{O}(\log n)$ and diameter at most $(5 \log n + 5) \cdot n^{\frac{1}{\log n}} = 10 \log n + 10 = \mathcal{O}(\log n)$.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		000000000000000000000000000000000000000	0000000		
Case of the Tree					
Case of	f the tr	ee			

Theorem (Bermond, Marlin, Peleg, and Pérennes, TCS 2003)

In a general tree on n nodes with all-to-all traffic, for each value of $c \in \{1, ..., n\}$ there exists a virtual layout allowing to route all traffic with **diameter** at most $10c \cdot n^{\frac{1}{2c-1}}$ and **load** at most *c*. In addition, such a layout can be constructed in polynomial time.

In particular, if we set $c = \frac{\log n+1}{2}$, the above implies that we can find in polynomial time a layout with load $\mathcal{O}(\log n)$ and diameter at most $(5 \log n + 5) \cdot n^{\frac{1}{\log n}} = 10 \log n + 10 = \mathcal{O}(\log n)$.

Proposition

When the network is a tree, there exists a polynomial-time approximation algorithm for MINIMUM COST HYPERGRAPH LAYOUT problem with an approximation ratio $\mathcal{O}(\log n)$.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		000000000000000000000000000000000000000	0000000		
General Graph					
Outline					

2 Model

3 Hardness Results

Approximation Algorithms
 Case of the Path
 Case of the Tree
 General Graph

5 The Case of the Path

6 Conclusions

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		0000000000	000000		
General Graph					
General	graph				

In a general network, there exists a polynomial-time approximation algorithm for MINIMUM COST HYPERGRAPH LAYOUT problem with an approximation ratio $\mathcal{O}(\log n)$.

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		0000000000	000000		
General Graph					
General	graph				

In a general network, there exists a polynomial-time approximation algorithm for MINIMUM COST HYPERGRAPH LAYOUT problem with an approximation ratio $\mathcal{O}(\log n)$.

• Idea: We find a MINIMUM GENERALIZED STEINER FOREST *H*.

This problem can be approximated within a **constant factor** 2. [Khuller and Vishkin, Journal of the ACM 1994]

	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	0000000	000000000000000000000000000000000000000	000000		
General Graph					
Genera	graph				

In a general network, there exists a polynomial-time approximation algorithm for MINIMUM COST HYPERGRAPH LAYOUT problem with an approximation ratio $\mathcal{O}(\log n)$.

- Idea: We find a MINIMUM GENERALIZED STEINER FOREST *H*. This problem can be approximated within a **constant factor** 2. [Khuller and Vishkin, Journal of the ACM 1994]
- The we apply the algorithm for the tree to each connected component of $H \Rightarrow$ overall approximation factor $\mathcal{O}(\log n)$.

The case of the path with bounded number of sources

 For a single source, a polynomial optimal dynamic programming algorithm has been presented in [Bermond, Coudert, Moulierac, Pérennes, Rivano, and Sau, Networking 2009]

The case of the path with bounded number of sources

- For a single source, a polynomial optimal dynamic programming algorithm has been presented in [Bermond, Coudert, Moulierac, Pérennes, Rivano, and Sau, Networking 2009]
- Here we extended the dynamic programming algorithm for any fixed number k of sources, with a running time of $n^{\mathcal{O}(k)}$.

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
	000000000000000000000000000000000000000				

- We modeled a problem raised by label minimization in GMPLS networks as a hypergraph layout problem.
- The problem seems closely related to classical VPL problems.
- We provided hardness results and approximations algorithms.
- Also, we proved that the problem is polynomial on the path for any bounded number of sources.

Introduction	Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
		000000000000000000000000000000000000000			

- We modeled a problem raised by label minimization in GMPLS networks as a hypergraph layout problem.
- The problem seems closely related to classical VPL problems.
- We provided hardness results and approximations algorithms.
- Also, we proved that the problem is polynomial on the path for any bounded number of sources.

A lot of work to be done:

• Improve the hardness results and the approximation algorithms.

Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
000000000000000000000000000000000000000				

- We modeled a problem raised by label minimization in GMPLS networks as a hypergraph layout problem.
- The problem seems closely related to classical VPL problems.
- We provided hardness results and approximations algorithms.
- Also, we proved that the problem is polynomial on the path for any bounded number of sources.

A lot of work to be done:

- Improve the hardness results and the approximation algorithms.
- Is the problem polynomial on the path for **unbounded** number of sources?

35/36

Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
000000000000000000000000000000000000000				

- We modeled a problem raised by label minimization in GMPLS networks as a hypergraph layout problem.
- The problem seems closely related to classical VPL problems.
- We provided hardness results and approximations algorithms.
- Also, we proved that the problem is polynomial on the path for any bounded number of sources.

A lot of work to be done:

- Improve the hardness results and the approximation algorithms.
- Is the problem polynomial on the path for **unbounded** number of sources?
- More generally, is the problem polynomial on trees or graphs of bounded treewidth?

Model	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
000000000000000000000000000000000000000				

- We modeled a problem raised by label minimization in GMPLS networks as a hypergraph layout problem.
- The problem seems closely related to classical VPL problems.
- We provided hardness results and approximations algorithms.
- Also, we proved that the problem is polynomial on the path for any bounded number of sources.

A lot of work to be done:

- Improve the hardness results and the approximation algorithms.
- Is the problem polynomial on the path for **unbounded** number of sources?
- More generally, is the problem polynomial on trees or graphs of bounded treewidth?
- Does the problem remain NP-hard if the **routes** to be followed by the requests are part of the **input**?

Introduction 00000	Model 000000000	Hardness Results	Approximation Algorithms	The Case of the Path	Conclusions
Thanks!					

Questions?

◆□ → < 団 → < 臣 → < 臣 → 臣 → ○ へ (?) 36/36