
Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Designing Hypergraph Layouts
to GMPLS Routing Strategies

Jean-Claude Bermond, David Coudert,
Joanna Moulierac, Stéphane Pérennes, Ignasi Sau

INRIA/CNRS/UNSA, Sophia-Antipolis, France
Fernando Solano

Warsaw University of Technology, Poland

ignasi.sau@gmail.com

SIROCCO 2009
27th of May 2009, Piran, Slovenia

1 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Outline

1 Introduction

2 Model

3 Hardness Results

4 Approximation Algorithms

5 The Case of the Path

6 Conclusions

2 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Concepts and Motivations

Outline

1 Introduction
Concepts and Motivations
The Label Stack

2 Model

3 Hardness Results

4 Approximation Algorithms

5 The Case of the Path

6 Conclusions

3 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Concepts and Motivations

Concepts in brief... GMPLS/AOPS

About GMPLS switching...

GMPLS = Generic MultiProtocol Label Switching.

G/MPLS is a tag-switching technology (packet-based networks).

Each packet is tagged (labeled), so it can be associated and treated
as a single flow.

Packet forwarding is based on the content of the label solely.

About AOPS...

All-Optical Packet Switching (AOPS) is an all-optical hardware
implementation of GMPLS switching for packet forwarding.

1 Label processing and packet forwarding decisions are all performed
completely optically

2 No need for OEO regeneration... faster packet forwarding.

3 One ‘decoding’ device is needed for each used label at each node

4 Few labels... Labels are extremely valuable resources

4 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Concepts and Motivations

Concepts in brief... GMPLS/AOPS

About GMPLS switching...

GMPLS = Generic MultiProtocol Label Switching.

G/MPLS is a tag-switching technology (packet-based networks).

Each packet is tagged (labeled), so it can be associated and treated
as a single flow.

Packet forwarding is based on the content of the label solely.

About AOPS...

All-Optical Packet Switching (AOPS) is an all-optical hardware
implementation of GMPLS switching for packet forwarding.

1 Label processing and packet forwarding decisions are all performed
completely optically

2 No need for OEO regeneration... faster packet forwarding.

3 One ‘decoding’ device is needed for each used label at each node

4 Few labels...

Labels are extremely valuable resources

4 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Concepts and Motivations

Concepts in brief... GMPLS/AOPS

About GMPLS switching...

GMPLS = Generic MultiProtocol Label Switching.

G/MPLS is a tag-switching technology (packet-based networks).

Each packet is tagged (labeled), so it can be associated and treated
as a single flow.

Packet forwarding is based on the content of the label solely.

About AOPS...

All-Optical Packet Switching (AOPS) is an all-optical hardware
implementation of GMPLS switching for packet forwarding.

1 Label processing and packet forwarding decisions are all performed
completely optically

2 No need for OEO regeneration... faster packet forwarding.

3 One ‘decoding’ device is needed for each used label at each node

4 Few labels... Labels are extremely valuable resources
4 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

The Label Stack

Outline

1 Introduction
Concepts and Motivations
The Label Stack

2 Model

3 Hardness Results

4 Approximation Algorithms

5 The Case of the Path

6 Conclusions

5 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

The Label Stack

Handling Labels

Packets contain a stack of labels...
Nodes may alter the stack of labels performing one of the following
operations:

Swap the Top

... with the neighbor’s

locally ‘understandable’

label.

Swap & Push

... as many as you

want.

Pop the Stack

... only one.

6 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

The Label Stack

Handling Labels

Packets contain a stack of labels...
Nodes may alter the stack of labels performing one of the following
operations:

Swap the Top

... with the neighbor’s

locally ‘understandable’

label.

Swap & Push

... as many as you

want.

Pop the Stack

... only one.

6 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

The Label Stack

Handling Labels

Packets contain a stack of labels...
Nodes may alter the stack of labels performing one of the following
operations:

Swap the Top

... with the neighbor’s

locally ‘understandable’

label.

Swap & Push

... as many as you

want.

Pop the Stack

... only one.

6 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

The Label Stack

Handling Labels

Packets contain a stack of labels...
Nodes may alter the stack of labels performing one of the following
operations:

Swap the Top

... with the neighbor’s

locally ‘understandable’

label.

Swap & Push

... as many as you

want.

Pop the Stack

... only one.

6 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

The Label Stack

Handling Labels

Packets contain a stack of labels...
Nodes may alter the stack of labels performing one of the following
operations:

Swap the Top

... with the neighbor’s

locally ‘understandable’

label.

Swap & Push

... as many as you

want.

Pop the Stack

... only one.

... but solely the top one can be processed!

6 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

The Label Stack

Label Stacking & Tunnels

k1:PUSH l,out:AB

k :PUSH l,out:AB

k :PUSH l,out:A
k :PUSH l,out:AB

k2:PUSH l,out:AB

 PUSH
 ...

 ...

λ

κ

ι

λ

l:l SWAP l1,out:BC

l2: POP,out:DE

l1:l1 SWAP l2,out:CD

units of trafficλ EDCBA

Data Payloadl k
i

Data Payloadk
i

Data Payload

Data Payload

Data Payload

Data Payload

Data Payload

k
λ

k
κ

k
ι

k
2

k
1

By pushing a label, we can create a higher hierarchy LSP
(Label Switched Path), called tunnel.

Using a stack size of 2, the number of used labels can be decreased

The larger the stack, fewer labels are needed...

The problem we tackle is the minimization of the total number of labels
using tunnels.

7 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

The Label Stack

Label Stacking & Tunnels

k1:PUSH l,out:AB

k :PUSH l,out:AB

k :PUSH l,out:A
k :PUSH l,out:AB

k2:PUSH l,out:AB

 PUSH
 ...

 ...

λ

κ

ι

λ

l:l SWAP l1,out:BC

l2: POP,out:DE

l1:l1 SWAP l2,out:CD

units of trafficλ EDCBA

Data Payloadl k
i

Data Payloadk
i

Data Payload

Data Payload

Data Payload

Data Payload

Data Payload

k
λ

k
κ

k
ι

k
2

k
1

By pushing a label, we can create a higher hierarchy LSP
(Label Switched Path), called tunnel.

Using a stack size of 2, the number of used labels can be decreased

The larger the stack, fewer labels are needed...

The problem we tackle is the minimization of the total number of labels
using tunnels.

7 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Outline

1 Introduction

2 Model
Modeling the problem

3 Hardness Results

4 Approximation Algorithms

5 The Case of the Path

6 Conclusions

8 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Some notation

• G = (V , E) is the underlying digraph
(which can be symmetric or not).

• |V | = n, and vertices are numbered 1, . . . , n.

• rij is the request from i ∈ V to j ∈ V , with multiplicity mij .
R is the set of all requests.

• P(G) is the set of all simple dipaths in G .

• t stands for a tunnel, and T is the set of tunnels, that is
t ∈ T ⊆ P(G).

• ` is a length function on the arcs, that is ` : E → R+.

• for a tunnel t, `(t) =
∑

e∈t `(e) is its length and
w(t) is the amount of traffic it carries.

9 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Cost of a tunnel = number of labels

k1:PUSH l,out:AB

k :PUSH l,out:AB

k :PUSH l,out:A
k :PUSH l,out:AB

k2:PUSH l,out:AB

 PUSH
 ...

 ...

λ

κ

ι

λ

l:l SWAP l1,out:BC

l2: POP,out:DE

l1:l1 SWAP l2,out:CD

units of trafficλ EDCBA

Data Payloadl k
i

Data Payloadk
i

Data Payload

Data Payload

Data Payload

Data Payload

Data Payload

k
λ

k
κ

k
ι

k
2

k
1

Let t be a tunnel.

Its cost is defined as

c(t) = w(t) + (`(t)− 1).

w(t) is the number of forwarded traffic units (LSPs)
`(t) is the length of the tunnel (usually, the number of hops)

The cost of a set of tunnels T is∑
t∈T

(w(t) + `(t)− 1) .

Each tunnel can be seen as a directed hyperarc on the vertex set of G .
This observation naturally leads to the definition of a hypergraph layout.

10 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Cost of a tunnel = number of labels

k1:PUSH l,out:AB

k :PUSH l,out:AB

k :PUSH l,out:A
k :PUSH l,out:AB

k2:PUSH l,out:AB

 PUSH
 ...

 ...

λ

κ

ι

λ

l:l SWAP l1,out:BC

l2: POP,out:DE

l1:l1 SWAP l2,out:CD

units of trafficλ EDCBA

Data Payloadl k
i

Data Payloadk
i

Data Payload

Data Payload

Data Payload

Data Payload

Data Payload

k
λ

k
κ

k
ι

k
2

k
1

Let t be a tunnel. Its cost is defined as

c(t) = w(t) + (`(t)− 1).

w(t) is the number of forwarded traffic units (LSPs)
`(t) is the length of the tunnel (usually, the number of hops)

The cost of a set of tunnels T is∑
t∈T

(w(t) + `(t)− 1) .

Each tunnel can be seen as a directed hyperarc on the vertex set of G .
This observation naturally leads to the definition of a hypergraph layout.

10 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Cost Example - Scenario

We consider the case of a line network with one source and multiple
destinations...

s u u
l l

w

w

1

1
1

2
2

2

With no tunnels we need l1 · (w1 + w2) + l2 · w2 labels...

With tunnels?? The optimal solution depends on the values of li and wi ...

11 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Cost Example - Solutions

First Solution...

s u u
l l

w

w

1

1
1

2
2

2

c(T(s,u1)) = w1 + l1 − 1
c(T(s,u2)) = w2 + (l1 + l2)− 1

Total cost is: w1 + w2 + 2l1 + l2 − 2

12 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Cost Example - Solutions

Second Solution...

s u u
l l

w

w

1

1
1

2
2

2

c(T(s,u1)) = w1 + w2 + l1 − 1
c(T(u1,u2)) = w2 + l2 − 1

Total cost is: w1 + 2w2 + l1 + l2 − 2

13 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Cost Example - Solutions

Which one is the best solution?

s u u
l l

w

w

1

1
1

2
2

2

s u u
l l

w

w

1

1
1

2
2

2

If l1 ≤ w2 If l1 ≥ w2

14 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Cost of a tunnel = number of labels (II)

k1:PUSH l,out:AB

k :PUSH l,out:AB

k :PUSH l,out:A
k :PUSH l,out:AB

k2:PUSH l,out:AB

 PUSH
 ...

 ...

λ

κ

ι

λ

l:l SWAP l1,out:BC

l2: POP,out:DE

l1:l1 SWAP l2,out:CD

units of trafficλ EDCBA

Data Payloadl k
i

Data Payloadk
i

Data Payload

Data Payload

Data Payload

Data Payload

Data Payload

k
λ

k
κ

k
ι

k
2

k
1

Let t be a tunnel. Its cost is defined as

c(t) = w(t) + (`(t)− 1).

w(t) is the number of forwarded traffic units (LSPs)
`(t) is the length of the tunnel (usually, the number of hops)

The cost of a set of tunnels T is∑
t∈T

(w(t) + `(t)− 1) .

Each tunnel can be seen as a directed hyperarc on the vertex set of G .
This observation naturally leads to the definition of a hypergraph layout.

15 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Cost of a tunnel = number of labels (II)

k1:PUSH l,out:AB

k :PUSH l,out:AB

k :PUSH l,out:A
k :PUSH l,out:AB

k2:PUSH l,out:AB

 PUSH
 ...

 ...

λ

κ

ι

λ

l:l SWAP l1,out:BC

l2: POP,out:DE

l1:l1 SWAP l2,out:CD

units of trafficλ EDCBA

Data Payloadl k
i

Data Payloadk
i

Data Payload

Data Payload

Data Payload

Data Payload

Data Payload

k
λ

k
κ

k
ι

k
2

k
1

Let t be a tunnel. Its cost is defined as

c(t) = w(t) + (`(t)− 1).

w(t) is the number of forwarded traffic units (LSPs)
`(t) is the length of the tunnel (usually, the number of hops)

The cost of a set of tunnels T is∑
t∈T

(w(t) + `(t)− 1) .

Each tunnel can be seen as a directed hyperarc on the vertex set of G .
This observation naturally leads to the definition of a hypergraph layout.

15 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Cost of a tunnel = number of labels (II)

k1:PUSH l,out:AB

k :PUSH l,out:AB

k :PUSH l,out:A
k :PUSH l,out:AB

k2:PUSH l,out:AB

 PUSH
 ...

 ...

λ

κ

ι

λ

l:l SWAP l1,out:BC

l2: POP,out:DE

l1:l1 SWAP l2,out:CD

units of trafficλ EDCBA

Data Payloadl k
i

Data Payloadk
i

Data Payload

Data Payload

Data Payload

Data Payload

Data Payload

k
λ

k
κ

k
ι

k
2

k
1

Let t be a tunnel. Its cost is defined as

c(t) = w(t) + (`(t)− 1).

w(t) is the number of forwarded traffic units (LSPs)
`(t) is the length of the tunnel (usually, the number of hops)

The cost of a set of tunnels T is∑
t∈T

(w(t) + `(t)− 1) .

Each tunnel can be seen as a directed hyperarc on the vertex set of G .

This observation naturally leads to the definition of a hypergraph layout.

15 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Cost of a tunnel = number of labels (II)

k1:PUSH l,out:AB

k :PUSH l,out:AB

k :PUSH l,out:A
k :PUSH l,out:AB

k2:PUSH l,out:AB

 PUSH
 ...

 ...

λ

κ

ι

λ

l:l SWAP l1,out:BC

l2: POP,out:DE

l1:l1 SWAP l2,out:CD

units of trafficλ EDCBA

Data Payloadl k
i

Data Payloadk
i

Data Payload

Data Payload

Data Payload

Data Payload

Data Payload

k
λ

k
κ

k
ι

k
2

k
1

Let t be a tunnel. Its cost is defined as

c(t) = w(t) + (`(t)− 1).

w(t) is the number of forwarded traffic units (LSPs)
`(t) is the length of the tunnel (usually, the number of hops)

The cost of a set of tunnels T is∑
t∈T

(w(t) + `(t)− 1) .

Each tunnel can be seen as a directed hyperarc on the vertex set of G .
This observation naturally leads to the definition of a hypergraph layout.

15 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Hypergraph layout

Definition (Hypergraph layout)

Given a graph G and a set T ⊆ P(G) of dipaths, the associated
hypergraph layout H(T) is the directed hypergraph with
V (H(T)) = V (G), and where for each tunnel t ∈ T ⊆ P(G) there is a
directed hyperarc in H(T) connecting any vertex of t to the end of t.

Note that a hypergraph H(T) defines a virtual topology on G .

A hypergraph layout H(T) is said to be feasible if for each request
rij ∈ R there exists a dipath in H(T) from i to j .

The problem can then be simply expressed as finding a feasible
hypergraph layout of minimum cost.

16 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Hypergraph layout

Definition (Hypergraph layout)

Given a graph G and a set T ⊆ P(G) of dipaths, the associated
hypergraph layout H(T) is the directed hypergraph with
V (H(T)) = V (G), and where for each tunnel t ∈ T ⊆ P(G) there is a
directed hyperarc in H(T) connecting any vertex of t to the end of t.

Note that a hypergraph H(T) defines a virtual topology on G .

A hypergraph layout H(T) is said to be feasible if for each request
rij ∈ R there exists a dipath in H(T) from i to j .

The problem can then be simply expressed as finding a feasible
hypergraph layout of minimum cost.

16 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Hypergraph layout

Definition (Hypergraph layout)

Given a graph G and a set T ⊆ P(G) of dipaths, the associated
hypergraph layout H(T) is the directed hypergraph with
V (H(T)) = V (G), and where for each tunnel t ∈ T ⊆ P(G) there is a
directed hyperarc in H(T) connecting any vertex of t to the end of t.

Note that a hypergraph H(T) defines a virtual topology on G .

A hypergraph layout H(T) is said to be feasible if for each request
rij ∈ R there exists a dipath in H(T) from i to j .

The problem can then be simply expressed as finding a feasible
hypergraph layout of minimum cost.

16 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Hypergraph layout

Definition (Hypergraph layout)

Given a graph G and a set T ⊆ P(G) of dipaths, the associated
hypergraph layout H(T) is the directed hypergraph with
V (H(T)) = V (G), and where for each tunnel t ∈ T ⊆ P(G) there is a
directed hyperarc in H(T) connecting any vertex of t to the end of t.

Note that a hypergraph H(T) defines a virtual topology on G .

A hypergraph layout H(T) is said to be feasible if for each request
rij ∈ R there exists a dipath in H(T) from i to j .

The problem can then be simply expressed as finding a feasible
hypergraph layout of minimum cost.

16 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Simplifying the cost function

The cost of a set of tunnels T was∑
t∈T

(w(t) + `(t)− 1) . (1)

Given a hypergraph layout H(T),

let L(rij) be the number of hyperarcs that request rij uses, and

let dH(i , j) be the distance from vertex i to vertex j in H(T).

Then the term
∑

t∈T w(t) of Equation (1) can be rewritten as∑
rij∈R

L(rij) ·mij .

Since L(rij) ≥ dH(i , j), we conclude that in an optimal solution the
routing necessarily uses shortest dipaths in the hypergraph layout.

17 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Simplifying the cost function

The cost of a set of tunnels T was∑
t∈T

(w(t) + `(t)− 1) . (1)

Given a hypergraph layout H(T),

let L(rij) be the number of hyperarcs that request rij uses, and

let dH(i , j) be the distance from vertex i to vertex j in H(T).

Then the term
∑

t∈T w(t) of Equation (1) can be rewritten as∑
rij∈R

L(rij) ·mij .

Since L(rij) ≥ dH(i , j), we conclude that in an optimal solution the
routing necessarily uses shortest dipaths in the hypergraph layout.

17 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Simplifying the cost function

The cost of a set of tunnels T was∑
t∈T

(w(t) + `(t)− 1) . (1)

Given a hypergraph layout H(T),

let L(rij) be the number of hyperarcs that request rij uses, and

let dH(i , j) be the distance from vertex i to vertex j in H(T).

Then the term
∑

t∈T w(t) of Equation (1) can be rewritten as∑
rij∈R

L(rij) ·mij .

Since L(rij) ≥ dH(i , j), we conclude that in an optimal solution the
routing necessarily uses shortest dipaths in the hypergraph layout.

17 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Simplifying the cost function

The cost of a set of tunnels T was∑
t∈T

(w(t) + `(t)− 1) . (1)

Given a hypergraph layout H(T),

let L(rij) be the number of hyperarcs that request rij uses, and

let dH(i , j) be the distance from vertex i to vertex j in H(T).

Then the term
∑

t∈T w(t) of Equation (1) can be rewritten as∑
rij∈R

L(rij) ·mij .

Since L(rij) ≥ dH(i , j), we conclude that in an optimal solution the
routing necessarily uses shortest dipaths in the hypergraph layout.

17 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Simplifying the cost function

The cost of a set of tunnels T was∑
t∈T

(w(t) + `(t)− 1) . (1)

Given a hypergraph layout H(T),

let L(rij) be the number of hyperarcs that request rij uses, and

let dH(i , j) be the distance from vertex i to vertex j in H(T).

Then the term
∑

t∈T w(t) of Equation (1) can be rewritten as∑
rij∈R

L(rij) ·mij .

Since L(rij) ≥ dH(i , j), we conclude that in an optimal solution the
routing necessarily uses shortest dipaths in the hypergraph layout.

17 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Statement of the problem

It follows that the cost function can be rewritten w.l.o.g. as∑
t∈T

(`(t)− 1)︸ ︷︷ ︸
total length

+
∑
rij∈R

dH(i , j)mij︸ ︷︷ ︸
hop count

. (2)

Minimum Cost Hypergraph Layout

◦ Input: A digraph G = (V , E) with a length function ` : E → R+,
and a set R of traffic requests.

◦ Output: A feasible hypergraph layout of minimum cost,
where the cost of a hypergraph layout is defined as in Equation (2).

If G is a symmetric digraph, the problem is denoted
Minimum Cost Symmetric Hypergraph Layout.

18 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Statement of the problem

It follows that the cost function can be rewritten w.l.o.g. as∑
t∈T

(`(t)− 1)︸ ︷︷ ︸
total length

+
∑
rij∈R

dH(i , j)mij︸ ︷︷ ︸
hop count

. (2)

Minimum Cost Hypergraph Layout

◦ Input: A digraph G = (V , E) with a length function ` : E → R+,
and a set R of traffic requests.

◦ Output: A feasible hypergraph layout of minimum cost,
where the cost of a hypergraph layout is defined as in Equation (2).

If G is a symmetric digraph, the problem is denoted
Minimum Cost Symmetric Hypergraph Layout.

18 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Modeling the problem

Statement of the problem

It follows that the cost function can be rewritten w.l.o.g. as∑
t∈T

(`(t)− 1)︸ ︷︷ ︸
total length

+
∑
rij∈R

dH(i , j)mij︸ ︷︷ ︸
hop count

. (2)

Minimum Cost Hypergraph Layout

◦ Input: A digraph G = (V , E) with a length function ` : E → R+,
and a set R of traffic requests.

◦ Output: A feasible hypergraph layout of minimum cost,
where the cost of a hypergraph layout is defined as in Equation (2).

If G is a symmetric digraph, the problem is denoted
Minimum Cost Symmetric Hypergraph Layout.

18 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General (directed) network

Outline

1 Introduction

2 Model

3 Hardness Results
General (directed) network
Symmetric Network

4 Approximation Algorithms

5 The Case of the Path

6 Conclusions

19 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General (directed) network

General (directed) network

Theorem

The Minimum Cost Hypergraph Layout problem cannot be
approximated within a factor C log n for some constant C > 0, even if
the instance is a partial broadcast, unless P = NP.

The reduction is from Minimum Set Cover1.

Minimum Set Cover is not approximable within a factor C log n,
for some constant C > 0, unless P = NP.
[Raz and Safra, STOC 1997]

1Given a finite set S and a collection C of subsets of S, the aim is to find a
subcollection C′ of C of minimum cardinality that covers all the elements of S.

20 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General (directed) network

General (directed) network

Theorem

The Minimum Cost Hypergraph Layout problem cannot be
approximated within a factor C log n for some constant C > 0, even if
the instance is a partial broadcast, unless P = NP.

The reduction is from Minimum Set Cover1.

Minimum Set Cover is not approximable within a factor C log n,
for some constant C > 0, unless P = NP.
[Raz and Safra, STOC 1997]

1Given a finite set S and a collection C of subsets of S, the aim is to find a
subcollection C′ of C of minimum cardinality that covers all the elements of S.

20 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General (directed) network

General (directed) network

Theorem

The Minimum Cost Hypergraph Layout problem cannot be
approximated within a factor C log n for some constant C > 0, even if
the instance is a partial broadcast, unless P = NP.

The reduction is from Minimum Set Cover1.

Minimum Set Cover is not approximable within a factor C log n,
for some constant C > 0, unless P = NP.
[Raz and Safra, STOC 1997]

1Given a finite set S and a collection C of subsets of S, the aim is to find a
subcollection C′ of C of minimum cardinality that covers all the elements of S.

20 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General (directed) network

Idea of the reduction

To a Set Cover instance with sets S1, S2, . . . , Sk , with
Si ⊆ {a1, a2, . . . , an}, we associate the following graph:

• We start with a distinguished node s.

For each set Si we introduce a node vi and a directed path of length
L + 1 (L is a big constant) from s to vi through L new vertices
p1

i , p2
i , . . . , pL

i .

For each element aj we introduce a vertex uj and, for each vertex vi

we add the arcs (vi , uj) if aj ∈ Si .

The requests are from s to uj , for i = 1, . . . , n.

21 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General (directed) network

Idea of the reduction (II)

• For each set Si we introduce a node vi and a directed path of length
L + 1 (L is a big constant) from s to vi through L new vertices
p1

i , p2
i , . . . , pL

i .

s

v1

v2

vk-1

vk

p
1
1

p
1
2

p
1
L

p
k
1

p
k
2

p
k
L

22 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General (directed) network

Idea of the reduction (III)

• For each element aj we introduce a vertex uj and, for each vertex vi

we add the arcs (vi , uj) if aj ∈ Si .

s

v1

v2

vk-1

vk

u1

u2

u3u

un

un-1

un-2

p
1
1

p
1
2

p
1
L

p
k
1

p
k
2

p
k
L

23 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General (directed) network

Idea of the reduction (IV)

• For each element aj we introduce a vertex uj and, for each vertex vi

we add the arcs (vi , uj) if aj ∈ Si .

s

v1

v2

vk-1

vk

u1

u2

u3u

un

un-1

un-2

p
1
1

p
1
2

p
1
L

p
k
1

p
k
2

p
k
L

• The requests are from s to uj , for i = 1, . . . , n.

24 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General (directed) network

Idea of the reduction (IV)

• For each element aj we introduce a vertex uj and, for each vertex vi

we add the arcs (vi , uj) if aj ∈ Si .

s

v1

v2

vk-1

vk

u1

u2

u3u

un

un-1

un-2

p
1
1

p
1
2

p
1
L

p
k
1

p
k
2

p
k
L

• The requests are from s to uj , for i = 1, . . . , n.
24 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Symmetric Network

Outline

1 Introduction

2 Model

3 Hardness Results
General (directed) network
Symmetric Network

4 Approximation Algorithms

5 The Case of the Path

6 Conclusions

25 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Symmetric Network

Symmetric network

Theorem

The Minimum Cost Symmetric Hypergraph Layout problem is
APX-hard even if the instance is a partial broadcast. Therefore, it does
not accept a PTAS unless P=NP.

The reduction is from Minimum Steiner Tree2.

Minimum Steiner Tree is APX-hard, hence it does not accept a
PTAS unless P = NP.
[Bern and Plassmann, IPL 1989]

2Given an edge-weighted graph G = (V , E) and a subset S ⊆ V , find a connected
subgraph with minimum edge-weight containing all the vertices in S .

26 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Symmetric Network

Symmetric network

Theorem

The Minimum Cost Symmetric Hypergraph Layout problem is
APX-hard even if the instance is a partial broadcast. Therefore, it does
not accept a PTAS unless P=NP.

The reduction is from Minimum Steiner Tree2.

Minimum Steiner Tree is APX-hard, hence it does not accept a
PTAS unless P = NP.
[Bern and Plassmann, IPL 1989]

2Given an edge-weighted graph G = (V , E) and a subset S ⊆ V , find a connected
subgraph with minimum edge-weight containing all the vertices in S .

26 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Case of the Path

Outline

1 Introduction

2 Model

3 Hardness Results

4 Approximation Algorithms
Case of the Path
Case of the Tree
General Graph

5 The Case of the Path

6 Conclusions

27 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Case of the Path

Case of the path

Proposition

When the network is a path, there exists a polynomial-time
approximation algorithm for the Minimum Cost Hypergraph
Layout problem with an approximation ratio O(log n).

28 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Case of the Path

Idea: 2k-hops long tunnels

We consider tunnels of length a power of 2.

u u u u uuu u u u u u u u10 2 3 4 5 6 7 8 10 119 12 13

.... then, we route the demands using shortest paths in this layout.

In this layout:

Total length: O(n log n).

Hop count: each request can be routed in O(log n) hops.

In any solution:

Total length ≥ n.

Hop count ≥
∑

mij .

⇒ O(log n)-approximation algorithm.

29 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Case of the Path

Idea: 2k-hops long tunnels

We consider tunnels of length a power of 2.

u u u u uuu u u u u u u u10 2 3 4 5 6 7 8 10 119 12 13

.... then, we route the demands using shortest paths in this layout.

In this layout:

Total length: O(n log n).

Hop count: each request can be routed in O(log n) hops.

In any solution:

Total length ≥ n.

Hop count ≥
∑

mij .

⇒ O(log n)-approximation algorithm.

29 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Case of the Path

Idea: 2k-hops long tunnels

We consider tunnels of length a power of 2.

u u u u uuu u u u u u u u10 2 3 4 5 6 7 8 10 119 12 13

.... then, we route the demands using shortest paths in this layout.

In this layout:

Total length: O(n log n).

Hop count: each request can be routed in O(log n) hops.

In any solution:

Total length ≥ n.

Hop count ≥
∑

mij .

⇒ O(log n)-approximation algorithm.

29 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Case of the Path

Idea: 2k-hops long tunnels

We consider tunnels of length a power of 2.

u u u u uuu u u u u u u u10 2 3 4 5 6 7 8 10 119 12 13

.... then, we route the demands using shortest paths in this layout.

In this layout:

Total length: O(n log n).

Hop count: each request can be routed in O(log n) hops.

In any solution:

Total length ≥ n.

Hop count ≥
∑

mij .

⇒ O(log n)-approximation algorithm.

29 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Case of the Path

Idea: 2k-hops long tunnels

We consider tunnels of length a power of 2.

u u u u uuu u u u u u u u10 2 3 4 5 6 7 8 10 119 12 13

.... then, we route the demands using shortest paths in this layout.

In this layout:

Total length: O(n log n).

Hop count: each request can be routed in O(log n) hops.

In any solution:

Total length ≥ n.

Hop count ≥
∑

mij .

⇒ O(log n)-approximation algorithm.

29 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Case of the Tree

Outline

1 Introduction

2 Model

3 Hardness Results

4 Approximation Algorithms
Case of the Path
Case of the Tree
General Graph

5 The Case of the Path

6 Conclusions

30 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Case of the Tree

Case of the tree

Theorem (Bermond, Marlin, Peleg, and Pérennes, TCS 2003)

In a general tree on n nodes with all-to-all traffic, for each value of
c ∈ {1, . . . , n} there exists a virtual layout allowing to route all traffic

with diameter at most 10c · n
1

2c−1 and load at most c. In addition, such
a layout can be constructed in polynomial time.

In particular, if we set c = log n+1
2 , the above implies that we can find in

polynomial time a layout with load O(log n) and diameter at most

(5 log n + 5) · n
1

log n = 10 log n + 10 = O(log n).

Proposition

When the network is a tree, there exists a polynomial-time approximation
algorithm for Minimum Cost Hypergraph Layout problem with an
approximation ratio O(log n).

31 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Case of the Tree

Case of the tree

Theorem (Bermond, Marlin, Peleg, and Pérennes, TCS 2003)

In a general tree on n nodes with all-to-all traffic, for each value of
c ∈ {1, . . . , n} there exists a virtual layout allowing to route all traffic

with diameter at most 10c · n
1

2c−1 and load at most c. In addition, such
a layout can be constructed in polynomial time.

In particular, if we set c = log n+1
2 , the above implies that we can find in

polynomial time a layout with load O(log n) and diameter at most

(5 log n + 5) · n
1

log n = 10 log n + 10 = O(log n).

Proposition

When the network is a tree, there exists a polynomial-time approximation
algorithm for Minimum Cost Hypergraph Layout problem with an
approximation ratio O(log n).

31 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Case of the Tree

Case of the tree

Theorem (Bermond, Marlin, Peleg, and Pérennes, TCS 2003)

In a general tree on n nodes with all-to-all traffic, for each value of
c ∈ {1, . . . , n} there exists a virtual layout allowing to route all traffic

with diameter at most 10c · n
1

2c−1 and load at most c. In addition, such
a layout can be constructed in polynomial time.

In particular, if we set c = log n+1
2 , the above implies that we can find in

polynomial time a layout with load O(log n) and diameter at most

(5 log n + 5) · n
1

log n = 10 log n + 10 = O(log n).

Proposition

When the network is a tree, there exists a polynomial-time approximation
algorithm for Minimum Cost Hypergraph Layout problem with an
approximation ratio O(log n).

31 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General Graph

Outline

1 Introduction

2 Model

3 Hardness Results

4 Approximation Algorithms
Case of the Path
Case of the Tree
General Graph

5 The Case of the Path

6 Conclusions

32 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General Graph

General graph

Theorem

In a general network, there exists a polynomial-time approximation
algorithm for Minimum Cost Hypergraph Layout problem with an
approximation ratio O(log n).

Idea: We find a Minimum Generalized Steiner Forest H.

This problem can be approximated within a constant factor 2.
[Khuller and Vishkin, Journal of the ACM 1994]

The we apply the algorithm for the tree to each connected
component of H ⇒ overall approximation factor O(log n).

33 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General Graph

General graph

Theorem

In a general network, there exists a polynomial-time approximation
algorithm for Minimum Cost Hypergraph Layout problem with an
approximation ratio O(log n).

Idea: We find a Minimum Generalized Steiner Forest H.

This problem can be approximated within a constant factor 2.
[Khuller and Vishkin, Journal of the ACM 1994]

The we apply the algorithm for the tree to each connected
component of H ⇒ overall approximation factor O(log n).

33 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

General Graph

General graph

Theorem

In a general network, there exists a polynomial-time approximation
algorithm for Minimum Cost Hypergraph Layout problem with an
approximation ratio O(log n).

Idea: We find a Minimum Generalized Steiner Forest H.

This problem can be approximated within a constant factor 2.
[Khuller and Vishkin, Journal of the ACM 1994]

The we apply the algorithm for the tree to each connected
component of H ⇒ overall approximation factor O(log n).

33 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

The case of the path with bounded number of sources

For a single source, a polynomial optimal dynamic programming
algorithm has been presented in
[Bermond, Coudert, Moulierac, Pérennes, Rivano, and Sau,
Networking 2009]

Here we extended the dynamic programming algorithm for any fixed
number k of sources, with a running time of nO(k).

34 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

The case of the path with bounded number of sources

For a single source, a polynomial optimal dynamic programming
algorithm has been presented in
[Bermond, Coudert, Moulierac, Pérennes, Rivano, and Sau,
Networking 2009]

Here we extended the dynamic programming algorithm for any fixed
number k of sources, with a running time of nO(k).

34 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Conclusions

We modeled a problem raised by label minimization in GMPLS
networks as a hypergraph layout problem.

The problem seems closely related to classical VPL problems.

We provided hardness results and approximations algorithms.

Also, we proved that the problem is polynomial on the path for any
bounded number of sources.

A lot of work to be done:

Improve the hardness results and the approximation algorithms.

Is the problem polynomial on the path for unbounded number of
sources?

More generally, is the problem polynomial on trees or graphs of
bounded treewidth?

Does the problem remain NP-hard if the routes to be followed by
the requests are part of the input?

35 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Conclusions

We modeled a problem raised by label minimization in GMPLS
networks as a hypergraph layout problem.

The problem seems closely related to classical VPL problems.

We provided hardness results and approximations algorithms.

Also, we proved that the problem is polynomial on the path for any
bounded number of sources.

A lot of work to be done:

Improve the hardness results and the approximation algorithms.

Is the problem polynomial on the path for unbounded number of
sources?

More generally, is the problem polynomial on trees or graphs of
bounded treewidth?

Does the problem remain NP-hard if the routes to be followed by
the requests are part of the input?

35 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Conclusions

We modeled a problem raised by label minimization in GMPLS
networks as a hypergraph layout problem.

The problem seems closely related to classical VPL problems.

We provided hardness results and approximations algorithms.

Also, we proved that the problem is polynomial on the path for any
bounded number of sources.

A lot of work to be done:

Improve the hardness results and the approximation algorithms.

Is the problem polynomial on the path for unbounded number of
sources?

More generally, is the problem polynomial on trees or graphs of
bounded treewidth?

Does the problem remain NP-hard if the routes to be followed by
the requests are part of the input?

35 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Conclusions

We modeled a problem raised by label minimization in GMPLS
networks as a hypergraph layout problem.

The problem seems closely related to classical VPL problems.

We provided hardness results and approximations algorithms.

Also, we proved that the problem is polynomial on the path for any
bounded number of sources.

A lot of work to be done:

Improve the hardness results and the approximation algorithms.

Is the problem polynomial on the path for unbounded number of
sources?

More generally, is the problem polynomial on trees or graphs of
bounded treewidth?

Does the problem remain NP-hard if the routes to be followed by
the requests are part of the input?

35 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Conclusions

We modeled a problem raised by label minimization in GMPLS
networks as a hypergraph layout problem.

The problem seems closely related to classical VPL problems.

We provided hardness results and approximations algorithms.

Also, we proved that the problem is polynomial on the path for any
bounded number of sources.

A lot of work to be done:

Improve the hardness results and the approximation algorithms.

Is the problem polynomial on the path for unbounded number of
sources?

More generally, is the problem polynomial on trees or graphs of
bounded treewidth?

Does the problem remain NP-hard if the routes to be followed by
the requests are part of the input?

35 / 36

Introduction Model Hardness Results Approximation Algorithms The Case of the Path Conclusions

Thanks!

Questions?

36 / 36

	Introduction
	Concepts and Motivations
	The Label Stack

	Model
	Modeling the problem

	Hardness Results
	General (directed) network
	Symmetric Network

	Approximation Algorithms
	Case of the Path
	Case of the Tree
	General Graph

	The Case of the Path
	Conclusions

