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Preliminaries

Given a minimization problem Π, ALG is an α-approximation
algorithm for Π (with α ≥ 1) if for any instance I of Π,

ALG(I) ≤ α ·OPT (I).

Class APX (Approximable):

an NP-hard optimization problem is in APX if it can be
approximated within a constant factor.

Example: MINIMUM VERTEX COVER

Class PTAS (Polynomial-Time Approximation Scheme):

an NP-hard optimization problem is in PTAS if it can be
approximated within a constant factor 1 + ε, for all ε > 0.

Example: MINIMUM VERTEX COVER in planar graphs
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The d-GIRTH problem

Let d ≥ 1 be a fixed positive integer.

The d -GIRTH problem
Input: A simple undirected graph G = (V ,E).
Output: A subset S ⊆ V such that δ(G[S]) ≥ d .
Objective: Minimize |S|.

? The optimum of the above problem is called the d-girth of G.

? For d = 1, the vertices of any edge are a trivial solution of size 2.

? For d = 2, it is exactly the GIRTH problem (find the length of a
shortest cycle), which is in P.

[Indeed, every graph H with δ(H) ≥ 2 contains a cycle.]
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Example with d = 3
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Previous work: combinatorial results

The notion of d-girth was studied more than 20 years ago, from a
purely combinatorial point of view:

[Erdős, Faudree, Gyárfás, Schelp. Ars Combinatorica’88]
[Bollobás, Brightwell. Discrete Mathematics’89]
[Erdős, Faudree, Rousseau, Schelp. Discrete Mathematics’90]

Results of the following type:

Theorem (Erdős, Faudree, Rousseau, Schelp’90)
Let d ≥ 2 and k > 1 be given. Every n-vertex graph G with at least
dd · k · ne edges has a subgraph H with δ(H) ≥ d and |V (H)| ≤ dn/ke.

Since then, no new insights have appeared in the literature...
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Previous work: algorithmic studies

Recently, first algorithmic studies of the problem:

[Amini, S., Saurabh. IWPEC’08]
? W [1]-hard, taking as parameter the size of the solution.
? FPT algorithms when the input graph has bounded local tree-width

or excludes a fixed graph as a minor.

[Amini, Peleg, Pérennes, S., Saurabh. WAOA’08]
? The d-GIRTH problem is not in APX for any fixed d ≥ 3.
? n/ log n-approximation algorithm for minor-free graphs, using DP

and a known structural result about minor-free graphs.
? Missing: approximation algorithms in general graphs, and

hardness results for sparse graphs.

Our motivation for studying the d-GIRTH problem:
close relation with DENSE k -SUBGRAPH problem and TRAFFIC

GROOMING problem in optical networks.
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Hardness results

? Improved hardness results in general graphs:

for any d ≥ 3 and any ε > 0, there is no polynomial-time algorithm
for the d-GIRTH problem with approximation ratio 2O(log1−ε n)

unless NP ⊆ DTIME
(

2O(log1/ε n)
)

.

[These hardness results hold even in graphs with degrees d or d + 1]

? The d-GIRTH problem is NP-hard in planar graphs.
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Algorithmic results

General graphs:

? First approximation algorithm for the d-GIRTH problem:
randomized algorithm with approximation ratio n/ log n.

[The performance is not far from the best approximation algorithms
for other very hard graph optimization problems like MAXIMUM
CLIQUE, CHROMATIC NUMBER, LONGEST PATH, ...]

? another randomized algorithm with better performance in
high-degree graphs.

? a deterministic algorithm for low-degree graphs.

Planar graphs:

? deterministic approximation algorithm with ratio n/ log n.

? subexponential exact algorithm in time 2O(
√

n·log n).
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An approximation algorithm for general graphs

while G 6= ∅
pick a vertex v uniformly at random
remove v and all its incident edges
clean: remove recursively vertices of degree less than d
update G

return the last non-empty graph
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An approximation algorithm for general graphs

while G 6= ∅
pick a vertex v uniformly at random
remove v and all its incident edges
clean: remove recursively vertices of degree less than d
update G

return the last non-empty graph

Theorem
For any d ≥ 3, the above procedure is w.h.p. a poly-time randomized
approximation algorithm with ratio n/ log n for the d-GIRTH problem.

mm
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A hardness result for planar graphs

As any planar graph has a vertex of degree at most 5, the
d-GIRTH problem only makes sense for d ∈ {3,4,5}.

Theorem
For d ∈ {3,4,5}, the d-GIRTH problem is NP-hard in planar graphs
with maximum degree at most 3d.

Reduction from MINIMUM VERTEX COVER in planar graphs with
∆ ≤ 3, which is NP-hard by [Garey, Johnson. SIDMA’77].

Given an instance H of VC, we build and instance G of d-GIRTH:
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The reduction for d = 3

GH

We conclude that there is a bijection between vertex covers of H
and feasible solutions to the 3-GIRTH in G.

Therefore, OPT3−GIRTH(G) = 9 · |E(H)|+ OPTVC(H).
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Edge gadgets for d = 4,5
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Conclusions and further research

? We proved that for any d ≥ 3 and ε > 0, there is no poly-time
algorithm for the d-GIRTH problem with ratio 2O(log1−ε n) unless
NP ⊆ DTIME

(
2O(log1/ε n)

)
.

Conjecture
Unless P = NP, for every fixed d ≥ 3 there is no poly-time approx.
algorithm for d-GIRTH with ratio n1−δ, for some constant δ > 0.

? We provided the first approximation algorithms for the d-GIRTH

problem in general graphs.

Improving the approximation ratio seems a challenging task.

? We proved that the d-GIRTH problem is NP-hard in planar graphs
for d ∈ {3,4,5}.

Does the problem admit a PTAS in planar graphs??

Ignasi Sau (CNRS, LIRMM) =: SOFSEM 2011 := January 27, 2011 19 / 20



Conclusions and further research

? We proved that for any d ≥ 3 and ε > 0, there is no poly-time
algorithm for the d-GIRTH problem with ratio 2O(log1−ε n) unless
NP ⊆ DTIME

(
2O(log1/ε n)

)
.

Conjecture
Unless P = NP, for every fixed d ≥ 3 there is no poly-time approx.
algorithm for d-GIRTH with ratio n1−δ, for some constant δ > 0.

? We provided the first approximation algorithms for the d-GIRTH

problem in general graphs.

Improving the approximation ratio seems a challenging task.

? We proved that the d-GIRTH problem is NP-hard in planar graphs
for d ∈ {3,4,5}.

Does the problem admit a PTAS in planar graphs??

Ignasi Sau (CNRS, LIRMM) =: SOFSEM 2011 := January 27, 2011 19 / 20



Conclusions and further research

? We proved that for any d ≥ 3 and ε > 0, there is no poly-time
algorithm for the d-GIRTH problem with ratio 2O(log1−ε n) unless
NP ⊆ DTIME

(
2O(log1/ε n)

)
.

Conjecture
Unless P = NP, for every fixed d ≥ 3 there is no poly-time approx.
algorithm for d-GIRTH with ratio n1−δ, for some constant δ > 0.

? We provided the first approximation algorithms for the d-GIRTH

problem in general graphs.

Improving the approximation ratio seems a challenging task.

? We proved that the d-GIRTH problem is NP-hard in planar graphs
for d ∈ {3,4,5}.

Does the problem admit a PTAS in planar graphs??

Ignasi Sau (CNRS, LIRMM) =: SOFSEM 2011 := January 27, 2011 19 / 20



Conclusions and further research

? We proved that for any d ≥ 3 and ε > 0, there is no poly-time
algorithm for the d-GIRTH problem with ratio 2O(log1−ε n) unless
NP ⊆ DTIME

(
2O(log1/ε n)

)
.

Conjecture
Unless P = NP, for every fixed d ≥ 3 there is no poly-time approx.
algorithm for d-GIRTH with ratio n1−δ, for some constant δ > 0.

? We provided the first approximation algorithms for the d-GIRTH

problem in general graphs.

Improving the approximation ratio seems a challenging task.

? We proved that the d-GIRTH problem is NP-hard in planar graphs
for d ∈ {3,4,5}.

Does the problem admit a PTAS in planar graphs??

Ignasi Sau (CNRS, LIRMM) =: SOFSEM 2011 := January 27, 2011 19 / 20



Conclusions and further research

? We proved that for any d ≥ 3 and ε > 0, there is no poly-time
algorithm for the d-GIRTH problem with ratio 2O(log1−ε n) unless
NP ⊆ DTIME

(
2O(log1/ε n)

)
.

Conjecture
Unless P = NP, for every fixed d ≥ 3 there is no poly-time approx.
algorithm for d-GIRTH with ratio n1−δ, for some constant δ > 0.

? We provided the first approximation algorithms for the d-GIRTH

problem in general graphs.

Improving the approximation ratio seems a challenging task.

? We proved that the d-GIRTH problem is NP-hard in planar graphs
for d ∈ {3,4,5}.

Does the problem admit a PTAS in planar graphs??

Ignasi Sau (CNRS, LIRMM) =: SOFSEM 2011 := January 27, 2011 19 / 20



Conclusions and further research

? We proved that for any d ≥ 3 and ε > 0, there is no poly-time
algorithm for the d-GIRTH problem with ratio 2O(log1−ε n) unless
NP ⊆ DTIME

(
2O(log1/ε n)

)
.

Conjecture
Unless P = NP, for every fixed d ≥ 3 there is no poly-time approx.
algorithm for d-GIRTH with ratio n1−δ, for some constant δ > 0.

? We provided the first approximation algorithms for the d-GIRTH

problem in general graphs.

Improving the approximation ratio seems a challenging task.

? We proved that the d-GIRTH problem is NP-hard in planar graphs
for d ∈ {3,4,5}.

Does the problem admit a PTAS in planar graphs??

Ignasi Sau (CNRS, LIRMM) =: SOFSEM 2011 := January 27, 2011 19 / 20
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