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Digraph subdivisions

In this talk we focus on directed graphs, or digraphs.

A subdivision of a digraph F is a digraph obtained from F by replacing
each arc (u,v) of F by a directed (u, v)-path.

LA

We are interested in the following problem:

DIGRAPH SUBDIVISION
Instance: Two digraphs G and F.
Question: Does G contain a subdivision of F as a subdigraph?
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Let F be a fixed digraph.

F-SUBDIVISION
Instance: A digraph G.
Question: Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)

For every fixed digraph F, F-SUBDIVISION is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.

When |V/(F)| = 4, there are only 5 open cases. [Havet, Maia, Mohar. 2017]
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We focus on finding subdivisions of spindles
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containing k paths Py,..., P, from a vertex u to a vertex v, such that
|E(Pi)] = for 1 <i<kand V(P)NV(P;)={u,v} for1 <i#j<k.

If ¢; =0Cforl1<i<k,a(l1,...,0k)-spindleis also called a (k x ¢)-spindle.

G contains a subdivision of a (k, 1)-spindle <=
J u,v € V(G) : the MaxiMUM FLOW from u to v is at least k.

G contains a subdivision of a (1,/)-spindle <=

the length of a LONGEST PATH in G is at least /.
6/28



What is known about subdivisions of spindles

If the spindle is fixed, the problem is in P: [Bang-Jensen, Havet, Maia. 2015]
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What is known about subdivisions of spindles

If the spindle is fixed, the problem is in P: [Bang-Jensen, Havet, Maia. 2015]

We can guess all choices for the first ¢; vertices of each path.
Then, compute a flow from those endpoints to some vertex v.

The running time of this algorithm is | n®(0V(F)) | where n = |V(G)|.

Is a running time | F(|V/(F)|) - n°1) | possible, for some function £?

This question had been asked by [Bang-Jensen, Havet, Maia. 2015]
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Parameterized complexity in one slide

@ The area of parameterized complexity was introduced in the 90's by
Downey and Fellows.

° given an NP-hard problem with input size n, fix one parameter
k of the input to see whether the problem gets more “tractable”.

Example: k = length of a LONGEST PATH.

o Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in time

f(k) - n°1) for some function f.

Examples: k-VERTEX COVER, k-LONGEST PATH.

8/28



© Our results

9/28



Our results (I): optimization problems

MAX (k x ®)-SPINDLE SUBDIVISION
For a fixed kK > 1, given an input digraph G, find the largest /¢
such that G contains a subdivision of a (k x ¢)-spindle.
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For a fixed kK > 1, given an input digraph G, find the largest /¢
such that G contains a subdivision of a (k x ¢)-spindle.

Let k > 1 be fixed. MAX (k X ®)-SPINDLE SUBDIVISION is NP-hard.

MAX (e x £)-SPINDLE SUBDIVISION
For a fixed ¢ > 1, given an input digraph G, find the largest k
such that G contains a subdivision of a (k x ¢)-spindle.

Let £ > 1 be fixed. MAX (e x {)-SPINDLE SUBDIVISION /s in P if £ < 3,
and NP-hard if ¢ > 4, even restricted to acyclic digraphs (DAGs).
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Our results (I): FPT algorithms for finding 2-spindles

[Benhocine, Wojda. 1983]
[Cohen, Havet, Lochet, Nisse. 2016]
[Kim, Kim, Ma, Park. 2016]

2-spindle: spindle with exactly two paths.
Py

Lo
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Py
U . [Kim, Kim, Ma, Park. 2016]
L2

Given a digraph G and ( > 1, deciding whether there exist (1,0, > 1 with
01 + Uy = { such that G contains a subdivision of a ({1, (2)-spindle is
NP-hard and FPT parameterized by ¢, with running time 2°() . nO(1),

v

Theorem

Given a digraph G and (1, 0> with l» > (1 > 1, deciding whether G
contains a subdivision of a ({1, (>)-spindle can be solved in time
20(2) . nO(&1) - When ( is a constant, the problem remains NP-hard.
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Our results (I): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths. [Benhocine, Wojda. 1983]
P [Cohen, Havet, Lochet, Nisse. 2016]
[Kim, Kim, Ma, Park. 2016]

<
| |
S
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Theorem

Given a digraph G and , deciding whether there exist (1,0, > 1
with (1 + l, = { such that G contains a subdivision of a ({1, ()-spindle is
NP-hard and FPT parameterized by ¢, with running time 2°() . nO(1),

| \

Theorem

Given a digraph G and with U > (1 > 1, deciding whether G
contains a subdivision of a ({1, (>)-spindle can be solved in time
20(&2) . nO(4) - When {1 is a constant, the problem remains NP-hard.

ETH: 7 algorithm solving 3-SAT on a formula with n variables in time 2°("). 1128



© NP-hardness reduction
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NP-hardness reduction

MAX (e X {)-SPINDLE SUBDIVISION
For a fixed ¢ > 1, given an input digraph G, find the largest k
such that G contains a subdivision of a (k x £)-spindle.

Let ¢ > 1 be fixed. MAX (® x ¢£)-SPINDLE SUBDIVISION is in P if { < 3,

and | NP-hard if ¢ > 4|, even restricted to DAGs.
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MAX (e X {)-SPINDLE SUBDIVISION
For a fixed ¢ > 1, given an input digraph G, find the largest k
such that G contains a subdivision of a (k x £)-spindle.

Let ¢ > 1 be fixed. MAX (® x ¢£)-SPINDLE SUBDIVISION is in P if { < 3,

and |NP-hard if ¢ > 4

. even restricted to DAGs.

We prove the case ¢ = 4, by reduction from 3-DIMENSIONAL MATCHING:

Given three sets A, B, C of the same size and a set of triples
T C Ax B x C, decide whether there exists a set 7/ C T
of pairwise disjoint triples with |77| = |A|.

Our reduction is strongly inspired by [Brewster, Hell, Pantel, Rizzi, Yeo. 2003]
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Reduction for ¢ = 4

Given (A, B, C,T) of 3-DIMENSIONAL MATCHING, with |A| = n and
T = m, we construct G of MAX (e x £)-SPINDLE SUBDIVISION as follows:
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Reduction for ¢ = 4

For i € [n], we add to G three vertices a;, b;, ¢; (elements of sets A, B, C).
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For T € T, with T = (aj, bj, ¢p), we add to G a copy of H and we identify
vertex a with a;, vertex b with b;, and vertex ¢ with c,.
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For i € [n], we add to G three vertices a;, b;, ¢; (elements of sets A, B, C).
For T € T, with T = (aj, bj, ¢p), we add to G a copy of H and we identify

vertex a with a;, vertex b with b;, and vertex ¢ with c,.

;¢ H

v Yo Y1 b;

Tig—»——o—> —o—» o

v 20 Z1 Cp
Too—>—o—>—o—>—o

We add a new vertex s (source) and a vertex t (sink) that we connect to
every other vertex. They will be the endpoints of the desired spindle.
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(A,B,C,T)is a YEs-instance of 3-DIM. MATCHING <=
G contains a subdivision of a (n+ 2m x 4)-spindle.
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Reduction for ¢ = 4

For i € [n], we add to G three vertices a;, b;, ¢; (elements of sets A, B, C).
For T € T, with T = (aj, bj, ¢p), we add to G a copy of H and we identify

vertex a with a;, vertex b with b;, and vertex ¢ with c,.

;¢ H

v Yo Y1 b;

Tig—»——o—> —o—» o

v 20 Z1 Cp
Toe

By construction of G, a (n+ 2m x 4)-spindle covers all V(G), so it is
equivalent to partitioning G \ {s, t} into 2-paths (paths with 2 arcs).
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Reduction for ¢ = 4

For i € [n], we add to G three vertices a;, b;, ¢; (elements of sets A, B, C).

For T € T, with T = (aj, bj, ¢p), we add to G a copy of H and we identify
vertex a with a;, vertex b with b;, and vertex ¢ with c,.

;¢ H a; Qi o
i
Yo (3 bj Yo 9 bj ; Yo Y1 bj
LTig—»—o—>—o—>—o T1g-- - - - Gep— it T | Qe - - - B - - @
A
20 Z1 Cp 20 21 Cp . 20 Z1 Cp
Too—>—o—>—o—>—o To&---» - Toe N

Key property: for every copy of H, there are exactly two ways the 2-paths
can intersect H. This defines whether each triple T € 7T is chosen or not.
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Reduction for ¢ = 4

For i € [n], we add to G three vertices a;, b;, ¢; (elements of sets A, B, C).

For T € T, with T = (aj, bj, ¢p), we add to G a copy of H and we identify
vertex a with a;, vertex b with b;, and vertex ¢ with c,.

(XY H a; Qi o
i
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Modification for ¢ > 4: we define the digraph G in the same way, except
that we subdivide the arcs outgoing from s exactly ¢ — 4 times.
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@ Polynomial-time algorithm
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Cases that can be solved in polynomial time

MAX (e x ¢)-SPINDLE SUBDIVISION
For a fixed ¢ > 1, given an input digraph G, find the largest k
such that G contains a subdivision of a (k x £)-spindle.

Let £ > 1 be fixed. MAX (e X £)-SPINDLE SUBDIVISION s in | P if £ < 3],

and NP-hard if ¢ > 4, even restricted to DAGs.
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Cases that can be solved in polynomial time

MAX (e x ¢)-SPINDLE SUBDIVISION
For a fixed ¢ > 1, given an input digraph G, find the largest k
such that G contains a subdivision of a (k x £)-spindle.

Let ¢ > 1 be fixed. MAX (e x ¢)-SPINDLE SUBDIVISION is in | P if £ < 3|,

and NP-hard if ¢ > 4, even restricted to DAGs.

@ /= 1: can be solved by a flow algorithm.
@ [ = 2: guess two vertices, delete arcs between them, and then flow.

@ ( = 3: we reduce the problem to computing a maximum matching in
an auxiliary undirected graph, as follows...
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|dea of the case ¢/ = 3

A directed path P is nontrivial if its endpoints are distinct.
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Main ingredient for the case ¢ = 3

Proposition

Let G be a digraph and X, Y C V/(G). The maximum number of

vertex-disjoint directed nontrivial paths from X to Y can be computed in
polynomial time.
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|dea of the proof

Given a digraph G and X, Y C V/(G), we build an undirected graph G’
Y

Y
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|dea of the proof

Given a digraph G and X, Y C V/(G), we build an undirected graph G’
Y

us Ugq Uy U2 us

z N

Uy

Y

U1 U2 U3

U
1

V(G") = V(G) + a copy v/ of each vertex v ¢ X U Y.

E(G’): Foreach v ¢ XUY, add to G’ the edge {v,Vv'}.
For each (u,v), add {u,v} if v € XUY, and {u, v'} otherwise.
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|dea of the proof

Given a digraph G and X, Y C V/(G), we build an undirected graph G’
Y

us Ugq Uy U2 us

Uy Uy Uz us Uy

P \v

v

Y

v} v vh

V(G") = V(G) + a copy v/ of each vertex v ¢ X U Y.

E(G’): Foreach v ¢ XUY, add to G’ the edge {v,Vv'}.
For each (u,v), add {u,v} if v € XUY, and {u, v'} otherwise.

G contains k vertex-disjoint directed nontrivial paths from X to Y
<= G’ has a matching of size k + |V(G) \ (X U Y)|.
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© Sketch of the FPT algorithms
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A pair M = (E,Z), where E is a ground set and Z is a family of subsets
of E, is a matroid if it satisfies the following three axioms:

Q0el
Q@ IfAACAand AcZ, then A €.
@ If A B €7 and |A| < |B|, then Je € B\ A such that AU {e} € .

The sets in Z are called the independent sets of the matroid.
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Representative sets in matroids

Two independent sets A, B of M fit if ANB = () and AU B is independent.
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Representative sets in matroids

Two independent sets A, B of M fit if ANB = () and AU B is independent.
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Representative sets in matroids

Two independent sets A, B of M fit if ANB = () and AU B is independent.

Let A be a family of sets of size p in a matroid M. A subfamily A" C Ais
said to g-represent A, denoted A’ Ci%, A, if for every set B of size g such
that there is an A € A that fits B, there is an A’ € A’ that also fits B.

A={A1,42, A3}, p=4,q=2
{As} C2., {A1, As, A3}

We consider the uniform matroid with ground set V(G) and rank ¢ + g,
with 0 < g < 2¢4.
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Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a ({1, ¢2)-spindle, with
min{/¢1,¢2} > 1 and /1 + ¢, = (, we say that S is a good spindle.
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Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (1, ¢2)-spindle, with
min{f1,02} > 1 and /1 + (, = /, we say that S is a good spindle.

We will g-represent the “first part” of the desired spindle (paths P}
and P?), for every u, u1, up € V(G), £1,o < ¢, and 0 < q < 2/.

Py 12} U1
u Representative

family

PU A€15€25q
2 (15) 871,.,71,1.,71,2
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Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (1, ¢2)-spindle, with
min{f1,02} > 1 and /1 + (, = /, we say that S is a good spindle.

We will g-represent the “first part” of the desired spindle (paths P}
and P?), for every u, u1, up € V(G), £1,o < ¢, and 0 < q < 2/.

Py 12} U7
u Representative
family
P} Qly,la,
2 (15) 871171 12 7512
Lo

Using the recent techniques of [Fomin, Lokshtanov, Panolan, Saurabh. 2016],
]521’52’ | = 29() and can be computed in time 2°9() . nO(1),
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Key property: these families indeed represent the solutions

Consider a good spindle S with minimum number of vertices:

Bl=(—1
e " T T T ~em
Pl - "uy PlB
7
7
7
U« S B v
N
N
P~
2 S~ ug Vo P2B
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Key property: these families indeed represent the solutions

Consider a good spindle S with minimum number of vertices:
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The representatives I?’f and .‘32“ are disjoint from the rest of the spindle S.
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Key property: these families indeed represent the solutions

Consider a good spindle S with minimum number of vertices:

|IB|=¢—-1
Pl o777 T T -qu
S o PF
//
7
B v ue B v
\\
B S B
P P~ _u2 2 Py
* —

The representatives Isf and ,BQ” are disjoint from the rest of the spindle S.
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Key property: these families indeed represent the solutions

Consider a good spindle S with minimum number of vertices:

1B =¢—1
~ QU1
PP PP
B v B v
PQB (%] PQB

The representatives Isf and ,BQ” are disjoint from the rest of the spindle S.
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Wrapping up the algorithm

© For every u,u1, up € V(G), l1,02 < ¢, and 0 < g < 2/, we compute a
g-representative family S;%'29 in time 20() . nO(1),
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Wrapping up the algorithm

© For every u,u1, up € V(G), l1,02 < ¢, and 0 < g < 2/, we compute a
g-representative family S;%'29 in time 20() . nO(1),

@ For every P! U PY € 8420 we check whether G contains a
(u1,v)-path Py and a (u2, v)-path Py of this shape:

This can be done in polynomial time by using a flow algorithm.

o(1),

Overall running time: 2909 .
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@ Conclusions
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Further research

Main open question:

‘Finding a subdivision of a spindle F is FPT parameterized by |V(F)\?‘

We do not know the answer even if F is a 2-spindle.

When G is an acyclic digraph, we can prove the following:

Given an acyclic digraph G and integers k, ¢, deciding whether G contains
a subdivision of a (k x {)-spindle can be solved in time O((* - n?<+1).

If k is a constant: the problem is polynomial on acyclic digraphs
(this generalizes the case k = 1, that is, LONGEST PATH on DAGs).

But is the problem FPT on acyclic digraphs? That is, in time f(k, () - n°1)?
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Ca fait déja 10 jours que ces deux personnes sont en prison a Madrid:

) [LLIBERTAT
~ JORDIS!

. =
{\Eﬁ PRESOS POLITICS DE L'ESTAT ESPANYOL

#LLIBERTATJORDIS assemblea.cat
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