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Digraph subdivisions

In this talk we focus on directed graphs, or digraphs.

A subdivision of a digraph F is a digraph obtained from F by replacing
each arc (u, v) of F by a directed (u, v)-path.

F F1 F2

We are interested in the following problem:

Digraph Subdivision
Instance: Two digraphs G and F .
Question: Does G contain a subdivision of F as a subdigraph?
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Recent work on finding digraph subdivisions

This problem has been introduced by [Bang-Jensen, Havet, Maia. 2015]

Let F be a fixed digraph.

F -Subdivision
Instance: A digraph G .
Question: Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)
For every fixed digraph F , F -Subdivision is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.

When |V (F )| = 4, there are only 5 open cases. [Havet, Maia, Mohar. 2017]

5/28



Recent work on finding digraph subdivisions

This problem has been introduced by [Bang-Jensen, Havet, Maia. 2015]

Let F be a fixed digraph.

F -Subdivision
Instance: A digraph G .
Question: Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)
For every fixed digraph F , F -Subdivision is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.

When |V (F )| = 4, there are only 5 open cases. [Havet, Maia, Mohar. 2017]

5/28



Recent work on finding digraph subdivisions

This problem has been introduced by [Bang-Jensen, Havet, Maia. 2015]

Let F be a fixed digraph.

F -Subdivision
Instance: A digraph G .
Question: Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)
For every fixed digraph F , F -Subdivision is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.

When |V (F )| = 4, there are only 5 open cases. [Havet, Maia, Mohar. 2017]

5/28



Recent work on finding digraph subdivisions

This problem has been introduced by [Bang-Jensen, Havet, Maia. 2015]

Let F be a fixed digraph.

F -Subdivision
Instance: A digraph G .
Question: Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)
For every fixed digraph F , F -Subdivision is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.

When |V (F )| = 4, there are only 5 open cases. [Havet, Maia, Mohar. 2017]

5/28



We focus on finding subdivisions of spindles

u v

For k positive integers `1, . . . , `k , a (`1, . . . , `k)-spindle is the digraph
containing k paths P1, . . . ,Pk from a vertex u to a vertex v , such that
|E (Pi)| = `i for 1 ≤ i ≤ k and V (Pi) ∩ V (Pj) = {u, v} for 1 ≤ i 6= j ≤ k.

If `i = ` for 1 ≤ i ≤ k, a (`1, . . . , `k)-spindle is also called a (k× `)-spindle.

G contains a subdivision of a (k, 1)-spindle ⇐⇒
∃ u, v ∈ V (G) : the Maximum Flow from u to v is at least k.

G contains a subdivision of a (1, `)-spindle ⇐⇒
the length of a Longest Path in G is at least `.
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What is known about subdivisions of spindles

If the spindle is fixed, the problem is in P: [Bang-Jensen, Havet, Maia. 2015]

u v

We can guess all choices for the first `i vertices of each path.
Then, compute a flow from those endpoints to some vertex v .

The running time of this algorithm is nO(|V (F )|) , where n = |V (G)|.

Is a running time f (|V (F )|) · nO(1) possible, for some function f ?

This question had been asked by [Bang-Jensen, Havet, Maia. 2015]
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Parameterized complexity in one slide

The area of parameterized complexity was introduced in the 90’s by
Downey and Fellows.

Idea given an NP-hard problem with input size n, fix one parameter
k of the input to see whether the problem gets more “tractable”.

Example: k = length of a Longest Path.

Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in time

f (k) · nO(1), for some function f .

Examples: k-Vertex Cover, k-Longest Path.
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Our results (I): optimization problems
Max (k × •)-Spindle Subdivision
For a fixed k ≥ 1, given an input digraph G , find the largest `
such that G contains a subdivision of a (k × `)-spindle.

Theorem

Let k ≥ 1 be fixed. Max (k × •)-Spindle Subdivision is NP-hard.

Max (• × `)-Spindle Subdivision
For a fixed ` ≥ 1, given an input digraph G , find the largest k
such that G contains a subdivision of a (k × `)-spindle.

Theorem

Let ` ≥ 1 be fixed. Max (• × `)-Spindle Subdivision is in P if ` ≤ 3,
and NP-hard if ` ≥ 4, even restricted to acyclic digraphs (DAGs).
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Our results (II): FPT algorithms for finding 2-spindles
2-spindle: spindle with exactly two paths. [Benhocine, Wojda. 1983]

[Cohen, Havet, Lochet, Nisse. 2016]
[Kim, Kim, Ma, Park. 2016]u v

P1

P2
`2

`1

Theorem

Given a digraph G and ` ≥ 1, deciding whether there exist `1, `2 ≥ 1 with
`1 + `2 = ` such that G contains a subdivision of a (`1, `2)-spindle is
NP-hard and FPT parameterized by `, with running time 2O(`) · nO(1).

Theorem

Given a digraph G and `1, `2 with `2 ≥ `1 ≥ 1, deciding whether G
contains a subdivision of a (`1, `2)-spindle can be solved in time
2O(`2) · nO(`1). When `1 is a constant, the problem remains NP-hard.

Both FPT algorithms are asymptotically optimal under the ETH.
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NP-hardness reduction

Max (• × `)-Spindle Subdivision
For a fixed ` ≥ 1, given an input digraph G , find the largest k
such that G contains a subdivision of a (k × `)-spindle.

Theorem

Let ` ≥ 1 be fixed. Max (• × `)-Spindle Subdivision is in P if ` ≤ 3,
and NP-hard if ` ≥ 4 , even restricted to DAGs.

We prove the case ` = 4, by reduction from 3-Dimensional Matching:

Given three sets A,B,C of the same size and a set of triples
T ⊆ A× B × C , decide whether there exists a set T ′ ⊆ T
of pairwise disjoint triples with |T ′| = |A|.

Our reduction is strongly inspired by [Brewster, Hell, Pantel, Rizzi, Yeo. 2003]
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Reduction for ` = 4

Given (A,B,C , T ) of 3-Dimensional Matching, with |A| = n and
T = m, we construct G of Max (•× `)-Spindle Subdivision as follows:

For i ∈ [n], we add to G three vertices ai , bi , ci (element of sets A,B,C).

For T ∈ T , with T = (ai , bj , cp), we add to G a copy of H and we identify
vertex a with ai , vertex b with bj , and vertex c with cp.

a

x1

x0

y0 y1 b

z0 z1 c

ai

x1

x0

y0 y1 bj

z0 z1 cp

ai

x1

x0

y0 y1 bj

z0 z1 cp

H

We add a new vertex s (source) and a vertex t (sink) that we connect to
every other vertex. They will be the endpoints of the desired spindle.
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z0 z1 cp

ai

x1

x0

y0 y1 bj

z0 z1 cp

H

We add a new vertex s (source) and a vertex t (sink) that we connect to
every other vertex. They will be the endpoints of the desired spindle.
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Claim (A,B,C , T ) is a Yes-instance of 3-Dim. Matching ⇐⇒
G contains a subdivision of a (n + 2m × 4)-spindle.
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By construction of G , a (n + 2m × 4)-spindle covers all V (G), so it is
equivalent to partitioning G \ {s, t} into 2-paths (paths with 2 arcs).
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Key property: for every copy of H, there are exactly two ways the 2-paths
can intersect H. This defines whether each triple T ∈ T is chosen or not.
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Reduction for ` = 4

For i ∈ [n], we add to G three vertices ai , bi , ci (element of sets A,B,C).
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Modification for ` > 4: we define the digraph G in the same way, except
that we subdivide the arcs outgoing from s exactly `− 4 times.
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Cases that can be solved in polynomial time

Max (• × `)-Spindle Subdivision
For a fixed ` ≥ 1, given an input digraph G , find the largest k
such that G contains a subdivision of a (k × `)-spindle.

Theorem

Let ` ≥ 1 be fixed. Max (• × `)-Spindle Subdivision is in P if ` ≤ 3 ,
and NP-hard if ` ≥ 4, even restricted to DAGs.

` = 1: can be solved by a flow algorithm.

` = 2: guess two vertices, delete arcs between them, and then flow.

` = 3: we reduce the problem to computing a maximum matching in
an auxiliary undirected graph, as follows...
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Idea of the case ` = 3
A directed path P is nontrivial if its endpoints are distinct.

We first guess vertices s, t ∈ V (G) as endpoints of the spindle.

Largest k such that G contains a (k × 3)-spindle from s to t =
maximum number of vertex-disjoint nontrivial directed paths
from N+(s) to N−(t) in the digraph G \ {s, t}.

s t

N+(s) N−(t)
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Largest k such that G contains a (k × 3)-spindle from s to t =
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Main ingredient for the case ` = 3

Proposition
Let G be a digraph and X ,Y ⊆ V (G). The maximum number of
vertex-disjoint directed nontrivial paths from X to Y can be computed in
polynomial time.

s t

X Y
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Idea of the proof

Given a digraph G and X ,Y ⊆ V (G), we build an undirected graph G ′:

u1

v1 v2 v3

u2 u3 u4

G

X Y

u4

v′3

V (G ′) = V (G) + a copy v ′ of each vertex v /∈ X ∪ Y .

E (G ′): For each v /∈ X ∪ Y , add to G ′ the edge {v , v ′}.
For each (u, v), add {u, v} if v ∈ X ∪ Y , and {u, v ′} otherwise.

Claim G contains k vertex-disjoint directed nontrivial paths from X to Y
⇐⇒ G ′ has a matching of size k + |V (G) \ (X ∪ Y )|.
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Matroids

A pairM = (E , I), where E is a ground set and I is a family of subsets
of E , is a matroid if it satisfies the following three axioms:

1 ∅ ∈ I.
2 If A′ ⊆ A and A ∈ I, then A′ ∈ I.
3 If A,B ∈ I and |A| < |B|, then ∃e ∈ B \ A such that A ∪ {e} ∈ I.

The sets in I are called the independent sets of the matroid.
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Representative sets in matroids

Two independent sets A,B ofM fit if A∩B = ∅ and A∪B is independent.

Let A be a family of sets of size p in a matroidM. A subfamily A′ ⊆ A is
said to q-represent A, denoted A′ ⊆q

rep A, if for every set B of size q such
that there is an A ∈ A that fits B, there is an A′ ∈ A′ that also fits B.

{A3} ⊆2
rep {A1, A2, A3}

A3A1

A2

B1

B2

A = {A1, A2, A3}, p = 4, q = 2
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Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (`1, `2)-spindle, with
min{`1, `2} ≥ 1 and `1 + `2 = `, we say that S is a good spindle.

Idea We will q-represent the “first part” of the desired spindle (paths P1
u

and P2
u), for every u, u1, u2 ∈ V (G), `1, `2 ≤ `, and 0 ≤ q ≤ 2`.

u v

u1

u2

Pu
1 P v

1

Pu
2 P v

2

`1

`2

Using the recent techniques of [Fomin, Lokshtanov, Panolan, Saurabh. 2016],
|Ŝ`1,`2,q

u,u1,u2 | = 2O(`) and can be computed in time 2O(`) · nO(1).

23/28



Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (`1, `2)-spindle, with
min{`1, `2} ≥ 1 and `1 + `2 = `, we say that S is a good spindle.

Idea We will q-represent the “first part” of the desired spindle (paths P1
u

and P2
u), for every u, u1, u2 ∈ V (G), `1, `2 ≤ `, and 0 ≤ q ≤ 2`.

u v

u1

u2

Pu
1 P v

1

Pu
2 P v

2

`1

`2

Using the recent techniques of [Fomin, Lokshtanov, Panolan, Saurabh. 2016],
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Key property: these families indeed represent the solutions

Consider a good spindle S with minimum number of vertices:

u v

u1

u2

Pu
1 PB

1

Pu
2 PB

2

v1

v2

BS

The representatives P̂u
1 and P̂u

2 are disjoint from the rest of the spindle S.
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Wrapping up the algorithm

1 For every u, u1, u2 ∈ V (G), `1, `2 ≤ `, and 0 ≤ q ≤ 2`, we compute a
q-representative family Ŝ`1,`2,q

u,u1,u2 in time 2O(`) · nO(1).

2 For every P̂u
1 ∪ P̂u

2 ∈ Ŝ
`1,`2,q
u,u1,u2 , we check whether G contains a

(u1, v)-path Pv
1 and a (u2, v)-path Pv

2 of this shape:

u v

u1

u2

P̂u
1 P v

1

P̂u
2 P v

2

`1

`2

This can be done in polynomial time by using a flow algorithm.

Overall running time: 2O(`) · nO(1).
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Further research

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by |V (F )|?

We do not know the answer even if F is a 2-spindle.

When G is an acyclic digraph, we can prove the following:

Theorem

Given an acyclic digraph G and integers k, `, deciding whether G contains
a subdivision of a (k × `)-spindle can be solved in time O(`k · n2k+1).

If k is a constant: the problem is polynomial on acyclic digraphs
(this generalizes the case k = 1, that is, Longest Path on DAGs).

But is the problem FPT on acyclic digraphs? That is, in time f (k, `) · nO(1)?
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