Finding subdivisions of spindles on digraphs

Júlio Araújo1 Victor A. Campos2 Ana Karolinna Maia2 Ignasi Sau1,3 Ana Silva1

Seminário ParGO, UFC
Fortaleza, June 23, 2017

1 Departamento de Matemática, UFC, Fortaleza, Brazil.
2 Departamento de Computação, UFC, Fortaleza, Brazil.
3 CNRS, LIRMM, Université de Montpellier, Montpellier, France.
Outline of the talk

1. Introduction
2. Our results
3. NP-hardness reduction
4. Polynomial-time algorithm
5. Sketch of the FPT algorithms
6. Conclusions
Introduction

Our results

NP-hardness reduction

Polynomial-time algorithm

Sketch of the FPT algorithms

Conclusions
In this talk we focus on directed graphs, or digraphs.
In this talk we focus on directed graphs, or digraphs.

A subdivision of a digraph F is a digraph obtained from F by replacing each arc (u, v) of F by a directed (u, v)-path.
Digraph subdivisions

In this talk we focus on directed graphs, or digraphs.

A subdivision of a digraph F is a digraph obtained from F by replacing each arc (u, v) of F by a directed (u, v)-path.
In this talk we focus on directed graphs, or digraphs.

A subdivision of a digraph F is a digraph obtained from F by replacing each arc (u, v) of F by a directed (u, v)-path.

We are interested in the following problem:

Digraph Subdivision

Instance: Two digraphs G and F.

Question: Does G contain a subdivision of F as a subdigraph?
Recent work on finding digraph subdivisions

This problem has been introduced by [Bang-Jensen, Havet, Maia. 2015]

Let F be a fixed digraph.

<table>
<thead>
<tr>
<th>F-Subdivision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance: A digraph G.</td>
</tr>
<tr>
<td>Question: Does G contain a subdivision of F as a subdigraph?</td>
</tr>
</tbody>
</table>

Conjecture (Bang-Jensen, Havet, Maia. 2015)

For every fixed digraph F, F-Subdivision is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.

When $|V(F)| = 4$, there are only 5 open cases. [Havet, Maia, Mohar. 2017]
Recent work on finding digraph subdivisions

This problem has been introduced by [Bang-Jensen, Havet, Maia. 2015]

Let F be a fixed digraph.

<table>
<thead>
<tr>
<th>F-SUBDIVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
</tbody>
</table>

Conjecture (Bang-Jensen, Havet, Maia. 2015)

For every fixed digraph F, F-SUBDIVISION is either in P or NP-complete.
Recent work on finding digraph subdivisions

This problem has been introduced by [Bang-Jensen, Havet, Maia. 2015]

Let F be a fixed digraph.

F-Subdivision

Instance: A digraph G.

Question: Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)

For every fixed digraph F, F-Subdivision is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.
Recent work on finding digraph subdivisions

This problem has been introduced by [Bang-Jensen, Havet, Maia. 2015]

Let F be a fixed digraph.

F-Subdivision

<table>
<thead>
<tr>
<th>Instance:</th>
<th>A digraph G.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question:</td>
<td>Does G contain a subdivision of F as a subdigraph?</td>
</tr>
</tbody>
</table>

Conjecture (Bang-Jensen, Havet, Maia. 2015)

For every fixed digraph F, F-Subdivision is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.

When $|V(F)| = 4$, there are only 5 open cases. [Havet, Maia, Mohar. 2017]
We focus on finding subdivisions of spindles.

For positive integers ℓ_1, \ldots, ℓ_k, a (ℓ_1, \ldots, ℓ_k)-spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \leq i \leq k$ and $V(P_i) \setminus V(P_j) = \{u, v\}$ for $1 \leq i \neq j \leq k$.

If $\ell_i = \ell$ for $1 \leq i \leq k$, a (ℓ_1, \ldots, ℓ_k)-spindle is also called a $(k \times \ell)$-spindle.

G contains a subdivision of a $(k, 1)$-spindle $\iff \exists u, v \in V(G)$: the Maximum Flow from u to v is at least k.

G contains a subdivision of a $(1, \ell)$-spindle \iff the length of a Longest Path in G is at least ℓ.
We focus on finding subdivisions of spindles

For k positive integers ℓ_1, \ldots, ℓ_k, a (ℓ_1, \ldots, ℓ_k)-spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \leq i \leq k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \leq i \neq j \leq k$.
We focus on finding subdivisions of spindles

For k positive integers ℓ_1, \ldots, ℓ_k, a (ℓ_1, \ldots, ℓ_k)-spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \leq i \leq k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \leq i \neq j \leq k$.

If $\ell_i = \ell$ for $1 \leq i \leq k$, a (ℓ_1, \ldots, ℓ_k)-spindle is also called a $(k \times \ell)$-spindle.
We focus on finding subdivisions of spindles

For k positive integers ℓ_1, \ldots, ℓ_k, a (ℓ_1, \ldots, ℓ_k)-spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \leq i \leq k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \leq i \neq j \leq k$.

If $\ell_i = \ell$ for $1 \leq i \leq k$, a (ℓ_1, \ldots, ℓ_k)-spindle is also called a $(k \times \ell)$-spindle.

G contains a subdivision of a $(k, 1)$-spindle \iff
We focus on finding subdivisions of spindles

For k positive integers ℓ_1, \ldots, ℓ_k, a (ℓ_1, \ldots, ℓ_k)-spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \leq i \leq k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \leq i \neq j \leq k$.

If $\ell_i = \ell$ for $1 \leq i \leq k$, a (ℓ_1, \ldots, ℓ_k)-spindle is also called a $(k \times \ell)$-spindle.

G contains a subdivision of a $(k, 1)$-spindle \iff
$\exists u, v \in V(G)$: the Maximum Flow from u to v is at least k.
We focus on finding subdivisions of spindles

For k positive integers ℓ_1, \ldots, ℓ_k, a (ℓ_1, \ldots, ℓ_k)-spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \leq i \leq k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \leq i \neq j \leq k$.

If $\ell_i = \ell$ for $1 \leq i \leq k$, a (ℓ_1, \ldots, ℓ_k)-spindle is also called a $(k \times \ell)$-spindle.

G contains a subdivision of a $(k, 1)$-spindle \iff
$\exists \ u, v \in V(G) :$ the Maximum Flow from u to v is at least k.

G contains a subdivision of a $(1, \ell)$-spindle \iff

We focus on finding subdivisions of spindles

For \(k \) positive integers \(\ell_1, \ldots, \ell_k \), a \((\ell_1, \ldots, \ell_k)\)-spindle is the digraph containing \(k \) paths \(P_1, \ldots, P_k \) from a vertex \(u \) to a vertex \(v \), such that \(|E(P_i)| = \ell_i \) for \(1 \leq i \leq k \) and \(V(P_i) \cap V(P_j) = \{u, v\} \) for \(1 \leq i \neq j \leq k \).

If \(\ell_i = \ell \) for \(1 \leq i \leq k \), a \((\ell_1, \ldots, \ell_k)\)-spindle is also called a \((k \times \ell)\)-spindle.

\(G \) contains a subdivision of a \((k, 1)\)-spindle \iff \(\exists u, v \in V(G) : \text{the Maximum Flow from } u \text{ to } v \text{ is at least } k \).

\(G \) contains a subdivision of a \((1, \ell)\)-spindle \iff the length of a Longest Path in \(G \) is at least \(\ell \).
What is known about subdivisions of spindles

If the spindle is fixed, the problem is in P: [Bang-Jensen, Havet, Maia. 2015]
What is known about subdivisions of spindles

If the spindle is fixed, the problem is in \mathbf{P}: [Bang-Jensen, Havet, Maia. 2015]

We can guess all choices for the first ℓ_i vertices of each path.
What is known about subdivisions of spindles

If the spindle is **fixed**, the problem is in **P**: [Bang-Jensen, Havet, Maia. 2015]

We can **guess all choices for the first** ℓᵢ **vertices** of each path. Then, compute a **flow** from those endpoints to some vertex v.
What is known about subdivisions of spindles

If the spindle is fixed, the problem is in P: [Bang-Jensen, Havet, Maia. 2015]

We can guess all choices for the first ℓ_i vertices of each path. Then, compute a flow from those endpoints to some vertex v.

The running time of this algorithm is $n^{O(|V(F)|)}$, where $n = |V(G)|$.
What is known about subdivisions of spindles

If the spindle is fixed, the problem is in \mathbf{P}: [Bang-Jensen, Havet, Maia. 2015]

We can guess all choices for the first ℓ_i vertices of each path. Then, compute a flow from those endpoints to some vertex v.

The running time of this algorithm is $O(|V(F)|)$, where $n = |V(G)|$.

Is a running time $f(|V(F)|) \cdot n^{O(1)}$ possible, for some function f?

This question had been asked by [Bang-Jensen, Havet, Maia. 2015]
Parameterized complexity in one slide

- The area of **parameterized complexity** was introduced in the 90’s by Downey and Fellows.

- **Idea** given an NP-hard problem with input size n, fix one parameter k of the input to see whether the problem gets more “tractable”.

 Example: $k =$ length of a Longest Path.

- Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in time

 $$f(k) \cdot n^{O(1)}$$

 for some function f.

 Examples: k-Vertex Cover, k-Longest Path.
Max \((k \times \bullet)\)-Spindle Subdivision

For a fixed \(k \geq 1\), given an input digraph \(G\), find the largest \(\ell\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(k \geq 1\) be fixed. \(\text{Max} \ (k \times \bullet)\)-Spindle Subdivision is \(\text{NP}\)-hard.

Theorem

Let \(\ell \geq 1\) be fixed. \(\text{Max} \ (\bullet \times \ell)\)-Spindle Subdivision is in \(\mathcal{P}\) if \(\ell \leq 3\), and \(\text{NP}\)-hard if \(\ell \geq 4\), even restricted to acyclic digraphs (DAGs).
Our results (I): optimization problems

Max \((k \times \bullet)\)-Spindle Subdivision

For a fixed \(k \geq 1\), given an input digraph \(G\), find the largest \(\ell\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(k \geq 1\) be fixed. Max \((k \times \bullet)\)-Spindle Subdivision is NP-hard.
Our results (I): optimization problems

Max \((k \times \bullet)\)-Spindle Subdivision

For a fixed \(k \geq 1\), given an input digraph \(G\), find the largest \(\ell\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(k \geq 1\) be fixed. Max \((k \times \bullet)\)-Spindle Subdivision is NP-hard.

Max \((\bullet \times \ell)\)-Spindle Subdivision

For a fixed \(\ell \geq 1\), given an input digraph \(G\), find the largest \(k\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.
Our results (I): optimization problems

Max \((k \times \bullet)\)-Spindle Subdivision

For a fixed \(k \geq 1\), given an input digraph \(G\), find the largest \(\ell\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(k \geq 1\) be fixed. Max \((k \times \bullet)\)-Spindle Subdivision is NP-hard.

Max \((\bullet \times \ell)\)-Spindle Subdivision

For a fixed \(\ell \geq 1\), given an input digraph \(G\), find the largest \(k\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(\ell \geq 1\) be fixed. Max \((\bullet \times \ell)\)-Spindle Subdivision is in P if \(\ell \leq 3\), and NP-hard if \(\ell \geq 4\), even restricted to acyclic digraphs (DAGs).
Our results (II): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths.

\[u \rightarrow P_1 \rightarrow \ell_1 \rightarrow P_2 \rightarrow \ell_2 \rightarrow v \]

[Benhocine, Wojda. 1983]
[Cohen, Havet, Lochet, Nisse. 2016]
[Kim, Kim, Ma, Park. 2016]

Theorem
Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1 \geq \ell_2 \geq 1$ such that G contains a subdivision of a (ℓ_1, ℓ_2)-spindle is NP-hard and FPT parameterized by ℓ, with running time \(2^{O(\ell)} \cdot n^{O(1)}\).

Theorem
Given a digraph G and ℓ_1, ℓ_2 with $\ell_2 \geq \ell_1 \geq 1$, deciding whether G contains a subdivision of a (ℓ_1, ℓ_2)-spindle can be solved in time \(2^{O(\ell_2)} \cdot n^{O(\ell_1)}\). When ℓ_1 is a constant, the problem remains NP-hard.

Both FPT algorithms are asymptotically optimal under the ETH.
Our results (II): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths.

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2)-spindle is NP-hard and FPT parameterized by ℓ, with running time $2^{O(\ell)} \cdot n^{O(1)}$.

[Benhocine, Wojda. 1983]
[Cohen, Havet, Lochet, Nisse. 2016]
[Kim, Kim, Ma, Park. 2016]
Our results (II): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths.

[Benhocine, Wojda. 1983]
[Cohen, Havet, Lochet, Nisse. 2016]
[Kim, Kim, Ma, Park. 2016]

![Diagram of a 2-spindle](image)

Theorem

Given a digraph \(G \) and \(\ell \geq 1 \), deciding whether there exist \(\ell_1, \ell_2 \geq 1 \) with \(\ell_1 + \ell_2 = \ell \) such that \(G \) contains a subdivision of a \((\ell_1, \ell_2)\)-spindle is NP-hard and FPT parameterized by \(\ell \), with running time \(2^{O(\ell)} \cdot n^{O(1)} \).

Theorem

Given a digraph \(G \) and \(\ell_1, \ell_2 \) with \(\ell_2 \geq \ell_1 \geq 1 \), deciding whether \(G \) contains a subdivision of a \((\ell_1, \ell_2)\)-spindle can be solved in time \(2^{O(\ell_2)} \cdot n^{O(\ell_1)} \). When \(\ell_1 \) is a constant, the problem remains NP-hard.
Our results (II): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths.

[Benhocine, Wojda. 1983]
[Cohen, Havet, Lochet, Nisse. 2016]
[Kim, Kim, Ma, Park. 2016]

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2)-spindle is NP-hard and FPT parameterized by ℓ, with running time $2^{O(\ell)} \cdot n^{O(1)}$.

Theorem

Given a digraph G and ℓ_1, ℓ_2 with $\ell_2 \geq \ell_1 \geq 1$, deciding whether G contains a subdivision of a (ℓ_1, ℓ_2)-spindle can be solved in time $2^{O(\ell_2)} \cdot n^{O(\ell_1)}$. When ℓ_1 is a constant, the problem remains NP-hard.
Our results (II): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths. [Benhocine, Wojda. 1983] [Cohen, Havet, Lochet, Nisse. 2016] [Kim, Kim, Ma, Park. 2016]

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2)-spindle is NP-hard and FPT parameterized by ℓ, with running time $2^{O(\ell)} \cdot n^{O(1)}$.

Theorem

Given a digraph G and $[\ell_1, \ell_2]$ with $\ell_2 \geq \ell_1 \geq 1$, deciding whether G contains a subdivision of a (ℓ_1, ℓ_2)-spindle can be solved in time $2^{O(\ell_2)} \cdot n^{O(\ell_1)}$. When ℓ_1 is a constant, the problem remains NP-hard.

Both FPT algorithms are asymptotically optimal under the ETH.
Our results (II): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths.

<table>
<thead>
<tr>
<th>Benhocine, Wojda. 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen, Havet, Lochet, Nisse. 2016</td>
</tr>
<tr>
<td>Kim, Kim, Ma, Park. 2016</td>
</tr>
</tbody>
</table>

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2)-spindle is NP-hard and FPT parameterized by ℓ, with running time $2^{O(\ell)} \cdot n^{O(1)}$.

Theorem

Given a digraph G and ℓ_1, ℓ_2 with $\ell_2 \geq \ell_1 \geq 1$, deciding whether G contains a subdivision of a (ℓ_1, ℓ_2)-spindle can be solved in time $2^{O(\ell_2)} \cdot n^{O(\ell_1)}$. When ℓ_1 is a constant, the problem remains NP-hard.

ETH: \# algorithm solving 3-SAT on a formula with n variables in time $2^{o(n)}$.
3 NP-hardness reduction
NP-hardness reduction

Max ($\bullet \times \ell$)-Spindle Subdivision

For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$-spindle.

Theorem

Let $\ell \geq 1$ be fixed. Max ($\bullet \times \ell$)-Spindle Subdivision is in P if $\ell \leq 3$, and NP-hard if $\ell \geq 4$, even restricted to DAGs.
Max (● × ℓ)-Spindle Subdivision

For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$-spindle.

Theorem

Let $\ell \geq 1$ be fixed. Max (● × ℓ)-Spindle Subdivision is in P if $\ell \leq 3$, and **NP-hard if $\ell \geq 4$**, even restricted to DAGs.

We prove the case $\ell = 4$, by reduction from 3-Dimensional Matching:

Given three sets A, B, C of the same size and a set of triples $T \subseteq A \times B \times C$, decide whether there exists a set $T' \subseteq T$ of pairwise disjoint triples with $|T'| = |A|$.
NP-hardness reduction

Max \((\bullet \times \ell)\)-Spindle Subdivision

For a fixed \(\ell \geq 1\), given an input digraph \(G\), find the largest \(k\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(\ell \geq 1\) be fixed. Max \((\bullet \times \ell)\)-Spindle Subdivision is in P if \(\ell \leq 3\), and **NP-hard if \(\ell \geq 4\)**, even restricted to DAGs.

We prove the case \(\ell = 4\), by reduction from 3-Dimensional Matching:

Given three sets \(A, B, C\) of the same size and a set of triples \(T \subseteq A \times B \times C\), decide whether there exists a set \(T' \subseteq T\) of pairwise disjoint triples with \(|T'| = |A|\).

Our reduction is strongly inspired by [Brewster, Hell, Pantel, Rizzi, Yeo. 2003]
Reduction for $\ell = 4$

Given (A, B, C, T) of 3-Dimensional Matching, with $|A| = n$ and $T = m$, we construct G of Max $(\bullet \times \ell)$-Spindle Subdivision as follows:
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (element of sets A, B, C).
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (element of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.

![Graph](graph.png)
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (element of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.

Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (element of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.

We add a new vertex s (source) and a vertex t (sink) that we connect to every other vertex. They will be the endpoints of the desired spindle.
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (element of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.

Claim (A, B, C, T) is a YES-instance of 3-DIM. MATCHING \iff G contains a subdivision of a $(n + 2m \times 4)$-spindle.
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (element of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.

By construction of G, a $(n + 2m \times 4)$-spindle covers all $V(G)$, so it is equivalent to partitioning $G \setminus \{s, t\}$ into 2-paths (paths with 2 arcs).
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (element of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.

Key property: for every copy of H, there are exactly two ways the 2-paths can intersect H. This defines whether each triple $T \in \mathcal{T}$ is chosen or not.
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (element of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.

Modification for $\ell > 4$: we define the digraph G in the same way, except that we subdivide the arcs outgoing from s exactly $\ell - 4$ times.
1 Introduction

2 Our results

3 NP-hardness reduction

4 Polynomial-time algorithm

5 Sketch of the FPT algorithms

6 Conclusions
Max \((\bullet \times \ell)\)-Spindle Subdivision

For a fixed \(\ell \geq 1\), given an input digraph \(G\), find the largest \(k\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(\ell \geq 1\) be fixed. **Max \((\bullet \times \ell)\)-Spindle Subdivision** is in \(P\) if \(\ell \leq 3\), and **NP-hard** if \(\ell \geq 4\), even restricted to DAGs.
Max (• × ℓ)-Spindle Subdivision

For a fixed \(\ell \geq 1 \), given an input digraph \(G \), find the largest \(k \) such that \(G \) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(\ell \geq 1 \) be fixed. Max (• × ℓ)-Spindle Subdivision is in \(\text{P} \) if \(\ell \leq 3 \), and \(\text{NP-hard} \) if \(\ell \geq 4 \), even restricted to DAGs.

- \(\ell = 1 \): can be solved by a flow algorithm.
Max ($\bullet \times \ell$)-Spindle Subdivision
For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$-spindle.

Theorem

Let $\ell \geq 1$ be fixed. Max ($\bullet \times \ell$)-Spindle Subdivision is in P if $\ell \leq 3$, and NP-hard if $\ell \geq 4$, even restricted to DAGs.

- $\ell = 1$: can be solved by a flow algorithm.
- $\ell = 2$: guess two vertices, delete arcs between them, and then flow.
Max ($\bullet \times \ell$)-Spindle Subdivision
For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$-spindle.

Theorem

Let $\ell \geq 1$ be fixed. Max ($\bullet \times \ell$)-Spindle Subdivision is in \mathbf{P} if $\ell \leq 3$, and \mathbf{NP}-hard if $\ell \geq 4$, even restricted to DAGs.

- $\ell = 1$: can be solved by a flow algorithm.
- $\ell = 2$: guess two vertices, delete arcs between them, and then flow.
- $\ell = 3$: we reduce the problem to computing a maximum matching in an auxiliary undirected graph, as follows...
Idea of the case $\ell = 3$

A directed path P is nontrivial if its endpoints are distinct.
Idea of the case $\ell = 3$

A directed path P is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$-spindle from s to t.

$$s \quad t$$

$$N^+(s) \quad N^-(t)$$

$$17/28$$
Idea of the case $\ell = 3$

A directed path P is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$-spindle from s to t =

maximum number of vertex-disjoint nontrivial directed paths from $N^+(s)$ to $N^-(t)$ in the digraph $G \setminus \{s, t\}$.

![Diagram showing a directed graph with vertices s and t connected by multiple paths, highlighting $N^+(s)$ and $N^-(t)$]
Idea of the case $\ell = 3$

A directed path P is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$-spindle from s to t =

maximum number of vertex-disjoint nontrivial directed paths from $N^+(s)$ to $N^-(t)$ in the digraph $G \setminus \{s, t\}$.
Idea of the case $\ell = 3$

A directed path P is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$-spindle from s to t =

maximum number of vertex-disjoint nontrivial directed paths from $N^+(s)$ to $N^-(t)$ in the digraph $G \setminus \{s, t\}$.
Idea of the case $\ell = 3$

A directed path P is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$-spindle from s to t =

maximum number of vertex-disjoint nontrivial directed paths from $N^+(s)$ to $N^-(t)$ in the digraph $G \setminus \{s, t\}$.
Proposition

Let G be a digraph and $X, Y \subseteq V(G)$. The maximum number of vertex-disjoint directed nontrivial paths from X to Y can be computed in polynomial time.
Given a digraph G and $X, Y \subseteq V(G)$, we build an undirected graph G':

Claim G contains k vertex-disjoint directed nontrivial paths from X to Y \iff G' has a matching of size $k + |V(G) \setminus (X \cup Y)|$.

[Diagram of G and G' showing the vertices and edges with labels $u_1, u_2, u_3, u_4, v_1, v_2, v_3$.]
Idea of the proof

Given a digraph G and $X, Y \subseteq V(G)$, we build an undirected graph G':

$V(G') = V(G) + \text{a copy } v' \text{ of each vertex } v \notin X \cup Y.$

$E(G')$: For each $v \notin X \cup Y$, add to G' the edge $\{v, v'\}$.
For each (u, v), add $\{u, v\}$ if $v \in X \cup Y$, and $\{u, v'\}$ otherwise.
Idea of the proof

Given a digraph G and $X, Y \subseteq V(G)$, we build an undirected graph G':

$V(G') = V(G) + \text{a copy } v' \text{ of each vertex } v \notin X \cup Y$.

$E(G')$: For each $v \notin X \cup Y$, add to G' the edge $\{v, v'\}$.
 For each (u, v), add $\{u, v\}$ if $v \in X \cup Y$, and $\{u, v'\}$ otherwise.

Claim: G contains k vertex-disjoint directed nontrivial paths from X to Y if and only if G' has a matching of size $k + |V(G) \setminus (X \cup Y)|$.
A pair $\mathcal{M} = (E, \mathcal{I})$, where E is a ground set and \mathcal{I} is a family of subsets of E, is a matroid if it satisfies the following three axioms:

1. $\emptyset \in \mathcal{I}$.
2. If $A' \subseteq A$ and $A \in \mathcal{I}$, then $A' \in \mathcal{I}$.
3. If $A, B \in \mathcal{I}$ and $|A| < |B|$, then $\exists e \in B \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

The sets in \mathcal{I} are called the independent sets of the matroid.
Representative sets in matroids

Two independent sets A, B of \mathcal{M} fit if $A \cap B = \emptyset$ and $A \cup B$ is independent.
Two independent sets A, B of \mathcal{M} fit if $A \cap B = \emptyset$ and $A \cup B$ is independent.
Two independent sets A, B of \mathcal{M} fit if $A \cap B = \emptyset$ and $A \cup B$ is independent.

Let \mathcal{A} be a family of sets of size p in a matroid \mathcal{M}. A subfamily $\mathcal{A}' \subseteq \mathcal{A}$ is said to q-represent \mathcal{A}, denoted $\mathcal{A}' \subseteq_{\text{rep}} \mathcal{A}$, if for every set B of size q such that there is an $A \in \mathcal{A}$ that fits B, there is an $A' \in \mathcal{A}'$ that also fits B.

\[
\left\{ A_3 \right\} \subseteq_{2\text{rep}} \left\{ A_1, A_2, A_3 \right\}
\]
Representative sets in matroids

Two independent sets A, B of M fit if $A \cap B = \emptyset$ and $A \cup B$ is independent.

Let \mathcal{A} be a family of sets of size p in a matroid M. A subfamily $\mathcal{A}' \subseteq \mathcal{A}$ is said to q-represent \mathcal{A}, denoted $\mathcal{A}' \subseteq^q_{\text{rep}} \mathcal{A}$, if for every set B of size q such that there is an $A \in \mathcal{A}$ that fits B, there is an $A' \in \mathcal{A}'$ that also fits B.

\[
\mathcal{A} = \{A_1, A_2, A_3\}, \quad p = 4, q = 2
\]

\[
\{A_3\} \subseteq^2_{\text{rep}} \{A_1, A_2, A_3\}
\]
Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2)-spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.

Using the recent techniques of [Fomin, Lokshtanov, Panolan, Saurabh. 2016], $|\hat{S}_{\ell_1, \ell_2, u, u_1, u_2}| = 2^{O(\ell)}$ and can be computed in time $2^{O(\ell)} \cdot n^{O(\frac{1}{\ell})}$.
Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2)-spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.

Idea: We will q-represent the “first part” of the desired spindle (paths P_u^1 and P_u^2), for every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$.

![Diagram of a 2-spindle with paths P_u^1, P_u^2, P_v^1, and P_v^2.]
Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2)-spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.

Idea We will q-represent the “first part” of the desired spindle (paths P^1_u and P^2_u), for every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$.

Using the recent techniques of [Fomin, Lokshtanov, Panolan, Saurabh. 2016], $|\hat{S}_{\ell_1, \ell_2, q_u, u_1, u_2}| = 2 \mathcal{O}(\ell)$ and can be computed in time $2 \mathcal{O}(\ell) \cdot n \mathcal{O}(1)$.

![Diagram of a 2-spindle](image-url)
Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2)-spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a **good spindle**.

Idea We will q-represent the “first part” of the desired spindle (paths P_{u}^{1} and P_{u}^{2}), for every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$.

Using the recent techniques of [Fomin, Lokshtanov, Panolan, Saurabh. 2016], $|\hat{S}_{\ell_1, \ell_2, q}^{u, u_1, u_2}| = 2O(\ell)$ and can be computed in time $2O(\ell) \cdot nO(1)$.
Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2)-spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.

Idea: We will q-represent the “first part” of the desired spindle (paths P^1_u and P^2_u), for every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$.

Using the recent techniques of [Fomin, Lokshtanov, Panolan, Saurabh. 2016], $|\hat{S}^{\ell_1, \ell_2, q}_{u, u_1, u_2}| = 2^{O(\ell)}$ and can be computed in time $2^{O(\ell)} \cdot n^{O(1)}$.
Key property: these families indeed represent the solutions

Consider a good spindle S with minimum number of vertices:

![Diagram of a spindle with vertices u, u_1, u_2, v, v_1, and v_2, and paths P^u_1, P^u_2, P^B_1, and P^B_2. The paths P^u_1 and P^u_2 are disjoint from the rest of the spindle S.]
Key property: these families indeed represent the solutions

Consider a **good spindle** S with minimum number of vertices:

The representatives \hat{P}_1^u and \hat{P}_2^u are **disjoint** from the rest of the spindle S.
Key property: these families indeed represent the solutions

Consider a good spindle S with minimum number of vertices:

The representatives \hat{P}_1^u and \hat{P}_2^u are disjoint from the rest of the spindle S.
Key property: these families indeed represent the solutions

Consider a good spindle S with minimum number of vertices:

The representatives \hat{P}_1^u and \hat{P}_2^u are disjoint from the rest of the spindle S.

Wrapping up the algorithm

For every \(u, u_1, u_2 \in V(G) \), \(\ell_1, \ell_2 \leq \ell \), and \(0 \leq q \leq 2\ell \), we compute a \(q \)-representative family \(\hat{S}_{u, u_1, u_2}^{\ell_1, \ell_2, q} \) in time \(2^{O(\ell)} \cdot n^{O(1)} \).
Wrapping up the algorithm

1. For every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$, we compute a q-representative family $\hat{S}_{u, u_1, u_2}^{\ell_1, \ell_2, q}$ in time $2^{O(\ell)} \cdot n^{O(1)}$.

2. For every $\hat{P}_1^u \cup \hat{P}_2^u \in \hat{S}_{u, u_1, u_2}^{\ell_1, \ell_2, q}$, we check whether G contains a (u_1, v)-path P_1^v and a (u_2, v)-path P_2^v of this shape:
Wrapping up the algorithm

For every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$, we compute a q-representative family $\hat{S}_{u, u_1, u_2}^{\ell_1, \ell_2, q}$ in time $2^{O(\ell)} \cdot n^{O(1)}$.

For every $\hat{P}_1^u \cup \hat{P}_2^u \in \hat{S}_{u, u_1, u_2}^{\ell_1, \ell_2, q}$, we check whether G contains a (u_1, v)-path P_1^v and a (u_2, v)-path P_2^v of this shape:

This can be done in polynomial time by using a flow algorithm.
Wrapping up the algorithm

1. For every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$, we compute a q-representative family $\hat{S}_{u,u_1,u_2}^{\ell_1,\ell_2,q}$ in time $2^O(\ell) \cdot n^{O(1)}$.

2. For every $\hat{P}_1^u \cup \hat{P}_2^u \in \hat{S}_{u,u_1,u_2}^{\ell_1,\ell_2,q}$, we check whether G contains a (u_1, v)-path P_1^v and a (u_2, v)-path P_2^v of this shape:

This can be done in polynomial time by using a flow algorithm.

Overall running time: $2^O(\ell) \cdot n^{O(1)}$.
1. Introduction

2. Our results

3. NP-hardness reduction

4. Polynomial-time algorithm

5. Sketch of the FPT algorithms

6. Conclusions
Main open question:

Finding a subdivision of a spindle F is FPT parameterized by $|V(F)|$?
Further research

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by $|V(F)|$?

We do not know the answer even if F is a 2-spindle.
Main open question:

Finding a subdivision of a spindle F is FPT parameterized by $|V(F)|$?

We do not know the answer even if F is a 2-spindle.

When G is an acyclic digraph, we can prove the following:

Theorem

*Given an acyclic digraph G and integers k, ℓ, deciding whether G contains a subdivision of a $(k \times \ell)$-spindle can be solved in time $O(\ell^k \cdot n^{2k+1})$.**
Main open question:

Finding a subdivision of a spindle F is FPT parameterized by $|V(F)|$?

We do not know the answer even if F is a 2-spindle.

When G is an acyclic digraph, we can prove the following:

Theorem

*Given an acyclic digraph G and integers k, ℓ, deciding whether G contains a subdivision of a $(k \times \ell)$-spindle can be solved in time $O(\ell^k \cdot n^{2k+1})$.***

If k is a constant: the problem is polynomial on acyclic digraphs (this generalizes the case $k = 1$, that is, LONGEST PATH on DAGs).
Further research

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by $|V(F)|$?

We do not know the answer even if F is a 2-spindle.

When G is an acyclic digraph, we can prove the following:

Theorem

Given an acyclic digraph G and integers k, ℓ, deciding whether G contains a subdivision of a $(k \times \ell)$-spindle can be solved in time $O(\ell^k \cdot n^{2k+1})$.

If k is a constant: the problem is polynomial on acyclic digraphs (this generalizes the case $k = 1$, that is, Longest Path on DAGs).

But is the problem FPT on acyclic digraphs? That is, in time $f(k, \ell) \cdot n^{O(1)}$?
Gràcies!