Finding subdivisions of spindles on digraphs

Júlio Araújo 1 Victor A. Campos 2 Ana Karolinna Maia 2 Ignasi Sau 1,3 Ana Silva 1

UFMG Belo Horizonte, February 2018

[arXiv 1706.09066] - To appear in LATIN 2018

- ¹ Departamento de Matemática, UFC, Fortaleza, Brazil.
- ² Departamento de Computação, UFC, Fortaleza, Brazil.
- ³ CNRS, LIRMM, Université de Montpellier, Montpellier, France.

Outline of the talk

- Introduction
- Our results
- NP-hardness reduction
- 4 Polynomial-time algorithm
- 5 Sketch of the FPT algorithms
- 6 Conclusions

Next section is...

- Introduction
- Our results
- NP-hardness reduction
- Polynomial-time algorithm
- Sketch of the FPT algorithms
- 6 Conclusions

In this talk we focus on directed graphs, or digraphs.

In this talk we focus on directed graphs, or digraphs.

A subdivision of a digraph F is a digraph obtained from F by replacing each arc (u, v) of F by a directed (u, v)-path.

In this talk we focus on directed graphs, or digraphs.

A subdivision of a digraph F is a digraph obtained from F by replacing each arc (u, v) of F by a directed (u, v)-path.

In this talk we focus on directed graphs, or digraphs.

A subdivision of a digraph F is a digraph obtained from F by replacing each arc (u, v) of F by a directed (u, v)-path.

We are interested in the following problem:

DIGRAPH SUBDIVISION

Instance: Two digraphs G and F.

Question: Does G contain a subdivision of F as a subdigraph?

This problem has been introduced by

[Bang-Jensen, Havet, Maia. 2015]

Let *F* be a fixed digraph.

F-Subdivision

Instance: A digraph G.

Question: Does G contain a subdivision of F as a subdigraph?

This problem has been introduced by

[Bang-Jensen, Havet, Maia. 2015]

Let *F* be a fixed digraph.

F-SUBDIVISION

Instance: A digraph *G*.

Question: Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)

For every fixed digraph F, F-Subdivision is either in P or NP-complete.

This problem has been introduced by

[Bang-Jensen, Havet, Maia. 2015]

Let *F* be a fixed digraph.

F-SUBDIVISION

Instance: A digraph G.

Question: Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)

For every fixed digraph F, F-Subdivision is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.

This problem has been introduced by

[Bang-Jensen, Havet, Maia. 2015]

Let *F* be a fixed digraph.

F-SUBDIVISION

Instance: A digraph G.

Question: Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)

For every fixed digraph F, F-Subdivision is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.

When |V(F)| = 4, there are only 5 open cases. [Havet, Maia, Mohar. 2017]

For k positive integers ℓ_1, \ldots, ℓ_k , a (ℓ_1, \ldots, ℓ_k) -spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \le i \le k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \le i \ne j \le k$.

For k positive integers ℓ_1, \ldots, ℓ_k , a (ℓ_1, \ldots, ℓ_k) -spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \le i \le k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \le i \ne j \le k$.

If $\ell_i = \ell$ for $1 \le i \le k$, a (ℓ_1, \dots, ℓ_k) -spindle is also called a $(k \times \ell)$ -spindle.

For k positive integers ℓ_1, \ldots, ℓ_k , a (ℓ_1, \ldots, ℓ_k) -spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \le i \le k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \le i \ne j \le k$.

If $\ell_i = \ell$ for $1 \le i \le k$, a (ℓ_1, \dots, ℓ_k) -spindle is also called a $(k \times \ell)$ -spindle.

G contains a subdivision of a $(k \times 1)$ -spindle \iff

For k positive integers ℓ_1,\ldots,ℓ_k , a (ℓ_1,\ldots,ℓ_k) -spindle is the digraph containing k paths P_1,\ldots,P_k from a vertex u to a vertex v, such that $|E(P_i)|=\ell_i$ for $1\leq i\leq k$ and $V(P_i)\cap V(P_j)=\{u,v\}$ for $1\leq i\neq j\leq k$.

If $\ell_i = \ell$ for $1 \le i \le k$, a (ℓ_1, \dots, ℓ_k) -spindle is also called a $(k \times \ell)$ -spindle.

G contains a subdivision of a $(k \times 1)$ -spindle \iff $\exists u, v \in V(G)$: the MAXIMUM FLOW from u to v is at least k.

For k positive integers ℓ_1, \ldots, ℓ_k , a (ℓ_1, \ldots, ℓ_k) -spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \le i \le k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \le i \ne j \le k$.

If $\ell_i = \ell$ for $1 \le i \le k$, a (ℓ_1, \dots, ℓ_k) -spindle is also called a $(k \times \ell)$ -spindle.

G contains a subdivision of a $(k \times 1)$ -spindle \iff $\exists u, v \in V(G)$: the MAXIMUM FLOW from u to v is at least k.

G contains a subdivision of a $(1 \times \ell)$ -spindle \iff

For k positive integers ℓ_1, \ldots, ℓ_k , a (ℓ_1, \ldots, ℓ_k) -spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \le i \le k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \le i \ne j \le k$.

If $\ell_i = \ell$ for $1 \le i \le k$, a (ℓ_1, \dots, ℓ_k) -spindle is also called a $(k \times \ell)$ -spindle.

- G contains a subdivision of a $(k \times 1)$ -spindle \iff $\exists u, v \in V(G)$: the MAXIMUM FLOW from u to v is at least k.
- G contains a subdivision of a $(1 \times \ell)$ -spindle \iff the length of a LONGEST PATH in G is at least ℓ .

If the spindle is fixed, the problem is in P: [Bang-Jensen, Havet, Maia. 2015]

If the spindle is fixed, the problem is in P: [Bang-Jensen, Havet, Maia. 2015]

We can guess all choices for the first ℓ_i vertices of each path.

If the spindle is fixed, the problem is in P: [Bang-Jensen, Havet, Maia. 2015]

We can guess all choices for the first ℓ_i vertices of each path. Then, compute a flow from those endpoints to some vertex v.

If the spindle is fixed, the problem is in P: [Bang-Jensen, Havet, Maia. 2015]

We can guess all choices for the first ℓ_i vertices of each path. Then, compute a flow from those endpoints to some vertex v.

The running time of this algorithm is $n^{O(|V(F)|)}$, where n = |V(G)|.

If the spindle is fixed, the problem is in P: [Bang-Jensen, Havet, Maia. 2015]

We can guess all choices for the first ℓ_i vertices of each path. Then, compute a flow from those endpoints to some vertex v.

The running time of this algorithm is $n^{O(|V(F)|)}$, where n = |V(G)|.

Is a running time $f(|V(F)|) \cdot n^{O(1)}$ possible, for some function f?

This question had been asked by [Bang-Jensen, Havet, Maia. 2015]

Parameterized complexity in one slide

- The area of parameterized complexity was introduced in the 90's by Downey and Fellows.
- Idea given an NP-hard problem with input size *n*, fix one parameter *k* of the input to see whether the problem gets more "tractable".

Example: k = length of a Longest Path.

• Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in time

$$f(k) \cdot n^{O(1)}$$
, for some function f .

Examples: *k*-Vertex Cover, *k*-Longest Path.

Next section is...

- Introduction
- 2 Our results
- NP-hardness reduction
- Polynomial-time algorithm
- Sketch of the FPT algorithms
- 6 Conclusions

Max $(k \times \bullet)$ -Spindle Subdivision

For a fixed $k \ge 1$, given an input digraph G, find the largest ℓ such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Max $(k \times \bullet)$ -Spindle Subdivision

For a fixed $k \ge 1$, given an input digraph G, find the largest ℓ such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Theorem

Let $k \ge 1$ be fixed. MAX $(k \times \bullet)$ -SPINDLE SUBDIVISION is NP-hard.

Max $(k \times \bullet)$ -Spindle Subdivision

For a fixed $k \ge 1$, given an input digraph G, find the largest ℓ such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Theorem

Let $k \ge 1$ be fixed. MAX $(k \times \bullet)$ -SPINDLE SUBDIVISION is NP-hard.

Max ($\bullet \times \ell$)-Spindle Subdivision

For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Max $(k \times \bullet)$ -Spindle Subdivision

For a fixed $k \ge 1$, given an input digraph G, find the largest ℓ such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Theorem

Let $k \ge 1$ be fixed. MAX $(k \times \bullet)$ -SPINDLE SUBDIVISION is NP-hard.

Max ($\bullet \times \ell$)-Spindle Subdivision

For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Theorem

Let $\ell \geq 1$ be fixed. MAX $(\bullet \times \ell)$ -SPINDLE SUBDIVISION is in P if $\ell \leq 3$, and NP-hard if $\ell \geq 4$, even restricted to acyclic digraphs (DAGs).

2-spindle: spindle with exactly two paths.

[Benhocine, Wojda. 1983] [Cohen, Havet, Lochet, Nisse. 2016] [Kim, Kim, Ma, Park. 2016]

2-spindle: spindle with exactly two paths. [Benhocine, Wojda. 1983]

u P_1 ℓ_1 V

[Cohen, Havet, Lochet, Nisse. 2016] [Kim, Kim, Ma, Park. 2016]

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2) -spindle is NP-hard and FPT parameterized by ℓ , with running time $2^{O(\ell)} \cdot n^{O(1)}$.

2-spindle: spindle with exactly two paths. [Benhocine, Wojda. 1983]

u P_1 ℓ_1 v

[Cohen, Havet, Lochet, Nisse. 2016] [Kim, Kim, Ma, Park. 2016]

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2) -spindle is NP-hard and FPT parameterized by ℓ , with running time $2^{O(\ell)} \cdot n^{O(1)}$.

Theorem

Given a digraph G and ℓ_1, ℓ_2 with $\ell_2 \geq \ell_1 \geq 1$, deciding whether G contains a subdivision of a (ℓ_1, ℓ_2) -spindle can be solved in time $2^{O(\ell_2)} \cdot n^{O(\ell_1)}$. When ℓ_1 is a constant, the problem remains NP-hard.

2-spindle: spindle with exactly two paths. [Benhocine, Wojda. 1983]

u P_1 ℓ_1 v

[Cohen, Havet, Lochet, Nisse. 2016]

[Kim, Kim, Ma, Park. 2016]

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2) -spindle is NP-hard and FPT parameterized by ℓ , with running time $2^{O(\ell)} \cdot n^{O(1)}$.

Theorem

Given a digraph G and ℓ_1, ℓ_2 with $\ell_2 \geq \ell_1 \geq 1$, deciding whether G contains a subdivision of a (ℓ_1, ℓ_2) -spindle can be solved in time $2^{O(\ell_2)} \cdot n^{O(\ell_1)}$. When ℓ_1 is a constant, the problem remains NP-hard.

2-spindle: spindle with exactly two paths. [Benhocine, Wojda. 1983]

[Cohen, Havet, Lochet, Nisse. 2016] [Kim, Kim, Ma, Park. 2016]

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2) -spindle is NP-hard and FPT parameterized by ℓ , with running time $2^{O(\ell)} \cdot n^{O(1)}$.

Theorem

Given a digraph G and ℓ_1, ℓ_2 with $\ell_2 \geq \ell_1 \geq 1$, deciding whether G contains a subdivision of a (ℓ_1, ℓ_2) -spindle can be solved in time $2^{O(\ell_2)} \cdot n^{O(\ell_1)}$. When ℓ_1 is a constant, the problem remains NP-hard.

Both FPT algorithms are asymptotically optimal under the ETH.

2-spindle: spindle with exactly two paths. [Benhocine, Wojda. 1983]

[Cohen, Havet, Lochet, Nisse. 2016] [Kim, Kim, Ma, Park. 2016]

11/28

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2) -spindle is NP-hard and FPT parameterized by ℓ , with running time $2^{O(\ell)} \cdot n^{O(1)}$.

Theorem

Given a digraph G and ℓ_1, ℓ_2 with $\ell_2 \geq \ell_1 \geq 1$, deciding whether G contains a subdivision of a (ℓ_1, ℓ_2) -spindle can be solved in time $2^{O(\ell_2)} \cdot n^{O(\ell_1)}$. When ℓ_1 is a constant, the problem remains NP-hard.

ETH: # algorithm solving 3-SAT on a formula with n variables in time $2^{o(n)}$.

Next section is...

- Introduction
- Our results
- NP-hardness reduction
- Polynomial-time algorithm
- 5 Sketch of the FPT algorithms
- 6 Conclusions

NP-hardness reduction

Max ($\bullet \times \ell$)-Spindle Subdivision

For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Theorem

Let $\ell \geq 1$ be fixed. MAX $(\bullet \times \ell)$ -SPINDLE SUBDIVISION is in P if $\ell \leq 3$, and NP-hard if $\ell \geq 4$, even restricted to DAGs.

NP-hardness reduction

Max ($\bullet \times \ell$)-Spindle Subdivision

For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Theorem

Let $\ell \geq 1$ be fixed. Max $(\bullet \times \ell)$ -Spindle Subdivision is in P if $\ell \leq 3$, and NP-hard if $\ell \geq 4$, even restricted to DAGs.

We prove the case $\ell = 4$, by reduction from 3-DIMENSIONAL MATCHING:

Given three sets A, B, C of the same size and a set of triples $\mathcal{T} \subseteq A \times B \times C$, decide whether there exists a set $\mathcal{T}' \subseteq \mathcal{T}$ of pairwise disjoint triples with $|\mathcal{T}'| = |A|$.

NP-hardness reduction

Max ($\bullet \times \ell$)-Spindle Subdivision

For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Theorem

Let $\ell \geq 1$ be fixed. Max $(\bullet \times \ell)$ -Spindle Subdivision is in P if $\ell \leq 3$, and NP-hard if $\ell \geq 4$, even restricted to DAGs.

We prove the case $\ell=4$, by reduction from 3-DIMENSIONAL MATCHING:

Given three sets A, B, C of the same size and a set of triples $\mathcal{T} \subseteq A \times B \times C$, decide whether there exists a set $\mathcal{T}' \subseteq \mathcal{T}$ of pairwise disjoint triples with $|\mathcal{T}'| = |A|$.

Our reduction is strongly inspired by [Brewster, Hell, Pantel, Rizzi, Yeo. 2003]

Given (A, B, C, \mathcal{T}) of 3-DIMENSIONAL MATCHING, with |A| = n and $\mathcal{T} = m$, we construct G of MAX $(\bullet \times \ell)$ -SPINDLE SUBDIVISION as follows:

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i , vertex b with b_j , and vertex c with c_p .

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i , vertex b with b_j , and vertex c with c_p .

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i , vertex b with b_j , and vertex c with c_p .

We add a new vertex s (source) and a vertex t (sink) that we connect to every other vertex. They will be the endpoints of the desired spindle.

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i , vertex b with b_j , and vertex c with c_p .

Claim (A, B, C, T) is a YES-instance of 3-DIM. MATCHING \iff G contains a subdivision of a $(n + 2m \times 4)$ -spindle.

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i , vertex b with b_j , and vertex c with c_p .

By construction of G, a $(n + 2m \times 4)$ -spindle covers all V(G), so it is equivalent to partitioning $G \setminus \{s, t\}$ into 2-paths (paths with 2 arcs).

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i , vertex b with b_j , and vertex c with c_p .

Key property: for every copy of H, there are exactly two ways the 2-paths can intersect H. This defines whether each triple $T \in \mathcal{T}$ is chosen or not.

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i , vertex b with b_j , and vertex c with c_p .

Modification for $\ell > 4$: we define the digraph G in the same way, except that we subdivide the arcs outgoing from s exactly $\ell - 4$ times.

Next section is...

- Introduction
- Our results
- NP-hardness reduction
- 4 Polynomial-time algorithm
- Sketch of the FPT algorithms
- 6 Conclusions

Max (• $\times \ell$)-Spindle Subdivision

For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Theorem

Let $\ell \geq 1$ be fixed. Max $(\bullet \times \ell)$ -Spindle Subdivision is in $\boxed{\mathsf{P} \text{ if } \ell \leq 3}$, and $\boxed{\mathsf{NP}\text{-hard if } \ell \geq 4}$, even restricted to DAGs.

Max (• $\times \ell$)-Spindle Subdivision

For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Theorem

Let $\ell \geq 1$ be fixed. Max $(\bullet \times \ell)$ -Spindle Subdivision is in $\boxed{\text{P if } \ell \leq 3}$, and NP-hard if $\ell \geq 4$, even restricted to DAGs.

• $\ell = 1$: can be solved by a flow algorithm.

Max (• $\times \ell$)-Spindle Subdivision

For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Theorem

Let $\ell \geq 1$ be fixed. Max $(\bullet \times \ell)$ -Spindle Subdivision is in $\boxed{\mathsf{P}}$ if $\ell \leq 3$, and $N\mathsf{P}$ -hard if $\ell \geq 4$, even restricted to DAGs.

- $\ell = 1$: can be solved by a flow algorithm.
- $\ell = 2$: guess two vertices, delete arcs between them, and then flow.

Max (• $\times \ell$)-Spindle Subdivision

For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$ -spindle.

Theorem

Let $\ell \geq 1$ be fixed. Max $(\bullet \times \ell)$ -Spindle Subdivision is in $\[P\]$ if $\ell \leq 3$, and $\[NP\]$ -hard if $\ell \geq 4$, even restricted to DAGs.

- $\ell = 1$: can be solved by a flow algorithm.
- $\ell = 2$: guess two vertices, delete arcs between them, and then flow.
- $\ell = 3$: we reduce the problem to computing a maximum matching in an auxiliary undirected graph, as follows...

A directed path P is nontrivial if its endpoints are distinct.

A directed path P is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$ -spindle from s to t = 1

A directed path *P* is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$ -spindle from s to t = maximum number of vertex-disjoint nontrivial directed paths from $N^+(s)$ to $N^-(t)$ in the digraph $G \setminus \{s, t\}$.

A directed path *P* is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$ -spindle from s to $t = \max \{m \in \mathbb{N}^+(s) \text{ to } \mathbb{N}^-(t) \text{ in the digraph } G \setminus \{s, t\}.$

A directed path *P* is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$ -spindle from s to t = maximum number of vertex-disjoint nontrivial directed paths from $N^+(s)$ to $N^-(t)$ in the digraph $G \setminus \{s, t\}$.

A directed path *P* is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$ -spindle from s to $t = \max_{s \in S} \max_{s \in S} \min_{s \in S} \min_{$

Main ingredient for the case $\ell = 3$

Proposition

Let G be a digraph and $X, Y \subseteq V(G)$. The maximum number of vertex-disjoint directed nontrivial paths from X to Y can be computed in polynomial time.

Idea of the proof

Given a digraph G and $X, Y \subseteq V(G)$, we build an undirected graph G':

Idea of the proof

Given a digraph G and $X, Y \subseteq V(G)$, we build an undirected graph G':

$$V(G') = V(G) + a \text{ copy } v' \text{ of each vertex } v \notin X \cup Y.$$

E(G'): For each $v \notin X \cup Y$, add to G' the edge $\{v, v'\}$. For each (u, v), add $\{u, v\}$ if $v \in X \cup Y$, and $\{u, v'\}$ otherwise.

Idea of the proof

Given a digraph G and $X, Y \subseteq V(G)$, we build an undirected graph G':

$$V(G') = V(G) + a copy v'$$
 of each vertex $v \notin X \cup Y$.

E(G'): For each $v \notin X \cup Y$, add to G' the edge $\{v, v'\}$. For each (u, v), add $\{u, v\}$ if $v \in X \cup Y$, and $\{u, v'\}$ otherwise.

Claim G contains k vertex-disjoint directed nontrivial paths from X to Y \iff G' has a matching of size $k + |V(G) \setminus (X \cup Y)|$.

Next section is...

- Introduction
- Our results
- NP-hardness reduction
- 4 Polynomial-time algorithm
- 5 Sketch of the FPT algorithms
- 6 Conclusions

Matroids

A pair $\mathcal{M} = (E, \mathcal{I})$, where E is a ground set and \mathcal{I} is a family of subsets of E, is a matroid if it satisfies the following three axioms:

- ② If $A' \subseteq A$ and $A \in \mathcal{I}$, then $A' \in \mathcal{I}$.
- **③** If $A, B ∈ \mathcal{I}$ and |A| < |B|, then $\exists e ∈ B \setminus A$ such that $A \cup \{e\} ∈ \mathcal{I}$.

The sets in \mathcal{I} are called the independent sets of the matroid.

Two independent sets A, B of \mathcal{M} fit if $A \cap B = \emptyset$ and $A \cup B$ is independent.

Two independent sets A, B of \mathcal{M} fit if $A \cap B = \emptyset$ and $A \cup B$ is independent.

Let \mathcal{A} be a family of sets of size p in a matroid \mathcal{M} . A subfamily $\mathcal{A}' \subseteq \mathcal{A}$ is said to q-represent \mathcal{A} , denoted $\mathcal{A}' \subseteq q \mathcal{A}$, if for every set \mathcal{B} of size q such that there is an $\mathcal{A} \in \mathcal{A}$ that fits \mathcal{B} , there is an $\mathcal{A}' \in \mathcal{A}'$ that also fits \mathcal{B} .

Two independent sets A, B of \mathcal{M} fit if $A \cap B = \emptyset$ and $A \cup B$ is independent.

Let \mathcal{A} be a family of sets of size p in a matroid \mathcal{M} . A subfamily $\mathcal{A}'\subseteq \mathcal{A}$ is said to q-represent \mathcal{A} , denoted $\mathcal{A}'\subseteq_{\mathsf{rep}}^q \mathcal{A}$, if for every set \mathcal{B} of size q such that there is an $A\in \mathcal{A}$ that fits \mathcal{B} , there is an $A'\in \mathcal{A}'$ that also fits \mathcal{B} .

$$\mathcal{A} = \{A_1, A_2, A_3\}, \quad p = 4, q = 2$$

 $\{A_3\} \subseteq_{\text{rep}}^2 \{A_1, A_2, A_3\}$

Two independent sets A, B of \mathcal{M} fit if $A \cap B = \emptyset$ and $A \cup B$ is independent.

Let \mathcal{A} be a family of sets of size p in a matroid \mathcal{M} . A subfamily $\mathcal{A}'\subseteq \mathcal{A}$ is said to q-represent \mathcal{A} , denoted $\mathcal{A}'\subseteq_{\mathsf{rep}}^q \mathcal{A}$, if for every set \mathcal{B} of size q such that there is an $A\in \mathcal{A}$ that fits \mathcal{B} , there is an $A'\in \mathcal{A}'$ that also fits \mathcal{B} .

We consider the uniform matroid with ground set V(G) and rank $\ell + q$, with $0 \le q \le 2\ell$.

Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2) -spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.

Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2) -spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.

Idea We will q-represent the "first part" of the desired spindle (paths P_u^1 and P_u^2), for every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$.

Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2) -spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.

Idea We will q-represent the "first part" of the desired spindle (paths P_u^1 and P_u^2), for every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$.

Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2) -spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.

Idea We will q-represent the "first part" of the desired spindle (paths P_u^1 and P_u^2), for every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$.

Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2) -spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.

Idea We will q-represent the "first part" of the desired spindle (paths P_u^1 and P_u^2), for every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$.

Using the recent techniques of [Fomin, Lokshtanov, Panolan, Saurabh. 2016], $|\hat{S}_{u,u_1,u_2}^{\ell_1,\ell_2,q}| = 2^{O(\ell)}$ and can be computed in time $2^{O(\ell)} \cdot n^{O(1)}$.

Consider a good spindle *S* with minimum number of vertices:

$$|B| = \ell - 1$$

Consider a good spindle *S* with minimum number of vertices:

The representatives \hat{P}_1^u and \hat{P}_2^u are **disjoint** from the rest of the spindle S.

Consider a good spindle *S* with minimum number of vertices:

The representatives \hat{P}_1^u and \hat{P}_2^u are **disjoint** from the rest of the spindle S.

Consider a good spindle *S* with minimum number of vertices:

The representatives \hat{P}_1^u and \hat{P}_2^u are **disjoint** from the rest of the spindle S.

• For every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$, we compute a q-representative family $\widehat{\mathcal{S}}_{u,u_1,u_2}^{\ell_1,\ell_2,q}$ in time $2^{O(\ell)} \cdot n^{O(1)}$.

- For every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$, we compute a q-representative family $\widehat{\mathcal{S}}_{u,u_1,u_2}^{\ell_1,\ell_2,q}$ in time $2^{O(\ell)} \cdot n^{O(1)}$.
- ② For every $\widehat{P}_1^u \cup \widehat{P}_2^u \in \widehat{\mathcal{S}}_{u,u_1,u_2}^{\ell_1,\ell_2,q}$, we check whether G contains a (u_1,v) -path P_1^v and a (u_2,v) -path P_2^v of this shape:

- For every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$, we compute a q-representative family $\widehat{\mathcal{S}}_{u,u_1,u_2}^{\ell_1,\ell_2,q}$ in time $2^{O(\ell)} \cdot n^{O(1)}$.
- ② For every $\widehat{P}_1^u \cup \widehat{P}_2^u \in \widehat{\mathcal{S}}_{u,u_1,u_2}^{\ell_1,\ell_2,q}$, we check whether G contains a (u_1,v) -path P_1^v and a (u_2,v) -path P_2^v of this shape:

This can be done in polynomial time by using a flow algorithm.

- For every $u, u_1, u_2 \in V(G), \ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$, we compute a q-representative family $\widehat{\mathcal{S}}_{u,u_1,u_2}^{\ell_1,\ell_2,q}$ in time $2^{O(\ell)} \cdot n^{O(1)}$.
- ② For every $\widehat{P}_1^u \cup \widehat{P}_2^u \in \widehat{\mathcal{S}}_{u,u_1,u_2}^{\ell_1,\ell_2,q}$, we check whether G contains a (u_1,v) -path P_1^v and a (u_2,v) -path P_2^v of this shape:

This can be done in polynomial time by using a flow algorithm.

Overall running time: $2^{O(\ell)} \cdot n^{O(1)}$.

Next section is...

- Introduction
- Our results
- NP-hardness reduction
- Polynomial-time algorithm
- 5 Sketch of the FPT algorithms
- **6** Conclusions

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by |V(F)|?

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by |V(F)|?

We do not know the answer even if F is a 2-spindle.

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by |V(F)|?

We do not know the answer even if F is a 2-spindle.

When G is an acyclic digraph, we can prove the following:

Theorem

Given an acyclic digraph G and integers k, ℓ , deciding whether G contains a subdivision of a $(k \times \ell)$ -spindle can be solved in time $O(\ell^k \cdot n^{2k+1})$.

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by |V(F)|?

We do not know the answer even if F is a 2-spindle.

When G is an acyclic digraph, we can prove the following:

Theorem

Given an acyclic digraph G and integers k,ℓ , deciding whether G contains a subdivision of a $(k \times \ell)$ -spindle can be solved in time $O(\ell^k \cdot n^{2k+1})$.

If k is a constant: the problem is polynomial on acyclic digraphs (this generalizes the case k=1, that is, LONGEST PATH on DAGs).

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by |V(F)|?

We do not know the answer even if F is a 2-spindle.

When G is an acyclic digraph, we can prove the following:

Theorem

Given an acyclic digraph G and integers k,ℓ , deciding whether G contains a subdivision of a $(k \times \ell)$ -spindle can be solved in time $O(\ell^k \cdot n^{2k+1})$.

If k is a constant: the problem is polynomial on acyclic digraphs (this generalizes the case k=1, that is, Longest Path on DAGs).

But is the problem FPT on acyclic digraphs? That is, in time $f(k, \ell) \cdot n^{O(1)}$?

Gràcies!

