Finding subdivisions of spindles on digraphs

Júlio Araújo1 Victor A. Campos2 Ana Karolinna Maia2 Ignasi Sau1,3 Ana Silva1

UFMG
Belo Horizonte, February 2018

[arXiv 1706.09066] – To appear in LATIN 2018

1 Departamento de Matemática, UFC, Fortaleza, Brazil.
2 Departamento de Computação, UFC, Fortaleza, Brazil.
3 CNRS, LIRMM, Université de Montpellier, Montpellier, France.
Outline of the talk

1. Introduction
2. Our results
3. NP-hardness reduction
4. Polynomial-time algorithm
5. Sketch of the FPT algorithms
6. Conclusions
Next section is...

1. Introduction
2. Our results
3. NP-hardness reduction
4. Polynomial-time algorithm
5. Sketch of the FPT algorithms
6. Conclusions
In this talk we focus on directed graphs, or digraphs.
In this talk we focus on directed graphs, or digraphs.

A subdivision of a digraph F is a digraph obtained from F by replacing each arc (u, v) of F by a directed (u, v)-path.
In this talk we focus on directed graphs, or digraphs.

A subdivision of a digraph F is a digraph obtained from F by replacing each arc (u, v) of F by a directed (u, v)-path.
In this talk we focus on \textit{directed graphs}, or \textit{digraphs}.

A \textit{subdivision} of a digraph F is a digraph obtained from F by replacing each arc (u, v) of F by a directed (u, v)-path.

\begin{center}
\begin{tabular}{ccc}
F & F_1 & F_2
\end{tabular}
\end{center}

We are interested in the following problem:

\begin{center}
\textbf{Digraph Subdivision}
\end{center}

\textbf{Instance:} Two digraphs G and F.

\textbf{Question:} Does G contain a subdivision of F as a subdigraph?
Recent work on finding digraph subdivisions

This problem has been introduced by [Bang-Jensen, Havet, Maia. 2015]

Let F be a fixed digraph.

F-Subdivision

Instance: A digraph G.

Question: Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)

For every fixed digraph F, F-Subdivision is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.

When $|V(F)| = 4$, there are only 5 open cases. [Havet, Maia, Mohar. 2017]
Recent work on finding digraph subdivisions

This problem has been introduced by [Bang-Jensen, Havet, Maia. 2015]

Let F be a fixed digraph.

F-Subdivision

- **Instance:** A digraph G.
- **Question:** Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)

For every fixed digraph F, F-Subdivision is either in P or NP-complete.
Recent work on finding digraph subdivisions

This problem has been introduced by [Bang-Jensen, Havet, Maia. 2015]

Let F be a fixed digraph.

F-Subdivision

Instance: A digraph G.

Question: Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)

For every fixed digraph F, F-Subdivision is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.
Recent work on finding digraph subdivisions

This problem has been introduced by [Bang-Jensen, Havet, Maia. 2015]

Let F be a fixed digraph.

F-Subdivision

Instance: A digraph G.

Question: Does G contain a subdivision of F as a subdigraph?

Conjecture (Bang-Jensen, Havet, Maia. 2015)

For every fixed digraph F, F-Subdivision is either in P or NP-complete.

This conjecture is wide open, and only examples of both cases are known.

When $|V(F)| = 4$, there are only 5 open cases. [Havet, Maia, Mohar. 2017]
We focus on finding subdivisions of spindles

For positive integers \(\ell_1, \ldots, \ell_k \), a \((\ell_1, \ldots, \ell_k)\)-spindle is the digraph containing \(k\) paths \(P_1, \ldots, P_k\) from a vertex \(u\) to a vertex \(v\), such that

\[
|E(P_i)| = \ell_i \quad \text{for} \quad 1 \leq i \leq k
\]

and

\[
V(P_i) \setminus V(P_j) = \{u, v\} \quad \text{for} \quad 1 \leq i \neq j \leq k.
\]

If \(\ell_i = \ell\) for \(1 \leq i \leq k\), a \((\ell_1, \ldots, \ell_k)\)-spindle is also called a \((k \times \ell)\)-spindle.

\[G \text{ contains a subdivision of a } (k \times 1)\text{-spindle} \iff \exists u, v \in V(G) : \text{the Maximum Flow from } u \text{ to } v \text{ is at least } k. \]

\[G \text{ contains a subdivision of a } (1 \times \ell)\text{-spindle} \iff \text{the length of a Longest Path in } G \text{ is at least } \ell. \]
We focus on finding subdivisions of spindles.

For k positive integers ℓ_1, \ldots, ℓ_k, a (ℓ_1, \ldots, ℓ_k)-spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \leq i \leq k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \leq i \neq j \leq k$.

G contains a subdivision of a $(k \times 1)$-spindle $\iff \exists u, v \in V(G)$: the Maximum Flow from u to v is at least k.

G contains a subdivision of a $(1 \times \ell)$-spindle \iff the length of a Longest Path in G is at least ℓ.

6/28
We focus on finding subdivisions of spindles.

For k positive integers ℓ_1, \ldots, ℓ_k, a (ℓ_1, \ldots, ℓ_k)-spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \leq i \leq k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \leq i \neq j \leq k$.

If $\ell_i = \ell$ for $1 \leq i \leq k$, a (ℓ_1, \ldots, ℓ_k)-spindle is also called a $(k \times \ell)$-spindle.
We focus on finding subdivisions of spindles.

For k positive integers ℓ_1, \ldots, ℓ_k, a (ℓ_1, \ldots, ℓ_k)-spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \leq i \leq k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \leq i \neq j \leq k$.

If $\ell_i = \ell$ for $1 \leq i \leq k$, a (ℓ_1, \ldots, ℓ_k)-spindle is also called a $(k \times \ell)$-spindle.

G contains a subdivision of a $(k \times 1)$-spindle \iff
We focus on finding subdivisions of spindles

For k positive integers ℓ_1, \ldots, ℓ_k, a (ℓ_1, \ldots, ℓ_k)-spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \leq i \leq k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \leq i \neq j \leq k$.

If $\ell_i = \ell$ for $1 \leq i \leq k$, a (ℓ_1, \ldots, ℓ_k)-spindle is also called a $(k \times \ell)$-spindle.

G contains a subdivision of a $(k \times 1)$-spindle \iff \exists u, v \in V(G) :$ the Maximum Flow from u to v is at least k.
We focus on finding subdivisions of spindles.

For k positive integers ℓ_1, \ldots, ℓ_k, a (ℓ_1, \ldots, ℓ_k)-spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \leq i \leq k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \leq i \neq j \leq k$.

If $\ell_i = \ell$ for $1 \leq i \leq k$, a (ℓ_1, \ldots, ℓ_k)-spindle is also called a $(k \times \ell)$-spindle.

G contains a subdivision of a $(k \times 1)$-spindle \iff there exist $u, v \in V(G)$: the Maximum Flow from u to v is at least k.

G contains a subdivision of a $(1 \times \ell)$-spindle \iff
We focus on finding subdivisions of spindles of spindles.

For k positive integers ℓ_1, \ldots, ℓ_k, a (ℓ_1, \ldots, ℓ_k)-spindle is the digraph containing k paths P_1, \ldots, P_k from a vertex u to a vertex v, such that $|E(P_i)| = \ell_i$ for $1 \leq i \leq k$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \leq i \neq j \leq k$.

If $\ell_i = \ell$ for $1 \leq i \leq k$, a (ℓ_1, \ldots, ℓ_k)-spindle is also called a $(k \times \ell)$-spindle.

G contains a subdivision of a $(k \times 1)$-spindle $\iff \exists u, v \in V(G)$: the Maximum Flow from u to v is at least k.

G contains a subdivision of a $(1 \times \ell)$-spindle \iff the length of a Longest Path in G is at least ℓ.
What is known about subdivisions of spindles

If the spindle is fixed, the problem is in P: [Bang-Jensen, Havet, Maia. 2015]
What is known about subdivisions of spindles

If the spindle is fixed, the problem is in \mathbf{P}: \[\text{[Bang-Jensen, Havet, Maia. 2015]}\]

![Diagram of a spindle]

We can guess all choices for the first ℓ_j vertices of each path.
What is known about subdivisions of spindles

If the spindle is fixed, the problem is in \(P \): [Bang-Jensen, Havet, Maia. 2015]

We can guess all choices for the first \(\ell_i \) vertices of each path. Then, compute a flow from those endpoints to some vertex \(v \).
What is known about subdivisions of spindles

If the spindle is **fixed**, the problem is in **P**: [Bang-Jensen, Havet, Maia. 2015]

![Diagram of a spindle](image)

We can **guess all choices for the first** ℓ_i **vertices** of each path. Then, compute a **flow** from those endpoints to some vertex v.

The running time of this algorithm is $n^{O(|V(F)|)}$, where $n = |V(G)|$.
What is known about subdivisions of spindles

If the spindle is fixed, the problem is in \mathbf{P}: [Bang-Jensen, Havet, Maia. 2015]

We can guess all choices for the first ℓ_i vertices of each path. Then, compute a flow from those endpoints to some vertex v.

The running time of this algorithm is $n^{O(|V(F)|)}$, where $n = |V(G)|$.

Is a running time $f(|V(F)|) \cdot n^{O(1)}$ possible, for some function f?

This question had been asked by [Bang-Jensen, Havet, Maia. 2015]
The area of parameterized complexity was introduced in the 90’s by Downey and Fellows.

Idea: given an NP-hard problem with input size n, fix one parameter k of the input to see whether the problem gets more “tractable”.

Example: $k =$ length of a Longest Path.

Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in time

$$f(k) \cdot n^{O(1)},$$

for some function f.

Examples: k-Vertex Cover, k-Longest Path.
Next section is...

1. Introduction

2. Our results

3. NP-hardness reduction

4. Polynomial-time algorithm

5. Sketch of the FPT algorithms

6. Conclusions
Max \((k \times \bullet)\)-Spindle Subdivision

For a fixed \(k \geq 1\), given an input digraph \(G\), find the largest \(\ell\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(k \geq 1\) be fixed. \(\text{Max \((k \times \bullet)\)-Spindle Subdivision}\) is \(\text{NP-hard}\).

Theorem

Let \(\ell \geq 1\) be fixed. \(\text{Max \((\bullet \times \ell)\)-Spindle Subdivision}\) is in \(\text{P}\) if \(\ell \leq 3\), and \(\text{NP-hard}\) if \(\ell \geq 4\), even restricted to acyclic digraphs (DAGs).
Our results (I): optimization problems

Max \((k \times \bullet)\)-Spindle Subdivision

For a fixed \(k \geq 1\), given an input digraph \(G\), find the largest \(\ell\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(k \geq 1\) be fixed. Max \((k \times \bullet)\)-Spindle Subdivision is NP-hard.
Our results (I): optimization problems

Max \((k \times \bullet)\)-Spindle Subdivision
For a fixed \(k \geq 1\), given an input digraph \(G\), find the largest \(\ell\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(k \geq 1\) be fixed. Max \((k \times \bullet)\)-Spindle Subdivision is NP-hard.

Max \((\bullet \times \ell)\)-Spindle Subdivision
For a fixed \(\ell \geq 1\), given an input digraph \(G\), find the largest \(k\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.
Our results (I): optimization problems

Max \((k \times \bullet)\)-Spindle Subdivision
For a fixed \(k \geq 1\), given an input digraph \(G\), find the largest \(\ell\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(k \geq 1\) be fixed. **Max \((k \times \bullet)\)-Spindle Subdivision** is **NP-hard**.

Max \((\bullet \times \ell)\)-Spindle Subdivision
For a fixed \(\ell \geq 1\), given an input digraph \(G\), find the largest \(k\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(\ell \geq 1\) be fixed. **Max \((\bullet \times \ell)\)-Spindle Subdivision** is **in P** if \(\ell \leq 3\), and **NP-hard** if \(\ell \geq 4\), even restricted to acyclic digraphs (DAGs).
Our results (II): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths.

[Benhocine, Wojda. 1983]
[Cohen, Havet, Lochet, Nisse. 2016]
[Kim, Kim, Ma, Park. 2016]
Our results (II): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths.

[Benhocine, Wojda. 1983]
[Cohen, Havet, Lochet, Nisse. 2016]
[Kim, Kim, Ma, Park. 2016]

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2)-spindle is NP-hard and FPT parameterized by ℓ, with running time $2^{O(\ell)} \cdot n^{O(1)}$.
Our results (II): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths.

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2)-spindle is NP-hard and FPT parameterized by ℓ, with running time $2^{O(\ell)} \cdot n^{O(1)}$.

Theorem

Given a digraph G and ℓ_1, ℓ_2 with $\ell_2 \geq \ell_1 \geq 1$, deciding whether G contains a subdivision of a (ℓ_1, ℓ_2)-spindle can be solved in time $2^{O(\ell_2)} \cdot n^{O(\ell_1)}$. When ℓ_1 is a constant, the problem remains NP-hard.
Our results (II): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths.

[Benhocine, Wojda. 1983]
[Cohen, Havet, Lochet, Nisse. 2016]
[Kim, Kim, Ma, Park. 2016]

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2)-spindle is NP-hard and FPT parameterized by ℓ, with running time $2^{O(\ell)} \cdot n^{O(1)}$.

Theorem

Given a digraph G and $[\ell_1, \ell_2]$ with $\ell_2 \geq \ell_1 \geq 1$, deciding whether G contains a subdivision of a (ℓ_1, ℓ_2)-spindle can be solved in time $2^{O(\ell_2)} \cdot n^{O(\ell_1)}$. When ℓ_1 is a constant, the problem remains NP-hard.
Our results (II): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths.

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2)-spindle is NP-hard and FPT parameterized by ℓ, with running time $2^{O(\ell)} \cdot n^{O(1)}$.

Theorem

Given a digraph G and ℓ_1, ℓ_2 with $\ell_2 \geq \ell_1 \geq 1$, deciding whether G contains a subdivision of a (ℓ_1, ℓ_2)-spindle can be solved in time $2^{O(\ell_2)} \cdot n^{O(\ell_1)}$. When ℓ_1 is a constant, the problem remains NP-hard.

Both FPT algorithms are asymptotically optimal under the ETH.
Our results (II): FPT algorithms for finding 2-spindles

2-spindle: spindle with exactly two paths.

[Benhocine, Wojda. 1983]
[Cohen, Havet, Lochet, Nisse. 2016]
[Kim, Kim, Ma, Park. 2016]

Theorem

Given a digraph G and $\ell \geq 1$, deciding whether there exist $\ell_1, \ell_2 \geq 1$ with $\ell_1 + \ell_2 = \ell$ such that G contains a subdivision of a (ℓ_1, ℓ_2)-spindle is NP-hard and FPT parameterized by ℓ, with running time $2^{O(\ell)} \cdot n^{O(1)}$.

Theorem

Given a digraph G and ℓ_1, ℓ_2 with $\ell_2 \geq \ell_1 \geq 1$, deciding whether G contains a subdivision of a (ℓ_1, ℓ_2)-spindle can be solved in time $2^{O(\ell_2)} \cdot n^{O(\ell_1)}$. When ℓ_1 is a constant, the problem remains NP-hard.

ETH: \(\exists\) algorithm solving 3-SAT on a formula with n variables in time $2^{o(n)}$.

Next section is...

1. Introduction

2. Our results

3. NP-hardness reduction

4. Polynomial-time algorithm

5. Sketch of the FPT algorithms

6. Conclusions
NP-hardness reduction

Max (● × ℓ)-Spindle Subdivision
For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times ℓ)$-spindle.

Theorem

Let $\ell \geq 1$ be fixed. **Max (● × ℓ)-Spindle Subdivision** is in P if $\ell \leq 3$, and **NP-hard if $\ell \geq 4** , even restricted to DAGs.
NP-hardness reduction

Max (● × ℓ)-Spindle Subdivision
For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$-spindle.

Theorem

Let $\ell \geq 1$ be fixed. **Max (● × ℓ)-Spindle Subdivision** is in P if $\ell \leq 3$, and **NP-hard if $\ell \geq 4** , even restricted to DAGs.

We prove the case $\ell = 4$, by reduction from **3-Dimensional Matching**:

Given three sets A, B, C of the same size and a set of triples $T \subseteq A \times B \times C$, decide whether there exists a set $T' \subseteq T$ of pairwise disjoint triples with $|T'| = |A|$.
NP-hardness reduction

Max \((\bullet \times \ell)\)-Spindle Subdivision

For a fixed \(\ell \geq 1\), given an input digraph \(G\), find the largest \(k\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(\ell \geq 1\) be fixed. Max \((\bullet \times \ell)\)-Spindle Subdivision is in P if \(\ell \leq 3\), and NP-hard if \(\ell \geq 4\), even restricted to DAGs.

We prove the case \(\ell = 4\), by reduction from **3-Dimensional Matching**: Given three sets \(A, B, C\) of the same size and a set of triples \(T \subseteq A \times B \times C\), decide whether there exists a set \(T' \subseteq T\) of pairwise disjoint triples with \(|T'| = |A|\).

Our reduction is strongly inspired by [Brewster, Hell, Pantel, Rizzi, Yeo. 2003]
Reduction for $\ell = 4$

Given (A, B, C, T) of 3-Dimensional Matching, with $|A| = n$ and $T = m$, we construct G of Max $(\bullet \times \ell)$-Spindle Subdivision as follows:
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).
Reduction for \(\ell = 4 \)

For \(i \in [n] \), we add to \(G \) three vertices \(a_i, b_i, c_i \) (elements of sets \(A, B, C \)).

For \(T \in \mathcal{T} \), with \(T = (a_i, b_j, c_p) \), we add to \(G \) a copy of \(H \) and we identify vertex \(a \) with \(a_i \), vertex \(b \) with \(b_j \), and vertex \(c \) with \(c_p \).
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.

We add a new vertex s (source) and a vertex t (sink) that we connect to every other vertex. They will be the endpoints of the desired spindle.
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.

\textbf{Claim} (A, B, C, \mathcal{T}) is a \textsc{Yes}-instance of 3-$\textsc{Dim. Matching}$ $\iff G$ contains a subdivision of a $(n + 2m \times 4)$-spindle.
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.

By construction of G, a $(n + 2m \times 4)$-spindle covers all $V(G)$, so it is equivalent to partitioning $G \setminus \{s, t\}$ into 2-paths (paths with 2 arcs).
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in \mathcal{T}$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.

Key property: for every copy of H, there are exactly two ways the 2-paths can intersect H. This defines whether each triple $T \in \mathcal{T}$ is chosen or not.
Reduction for $\ell = 4$

For $i \in [n]$, we add to G three vertices a_i, b_i, c_i (elements of sets A, B, C).

For $T \in T$, with $T = (a_i, b_j, c_p)$, we add to G a copy of H and we identify vertex a with a_i, vertex b with b_j, and vertex c with c_p.

Modification for $\ell > 4$: we define the digraph G in the same way, except that we subdivide the arcs outgoing from s exactly $\ell - 4$ times.
1 Introduction

2 Our results

3 NP-hardness reduction

4 Polynomial-time algorithm

5 Sketch of the FPT algorithms

6 Conclusions
Max ($\bullet \times \ell$)-Spindle Subdivision

For a fixed $\ell \geq 1$, given an input digraph G, find the largest k such that G contains a subdivision of a $(k \times \ell)$-spindle.

Theorem

Let $\ell \geq 1$ be fixed. Max ($\bullet \times \ell$)-Spindle Subdivision is in \mathbf{P} if $\ell \leq 3$, and NP-hard if $\ell \geq 4$, even restricted to DAGs.
Max \((\bullet \times \ell)\)-Spindle Subdivision

For a fixed \(\ell \geq 1\), given an input digraph \(G\), find the largest \(k\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(\ell \geq 1\) be fixed. Max \((\bullet \times \ell)\)-Spindle Subdivision is in \(\mathsf{P}\) if \(\ell \leq 3\), and \(\mathsf{NP}\)-hard if \(\ell \geq 4\), even restricted to DAGs.

- \(\ell = 1\): can be solved by a flow algorithm.
Cases that can be solved in polynomial time

Max \((\bullet \times \ell)\)-Spindle Subdivision

For a fixed \(\ell \geq 1\), given an input digraph \(G\), find the largest \(k\) such that \(G\) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(\ell \geq 1\) be fixed. **Max \((\bullet \times \ell)\)-Spindle Subdivision is in \(\text{P}\) if \(\ell \leq 3\)**, and **NP-hard if \(\ell \geq 4\)**, even restricted to DAGs.

- \(\ell = 1\): can be solved by a flow algorithm.
- \(\ell = 2\): guess two vertices, delete arcs between them, and then flow.
Cases that can be solved in polynomial time

Max (● × ℓ)-Spindle Subdivision

For a fixed \(\ell \geq 1 \), given an input digraph \(G \), find the largest \(k \) such that \(G \) contains a subdivision of a \((k \times \ell)\)-spindle.

Theorem

Let \(\ell \geq 1 \) be fixed. Max (● × ℓ)-Spindle Subdivision is in \(\text{P} \) if \(\ell \leq 3 \), and \(\text{NP-hard} \) if \(\ell \geq 4 \), even restricted to DAGs.

- \(\ell = 1 \): can be solved by a flow algorithm.
- \(\ell = 2 \): guess two vertices, delete arcs between them, and then flow.
- \(\ell = 3 \): we reduce the problem to computing a maximum matching in an auxiliary undirected graph, as follows...
A directed path P is nontrivial if its endpoints are distinct.
Idea of the case $\ell = 3$

A directed path P is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$-spindle from s to t
Idea of the case $\ell = 3$

A directed path P is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$-spindle from s to t = maximum number of vertex-disjoint nontrivial directed paths from $N^+(s)$ to $N^-(t)$ in the digraph $G \setminus \{s, t\}$.
Idea of the case $\ell = 3$

A directed path P is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$-spindle from s to t =

maximum number of vertex-disjoint nontrivial directed paths from $N^+(s)$ to $N^-(t)$ in the digraph $G \setminus \{s, t\}$.
Idea of the case $\ell = 3$

A directed path P is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$-spindle from s to t is the maximum number of vertex-disjoint nontrivial directed paths from $N^+(s)$ to $N^-(t)$ in the digraph $G \setminus \{s, t\}$.

![Diagram showing $N^+(s)$ and $N^-(t)$]
Idea of the case $\ell = 3$

A directed path P is nontrivial if its endpoints are distinct.

We first guess vertices $s, t \in V(G)$ as endpoints of the spindle.

Largest k such that G contains a $(k \times 3)$-spindle from s to t =

maximum number of vertex-disjoint nontrivial directed paths from $N^+(s)$ to $N^-(t)$ in the digraph $G \setminus \{s, t\}$.
Main ingredient for the case $\ell = 3$

Proposition

Let G be a digraph and $X, Y \subseteq V(G)$. The maximum number of vertex-disjoint directed nontrivial paths from X to Y can be computed in polynomial time.
Idea of the proof

Given a digraph G and $X, Y \subseteq V(G)$, we build an undirected graph G':

- $V(G') = V(G) + \text{a copy of each vertex } v \not\in X \cup Y$.
- $E(G')$ for each $v \in X \cup Y$, add to G' the edge $\{v, v'\}$.
- For each (u, v), add $\{u, v\}$ if $v \in X \cup Y$, and $\{u, v'\}$ otherwise.

Claim G contains k vertex-disjoint directed nontrivial paths from X to Y \iff G' has a matching of size $k + |V(G) \setminus (X \cup Y)|$.
Idea of the proof

Given a digraph G and $X, Y \subseteq V(G)$, we build an undirected graph G':

$V(G') = V(G) + \text{a copy } v' \text{ of each vertex } v \notin X \cup Y$.

$E(G')$: For each $v \notin X \cup Y$, add to G' the edge $\{v, v'\}$.
For each (u, v), add $\{u, v\}$ if $v \in X \cup Y$, and $\{u, v'\}$ otherwise.
Idea of the proof

Given a digraph G and $X, Y \subseteq V(G)$, we build an undirected graph G':

$V(G') = V(G) + \text{a copy } v' \text{ of each vertex } v \notin X \cup Y$.

$E(G')$: For each $v \notin X \cup Y$, add to G' the edge $\{v, v'\}$.

For each (u, v), add $\{u, v\}$ if $v \in X \cup Y$, and $\{u, v'\}$ otherwise.

Claim: G contains k vertex-disjoint directed nontrivial paths from X to Y if and only if G' has a matching of size $k + |V(G) \setminus (X \cup Y)|$.
Introduction

Our results

NP-hardness reduction

Polynomial-time algorithm

Sketch of the FPT algorithms

Conclusions
A pair $\mathcal{M} = (E, \mathcal{I})$, where E is a ground set and \mathcal{I} is a family of subsets of E, is a matroid if it satisfies the following three axioms:

1. $\emptyset \in \mathcal{I}$.
2. If $A' \subseteq A$ and $A \in \mathcal{I}$, then $A' \in \mathcal{I}$.
3. If $A, B \in \mathcal{I}$ and $|A| < |B|$, then $\exists e \in B \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

The sets in \mathcal{I} are called the independent sets of the matroid.
Representative sets in matroids

Two independent sets A, B of \mathcal{M} fit if $A \cap B = \emptyset$ and $A \cup B$ is independent.
Two independent sets A, B of M fit if $A \cap B = \emptyset$ and $A \cup B$ is independent.

Let \mathcal{A} be a family of sets of size p in a matroid M. A subfamily $\mathcal{A}' \subseteq \mathcal{A}$ is said to q-represent \mathcal{A}, denoted $\mathcal{A}' \subseteq_q \mathcal{A}$, if for every set B of size q such that there is an $A \in \mathcal{A}$ that fits B, there is an $A' \in \mathcal{A}'$ that also fits B.

We consider the uniform matroid with ground set $V(G)$ and rank $\ell + q$, with $0 \leq q \leq 2\ell$.

\[
\{A_3\} \subseteq 2\text{rep} \{A_1, A_2, A_3\}
\]

$A_3 \subseteq \{A_1, A_2, A_3\}$, $p = 4$, $q = 2$
Two independent sets A, B of \mathcal{M} fit if $A \cap B = \emptyset$ and $A \cup B$ is independent.

Let \mathcal{A} be a family of sets of size p in a matroid \mathcal{M}. A subfamily $\mathcal{A}' \subseteq \mathcal{A}$ is said to q-represent \mathcal{A}, denoted $\mathcal{A}' \subseteq_{\text{rep}} \mathcal{A}$, if for every set B of size q such that there is an $A \in \mathcal{A}$ that fits B, there is an $A' \in \mathcal{A}'$ that also fits B.

\[
\mathcal{A} = \{A_1, A_2, A_3\}, \quad p = 4, q = 2
\]

\[
\{A_3\} \subseteq_{\text{rep}} \{A_1, A_2, A_3\}
\]
Representative sets in matroids

Two independent sets A, B of \mathcal{M} fit if $A \cap B = \emptyset$ and $A \cup B$ is independent.

Let \mathcal{A} be a family of sets of size p in a matroid \mathcal{M}. A subfamily $\mathcal{A}' \subseteq \mathcal{A}$ is said to q-represent \mathcal{A}, denoted $\mathcal{A}' \subseteq_q \text{rep} \mathcal{A}$, if for every set B of size q such that there is an $A \in \mathcal{A}$ that fits B, there is an $A' \in \mathcal{A}'$ that also fits B.

We consider the uniform matroid with ground set $V(G)$ and rank $\ell + q$, with $0 \leq q \leq 2\ell$.
Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2)-spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.
Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2)-spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.

Idea We will q-represent the “first part” of the desired spindle (paths P_u^1 and P_u^2), for every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$.

![Diagram of a 2-spindle](image-url)
Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2)-spindle, with \(\min\{\ell_1, \ell_2\} \geq 1 \) and \(\ell_1 + \ell_2 = \ell \), we say that S is a good spindle.

Idea We will q-represent the “first part” of the desired spindle (paths P^1_u and P^2_u), for every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$.
Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2)-spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.

Idea: We will q-represent the “first part” of the desired spindle (paths P^1_u and P^2_u), for every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$.

![Diagram of a 2-spindle with paths P^1_u and P^2_u, representing the desired spindle with q.

Using the recent techniques of [Fomin, Lokshtanov, Panolan, Saurabh. 2016], $|\hat{S}_{\ell_1, \ell_2, q}^{u, u_1, u_2}| = 2^{O(\ell)}$ and can be computed in time $2^{O(\ell)} \cdot n^{O(1)}$.}
Finding a 2-spindle of large total size

If a subdigraph S of G is a subdivision of a (ℓ_1, ℓ_2)-spindle, with $\min\{\ell_1, \ell_2\} \geq 1$ and $\ell_1 + \ell_2 = \ell$, we say that S is a good spindle.

Idea: We will q-represent the “first part” of the desired spindle (paths P^1_u and P^2_u), for every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$.

Using the recent techniques of [Fomin, Lokshtanov, Panolan, Saurabh. 2016], $|\hat{S}_{\ell_1, \ell_2, q}| = 2^{O(\ell)}$ and can be computed in time $2^{O(\ell)} \cdot n^{O(1)}$.
Key property: these families indeed represent the solutions

Consider a good spindle S with minimum number of vertices:

$$|B| = \ell - 1$$
Key property: these families indeed represent the solutions

Consider a good spindle S with minimum number of vertices:

$$|B| = \ell - 1$$

The representatives \hat{P}_1^u and \hat{P}_2^u are disjoint from the rest of the spindle S.

Consider a good spindle S with minimum number of vertices:

\[|B| = \ell - 1 \]

The representatives \hat{P}_1^u and \hat{P}_2^u are disjoint from the rest of the spindle S.
Key property: these families indeed represent the solutions

Consider a good spindle S with minimum number of vertices:

The representatives \hat{P}_1^u and \hat{P}_2^u are disjoint from the rest of the spindle S.

\[|B| = \ell - 1 \]
For every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$, we compute a q-representative family $\hat{S}_{u,u_1,u_2}^{\ell_1,\ell_2,q}$ in time $2^{O(\ell)} \cdot n^{O(1)}$.
Wrapping up the algorithm

1. For every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$, we compute a q-representative family $\hat{S}_{u,u_1,u_2}^{\ell_1,\ell_2,q}$ in time $2^{O(\ell)} \cdot n^{O(1)}$.

2. For every $\hat{P}_1^u \cup \hat{P}_2^u \in \hat{S}_{u,u_1,u_2}^{\ell_1,\ell_2,q}$, we check whether G contains a (u_1, v)-path P_1^v and a (u_2, v)-path P_2^v of this shape:

![Diagram](attachment:image.png)
Wrapping up the algorithm

1. For every \(u, u_1, u_2 \in V(G) \), \(\ell_1, \ell_2 \leq \ell \), and \(0 \leq q \leq 2\ell \), we compute a \(q \)-representative family \(\hat{S}_{u,u_1,u_2}^{\ell_1,\ell_2,q} \) in time \(2^{O(\ell)} \cdot n^{O(1)} \).

2. For every \(\hat{P}_1^u \cup \hat{P}_2^u \in \hat{S}_{u,u_1,u_2}^{\ell_1,\ell_2,q} \), we check whether \(G \) contains a \((u_1, v) \)-path \(P_1^v \) and a \((u_2, v) \)-path \(P_2^v \) of this shape:

This can be done in polynomial time by using a flow algorithm.
Wrapping up the algorithm

1. For every $u, u_1, u_2 \in V(G)$, $\ell_1, \ell_2 \leq \ell$, and $0 \leq q \leq 2\ell$, we compute a q-representative family $\hat{S}_{u, u_1, u_2}^{\ell_1, \ell_2, q}$ in time $2^{O(\ell)} \cdot n^{O(1)}$.

2. For every $\hat{P}_1^u \cup \hat{P}_2^u \in \hat{S}_{u, u_1, u_2}^{\ell_1, \ell_2, q}$, we check whether G contains a (u_1, v)-path P_1^v and a (u_2, v)-path P_2^v of this shape:

This can be done in polynomial time by using a flow algorithm.

Overall running time: $2^{O(\ell)} \cdot n^{O(1)}$.
1. Introduction

2. Our results

3. NP-hardness reduction

4. Polynomial-time algorithm

5. Sketch of the FPT algorithms

6. Conclusions
Further research

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by $|V(F)|$?
Further research

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by $|V(F)|$?

We do not know the answer even if F is a 2-spindle.
Further research

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by $|V(F)|$?

We do not know the answer even if F is a 2-spindle.

When G is an acyclic digraph, we can prove the following:

Theorem

Given an acyclic digraph G and integers k, ℓ, deciding whether G contains a subdivision of a $(k \times \ell)$-spindle can be solved in time $O(\ell^k \cdot n^{2k+1})$.
Further research

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by $|V(F)|$?

We do not know the answer even if F is a 2-spindle.

When G is an acyclic digraph, we can prove the following:

Theorem

Given an acyclic digraph G and integers k, ℓ, deciding whether G contains a subdivision of a $(k \times \ell)$-spindle can be solved in time $O(\ell^k \cdot n^{2k+1})$.

If k is a constant: the problem is polynomial on acyclic digraphs (this generalizes the case $k = 1$, that is, Longest Path on DAGs).
Further research

Main open question:

Finding a subdivision of a spindle F is FPT parameterized by $|V(F)|$?

We do not know the answer even if F is a 2-spindle.

When G is an acyclic digraph, we can prove the following:

Theorem

Given an acyclic digraph G and integers k, ℓ, deciding whether G contains a subdivision of a $(k \times \ell)$-spindle can be solved in time $O(\ell^k \cdot n^{2k+1})$.

If k is a constant: the problem is polynomial on acyclic digraphs (this generalizes the case $k = 1$, that is, Longest Path on DAGs).

But is the problem FPT on acyclic digraphs? That is, in time $f(k, \ell) \cdot n^{O(1)}$?
Gràcies!