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Plan of the talk

1 Motivation for algorithmic meta-theorems based on logic

2 De�nition of the new logic(s) and our results

3 Necessity of the ingredients of the logic

4 Sketch of some ideas of the proofs

5 Further research
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Our setting: graph modi�cation problems

Let C be a target graph class (planar graphs, bounded degree, ...).

LetM be a set of allowed graph modi�cation operations
(vertex deletion, edge deletion/addition/contraction, elimination distance...).

M-Modification to C
Input: A graph G and an integer k (�amount of modi�cation�).
Question: Can we transform G to a graph in C by applying
spaceeeeeerrrat most k operations fromM?

This meta-problem has a huge expressive power.

Typical setting: suppose that C andM are de�nable in some logic(s).

Goal: We de�ne logics L that capture large families of modi�cation problems.

Goal: Amount of modi�cation: given by the size of the formula ϕ ∈ L.

Want: algorithms in time f (ϕ) · nO(1) , where n = |V (G )|.
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Algorithmic Meta-Theorems (AMTs)

For some logic L and some class C of combinatorial structures, every
algorithmic problem Π that is expressible in L, there is an e�cient algo-
rithm solving Π for inputs that belong in C.

A constructive viewpoint of AMTs:

M

Problem description

input ϕ ∈ L output an algorithm
x A

for the problem described by ϕ

Two main logics for ϕ:

• FOL: First Order Logic

I quanti�cation on vertices or edges

• CMSOL: Counting Monadic Second Order Logic

I quanti�cation on sets of vertices or edges
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Famous AMTs for model-checking in time FPT

FOL CMSOL Logic L

[Grohe, Kreutzer, Siebertz] / [Bonnet, Kim, Thomassé, Watrigant]

[Courcelle] and [Borie, Parker, Tovey]

and [Arnborg, Lagergren, Seese]
bounded treewidth

nowhere dense / bounded twin-width

Structure C

treewidth: tw(G ) ≈ max grid-minor of the graph G

Hadwiger number: hw(G )= max clique-minor of the graph G
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A typical problem that is not captured by the mentioned AMTs:

Vertex Deletion to Planarity

Given G and k, is there an X ⊆ V (G)≤k such that G \ X is planar?

Or, given G , k, ask whether G ∈ Mod(ϕk),
where ϕk = ∃x1, . . . , xk G \ {x1, . . . , xk} is planar.

ϕk ∈ CMSOL, but yes-instances have unbounded treewidth.

yes-instances have bounded Hadwiger number but ϕk 6∈ FOL.

Modulator : X = {x1, . . . , xk}

Target property : minor-exclusion of H = {K5,K3,3}
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Vertex Deletion to Planarity

Given G and k, is there an X ⊆ V (G)≤k such that G \ X is planar?

... can be solved in time f (k) · n2.
Because: For every k, the set of yes-instances is minor-closed.

... the same if the target is any minor-closed graph class G.
[Adler, Grohe, Kreutzer, SODA 2008]
[Marx and Schlotter, Algorithmica 2012]
[Kawarabayashi, FOCS 2009]
[Jansen, Lokshtanov, Saurabh, SODA 2014]
[Kociumaka and Pilipczuk, Algorithmica 2019]
[S., Stamoulis, Thilikos, ACM Trans. Alg. 2022]
[Morelle, S., Stamoulis, Thilikos, ICALP 2023]

Topological minor exclusion:

[Golovach, Stamoulis, Thilikos, SODA 2020]
[Fomin, Lokshtanov, Panolan, Saurabh, Zehavi, STOC 2020]
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Vertex Deletion to Planarity + more

Given G and k, is there an X ⊆ V (G)≤k such that G \X is planar+more?

I What if we add further (non-hereditary) conditions on top of planarity?
Such conditions might be FOL-conditions (even CMSOL-conditions)

planarity + any FOL condition:
[Fomin, Golovach, Stamoulis, Thilikos, ESA 2020]

planarity + bipartiteness:
[Fiorini, Hardy, Reed, Vetta, DAM 2008]

I What if we apply other modi�cations, apart from vertex removals?

Edge removal to planarity:
[Kawarabayashi and Reed, STOC 2007]

AMTs:
edge removals, edge contractions, edge additions (to planarity)
[Fomin, Golovach, Stamoulis, Thilikos, ESA 2020]

Other local transformations (to planarity)
[Fomin, Golovach, Thilikos, STACS 2019]

I Extensions to general minor-closed target classes G?
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Recent powerful extensions of FOL

First-Order Logic with Connectivity Operators (FOL+conn)
[Schirrmacher, Siebertz, Vigny, CSL 2022] + [Boja«czyk, 2021]

FPT model-checking on topological-minor-free graphs.
[Pilipczuk, Schirrmacher, Siebertz, Toru«czyk, Vigny, ICALP 2022]

Elimination Distance to FOL+conn is FPT on topological-minor-free graphs.

First-Order Logic with Disjoint Paths (FOL+DP)
[Schirrmacher, Siebertz, Vigny, CSL 2022]

FPT model-checking on minor-free graphs.
[Golovach, Stamoulis, Thilikos, SODA 2023]

Elimination Distance to FOL+DP is FPT on minor-free graphs.

FPT model-checking on topological-minor-free graphs.
[Schirrmacher, Siebertz, Stamoulis,Thilikos, Vigny, arXiv 2023]

I More general modi�cation operations do not seem to be captured...
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λ-Modification to G
Given G and k, is there an X ⊆ V (G) such that λ(G ,X ) ≤ k and G \X ∈ G?

I Modulator: X .

I λ(G ,X ): some (global) measure of modi�cation.

I G: target graph class (example: planar + 3-regular).

Can we de�ne successive target properties?

Hierarchical clustering?

Multi-level modi�cation?

Consider di�erent modi�cation scenarios?

We may demand target conditions to be satis�ed by the connected
components (or even the blocks) of G \ X (CMSOL-demand).

Multiway Cut or Multicut to some target property G.
We may demand vertex/edge removals with prescribed adjacencies.

...
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I Main challenge: �meta-algorithmize� the modulator operation λ(G ,X ).

I Typically λ(G ,X ) = p(torso(G ,X )), where p is some graph parameter.

X X

C1 C2

C3
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λ-Modification to G
Given G and k, is there an X ⊆ V (G) such that λ(G ,X ) ≤ k and G \X ∈ G?
λ(G ,X ) = p(torso(G ,X )), where p is parametrically bigger than tw

I p=tree-depth
I p=treewidth
I p=bridge-depth

I p=pathwidth, cutwidth, tree-cut-width, branchwidth, carving width,
block tree-depth... ?

Is is possible to ask more about the modulator?

I Can we additionally ask the modulator G [X ] to be, e.g., Hamiltonian?

I or just G [X ] |= βk for some βk ∈ CMSOLtw?

• CMSOLtw[E, X] (on annotated graphs):

every β ∈ CMSOL[E, X] for which there exists some cβ such that the torsos
of all the models of β have treewidth at most cβ .
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Is there one meta-theorem that deals with all these cases?

Let β ∈ CMSOL[E, X] and γ ∈ CMSOL[E].

β: modulator sentence on annotated graphs.

γ: target sentence on graphs.

X

vC1 X ′ vC2

vC3

C2

C3

C1

Compound logic We de�ne β . γ so that

G |= β . γ if ∃X ⊆ V (G ) so that (stell(G ,X ),X ) |= β and G \ X |= γ .

Θ0[E]: every sentence σ∧µ, where σ ∈ FOL[E] and µ expresses minor-exclusion.

Theorem (our result, in its simplest form)

For every β ∈ CMSOLtw and every γ ∈ Θ0, there is an algorithm deciding
Mod(β . γ) in quadratic time.

• If γ is void, this gives the theorem of Courcelle.

• If β is void, this gives the theorem of Grohe and Flum.
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Θ0[E]: every sentence σ∧µ, where σ ∈ FOL[E] and µ expresses minor-exclusion.

Theorem (our result, in a less simple form)

For every β ∈ CMSOLtw and every γ ∈ Θ
(c)
0
, there is an algorithm deciding

Mod(β . γ) in quadratic time.

• for ϕ ∈ CMSOL, de�ne ϕ(c): G |= ϕ(c) if ∀C ∈ cc(G ),C |= ϕ.

• for L ⊆ CMSOL, de�ne L(c) = L ∪ {ϕ(c) | ϕ ∈ L}.
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• MB(L): all monotone Boolean combinations of sentences in L.
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For every β ∈ CMSOLtw and every γ ∈MB(Θ
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0

), there is an algorithm deciding
Mod(β . γ) in quadratic time.

I This automatically implies algorithms in all aforementioned directions, beyond the

applicability of the theorems of Courcelle and Grohe and Flum.
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The Θ-hierarchy

Recall that

Θ0: sentences σ ∧ µ where σ ∈ FOL and µ expresses minor-exclusion.

We recursively de�ne, for every i ≥ 1,

Θi = {β . γ | β ∈ CMSOLtw and γ ∈MB(Θ
(c)
i−1)}.

We �nally set: Θ =
⋃

i≥1 Θi . Observe: Θ ⊆ CMSOL

X5

X4

X1

C2C3

C5

C4

X2

X3

C1
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Theorem (our result, in its general form on graphs)

For θ ∈ Θ, there is an algorithm Aθ deciding Mod(θ) in quadratic time.

Our results are constructive:

Theorem

There is a Meta-Algorithm M that,
with input a sentence θ ∈ Θ and an upper bound cθ on hw(Mod(θ)),
returns as output the algorithm Aθ.
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The Θ̃-hierarchy

We set Θ̃0 := FOL (i.e., remove minor-exclusion)

We recursively de�ne, for every i ≥ 1,

Θ̃i = {β . γ | β ∈ CMSOLtw and γ ∈MB(Θ̃
(c)

i−1)}.

We �nally set: Θ̃ =
⋃

i≥1 Θ̃i . Observe: FOL ⊆ Θ̃ ⊆ CMSOL

Corollary (a promise version of our result, using Θ̃)

For every θ̃ ∈ Θ̃, there is an algorithm deciding Mod(θ̃) in quadratic time on
graphs of �xed Hadwiger number.

FOL Θ̃ CMSOL Logic
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Generalization to extensions of FOL

First-Order Logic with Connectivity Operators

[Schirrmacher, Siebertz, Vigny, CSL 2022] + [Boja«czyk, 2021]
[Pilipczuk, Schirrmacher, Siebertz, Toru«czyk, Vigny, ICALP 2022]

First-Order Logic with Disjoint Paths (FOL + DP)

[Schirrmacher, Siebertz, Vigny, CSL 2022]
[Golovach, Stamoulis, Thilikos, SODA 2023]
[Schirrmacher, Siebertz, Stamoulis,Thilikos, Vigny, arXiv 2023]

De�ne ΘDP (resp. Θ̃
DP

): like Θ (resp. Θ̃) but replacing FOL with
FOL + DP in the target sentences.

Theorem (a generalized promise version)

For every θ̃ ∈ Θ̃
DP

, there is an algorithm deciding Mod(θ̃) in quadratic time on
graphs of �xed Hadwiger number.
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The current meta-algorithmic landscape

FOL,

Courcelle + Borie, Parker, Tovey

+ Arnborg, Lagergren, Seese

Pilipczuk, Schirrmacher, Siebertz, Torunczyk, Vigny

FOL+conn, FOL+DP,Θ̃DP,CMSOL

Our results for Θ̃DP

Golovach, Stamoulis, Thilikos

Grohe, Kreutzer, Siebertz / Bonnet, Kim, Thomassé, Watrigant

Structure

Logic

bounded Hadwiger number

bounded treewidth

nowhere dense / bounded tww

bounded Hajós number

Missing: FOL + DP, FPT model-checking up to bounded Hajós number.

[Schirrmacher, Siebertz, Stamoulis,Thilikos, Vigny, arXiv 2023]
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Necessity of the ingredients of our logic

Theorem (our result, in its simplest form)

For every β ∈ CMSOLtw and every γ ∈ Θ0, there is an algorithm deciding
Mod(β . γ) in quadratic time.

• G |= β . γ if ∃X ⊆ V (G ) s.t. (stell(G ,X ),X ) |= β + G \ X |= γ .

• CMSOLtw[E, X] (on annotated graphs):
every β ∈ CMSOL[E, X] for which there exists some cβ such that the torsos
of all the models of β have treewidth at most cβ .

• Θ0 : sentences σ ∧ µ where σ ∈ FOL and µ expresses minor-exclusion.

1 Why bounded treewidth of torso of modulator? β ∈ CMSOLtw.

2 Why the target sentence σ ∈ FOL (or extensions)?

3 Why the target sentence µ expresses minor-exclusion?

skip
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CMSOLtw[E, X] : every β ∈ CMSOL[E, X] for which ∃cβ such that the torsos
of all the models of β have treewidth at most cβ .

G |= β . γ if ∃X ⊆ V (G ) s.t. (stell(G ,X ),X ) |= β + G \ X |= γ .

1. Why bounded treewidth of the torso of the modulator? β ∈ CMSOLtw.

CMSOL-model-checking is not FPT if treewidth is unbounded.

[Kreutzer and Tazari, LICS 2010]

[Ganian, Hlin¥ný, Langer, Obdrºálek, Rossmanith, Sikdar, JCSS 2014]

But why caring about the torso of the modulator?

G

e
• G Hamiltonian ⇔ G ′ has a vertex set

S such that G ′[S ] is a cycle and

G ′ \ S is edgeless.

• tw(G ′[S ]) = 2 but

tw(torso(G ′, S)) = tw(G) unbounded.
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G |= β . γ if ∃X ⊆ V (G ) s.t. (stell(G ,X ),X ) |= β + G \ X |= γ .

• Θ0 : target sentences γ = σ ∧ µ where σ ∈ FOL and µ minor-exclusion.

2. Why the target sentence σ ∈ FOL (or extensions)?

Hamiltonicity is CMSOL-de�nable and NP-complete on planar graphs
(consider a void modulator).

Thus, σ ∈ CMSOL is not possible (although can be more general than FOL).

3. Why the target sentence µ expresses proper minor-exclusion?

Expressing whether a graph G contains a clique on k vertices is FOL-expressible,
while k-Clique is W[1]-hard on general graphs
(again, consider a void modulator).

skip
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Basic ingredients and techniques of the proof(s)

Some (suitable) variant of Courcelle's theorem + CMSOL transductions
to deal with the �meta-algorithmic� modulator operation.

Some (non-trivial) adaptation of Gaifman's theorem working on proper
minor-excluding classes.

The combinatorial/algorithmic results in

1 Ken-ichi Kawarabayashi, Robin Thomas, and Paul Wollan. A new proof of the �at wall theorem. Journal of
Combinatorial Theory, Series B, 129:204�238, 2018.

2 Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. A more accurate view of the Flat Wall Theorem,
2021. arXiv:2102.06463.

3 Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. Hitting topological minor models in planar
graphs is �xed parameter tractable. In Proc. of the 31st Annual ACM-SIAM Symposium on Discrete
Algorithms, (SODA), pages 931�950, 2020.

4 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting connected minors on
bounded treewidth graphs: the chair and the banner draw the boundary. In Proc. of the 31st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 951�970, 2020.

5 Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. k-apices of minor-closed graph classes. I.
Bounding the obstructions. Transactions on Algorithms 2022.

6 Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. An algorithmic
meta-theorem for graph modi�cation to planarity and FOL. In Proc. of the 28th Annual European
Symposium on Algorithms (ESA), volume 173 of LIPIcs, pages 51:1�51:17, 2020.
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Basic ingredients and techniques of the proof(s)

Some (suitable) variant of Courcelle's theorem + CMSOL transductions
to deal with the �meta-algorithmic� modulator operation.

Some (non-trivial) adaptation of Gaifman's theorem working on proper
minor-excluding classes.

Irrelevant Vertex Technique (> 1200 citations and used in > 120 papers)

Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths
problem. Journal of Comb. Theory, Ser. B, 63(1):65�110, 1995.

Figure 5. A subdivided wall W 0 and the way a 13-linkage L is traversing its
compass K 0. The only vertices that are depicted are the endpoints of the paths
in L (white vertices). The only edges that are depicted are those of the paths in
L and the edges of W 0. The grey area contains the vertices and the edges of the
graph G that do not belong to K 0.

Let R be the linkage defined by the connected components of (
S

L2L L)\K 0,
i.e., the subpaths of the paths in L that are “cropped” by the compass K 0 (notice
that all paths in R are perimetric). By the flatness of W 0, it is not possible that
two paths in R cross in K 0. Moreover, by the definition of the the rural division
D0 of K 0, each layer of W 0, di↵erent than the inner one, is a separator of G.
Therefore, if a path in R meets layers Li and Lj for i  j, then it should also
meet layer Lµ for every µ 2 {i, . . . , j}. These observations argue that, intuitively,
paths in R cross K 0 as if K 0 where a graph embedded in a disk bounded by P –
see Figure 5 for a visualization of this. One may now claim that the infrastructure
of a “big enough” subdivided wall W 0 should provide enough space inside K 0

so that the paths of L could be rerouted to an equivalent linkage that does not
enter very deeply inside K 0. To formalize this claim Robertson and Seymour
defined the notion of a vital linkage in [111].

A linkage L in a graph G is called vital if its vertices meet all the vertices of
G and if there is no other linkage in G that is equivalent to L. An example of
a vital k-linkage in a graph is depicted in Figure 6. Clearly, if a solution of the
k-Disjoint Paths Problem corresponds to a vital linkage, then no irrelevant
vertex can be detected. The main result of [111] asserts that this possible “lack
of flexibility” of linkages vanishes when graphs have big enough treewidth.

Theorem 13. There exists a recursive function � : N ! N such that every
graph with a vital k-linkage has treewidth at most �(k).
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Ultra-sketch of proof

Given θ ∈ Θ and a graph G :

If the treewidth of G is �small� (as a function of θ): Courcelle.

Otherwise: �nd an irrelevant vertex.

Crucial fact: the fact that the modulator sentence β ∈ CMSOLtw allows to prove
that the removal of the modulator X does not destroy a �at wall too much.

skip
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High-level sketch of proof

Theorem (Flat Wall Theorem. Robertson and Seymour. 1995)

There exist recursive functions f1 : N2 → N and f2 : N→ N, such that for every
graph G and every q, r ∈ N, one of the following holds:

1 Kq is a minor of G .

2 The treewidth of G is at most f1(q, r).

3 There exists A ⊆ V (G ) (apices) with |A| ≤ f2(q) such that G \ A contains
as a subgraph a �at wall W of height r .

There are several di�erent variants and optimizations of this theorem...
[Chuzhoy. 2015]

[Kawarabayashi, Thomas, Wollan. 2018]

[S., Stamoulis, Thilikos. 2021]

Important: possible to �nd one of the outputs in time f (q, r) · |V (G )|.
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How does a �at wall look like?

[Figure by Dimitrios M. Thilikos]
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We apply the Flat Wall Theorem

Given θ ∈ Θ and a graph G :

The de�nition of our logic Θ implies that models of Θ are Kc -minor-free,
where c depends only on θ.

If the treewidth of G is �small� (as a function of θ): Courcelle.

Otherwise: �nd an irrelevant vertex inside the �at wall.

skip
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Zooming and zooming inside a �at wall

We apply the Flat Wall Theorem to the input graph G : �at wall W0.

Important: we can ask that W0 has treewidth bounded by a function of θ.

We �nd a subwall W1 that is λ-homogeneous with respect to the
minor-exclusion part of θ, where λ depends only on θ.

[S., Stamoulis, Thilikos. 2021]

We �nd a subwall W2 that is irrelevant with respect to the minor-exclusion
part of θ, after the removal of any candidate for the modulator X ⊆ V (G ).

[S., Stamoulis, Thilikos. 2020]

From now on, we can forget the minor-exclusion part of θ.
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We keep on zooming...

We �nd a subwall W3 such that its associated apex set A3 is �tightly tied�
to W3: the neighbors in W3 of every vertex in A3 are spread in a
�bidimensional� way.

We �nd, inside W3, a collection W of many pairwise disjoint subwalls, and
associate each of them with a θ-characteristic.

Goal: if there are many subwalls with the same θ-characteristic, then the
central part of one of them, say W ?, is irrelevant.

Hardest part of the proof: prove that the central part of W ? is indeed irrelevant.
skip
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Exploiting the bounded-treewidth property of β

Compound logic We de�ne β . γ so that

G |= β . γ if ∃X ⊆ V (G ) so that (stell(G ,X ),X ) |= β and G \ X |= γ .

γ = σ ∧ µ, where σ ∈ FOL[E] and µ expresses minor-exclusion.

Crucial fact: the fact that the modulator sentence β ∈ CMSOLtw allows to prove
that the removal of the modulator X does not destroy a �at wall too much.

skip
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De�ning the θ-characteristic of a wall: privileged component

Assuming the existence of a large �at wall W3 and a modulator X , there is a
unique privileged component C in G \ X that contains �most� of W3.

We split the formula

θ = θin ∧ θout

θin : target sentence γ in the privileged component C , that is, the
aaaaaFOL-sentence σ and the minor-exclusion given by µ.

θout : conjunction of the modulator sentence β and the target sentence γ in
aaaaaa the non-privileged components of G \ X .

This splitting gives rise to the in-signature and out-signature of a wall.
skip
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In-signature of a wall

θin : target sentence γ in the privileged component C , that is, the
aaaaa FOL-sentence σ and the minor-exclusion given by µ.

Approach inspired from the technique for modi�cation to planarity + FOL.
[Fomin, Golovach, Stamoulis, Thilikos. 2020]

Core tool: Gaifman's locality theorem: every FOL-sentence σ is a Boolean
Core tool: Gaifman's locality theorem: combination of local sentences σ1, . . . , σp.

Main new di�culty: deal with the apices corresponding to the �at wall.
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Out-signature of a wall

θout : conjunction of the modulator sentence β and the target sentence γ in
aaaaaa the non-privileged components of G \ X .

Xin

Xout

r

r
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Out-signature of a wall

θout : conjunction of the modulator sentence β and the target sentence γ in
aaaaaa the non-privileged components of G \ X .

∂K(Z ) VL(a)

Xin Xout

F

V (a) \ VL(a)

Z X

�non-privileged� connected
components of G \ X

F ′
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Some �nal remarks

Limitations

are torsos really necessary?
which are the optimal combinatorial assumptions on FOL+CMSOL?

Extensions

irrelevant friendliness (bipartiteness)
other modi�cation operations (blocks, contractions, ...)

Open problems

constants hidden in O|θ|(n2)
is the Θ-hierarchy proper?
Is quadratic time improvable?
Further than minor-exclusion?
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