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Two independent problems

(1) Permutation Routing on Plane Grids

Joint work with Janez Žerovnik

(2) Finding Small Subgraphs of Given Minimum Degree

Joint work with Omid Amini and Saket Saurabh
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Permutation Routing on Plane
Grids
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Permutation routing

The permutation routing problem is a packet routing problem.

Each processor is the origin of at most one packet and the
destination of at most one packet.

The goal is to minimize the number of time steps required to
route all packets to their respective destinations.
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Statement of the problem

Input:
I a directed graph G = (V ,E) (the host graph),
I a subset S ⊆ V of nodes,
I and a permutation π : S → S.

Each node u ∈ S wants to send a packet to π(u).

Output: Find for each pair (u, π(u)), a path form u to π(u) in G.

Constraints:
I At each step, a packet can either move or stay at a node.
I No arc can be crossed by two packets at the same step.
I Cohabitation of multiple packets at the same node is allowed.

Goal: minimize the number of time steps required to route all
packets to their respective destinations.
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Assumptions

We consider the store-and-forward and ∆-port model.

Full duplex link: packets can be sent in the two directions of the
link simultaneously.

u v
uv

vu

If the network is half-duplex→
2 factor approximation algorithm from an optimal algorithm for
the full-duplex case, by introducing odd-even steps.

Assume shortest path routing.
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Network topologies

There is an ambiguity in the notation in the literature:

triangular grid↔ hexagonal network,
hexagonal grid↔ honeycomb network.

Hexagonal network (4) and hexagonal tessellation (9):

Hexagonal networks are finite subgraphs of the triangular grid.
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Previous work

-The permutation routing problem has been studied in:

Mobile Ad Hoc Networks
Cube-Connected Cycle Networks
Wireless and Radio Networks
All-Optical Networks
Reconfigurable Meshes...

-But, optimal algorithms:
2-circulant graphs, square grids.
Triangular grids: Two-terminal routing

(only one message to be sent)

-In this talk we describe optimal permutation routing algorithms for
triangular and hexagonal grids.
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Permutation Routing on Triangular
Grids
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Notation and preliminary results
Nocetti, Stojmenović and Zhang
[IEEE TPDS’02]:

Representation of the relative
address of the nodes on a generat-
ing system i, j, k on the directions of
the three axis x , y , z.

x

y

z

This address is not unique, but we have that, being (a,b, c) and
(a′,b′, c′) the addresses of two D − S pairs,

(a,b, c) = (a′,b′, c′) ⇔ ∃ an integer d such that

a′ = a + d ,

b′ = b + d ,

c′ = c + d .
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Notation and preliminary results (2)

A relative address D−S = (a,b, c) is of the shortest path form if
I there is a path C from S to D, C=ai+bj+ck,
I and C has the shortest length over all paths going from S to D.

Theorem (NSZ’02)
An address (a,b, c) is of the shortest path form if and only if

i) at least one component is zero (that is, abc = 0),

ii) and any two components do not have the same sign
(that is, ab ≤ 0, ac ≤ 0, and bc ≤ 0).
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Notation and preliminary results (3)

Corollary (NSZ’02)
Any address has a unique shortest path form.

Corollary (NSZ’02)
If D − S = (a,b, c), then the shortest path form is one of those:

(0,b − a, c − a),

(a− b,0, c − b),

(a− c,b − c,0),

and thus:

|D − S| = min(|b − a|+ |c − a|, |a− b|+ |c − b|, |a− c|+ |b − c|).
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Notation and preliminary results (4)

Given a packet p and its relative address (a,b, c)
in the shortest path form,

`p := |a|+ |b|+ |c|,

`max := max
p

(`p)

Trivial lower bound:

Any permutation routing algorithm needs at least `max routing
steps.
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Example of an instance

a

A b

B

c
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D
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G

h

H

fF
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A non-optimal intuitive algorithm

a

A b

B

c

Cd

D

e

E

g

G

h

H

fF

1: 2: 3:
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A non-optimal intuitive algorithm (2)
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A non-optimal intuitive algorithm (3)
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Ignasi Sau (J. Žerovnik) Permutation Routing on Plane Grids 20th June 2007 20 / 67



Another non-optimal intuitive algorithm (3)
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Description of Algorithm A

At each node u of the network:

Preprocessing: Initially, if there is a packet at u, compute the
relative address D − S of the message in the shortest path form,
and add this information to the message.

Reception phase: At each step, when a packet is received at u,
its relative address is updated.

Transmission phase:

a) If there are packets with negative components, send them
immediately along the direction of this component.

b) If not, for each outgoing edge order the packets according to
decreasing number of remaining steps, and send the first
packet of each queue.
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Routing of the packets according to A

Algorithm A defines for each packet two directions of movement
(except if a packet has only one non-zero component)

For instance:
I if the packet address is of the type (−,0,+)→

this packet goes first in the direction −x , and after in +z

→ We symbolize this rule by the arrow

I the routing of the address (+,−,0) is represented by
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Routing the packets (2)

In this figure all the routing rules are summarized:

x

y

z
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Correctness of Algorithm A

At each node u of the network:
Preprocessing: Initially, if there is a packet at u, compute the relative address D − S of the message in the shortest
path form, and add this information to the message.

Reception phase: At each step, when a packet is received at u, its relative address is updated.

Transmission phase:

a) If there are packets with negative
components, send them immediately along
the direction of this component.

b) If not, for each outgoing edge order the packets according to decreasing number of remaining steps, and

send the first packet of each queue.
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Correctness (2)

Key observation:

Packets can only wait, possibly, during their last direction.

I this is because if two packets meet when their first direction is not
finished yet, they must have the same origin node→ contradiction.

x

y

z

Thus, in a) there can be at most one packet with negative
component at each outgoing edge→ there is no ambiguity.
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Correctness (3)

At each node u of the network:

Preprocessing: Initially, if there is a packet at u, compute the relative address D − S of the message in the shortest
path form, and add this information to the message.

Reception phase: At each step, when a packet is received at u, its relative address is updated.

Transmission phase:

a) If there are packets with negative components, send them immediately along the direction of this component.

b) If not, for each outgoing edge order the
packets according to decreasing number of
remaining steps, and send the first packet of
each queue.
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Correctness (4)

All the packets in in b) are moving along their last direction
I their negative component is already finished, otherwise they would

be in a)

Thus, since each node is the destination of at most one packet, in
b) the packet with maximum remaining length at each
outgoing edge is unique.
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Optimality

Using this algorithm, at each step all the packets with maximum
remaining distance move

→ every step the maximum remaining distance over all packets
decreases by one

→ the total running time is at most `max , meeting the lower
bound.
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Analysis

It is a distributed algorithm, because each node needs only
information about the packets that are its queues.

It is an oblivious algorithm, since the routing of each packet
depends only on the origin and destination nodes.

It is a translation invariant algorithm, since only the relative
address D − S is necessary to route the packets.

The only involved operations are integer addition and comparison
among the lengths of the addresses of the packets at each node.

Time complexity: O(`max )
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Final example
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Final example (2)
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Permutation Routing on
Hexagonal Grids
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Counterexample

b

a

A

B

bottleneck

`max = 4, but it is not possible to route both packets in less than 5
steps.

Thus, `max can not always be achieved!
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Another counterexample

24

e1

5 3

6

6'

1'2'

3'

4'

5'

8

7

7'

8'
d

b
a
f

c

Shortest path: 8 steps
Using edges {abcd}: 7 steps

Thus, shortest path routing is not always the best solution!
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Hexagonal grid

One can define 3 types of zigzag chains:

e

Any shortest path uses at most 2 types of zigzag chains

Ignasi Sau (J. Žerovnik) Permutation Routing on Plane Grids 20th June 2007 36 / 67



Hexagonal grid

One can define 3 types of zigzag chains:

e

Any shortest path uses at most 2 types of zigzag chains
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Idea

There are 3 types of edges and 3 types of chains:

e c

cc

1

2 3

1

e2

e3

Each edge belongs to exactly 2 different chains, and conversely
each chain is made of 2 types of edges.
Any 2 chains of different type intersect exactly on one edge.
We can define 2 phases in such a way that at each phase, each
type of chain uses only one type of edge.

Ignasi Sau (J. Žerovnik) Permutation Routing on Plane Grids 20th June 2007 37 / 67



Idea

There are 3 types of edges and 3 types of chains:

e c

cc

1

2 3

1

e2

e3

Each edge belongs to exactly 2 different chains, and conversely
each chain is made of 2 types of edges.
Any 2 chains of different type intersect exactly on one edge.
We can define 2 phases in such a way that at each phase, each
type of chain uses only one type of edge.
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Optimal algorithm

At each node of the network:
1) During the first step, move all packets along the direction of their

negative component. If a packet’s address has only a positive
component, move it along this direction.

2) From now on, change alternatively between Phase 1 and Phase
2.

3) At each step (the same for both phases):

a) If there are packets with negative components, send them
immediately along the direction of this component.

b) If not, for each outgoing edge order the packets according to
decreasing number of remaining steps, and send the first packet of
each queue.

4) At the end of the (2`max − 3)th step, move all packets along their
unique non-zero component.
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Running time

Every 2 steps (one of Phase 1 and one of Phase 2) the maximum
remaining distance over all packets decreases by one.
During the first and last step all packets decrease their remaining
distance by one.
Thus, the total running time is 2 + 2(`max − 2) = 2`max − 2.

There are examples that need at least 2`max − 2 steps.

Thus, this algorithm is tight.
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(`, k )-Routing
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Algorithm (in any grid)

Each node can send at most ` packets and receive at most k
packets

Idea: represent the request set as a weighted bipartite graph H:

I split each vertex of the original graph
I u and v are adjacent if u wants to send a packet to v
I for each edge uv , let w(uv) be the length of a shortest path from u

to v on the grid
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Example

l=2 k=3

u

v

w(uv)

Fact: each matching in H corresponds to an instance of a
permutation routing problem → it can be solved optimally
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New problem

Problem: find m := max{`, k} matchings in H: M1, . . . ,Mm

Let c(Mi) := max{w(e)|e ∈ Mi)}, i = 1, . . . ,m

Objective function:

min
m∑

i=1

c(Mi)

Fact: min
∑m

i=1 c(Mi) is the running time of routing a (`, k)-routing
instance using this algorithm

But this problem is NP-complete... /
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Summary and further research

We have described optimal permutation routing algorithms for
triangular and hexagonal grids

We have also optimal algorithms for the (1, k)-routing problem

It remains to solve the (`− k)-routing

Permutation routing on 3-circulant graphs is still a challenging
open problem...
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Find Small Subgraphs with
Given Minimum Degree
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Hardness of approximation
Class APX (Approximable):
an optimization problem is in APX if can be approximated within a
constant factor.
Example: VERTEX COVER

Class PTAS (Polynomial-Time Approximation Scheme):
an optimization problem is in PTAS if can be approximated within
a constant factor 1 + ε, for all ε > 0
(the best one can hope for an NP-complete problem).
Ex.: TRAVELING SALESMAN PROBLEM in the Euclidean plane

We know that

PTAS  APX

Thus, if Π is an optimization problem:

Π is APX-hard ⇒ Π /∈ PTAS
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Definition of the problem

MINIMUM SUBGRAPH OF MINIMUM DEGREE ≥ d (MSMDd ):

Let d be a natural number, and G = (V ,E) a given graph.
Find a subset of vertices S ⊆ V of minimum size, such that G[S]
has minimum degree ≥ d .

For d = 2 it is the girth problem (find the length of the shortest
cycle), which is polynomial

We have proved that for d ≥ 3, MSMDd /∈ APX
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Idea of the proof for d = 3

(1) We will see first that MSMD3 /∈ PTAS.

(2) After we will see that MSMD3 /∈ APX.
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(1) MSMD3 is not in PTAS

Reduction from VERTEX COVER:

Instance H of VERTEX COVER → Instance G of MSMD3

We will see that

PTAS for G ⇒ PTAS for H

And so,
@ PTAS for MSMD3

We can suppose |E(H)| = 3 · 2m
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We build a complete ternary tree with |E(H)| = 3 · 2m leaves:

T

E(H)
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We add a copy of the set of leaves E(H):

T

E(H)

E(H)
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We join both sets with a Hamiltonian cycle (for technical reasons):

T

E(H)

E(H)
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We add all the vertices of H:

T

E(H)

E(H)

V(H)
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We build the adjacency graph between E(H) and V (H):

T

E(H)

E(H)

V(H)
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(1) MSMD3 is not in PTAS

If we touch a vertex of G \ V (H), we have to touch all the vertices
of G \ V (H)

Thus, MSMD3 in G is equivalent to minimize the number of
selected vertices in V (H)

→ this is exactly VERTEX COVER in H !!

Thus,

OPTMSMD3(G) = OPTVC(H) + |V (G \V (H))| = OPTVC(H) + 9 ·2m

This clearly proves that

PTAS for MSMD3 ⇒ PTAS for VERTEX COVER
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(2) MSMD3 is not in APX

Let α > 1 be the factor of innaproximability of MSMD3

We use a technique called amplification of the error:

I We build a sequence of graphs Gk , such that MSMD3 is hard to
approximate in Gk within a factor αk

I This proves that the problem is not in APX

(for any constant C, ∃ k > 0 such that αk > C)

Let G1 = G.
We explain the construction of G2: first take our graph G and...

Ignasi Sau (O. Amini, S. Saurabh) Small Subgraphs with Given Degree 20th June 2007 56 / 67



(2) MSMD3 is not in APX

Let α > 1 be the factor of innaproximability of MSMD3

We use a technique called amplification of the error:

I We build a sequence of graphs Gk , such that MSMD3 is hard to
approximate in Gk within a factor αk

I This proves that the problem is not in APX

(for any constant C, ∃ k > 0 such that αk > C)

Let G1 = G.
We explain the construction of G2: first take our graph G and...

Ignasi Sau (O. Amini, S. Saurabh) Small Subgraphs with Given Degree 20th June 2007 56 / 67



(2) MSMD3 is not in APX

Let α > 1 be the factor of innaproximability of MSMD3

We use a technique called amplification of the error:

I We build a sequence of graphs Gk , such that MSMD3 is hard to
approximate in Gk within a factor αk

I This proves that the problem is not in APX

(for any constant C, ∃ k > 0 such that αk > C)

Let G1 = G.
We explain the construction of G2: first take our graph G and...

Ignasi Sau (O. Amini, S. Saurabh) Small Subgraphs with Given Degree 20th June 2007 56 / 67



(2) MSMD3 is not in APX

Let α > 1 be the factor of innaproximability of MSMD3

We use a technique called amplification of the error:

I We build a sequence of graphs Gk , such that MSMD3 is hard to
approximate in Gk within a factor αk

I This proves that the problem is not in APX

(for any constant C, ∃ k > 0 such that αk > C)

Let G1 = G.
We explain the construction of G2: first take our graph G and...

Ignasi Sau (O. Amini, S. Saurabh) Small Subgraphs with Given Degree 20th June 2007 56 / 67



For any vertex v (note its degree by dv ):

v
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We will replace the vertex v with a graph Gv , built as follows:

Gv
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We begin by placing a copy of G (described before):

Gv
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We select dv vertices of degree 3 in T ⊂ G:

x1
x2

xdv

Gv
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We replace each of these vertices xi with a C4:

x1x2

xdv

Gv
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In each C4, we join 3 of the vertices to the neighbors of xi :

x1x2

xdv

Gv

Ignasi Sau (O. Amini, S. Saurabh) Small Subgraphs with Given Degree 20th June 2007 62 / 67



We join the dv vertices of degree 2 to the dv neighbors of v :

x1x2

xdv

Gv
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This construction for all v ∈ G defines G2:

x1x2

xdv

Gv
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(2) MSMD3 is not in APX

Once a vertex in one Gv is chosen → MSMD3 in Gv

(which is hard up to a constant α)

But minimize the number of v ’s for which we touch Gv →
MSMD3 in G (which is also hard up to a constant α)

Thus, in G2 the problem is hard to approximate up to a factor
α · α = α2

Inductively we prove that in Gk the problem is hard to approximate
up to a factor αk

Ignasi Sau (O. Amini, S. Saurabh) Small Subgraphs with Given Degree 20th June 2007 65 / 67



(2) MSMD3 is not in APX

Once a vertex in one Gv is chosen → MSMD3 in Gv

(which is hard up to a constant α)

But minimize the number of v ’s for which we touch Gv →
MSMD3 in G (which is also hard up to a constant α)

Thus, in G2 the problem is hard to approximate up to a factor
α · α = α2

Inductively we prove that in Gk the problem is hard to approximate
up to a factor αk

Ignasi Sau (O. Amini, S. Saurabh) Small Subgraphs with Given Degree 20th June 2007 65 / 67



(2) MSMD3 is not in APX

Once a vertex in one Gv is chosen → MSMD3 in Gv

(which is hard up to a constant α)

But minimize the number of v ’s for which we touch Gv →
MSMD3 in G (which is also hard up to a constant α)

Thus, in G2 the problem is hard to approximate up to a factor
α · α = α2

Inductively we prove that in Gk the problem is hard to approximate
up to a factor αk

Ignasi Sau (O. Amini, S. Saurabh) Small Subgraphs with Given Degree 20th June 2007 65 / 67



Conclusions

We have proved that MSMDd , d ≥ 3, is not in APX

We have also proved that MSMDd , d ≥ 3, is W[1]-hard

(and thus the problem is not FPT tractable in general graphs)

We have FPT algorithms for minor free graphs

(for instance: planar graphs, graphs of bounded local treewidth,
graphs of bounded genus,...)

We almost have PTAS for minor free graphs

Open problem: find approximation algorithms for general graphs
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Thanks!
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