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Zhentao Li
School of Computer Science, McGill University (Montreal, Canada)

Some of these results have been presented in:

34th Intern. Workshop on Graph-Theoretic Concepts in Computer Science (WG 2008)

35th Intern. Workshop on Graph-Theoretic Concepts in Computer Science (WG 2009)
1



Outline of the talk

1 Motivation: traffic grooming

2 Statement of the problem

3 The parameter M(C,∆)

4 Basic properties of M(C,∆)

5 Some results
Case ∆ = 3, C = 4
Case ∆ ≥ 4 even
Case ∆ ≥ 5 odd
Improved lower bound when ∆ ≡ C (mod 2C)

6 Conclusions

2



Next section is...

1 Motivation: traffic grooming

2 Statement of the problem

3 The parameter M(C,∆)

4 Basic properties of M(C,∆)

5 Some results

6 Conclusions

3



Introduction

WDM (Wavelength Division Multiplexing) networks
1 wavelength (or frequency) = up to 40 Gb/s
1 fiber = hundreds of wavelengths = Tb/s

Idea:
Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

−→ we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

Objectives:
Better use of bandwidth
Reduce the equipment cost (mostly given by electronics)
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ADM and OADM

OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber
ADM (Add/Drop Multiplexer)= insert/extract an OC/STM
(electric low-speed signal) to/from a wavelength

ADM ADM ADM

OADMOADM OADM

−→ we want to minimize the number of ADMs
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Definitions

Request (i , j): two vertices (i , j) that want to exchange
(low-speed) traffic

Grooming factor C:

C =
Capacity of a wavelength

Capacity used by a request

Example:

Capacity of one wavelength = 2400 Mb/s
Capacity used by a request = 600 Mb/s ⇒ C = 4

load of an arc in a wavelength: number of requests using this arc
in this wavelength (≤ C)
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To fix ideas...

Model:

Topology → graph G
Request set → graph R
Grooming factor → integer C
Requests in a wavelength → edges in a subgraph of R
ADM in a wavelength → vertex in a subgraph of R

We study the case when G =
−→
C n (unidirectional ring)

We assume that the requests are symmetric
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Unidirectional Ring with Symmetric Requests

Symmetric requests: we have both (i , j) and (j , i).

(i,j)

(j,i)

i
j

i
j

W.l.o.g. requests (i , j) and (j , i) are in the same subgraph
→ each pair of symmetric requests induces load 1
→ grooming factor C ⇔ each subgraph has ≤ C edges.

C-edge-partition of a graph G:
partition of E(G) into subgraphs with at most C edges each.
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Statement of the “old” problem

Traffic Grooming in Unidirectional Rings

Input A cycle Cn on n nodes (network);
An undirected graph R on n nodes (request set);
A grooming factor C.

Output A C-edge-partition of R into subgraphs R1, . . . ,RW .

Objective Minimize
∑W

ω=1 |V (Rω)|.
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Example (unidirectional ring with symmetric requests)

0 1

23

n = 4
R = K4
C = 3
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New model

Non-exhaustive previous work (a lot!):

Bermond, Coudert, and Muñoz - ONDM 2003.
Bermond and Coudert - ICC 2003.
Bermond, Braud, and Coudert - SIROCCO 2005.
Bermond et al. - SIDMA 2005.
Flammini, Moscardelli, Shalom and Zaks - ISAAC 2005.
Flammini, Monaco, Moscardelli, Shalom and Zaks - WG 2006.
Amini, Pérennes and S. - ISAAC 2007, TCS 2009.
Bermond, Muñoz, and S. - Manusc. 2009.
Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- SIDMA 2010.

In all of them: place ADMs at nodes for a fixed request graph.
→ placement of ADMs a posteriori.

New model: place the ADMs at nodes such that the network can
support any request graph with maximum degree at most ∆.
→ placement of ADMs a priori.
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Statement of the “new” problem

Traffic Grooming in Unidirectional Rings
with Bounded-Degree Request Graph

Input An integer n (size of the ring);
An integer C (grooming factor);
An integer ∆ (maximum degree).

Output An assignment of A(v) ADMs to each v ∈ V (Cn),
in such a way that for any graph R on n nodes
with maximum degree at most ∆, there exists a
C-edge-partition of R into subgraphs R1, . . . ,RW s.t.
each v ∈ V (Cn) is in at most A(v) subgraphs.

Objective Minimize
∑

v∈V (Cn) A(v),
and the optimum is denoted A(n,C,∆).
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M(C, ∆)

Definition
Let M(C,∆) be the smallest number M such that, for all n ≥ 1, the
inequality A(n,C,∆) ≤ M · n holds.

Due to symmetry, it can be seen that A(v) is the same for all
nodes v , except for a subset whose size is independent of n.

M(C,∆) is always an integer.

Equivalently:

M(C,∆) is the smallest integer M such that the edges of
any graph with maximum degree at most ∆ can be C-edge-
partitioned in such a way that each vertex appears in at
most M subgraphs.

In the sequel we focus on determining M(C,∆).
16
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More formally... (we can forget traffic grooming)

Let G∆ be the class of (simple undirected) graphs with maximum degree
at most ∆.

For G ∈ G∆, let PC(G) be the set of C-edge-partitions of G.

For P ∈ PC(G), let

occ(P) = max
v∈V (G)

|{B ∈ P : v ∈ B}|

And then,

M(C,∆) = max
G∈G∆

(
min

P∈PC(G)
occ(P)

)

If the graphs are restricted to belong to a subclass C ⊆ G∆, then
the corresponding positive integer is denoted by M(C,∆, C).
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Basic properties of M(C, ∆)

As any graph in G∆ is a subgraph of a ∆-regular graph,
M(C,∆) = M(C,∆, C), where C is the class of ∆-regular graphs.

From now on, we only deal with ∆-regular graphs.

C ≥ C′ ⇒ M(C,∆) ≤ M(C′,∆) for all ∆ ≥ 1.
∆ ≥ ∆′ ⇒ M(C,∆) ≥ M(C,∆′) for all C ≥ 1.

Upper bound: M(C,∆) ≤ M(1,∆) = ∆.

Proposition (Lower Bound)

M(C,∆) ≥
⌈

C+1
C

∆
2

⌉
for all C,∆ ≥ 1.
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Lower bound

Proposition (Lower Bound)

M(C,∆) ≥
⌈

C+1
C

∆
2

⌉
for all C,∆ ≥ 1.

Sketch of the proof.
Let G be a ∆-regular graph with girth at least C + 1.
(Such a graph G exists by [Erdős and Sachs, 1963].)

Then, the subgraphs involved in any C-edge-partition of G are trees.

The total number of vertices of any C-edge-partition is at least

∆ · |V (G)|
2

· C + 1
C

=
C + 1

C
∆

2
· |V (G)|.

Therefore, there is a vertex which appears in at least C+1
C

∆
2 subgraphs.
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Then, the subgraphs involved in any C-edge-partition of G are trees.

The total number of vertices of any C-edge-partition is at least

∆ · |V (G)|
2

· C + 1
C

=
C + 1

C
∆

2
· |V (G)|.

Therefore, there is a vertex which appears in at least C+1
C

∆
2 subgraphs.

20



Basic properties of M(C, ∆) (II)

∆ = 1: M(C,1) = 1 for all C (trivial).

∆ = 2: M(C,2) = 2 for all C (not difficult).

∆ = 3: Cubic graphs. First “interesting” case:

If C ≤ 3, then M(C,3) = 3.

If C ≥ 5, then M(C,3) = 2 (using the linear arboricity).

If C = 4: M(3,4) = 2 or 3 ???
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Case ∆ = 3, C = 4

Proposition
M(4,3) = 2.

Idea of the proof.
(in fact, we prove a slightly stronger result)

Let G be a minimal counterexample (i.e., |V (G)| is minimum).

If G has no bridges, then it can be “easily” proved.

If G has a bridge e, then the property is true for U and V .

v deg 2x

y

u

uW Wv

deg 2x

y

u

U V

e

(a) (b)

Finally, we merge “carefully” the partitions of U and V to obtain a
partition of G⇒ contradiction.
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Case ∆ ≥ 4 even

Theorem

Let ∆ ≥ 4 be even. Then for any C ≥ 1, M(C,∆) =
⌈

C+1
C

∆
2

⌉
.

Proof.
We have already seen the lower bound.

Construction:

Orient the edges of G = (V ,E) in an Eulerian tour.

Assign to each vertex v ∈ V its ∆/2 out-edges, and partition them
into

⌈
∆
2C

⌉
stars with (at most) C edges centered at v .

Each vertex v appears as a leaf in stars centered at other vertices
exactly ∆−∆/2 = ∆/2 times.

The number of occurrences of each vertex in this partition is⌈
∆

2C

⌉
+

∆

2
=

⌈
∆

2

(
1 +

1
C

)⌉
=

⌈
C + 1

C
∆

2

⌉
.

26



Case ∆ ≥ 4 even

Theorem

Let ∆ ≥ 4 be even. Then for any C ≥ 1, M(C,∆) =
⌈

C+1
C

∆
2

⌉
.

Proof.
We have already seen the lower bound.

Construction:

Orient the edges of G = (V ,E) in an Eulerian tour.

Assign to each vertex v ∈ V its ∆/2 out-edges, and partition them
into

⌈
∆
2C

⌉
stars with (at most) C edges centered at v .

Each vertex v appears as a leaf in stars centered at other vertices
exactly ∆−∆/2 = ∆/2 times.

The number of occurrences of each vertex in this partition is⌈
∆

2C

⌉
+

∆

2
=

⌈
∆

2

(
1 +

1
C

)⌉
=

⌈
C + 1

C
∆

2

⌉
.

26



Case ∆ ≥ 4 even

Theorem

Let ∆ ≥ 4 be even. Then for any C ≥ 1, M(C,∆) =
⌈

C+1
C

∆
2

⌉
.

Proof.
We have already seen the lower bound.

Construction:

Orient the edges of G = (V ,E) in an Eulerian tour.

Assign to each vertex v ∈ V its ∆/2 out-edges, and partition them
into

⌈
∆
2C

⌉
stars with (at most) C edges centered at v .

Each vertex v appears as a leaf in stars centered at other vertices
exactly ∆−∆/2 = ∆/2 times.

The number of occurrences of each vertex in this partition is⌈
∆

2C

⌉
+

∆

2
=

⌈
∆

2

(
1 +

1
C

)⌉
=

⌈
C + 1

C
∆

2

⌉
.

26



Case ∆ ≥ 4 even

Theorem

Let ∆ ≥ 4 be even. Then for any C ≥ 1, M(C,∆) =
⌈

C+1
C

∆
2

⌉
.

Proof.
We have already seen the lower bound.

Construction:

Orient the edges of G = (V ,E) in an Eulerian tour.

Assign to each vertex v ∈ V its ∆/2 out-edges, and partition them
into

⌈
∆
2C

⌉
stars with (at most) C edges centered at v .

Each vertex v appears as a leaf in stars centered at other vertices
exactly ∆−∆/2 = ∆/2 times.

The number of occurrences of each vertex in this partition is⌈
∆

2C

⌉
+

∆

2
=

⌈
∆

2

(
1 +

1
C

)⌉
=

⌈
C + 1

C
∆

2

⌉
.

26



Case ∆ ≥ 4 even

Theorem

Let ∆ ≥ 4 be even. Then for any C ≥ 1, M(C,∆) =
⌈

C+1
C

∆
2

⌉
.

Proof.
We have already seen the lower bound.

Construction:

Orient the edges of G = (V ,E) in an Eulerian tour.

Assign to each vertex v ∈ V its ∆/2 out-edges, and partition them
into

⌈
∆
2C

⌉
stars with (at most) C edges centered at v .

Each vertex v appears as a leaf in stars centered at other vertices
exactly ∆−∆/2 = ∆/2 times.

The number of occurrences of each vertex in this partition is⌈
∆

2C

⌉
+

∆

2
=

⌈
∆

2

(
1 +

1
C

)⌉
=

⌈
C + 1

C
∆

2

⌉
.

26



Case ∆ ≥ 4 even

Theorem

Let ∆ ≥ 4 be even. Then for any C ≥ 1, M(C,∆) =
⌈

C+1
C

∆
2

⌉
.

Proof.
We have already seen the lower bound.

Construction:

Orient the edges of G = (V ,E) in an Eulerian tour.

Assign to each vertex v ∈ V its ∆/2 out-edges, and partition them
into

⌈
∆
2C

⌉
stars with (at most) C edges centered at v .

Each vertex v appears as a leaf in stars centered at other vertices
exactly ∆−∆/2 = ∆/2 times.

The number of occurrences of each vertex in this partition is⌈
∆

2C

⌉
+

∆

2
=

⌈
∆

2

(
1 +

1
C

)⌉
=

⌈
C + 1

C
∆

2

⌉
.

26



Case ∆ ≥ 4 even

Theorem

Let ∆ ≥ 4 be even. Then for any C ≥ 1, M(C,∆) =
⌈

C+1
C

∆
2

⌉
.

Proof.
We have already seen the lower bound.

Construction:

Orient the edges of G = (V ,E) in an Eulerian tour.

Assign to each vertex v ∈ V its ∆/2 out-edges, and partition them
into

⌈
∆
2C

⌉
stars with (at most) C edges centered at v .

Each vertex v appears as a leaf in stars centered at other vertices
exactly ∆−∆/2 = ∆/2 times.

The number of occurrences of each vertex in this partition is⌈
∆

2C

⌉
+

∆

2
=

⌈
∆

2

(
1 +

1
C

)⌉
=

⌈
C + 1

C
∆

2

⌉
.

26



Next subsection is...

1 Motivation: traffic grooming

2 Statement of the problem

3 The parameter M(C,∆)

4 Basic properties of M(C,∆)

5 Some results
Case ∆ = 3, C = 4
Case ∆ ≥ 4 even
Case ∆ ≥ 5 odd
Improved lower bound when ∆ ≡ C (mod 2C)

6 Conclusions
27



Case ∆ ≥ 5 odd

Proposition

Let ∆ ≥ 5 be odd. Then for any C ≥ 1, M(C,∆) ≤
⌈

C+1
C

∆
2 + C−1

2C

⌉
.

Sketch of proof.
Since ∆ is odd, |V (G)| is even. Add a perfect matching M to G to obtain a
(∆ + 1)-regular multigraph G′. Orient the edges of G′ in an Eulerian tour, and
assign to each vertex v ∈ V (G′) its (∆ + 1)/2 out-edges E+

v .

Remove M and partition E+
v into stars with C edges.

Number of occurrences of each vertex v ∈ V (G):

If an edge of M is in E+
v , then:

⌈
∆−1
2C

⌉
+ ∆− ∆−1

2 =
⌈C+1

C
∆
2 + C−1

2C

⌉
.

Otherwise, if no edge of M is in E+
v , then:⌈

∆+1
2C

⌉
+ ∆− ∆+1

2 =
⌈C+1

C
∆
2 + 1−C

2C

⌉
≤
⌈C+1

C
∆
2 + C−1

2C

⌉
.
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Case ∆ ≥ 5 odd (II)

Corollary

Let ∆ ≥ 5 be odd. If ∆ (mod 2C) = 1 or ∆ (mod 2C) ≥ C + 1, then
M(C,∆) =

⌈
C+1

C
∆
2

⌉
.

Corollary (Case C = 2)

For any ∆ ≥ 5 odd, M(2,∆) =
⌈3∆

4

⌉
.

Proposition

Let ∆ ≥ 5 be odd and let C be the class of ∆-regular graphs than
contain a perfect matching. Then M(C,∆, C) =

⌈
C+1

C
∆
2

⌉
.
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Improved lower bound when ∆ ≡ C (mod 2C)

Theorem

Let ∆ ≥ 5 be odd. If ∆ ≡ C (mod 2C), then M(C,∆) =
⌈

C+1
C

∆
2

⌉
+ 1.

Corollary (Case C = 3)

For any ∆ ≥ 5 odd, M(3,∆) =
⌈2∆+1

3

⌉
.

Idea of the proof of the Theorem.
We prove that if ∆ = kC with k odd, then M(C,∆) ≥

⌈ C+1
C

∆
2

⌉
+ 1.

Since both ∆ and k are odd, so is C, and therefore
⌈ C+1

C
∆
2

⌉
= k · C+1

2 .

We proceed to build a ∆-regular graph G with no C-edge-partition where each
vertex appears in at most k · C+1

2 =: LB(C,∆) subgraphs.

First, we construct a graph H where all vertices have degree ∆ except one which
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Idea of the proof

Make ∆ copies of H and add a cut-vertex v joined to all vertices of degree ∆− 1
to make our ∆-regular graph G.

H

H

H

HH

∆=5
C=5
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Now suppose for the sake of contradiction that there is a C-edge-partition B of G
where each vertex appears in at most LB(C,∆) subgraphs.

Since the girth of G is greater than C, all the subgraphs in B are trees.
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Idea of the proof

Since LB(C,∆) < ∆, v must have degree at least 2 in some subgraph T ∈ B.

H

H

H

HH G

v

∆=5
C=5

T

Since |E(T )| ≤ C, the tree T contains at most
⌊ C−2

2

⌋
= C−3

2 edges
of a copy of H intersecting T .
Now we only work in this copy H. Let α = |E(T ∩ H)| ≤ C−3

2

(α = 5−3
2 = 1 in the example).
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Idea of the proof

Let B′ = {B ∩ H}B∈(B−{T}), with the empty subgraphs removed. That is, B′

contains the subgraphs in B that partition the edges in H that are not in T .

Hv

∆=5
C=5

T

Let n = |V (H)|, which is odd as in H there is one vertex of degree ∆− 1 and all
the others have degree ∆.
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Idea of the proof

Therefore, the total number of edges of the trees in B′ is∑
T∈B′

|E(T )| = |E(H)| − α =
n∆− 1

2
− α =

nkC − 1
2

− α. (1)

As α ≤ C−3
2 , from (1) we get

∑
T∈B′

|E(T )| ≥ nkC − 1
2

− C − 3
2

=

(
nk − 1

2

)
· C + 1. (2)

As each tree in B′ has at most C edges, from (2) we get that

|B′| ≥
⌈

nk − 1
2

+
1
C

⌉
=

nk − 1
2

+

⌈
1
C

⌉
=

nk − 1
2

+ 1. (3)

Clearly,
∑

T∈B′ |V (T )| =
∑

T∈B′ |E(T )|+ |B′|, and |V (T ∩ H)| = α + 1.
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Idea of the proof

Therefore, using (1) and (3), we get that the total number of occurrences
of the vertices of H in some tree of B is

∑
v∈V (H)

|{T ∈ B : v ∈ T}| =
∑

T∈B′
|V (T )|+ |V (T ∩ H)| =

∑
T∈B′

|E(T )|+ |B′|+ α+ 1

=
nkC − 1

2
− α+ |B′|+ α+ 1 ≥

nkC − 1
2

+
nk − 1

2
+ 2

= nk ·
C + 1

2
+ 1 = n · LB(C,∆) + 1 ,

which implies that at least one vertex of H appears in at least
LB(C,∆) + 1 subgraphs, which is a contradiction to B being a
C-edge-partition of G in which each vertex appears in at most LB(C,∆)

subgraphs.
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3 The parameter M(C,∆)
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5 Some results
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Summary of results: values of M(C, ∆)

C|∆ 1 2 3 4 5 6 7 . . . ∆ even ∆ odd
1 1 2 3 4 5 6 7 . . . ∆ ∆

2 1 2 3 3 4 5 6 . . . 3∆
4

3∆
4

3 1 2 3 (2) 3 4 5 (4) 5 . . . 2∆
3

2∆+1
3

(
2∆
3

)
4 1 2 2 3 4 4 5 . . . 5∆

8 ≥ 5∆
8 (=)

5 1 2 2 3 4 (3) 4 5 . . . 3∆
5 ≥ 3∆

5 (=)

6 1 2 2 3 ≥ 3 (=) 4 5 . . . 7∆
12 ≥ 7∆

12 (=)

7 1 2 2 3 ≥ 3 (=) 4 5 (4) . . . 4∆
7 ≥ 4∆

7 (=)

8 1 2 2 3 ≥ 3 (=) 4 ≥ 4 (=) . . . 9∆
16 ≥ 9∆

16 (=)

9 1 2 2 3 ≥ 3 (=) 4 ≥ 4 (=) . . . 5∆
9 ≥ 5∆

9 (=)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 1 2 2 3 ≥ 3 (=) 4 ≥ 4 (=) . . . C+1
C

∆
2 ≥ C+1

C
∆
2 (=)

Table: Known values of M(C,∆). The red cases remain open.
The (blue) cases in brackets only hold if the graph has a perfect matching.
The symbol “(=)” means that the corresponding lower bound is attained.
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Conclusions and further research

We have studied a new model of traffic grooming that allows the
network to support dynamic traffic without reconfiguring the
electronic equipment at the nodes.

We established the value of M(C,∆) for “almost all” values of C
and ∆, leaving open only the case where:

∆ ≥ 5 is odd;
C ≥ 4;
3 ≤ ∆ (mod 2C) ≤ C − 1; and
the request graph does not contain a perfect matching.

For these open cases, we provided upper bounds that differ from
the optimal value by at most one.

Further Research:
Determine M(C,∆) for the remaining cases:⌈C+1

C
∆
2

⌉
or
⌈C+1

C
∆
2

⌉
+ 1 ??

Other classes of request graphs that make sense from the
telecommunications point of view?
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