Edge-partitioning Regular Graphs
(with Applications to Traffic Grooming)

Ignasi Sau
Postdoc at Department of Computer Science, Technion (Haifa, Israel)

Joint work with:
Xavier Muñoz
Dept. de Matemàtica Aplicada 4, Universitat Politècnica de Catalunya (Barcelona, Spain)
Zhentao Li
School of Computer Science, McGill University (Montreal, Canada)

Some of these results have been presented in:
- 34th Intern. Workshop on Graph-Theoretic Concepts in Computer Science (WG 2008)
- 35th Intern. Workshop on Graph-Theoretic Concepts in Computer Science (WG 2009)
Outline of the talk

1. Motivation: traffic grooming
2. Statement of the problem
3. The parameter $M(C, \Delta)$
4. Basic properties of $M(C, \Delta)$
5. Some results
 - Case $\Delta = 3, C = 4$
 - Case $\Delta \geq 4$ even
 - Case $\Delta \geq 5$ odd
 - Improved lower bound when $\Delta \equiv C \pmod{2C}$
6. Conclusions
1 Motivation: traffic grooming

2 Statement of the problem

3 The parameter $M(C, \Delta)$

4 Basic properties of $M(C, \Delta)$

5 Some results

6 Conclusions
WDM (Wavelength Division Multiplexing) networks
- 1 wavelength (or frequency) = up to 40 Gb/s
- 1 fiber = hundreds of wavelengths = Tb/s

Idea:
Traffic grooming consists in packing low-speed traffic flows into higher speed streams

→ we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

Objectives:
- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)
Introduction

- **WDM (Wavelength Division Multiplexing) networks**
 - 1 wavelength (or frequency) = up to 40 Gb/s
 - 1 fiber = hundreds of wavelengths = Tb/s

- **Idea:**
 - Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 → we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

- **Objectives:**
 - Better use of bandwidth
 - Reduce the equipment cost (mostly given by electronics)
Introduction

- WDM (Wavelength Division Multiplexing) networks
 - 1 wavelength (or frequency) = up to 40 Gb/s
 - 1 fiber = hundreds of wavelengths = Tb/s

- Idea:
 - Traffic grooming consists in packing low-speed traffic flows into higher speed streams
 - we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

- Objectives:
 - Better use of bandwidth
 - Reduce the equipment cost (mostly given by electronics)
ADM and OADM

- **OADM** (Optical Add/Drop Multiplexer) = insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer) = insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

→ we want to minimize the number of ADMs
ADM and OADM

- **OADM** (Optical Add/Drop Multiplexer) = insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer) = insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

→ we want to minimize the number of ADMs
Definitions

- **Request** \((i, j)\): two vertices \((i, j)\) that want to exchange (low-speed) traffic

- **Grooming factor** \(C\):

 \[
 C = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}
 \]

 Example:

 Capacity of one wavelength = 2400 \(Mb/s\)
 Capacity used by a request = 600 \(Mb/s\) \(\Rightarrow\) \(C = 4\)

- **Load** of an arc in a wavelength: number of requests using this arc in this wavelength \((\leq C)\)
Definitions

- **Request** \((i, j)\): two vertices \((i, j)\) that want to exchange (low-speed) traffic

- **Grooming factor** \(C\):

\[
C = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}
\]

Example:

Capacity of one wavelength = 2400 Mb/s
Capacity used by a request = 600 Mb/s \(\Rightarrow C = 4\)

- **Load** of an arc in a wavelength: number of requests using this arc in this wavelength (\(\leq C\))
Definitions

- **Request** \((i,j)\): two vertices \((i,j)\) that want to exchange (low-speed) traffic

- **Grooming factor** \(C\):

 \[
 C = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}
 \]

 Example:

 Capacity of one wavelength = 2400 Mb/s
 Capacity used by a request = 600 Mb/s \(\Rightarrow\) \(C = 4\)

- **Load** of an arc in a wavelength: number of requests using this arc in this wavelength \((\leq C)\)
Definitions

- **Request** \((i, j)\): two vertices \((i, j)\) that want to exchange (low-speed) traffic

- **Grooming factor** \(C\):

 \[
 C = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}
 \]

 Example:

 Capacity of one wavelength = 2400 \(Mb/s\)
 Capacity used by a request = 600 \(Mb/s\) \(\Rightarrow\) \(C = 4\)

- **Load** of an arc in a wavelength: number of requests using this arc in this wavelength \((\leq C)\)
ADM and OADM

- **OADM** (Optical Add/Drop Multiplexer) = insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer) = insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

Idea: Use an ADM only at the endpoints of a request (lightpaths) in order to save as many ADMs as possible
ADM and OADM

- **OADM** (Optical Add/Drop Multiplexer) = insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer) = insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

Idea: Use an ADM only at the endpoints of a request (lightpaths) in order to save as many ADMs as possible
To fix ideas...

Model:

- Topology \rightarrow graph G
- Request set \rightarrow graph R
- Grooming factor \rightarrow integer C
- Requests in a wavelength \rightarrow edges in a subgraph of R
- ADM in a wavelength \rightarrow vertex in a subgraph of R

- We study the case when $G = \vec{C}_n$ (unidirectional ring)
- We assume that the requests are symmetric
To fix ideas...

Model:

- Topology \rightarrow graph G
- Request set \rightarrow graph R
- Grooming factor \rightarrow integer C
- Requests in a wavelength \rightarrow edges in a subgraph of R
- ADM in a wavelength \rightarrow vertex in a subgraph of R

We study the case when $G = \overrightarrow{C}_n$ (unidirectional ring)

We assume that the requests are symmetric
We study the case when $G = \overrightarrow{C}_n$ (unidirectional ring)

We assume that the requests are symmetric
Symmetric requests: we have both \((i, j)\) and \((j, i)\).

- W.l.o.g. requests \((i, j)\) and \((j, i)\) are in the same subgraph
 \(\rightarrow\) each pair of symmetric requests induces load 1
 \(\rightarrow\) **grooming factor** \(C \iff\) each subgraph has \(\leq C\) edges.

- **C-edge-partition** of a graph \(G\):
 partition of \(E(G)\) into subgraphs with at most \(C\) edges each.
Symmetric requests: we have both \((i, j)\) and \((j, i)\).

W.l.o.g. requests \((i, j)\) and \((j, i)\) are in the same subgraph
→ each pair of symmetric requests induces load 1
→ grooming factor \(C \leq \) each subgraph has \(\leq C\) edges.

\(C\)-edge-partition of a graph \(G\):
partition of \(E(G)\) into subgraphs with at most \(C\) edges each.
Symmetric requests: we have both \((i, j)\) and \((j, i)\).

W.l.o.g. requests \((i, j)\) and \((j, i)\) are in the same subgraph.

→ each pair of symmetric requests induces load 1

→ grooming factor \(C \iff\) each subgraph has \(\leq C\) edges.

\(C\)-edge-partition of a graph \(G\):

partition of \(E(G)\) into subgraphs with at most \(C\) edges each.
Symmetric requests: we have both \((i, j)\) and \((j, i)\).

W.l.o.g. requests \((i, j)\) and \((j, i)\) are in the same subgraph
\(\rightarrow\) each pair of symmetric requests induces load 1
\(\rightarrow\) grooming factor \(C \Leftrightarrow\) each subgraph has \(\leq C\) edges.

\(C\)-edge-partition of a graph \(G\):
partition of \(E(G)\) into subgraphs with at most \(C\) edges each.
Symmetric requests: we have both \((i, j)\) and \((j, i)\).

W.l.o.g. requests \((i, j)\) and \((j, i)\) are in the same subgraph
→ each pair of symmetric requests induces load 1
→ grooming factor \(C \iff\) each subgraph has \(\leq C\) edges.

\(C\text{-edge-partition}\) of a graph \(G\):
partition of \(E(G)\) into subgraphs with at most \(C\) edges each.
Statement of the “old” problem

Traffic Grooming in Unidirectional Rings

Input
A cycle C_n on n nodes (network);
An undirected graph R on n nodes (request set);
A grooming factor C.

Output
A C-edge-partition of R into subgraphs R_1, \ldots, R_W.

Objective
Minimize $\sum_{\omega=1}^{W} |V(R_\omega)|$.
Example (unidirectional ring with symmetric requests)

\[n = 4 \]
\[R = K_4 \]
\[C = 3 \]
Example (unidirectional ring with symmetric requests)

\[n = 4 \]
\[R = K_4 \]
\[C = 3 \]
Example (unidirectional ring with symmetric requests)

- $n = 4$
- $R = K_4$
- $C = 3$

8 ADMs
Example (unidirectional ring with symmetric requests)

- $n = 4$
- $R = K_4$
- $C = 3$

8 ADMs

7 ADMs
Motivation: traffic grooming

Statement of the problem

The parameter $M(C, \Delta)$

Basic properties of $M(C, \Delta)$

Some results

Conclusions
New model

- **Non-exhaustive** previous work (a lot!):
 - Flammini, Moscardelli, Shalom and Zaks - ISAAC 2005.
 - Flammini, Monaco, Moscardelli, Shalom and Zaks - WG 2006.
 - Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- SIDMA 2010.

- In all of them: place ADMs at nodes for a **fixed request graph**. → placement of ADMs *a posteriori*.

- **New model**: place the ADMs at nodes such that the network can support **any** request graph with maximum degree at most Δ. → placement of ADMs *a priori*.
New model

- Non-exhaustive previous work (a lot!):
 - Flammini, Moscardelli, Shalom and Zaks - ISAAC 2005.
 - Flammini, Monaco, Moscardelli, Shalom and Zaks - WG 2006.
 - Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- SIDMA 2010.

- In all of them: place ADMs at nodes for a fixed request graph. → placement of ADMs a posteriori.

- New model: place the ADMs at nodes such that the network can support any request graph with maximum degree at most Δ. → placement of ADMs a priori.
New model

- **Non-exhaustive** previous work (a lot!):
 - Bermond, Coudert, and Muñoz - **ONDM 2003**.
 - Bermond and Coudert - **ICC 2003**.
 - Bermond, Braud, and Coudert - **SIROCCO 2005**.
 - Bermond *et al.* - **SIDMA 2005**.
 - Flammini, Moscardelli, Shalom and Zaks - **ISAAC 2005**.
 - Flammini, Monaco, Moscardelli, Shalom and Zaks - **WG 2006**.
 - Amini, Pérennes and S. - **ISAAC 2007, TCS 2009**.
 - Bermond, Muñoz, and S. - Manusc. **2009**.
 - Bermond, Colbourn, Gionfriddo, Quattrociocchi and S. - **SIDMA 2010**.

In all of them: place ADMs at nodes for a **fixed request graph**.
→ placement of ADMs **a posteriori**.

- **New model**: place the ADMs at nodes such that the network can support **any request graph with maximum degree at most Δ**.
→ placement of ADMs **a priori**.
New model

- **Non-exhaustive** previous work (a lot!):
 - Bermond, Coudert, and Muñoz - **ONDM 2003**.
 - Bermond and Coudert - **ICC 2003**.
 - Bermond, Braud, and Coudert - **SIROCCO 2005**.
 - Bermond *et al.* - **SIDMA 2005**.
 - Flammini, Moscardelli, Shalom and Zaks - **ISAAC 2005**.
 - Flammini, Monaco, Moscardelli, Shalom and Zaks - **WG 2006**.
 - Amini, Pérennes and S. - **ISAAC 2007, TCS 2009**.
 - Bermond, Muñoz, and S. - Manusc. **2009**.
 - Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- **SIDMA 2010**.

- In all of them: place ADMs at nodes for a **fixed request graph**.
 → placement of ADMs **a posteriori**.

- **New model**: place the ADMs at nodes such that the network can support **any request graph with maximum degree at most Δ**.
 → placement of ADMs **a priori**.
Statement of the “new” problem

Traffic Grooming in Unidirectional Rings with Bounded-Degree Request Graph

Input
- An integer n (size of the ring);
- An integer C (grooming factor);
- An integer Δ (maximum degree).

Output
An assignment of $A(v)$ ADMs to each $v \in V(C_n)$, in such a way that for any graph R on n nodes with maximum degree at most Δ, there exists a C-edge-partition of R into subgraphs R_1, \ldots, R_W s.t. each $v \in V(C_n)$ is in at most $A(v)$ subgraphs.

Objective
Minimize $\sum_{v \in V(C_n)} A(v)$, and the optimum is denoted $A(n, C, \Delta)$.
Motivation: traffic grooming

Statement of the problem

The parameter $M(C, \Delta)$

Basic properties of $M(C, \Delta)$

Some results

Conclusions
Definition

Let $M(C, \Delta)$ be the smallest number M such that, for all $n \geq 1$, the inequality $A(n, C, \Delta) \leq M \cdot n$ holds.

- Due to symmetry, it can be seen that $A(\nu)$ is the same for all nodes ν, except for a subset whose size is independent of n.

- $M(C, \Delta)$ is always an integer.

- Equivalently:

 $M(C, \Delta)$ is the smallest integer M such that the edges of any graph with maximum degree at most Δ can be C-edge-partitioned in such a way that each vertex appears in at most M subgraphs.

- In the sequel we focus on determining $M(C, \Delta)$.
Definition

Let \(M(C, \Delta) \) be the smallest number \(M \) such that, for all \(n \geq 1 \), the inequality \(A(n, C, \Delta) \leq M \cdot n \) holds.

- Due to symmetry, it can be seen that \(A(v) \) is the same for all nodes \(v \), except for a subset whose size is independent of \(n \).
- \(M(C, \Delta) \) is always an integer.

Equivalently:

\(M(C, \Delta) \) is the smallest integer \(M \) such that the edges of any graph with maximum degree at most \(\Delta \) can be \(C \)-edge-partitioned in such a way that each vertex appears in at most \(M \) subgraphs.

- In the sequel we focus on determining \(M(C, \Delta) \).
Definition

Let $M(C, \Delta)$ be the smallest number M such that, for all $n \geq 1$, the inequality $A(n, C, \Delta) \leq M \cdot n$ holds.

- Due to symmetry, it can be seen that $A(\nu)$ is the same for all nodes ν, except for a subset whose size is independent of n.

- $M(C, \Delta)$ is always an integer.

- Equivalently:

 $M(C, \Delta)$ is the smallest integer M such that the edges of any graph with maximum degree at most Δ can be C-edge-partitioned in such a way that each vertex appears in at most M subgraphs.

- In the sequel we focus on determining $M(C, \Delta)$.

Definition

Let $M(C, \Delta)$ be the smallest number M such that, for all $n \geq 1$, the inequality $A(n, C, \Delta) \leq M \cdot n$ holds.

- Due to symmetry, it can be seen that $A(\nu)$ is the same for all nodes ν, except for a subset whose size is independent of n.

- $M(C, \Delta)$ is always an integer.

- Equivalently:

\[M(C, \Delta) \text{ is the smallest integer } M \text{ such that the edges of any graph with maximum degree at most } \Delta \text{ can be } C\text{-edge-partitioned in such a way that each vertex appears in at most } M \text{ subgraphs}. \]

- In the sequel we focus on determining $M(C, \Delta)$.

Definition

Let $M(C, \Delta)$ be the smallest number M such that, for all $n \geq 1$, the inequality $A(n, C, \Delta) \leq M \cdot n$ holds.

- Due to symmetry, it can be seen that $A(v)$ is the same for all nodes v, except for a subset whose size is independent of n.

- $M(C, \Delta)$ is always an integer.

- Equivalently:

 $M(C, \Delta)$ is the smallest integer M such that the edges of any graph with maximum degree at most Δ can be C-edge-partitioned in such a way that each vertex appears in at most M subgraphs.

- In the sequel we focus on determining $M(C, \Delta)$.

More formally... (we can forget traffic grooming)

- Let G_{Δ} be the class of (simple undirected) graphs with maximum degree at most Δ.

- For $G \in G_{\Delta}$, let $P_{C}(G)$ be the set of C-edge-partitions of G.

- For $P \in P_{C}(G)$, let

$$\text{occ}(P) = \max_{v \in V(G)} |\{B \in P : v \in B\}|$$

- And then,

$$M(C, \Delta) = \max_{G \in G_{\Delta}} \left(\min_{P \in P_{C}(G)} \text{occ}(P) \right)$$

- If the graphs are restricted to belong to a subclass $C \subseteq G_{\Delta}$, then the corresponding positive integer is denoted by $M(C, \Delta, C)$.
More formally... (we can forget traffic grooming)

- Let G_Δ be the class of (simple undirected) graphs with maximum degree at most Δ.

- For $G \in G_\Delta$, let $\mathcal{P}_C(G)$ be the set of C-edge-partitions of G.

- For $P \in \mathcal{P}_C(G)$, let

$$\text{occ}(P) = \max_{v \in V(G)} \{ \left| \{ B \in P : v \in B \} \right| \}$$

- And then,

$$M(C, \Delta) = \max_{G \in G_\Delta} \left(\min_{P \in \mathcal{P}_C(G)} \text{occ}(P) \right)$$

- If the graphs are restricted to belong to a subclass $\mathcal{C} \subseteq G_\Delta$, then the corresponding positive integer is denoted by $M(C, \Delta, \mathcal{C})$.
More formally... (we can forget traffic grooming)

Let G_Δ be the class of (simple undirected) graphs with maximum degree at most Δ.

For $G \in G_\Delta$, let $P_C(G)$ be the set of C-edge-partitions of G.

For $P \in P_C(G)$, let

$$\text{occ}(P) = \max_{v \in V(G)} |\{B \in P : v \in B\}|$$

And then,

$$M(C, \Delta) = \max_{G \in G_\Delta} \left(\min_{P \in P_C(G)} \text{occ}(P) \right)$$

If the graphs are restricted to belong to a subclass $C \subseteq G_\Delta$, then the corresponding positive integer is denoted by $M(C, \Delta, C)$.
More formally... (we can forget traffic grooming)

Let G_Δ be the class of (simple undirected) graphs with maximum degree at most Δ.

For $G \in G_\Delta$, let $P_C(G)$ be the set of C-edge-partitions of G.

For $P \in P_C(G)$, let

$$occ(P) = \max_{v \in V(G)} |\{B \in P : v \in B\}|$$

And then,

$$M(C, \Delta) = \max_{G \in G_\Delta} \left(\min_{P \in P_C(G)} occ(P) \right)$$

If the graphs are restricted to belong to a subclass $\mathcal{C} \subseteq G_\Delta$, then the corresponding positive integer is denoted by $M(C, \Delta, \mathcal{C})$.
More formally... (we can forget traffic grooming)

- Let G_{Δ} be the class of (simple undirected) graphs with maximum degree at most Δ.

- For $G \in G_{\Delta}$, let $\mathcal{P}_C(G)$ be the set of C-edge-partitions of G.

- For $P \in \mathcal{P}_C(G)$, let

$$occ(P) = \max_{v \in V(G)} |\{B \in P : v \in B\}|$$

- And then,

$$M(C, \Delta) = \max_{G \in G_{\Delta}} \left(\min_{P \in \mathcal{P}_C(G)} occ(P) \right)$$

- If the graphs are restricted to belong to a subclass $C \subseteq G_{\Delta}$, then the corresponding positive integer is denoted by $M(C, \Delta, C)$.

Motivation: traffic grooming

Statement of the problem

The parameter $M(C, \Delta)$

Basic properties of $M(C, \Delta)$

Some results

Conclusions
Basic properties of $M(C, \Delta)$

- As any graph in G_Δ is a subgraph of a Δ-regular graph, $M(C, \Delta) = M(C, \Delta, C)$, where C is the class of Δ-regular graphs.

- From now on, we only deal with Δ-regular graphs.

- $C \geq C' \Rightarrow M(C, \Delta) \leq M(C', \Delta)$ for all $\Delta \geq 1$.

- $\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta')$ for all $C \geq 1$.

- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.

Proposition (Lower Bound)

$$M(C, \Delta) \geq \left[\frac{C+1}{C} \frac{\Delta}{2} \right] \text{ for all } C, \Delta \geq 1.$$
Basic properties of $M(C, \Delta)$

- As any graph in \mathcal{G}_Δ is a subgraph of a Δ-regular graph, $M(C, \Delta) = M(C, \Delta, C)$, where C is the class of Δ-regular graphs.

- From now on, we only deal with Δ-regular graphs.

- $C \geq C' \Rightarrow M(C, \Delta) \leq M(C', \Delta)$ for all $\Delta \geq 1$.

- $\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta')$ for all $C \geq 1$.

- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.

Proposition (Lower Bound)

$$M(C, \Delta) \geq \left\lfloor \frac{C + 1}{c} \frac{\Delta}{2} \right\rfloor$$ for all $C, \Delta \geq 1$.

Basic properties of $M(C, \Delta)$

- As any graph in G_Δ is a subgraph of a Δ-regular graph, $M(C, \Delta) = M(C, \Delta, C)$, where C is the class of Δ-regular graphs.

- From now on, we only deal with Δ-regular graphs.

- $C \geq C' \Rightarrow M(C, \Delta) \leq M(C', \Delta)$ for all $\Delta \geq 1$.

- $\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta')$ for all $C \geq 1$.

- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.

Proposition (Lower Bound)

$$M(C, \Delta) \geq \left\lceil \frac{C+1}{2} \cdot \frac{\Delta}{2} \right\rceil$$ for all $C, \Delta \geq 1$.
Basic properties of $M(C, \Delta)$

- As any graph in \mathcal{G}_Δ is a subgraph of a Δ-regular graph, $M(C, \Delta) = M(C, \Delta, \mathcal{C})$, where \mathcal{C} is the class of Δ-regular graphs.

- From now on, we only deal with Δ-regular graphs.

- $C \geq C' \Rightarrow M(C, \Delta) \leq M(C', \Delta)$ for all $\Delta \geq 1$.

- $\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta')$ for all $C \geq 1$.

- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.

Proposition (Lower Bound)

$M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ for all $C, \Delta \geq 1$.
Basic properties of \(M(C, \Delta) \)

- As any graph in \(\mathcal{G}_\Delta \) is a subgraph of a \(\Delta \)-regular graph, \(M(C, \Delta) = M(C, \Delta, C) \), where \(C \) is the class of \(\Delta \)-regular graphs.

- From now on, we only deal with \(\Delta \)-regular graphs.

- \(C \geq C' \Rightarrow M(C, \Delta) \leq M(C', \Delta) \) for all \(\Delta \geq 1 \).
- \(\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta') \) for all \(C \geq 1 \).

- **Upper bound:** \(M(C, \Delta) \leq M(1, \Delta) = \Delta \).

Proposition (Lower Bound)

\[
M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil \text{ for all } C, \Delta \geq 1.
\]
Basic properties of $M(C, \Delta)$

- As any graph in G_Δ is a subgraph of a Δ-regular graph, $M(C, \Delta) = M(C, \Delta, \mathcal{C})$, where \mathcal{C} is the class of Δ-regular graphs.

- From now on, we only deal with Δ-regular graphs.

- $C \geq C' \Rightarrow M(C, \Delta) \leq M(C', \Delta)$ for all $\Delta \geq 1$.
- $\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta')$ for all $C \geq 1$.

- **Upper bound:** $M(C, \Delta) \leq M(1, \Delta) = \Delta$.

Proposition (Lower Bound)

$$M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \cdot \frac{\Delta}{2} \right\rceil$$ for all $C, \Delta \geq 1$.
Basic properties of $M(C, \Delta)$

- As any graph in \mathcal{G}_Δ is a subgraph of a Δ-regular graph, $M(C, \Delta) = M(C, \Delta, \mathcal{C})$, where \mathcal{C} is the class of Δ-regular graphs.

- From now on, we only deal with Δ-regular graphs.

- $C \geq C' \Rightarrow M(C, \Delta) \leq M(C', \Delta)$ for all $\Delta \geq 1$.

- $\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta')$ for all $C \geq 1$.

- **Upper bound:** $M(C, \Delta) \leq M(1, \Delta) = \Delta$.

Proposition (Lower Bound)

$M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ for all $C, \Delta \geq 1$.
Lower bound

Proposition (Lower Bound)

\[M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil \text{ for all } C, \Delta \geq 1. \]

Sketch of the proof.

- Let \(G \) be a \(\Delta \)-regular graph with girth at least \(C + 1 \).
 (Such a graph \(G \) exists by [Erdős and Sachs, 1963].)
- Then, the subgraphs involved in any \(C \)-edge-partition of \(G \) are trees.
- The total number of vertices of any \(C \)-edge-partition is at least
 \[
 \frac{\Delta \cdot |V(G)|}{C} \cdot \frac{C + 1}{2} = \frac{C + 1}{C} \frac{\Delta}{2} \cdot |V(G)|.
 \]
- Therefore, there is a vertex which appears in at least \(\frac{C+1}{C} \frac{\Delta}{2} \) subgraphs.
Lower bound

Proposition (Lower Bound)

\[M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil \quad \text{for all } C, \Delta \geq 1. \]

Sketch of the proof.

- Let \(G \) be a \(\Delta \)-regular graph with girth at least \(C + 1 \).
 (Such a graph \(G \) exists by [Erdős and Sachs, 1963].)
 - Then, the subgraphs involved in any \(C \)-edge-partition of \(G \) are trees.
 - The total number of vertices of any \(C \)-edge-partition is at least
 \[\frac{\Delta \cdot |V(G)| \cdot (C + 1)}{2} \cdot \frac{C + 1}{C} \cdot \frac{\Delta}{2} \cdot |V(G)|. \]

- Therefore, there is a vertex which appears in at least \(\frac{C+1}{C} \frac{\Delta}{2} \) subgraphs.
Lower bound

Proposition (Lower Bound)

\[M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil \text{ for all } C, \Delta \geq 1. \]

Sketch of the proof.

- Let \(G \) be a \(\Delta \)-regular graph with girth at least \(C + 1 \).
 (Such a graph \(G \) exists by [Erdős and Sachs, 1963].)

- Then, the subgraphs involved in any \(C \)-edge-partition of \(G \) are trees.

- The total number of vertices of any \(C \)-edge-partition is at least

\[
\frac{\Delta \cdot |V(G)|}{2} \cdot \frac{C+1}{C} = \frac{C+1}{C} \frac{\Delta}{2} \cdot |V(G)|.
\]

- Therefore, there is a vertex which appears in at least \(\frac{C+1}{C} \frac{\Delta}{2} \) subgraphs.
Lower bound

Proposition (Lower Bound)

\[M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil \] for all \(C, \Delta \geq 1 \).

Sketch of the proof.

- Let \(G \) be a \(\Delta \)-regular graph with girth at least \(C + 1 \).
 (Such a graph \(G \) exists by [Erdős and Sachs, 1963].)

- Then, the subgraphs involved in any \(C \)-edge-partition of \(G \) are trees.

- The total number of vertices of any \(C \)-edge-partition is at least

\[
\frac{\Delta \cdot |V(G)|}{2} \cdot \frac{C + 1}{C} = \frac{C + 1}{C} \frac{\Delta}{2} \cdot |V(G)|.
\]

- Therefore, there is a vertex which appears in at least \(\frac{C+1}{C} \frac{\Delta}{2} \) subgraphs.
Lower bound

Proposition (Lower Bound)

\[M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil \text{ for all } C, \Delta \geq 1. \]

Sketch of the proof.

- Let \(G \) be a \(\Delta \)-regular graph with girth at least \(C + 1 \).
 (Such a graph \(G \) exists by [Erdős and Sachs, 1963].)
- Then, the subgraphs involved in any \(C \)-edge-partition of \(G \) are trees.
- The total number of vertices of any \(C \)-edge-partition is at least

 \[\Delta \cdot \frac{|V(G)|}{2} \cdot \frac{C + 1}{C} = \frac{C + 1}{C} \frac{\Delta}{2} \cdot |V(G)|. \]

- Therefore, there is a vertex which appears in at least \(\frac{C+1}{C} \frac{\Delta}{2} \) subgraphs.
Lower bound

Proposition (Lower Bound)

\[M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil \quad \text{for all } C, \Delta \geq 1. \]

Sketch of the proof.

Let \(G \) be a \(\Delta \)-regular graph with girth at least \(C + 1 \).
(Such a graph \(G \) exists by [Erdős and Sachs, 1963].)

Then, the subgraphs involved in any \(C \)-edge-partition of \(G \) are trees.

The total number of vertices of any \(C \)-edge-partition is at least

\[
\Delta \cdot \frac{|V(G)|}{2} \cdot \frac{C + 1}{C} = \frac{C + 1}{C} \frac{\Delta}{2} \cdot |V(G)|.
\]

Therefore, there is a vertex which appears in at least \(\frac{C+1}{C} \frac{\Delta}{2} \) subgraphs.
Proposition (Lower Bound)

\[M(C, \Delta) \geq \left\lceil \frac{C + 1}{C} \frac{\Delta}{2} \right\rceil \text{ for all } C, \Delta \geq 1. \]

Sketch of the proof.

- Let \(G \) be a \(\Delta \)-regular graph with girth at least \(C + 1 \).
 (Such a graph \(G \) exists by [Erdős and Sachs, 1963].)

- Then, the subgraphs involved in any \(C \)-edge-partition of \(G \) are trees.

- The total number of vertices of any \(C \)-edge-partition is at least

\[
\frac{\Delta \cdot |V(G)|}{2} \cdot \frac{C + 1}{C} = \frac{C + 1}{C} \frac{\Delta}{2} \cdot |V(G)|.
\]

- Therefore, there is a vertex which appears in at least \(\frac{C + 1}{C} \frac{\Delta}{2} \) subgraphs.
Proposition (Lower Bound)

\[M(C, \Delta) \geq \left\lceil \frac{C + 1}{C} \cdot \frac{\Delta}{2} \right\rceil \text{ for all } C, \Delta \geq 1. \]

Sketch of the proof.

- Let \(G \) be a \(\Delta \)-regular graph with girth at least \(C + 1 \).
 (Such a graph \(G \) exists by [Erdős and Sachs, 1963].)

- Then, the subgraphs involved in any \(C \)-edge-partition of \(G \) are trees.

- The total number of vertices of any \(C \)-edge-partition is at least
 \[
 \frac{\Delta \cdot |V(G)|}{2} \cdot \frac{C + 1}{C} = \frac{C + 1}{C} \cdot \frac{\Delta}{2} \cdot |V(G)|.
 \]

- Therefore, there is a vertex which appears in at least \(\frac{C + 1}{C} \cdot \frac{\Delta}{2} \) subgraphs.
Basic properties of $M(C, \Delta)$ (II)

- $\Delta = 1$: $M(C, 1) = 1$ for all C (trivial).

- $\Delta = 2$: $M(C, 2) = 2$ for all C (not difficult).

- $\Delta = 3$: Cubic graphs. First “interesting” case:
 - If $C \leq 3$, then $M(C, 3) = 3$.
 - If $C \geq 5$, then $M(C, 3) = 2$ (using the linear arboricity).
 - If $C = 4$: $M(3, 4) = 2$ or 3 ???
Basic properties of $M(C, \Delta)$ (II)

- **$\Delta = 1$**: $M(C, 1) = 1$ for all C (trivial).

- **$\Delta = 2$**: $M(C, 2) = 2$ for all C (not difficult).

- **$\Delta = 3$**: Cubic graphs. First “interesting” case:
 - If $C \leq 3$, then $M(C, 3) = 3$.
 - If $C \geq 5$, then $M(C, 3) = 2$ (using the linear arboricity).
 - If $C = 4$: $M(3, 4) = 2$ or 3 ??
Basic properties of $M(C, \Delta)$ (II)

- $\Delta = 1$: $M(C, 1) = 1$ for all C (trivial).

- $\Delta = 2$: $M(C, 2) = 2$ for all C (not difficult).

- $\Delta = 3$: Cubic graphs. First “interesting” case:
 - If $C \leq 3$, then $M(C, 3) = 3$.
 - If $C \geq 5$, then $M(C, 3) = 2$ (using the linear arboricity).
 - If $C = 4$: $M(3, 4) = 2$ or 3 ???
Basic properties of $M(C, \Delta)$ (II)

- $\Delta = 1$: $M(C, 1) = 1$ for all C (trivial).

- $\Delta = 2$: $M(C, 2) = 2$ for all C (not difficult).

- $\Delta = 3$: Cubic graphs. First “interesting” case:
 - If $C \leq 3$, then $M(C, 3) = 3$.
 - If $C \geq 5$, then $M(C, 3) = 2$ (using the linear arboricity).
 - If $C = 4$: $M(3, 4) = 2$ or 3 ???
Basic properties of $M(C, \Delta)$ (II)

- $\Delta = 1$: $M(C, 1) = 1$ for all C (trivial).
- $\Delta = 2$: $M(C, 2) = 2$ for all C (not difficult).
- $\Delta = 3$: Cubic graphs. First “interesting” case:
 - If $C \leq 3$, then $M(C, 3) = 3$.
 - If $C \geq 5$, then $M(C, 3) = 2$ (using the linear arboricity).
 - If $C = 4$: $M(3, 4) = 2$ or 3 ???
Motivation: traffic grooming

Statement of the problem

The parameter $M(C, \Delta)$

Basic properties of $M(C, \Delta)$

Some results

- Case $\Delta = 3, \ C = 4$
- Case $\Delta \geq 4$ even
- Case $\Delta \geq 5$ odd
- Improved lower bound when $\Delta \equiv C \pmod{2C}$

Conclusions
Motivation: traffic grooming

Statement of the problem

The parameter $M(C, \Delta)$

Basic properties of $M(C, \Delta)$

Some results
- Case $\Delta = 3, \ C = 4$
- Case $\Delta \geq 4$ even
- Case $\Delta \geq 5$ odd
- Improved lower bound when $\Delta \equiv C \pmod{2C}$

Conclusions
Case $\Delta = 3$, $C = 4$

Proposition

$M(4, 3) = 2.$

Idea of the proof.

(in fact, we prove a slightly stronger result)

1. Let G be a minimal counterexample (i.e., $|V(G)|$ is minimum).
2. If G has no bridges, then it can be “easily” proved.
3. If G has a bridge e, then the property is true for U and V.

Finally, we merge “carefully” the partitions of U and V to obtain a partition of $G \Rightarrow$ contradiction.
Case $\Delta = 3, \ C = 4$

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(4, 3) = 2.$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Idea of the proof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(in fact, we prove a slightly stronger result)</td>
</tr>
<tr>
<td>- Let G be a minimal counterexample (i.e., $</td>
</tr>
<tr>
<td>- If G has no bridges, then it can be “easily” proved.</td>
</tr>
<tr>
<td>- If G has a bridge e, then the property is true for U and V.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Case $\Delta = 3, C = 4$

Proposition

$M(4, 3) = 2.$

Idea of the proof.

(in fact, we prove a slightly stronger result)

- Let G be a **minimal counterexample** (i.e., $|V(G)|$ is minimum).

- If G has **no bridges**, then it can be “easily” proved.

- If G has a **bridge** e, then the property is true for U and V.

Finally, we merge “carefully” the partitions of U and V to obtain a partition of $G \Rightarrow$ contradiction.
Case $\Delta = 3$, $C = 4$

Proposition

$M(4, 3) = 2$.

Idea of the proof.

(in fact, we prove a slightly stronger result)

- Let G be a **minimal counterexample** (i.e., $|V(G)|$ is minimum).

- If G has **no bridges**, then it can be “easily” proved.

- If G has a **bridge** e, then the property is true for U and V.

Finally, we merge “carefully” the partitions of U and V to obtain a partition of $G \Rightarrow \text{contradiction}$.
Motivation: traffic grooming

Statement of the problem

The parameter $M(C, \Delta)$

Basic properties of $M(C, \Delta)$

Some results

- Case $\Delta = 3, \ C = 4$
- Case $\Delta \geq 4$ even
- Case $\Delta \geq 5$ odd
- Improved lower bound when $\Delta \equiv C \pmod{2C}$

Conclusions
Case $\Delta \geq 4$ even

Theorem

Let $\Delta \geq 4$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have already seen the lower bound.
- **Construction:**
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \Delta/2 = \Delta/2$ times.
 - The number of occurrences of each vertex in this partition is
 $$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$
Case $\Delta \geq 4$ even

Theorem

Let $\Delta \geq 4$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have already seen the lower bound.

- **Construction:**
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \Delta/2 = \Delta/2$ times.
 - The number of occurrences of each vertex in this partition is

 $$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$
Case $\Delta \geq 4$ even

Theorem

Let $\Delta \geq 4$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have already seen the lower bound.

- Construction:
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \Delta/2 = \Delta/2$ times.
 - The number of occurrences of each vertex in this partition is

 $$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$
Case $\Delta \geq 4$ even

Theorem

Let $\Delta \geq 4$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have already seen the lower bound.

- **Construction:**
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \Delta/2 = \Delta/2$ times.
 - The number of occurrences of each vertex in this partition is
 $$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C} \right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$
Theorem

Let $\Delta \geq 4$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have already seen the lower bound.

Construction:

- Orient the edges of $G = (V, E)$ in an Eulerian tour.
- Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
- Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \Delta/2 = \Delta/2$ times.

The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$
Theorem

Let $\Delta \geq 4$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have already seen the lower bound.

- Construction:
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\frac{\Delta}{2}$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \frac{\Delta}{2} = \frac{\Delta}{2}$ times.
 - The number of occurrences of each vertex in this partition is
 $$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$
Case $\Delta \geq 4$ even

Theorem

Let $\Delta \geq 4$ be even. Then for any $C \geq 1$, $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Proof.

- We have already seen the lower bound.

- **Construction:**
 - Orient the edges of $G = (V, E)$ in an Eulerian tour.
 - Assign to each vertex $v \in V$ its $\Delta/2$ out-edges, and partition them into $\left\lceil \frac{\Delta}{2C} \right\rceil$ stars with (at most) C edges centered at v.
 - Each vertex v appears as a leaf in stars centered at other vertices exactly $\Delta - \Delta/2 = \Delta/2$ times.
 - The number of occurrences of each vertex in this partition is
 $$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left(1 + \frac{1}{C}\right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$
Motivation: traffic grooming

Statement of the problem

The parameter $M(C, \Delta)$

Basic properties of $M(C, \Delta)$

Some results
- Case $\Delta = 3, C = 4$
- Case $\Delta \geq 4$ even
- Case $\Delta \geq 5$ odd
- Improved lower bound when $\Delta \equiv C \pmod{2C}$

Conclusions
Case $\Delta \geq 5$ odd

Proposition

Let $\Delta \geq 5$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

Sketch of proof.

- Since Δ is odd, $|V(G)|$ is even. Add a perfect matching M to G to obtain a $(\Delta + 1)$-regular multigraph G'. Orient the edges of G' in an Eulerian tour, and assign to each vertex $v \in V(G')$ its $(\Delta + 1)/2$ out-edges E_v^+.

- Remove M and partition E_v^+ into stars with C edges.

- Number of occurrences of each vertex $v \in V(G)$:

 - If an edge of M is in E_v^+, then: $\left\lceil \frac{\Delta-1}{2C} \right\rceil + \Delta - \frac{\Delta-1}{2} = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

 - Otherwise, if no edge of M is in E_v^+, then:

 $\left\lceil \frac{\Delta+1}{2C} \right\rceil + \Delta - \frac{\Delta+1}{2} = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{1-C}{2C} \right\rceil \leq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

\[\square \]
Case $\Delta \geq 5$ odd

Proposition

Let $\Delta \geq 5$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rfloor$.

Sketch of proof.

- Since Δ is odd, $|V(G)|$ is even. Add a perfect matching M to G to obtain a $(\Delta + 1)$-regular multigraph G'. Orient the edges of G' in an Eulerian tour, and assign to each vertex $v \in V(G')$ its $(\Delta + 1)/2$ out-edges E_v^+.

- Remove M and partition E_v^+ into stars with C edges.

- Number of occurrences of each vertex $v \in V(G)$:
 - If an edge of M is in E_v^+, then: $\left\lfloor \frac{\Delta-1}{2C} \right\rfloor + \Delta - \frac{\Delta-1}{2} = \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rfloor$.
 - Otherwise, if no edge of M is in E_v^+, then:
 \[
 \left\lfloor \frac{\Delta+1}{2C} \right\rfloor + \Delta - \frac{\Delta+1}{2} = \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} + \frac{1-C}{2C} \right\rfloor \leq \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rfloor.
 \]
Case $\Delta \geq 5$ odd

Proposition

Let $\Delta \geq 5$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

Sketch of proof.

- Since Δ is odd, $|V(G)|$ is even. Add a perfect matching M to G to obtain a $(\Delta + 1)$-regular multigraph G'. Orient the edges of G' in an Eulerian tour, and assign to each vertex $v \in V(G')$ its $(\Delta + 1)/2$ out-edges E_v^+.

- Remove M and partition E_v^+ into stars with C edges.

- Number of occurrences of each vertex $v \in V(G)$:
 - If an edge of M is in E_v^+, then: $\left\lceil \frac{\Delta-1}{2C} \right\rceil + \Delta - \frac{\Delta-1}{2} = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.
 - Otherwise, if no edge of M is in E_v^+, then: $\left\lceil \frac{\Delta+1}{2C} \right\rceil + \Delta - \frac{\Delta+1}{2} = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{1-C}{2C} \right\rceil \leq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$.

Case $\Delta \geq 5$ odd

Proposition

Let $\Delta \geq 5$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \Delta + \frac{C}{2C} \right\rceil$.

Sketch of proof.

- Since Δ is odd, $|V(G)|$ is even. Add a perfect matching M to G to obtain a $(\Delta + 1)$-regular multigraph G'. Orient the edges of G' in an Eulerian tour, and assign to each vertex $v \in V(G')$ its $(\Delta + 1)/2$ out-edges E_v^+.

- Remove M and partition E_v^+ into stars with C edges.

- **Number of occurrences** of each vertex $v \in V(G)$:
 - If an edge of M is in E_v^+, then: $\left\lceil \frac{\Delta - 1}{2C} \right\rceil + \Delta - \frac{\Delta - 1}{2} = \left\lceil \frac{C+1}{C} \Delta + \frac{C-1}{2C} \right\rceil$.
 - Otherwise, if no edge of M is in E_v^+, then:
 \[\left\lceil \frac{\Delta + 1}{2C} \right\rceil + \Delta - \frac{\Delta + 1}{2} = \left\lceil \frac{C+1}{C} \Delta + \frac{1-C}{2C} \right\rceil \leq \left\lceil \frac{C+1}{C} \Delta + \frac{C-1}{2C} \right\rceil. \]
Case $\Delta \geq 5$ odd

Proposition

Let $\Delta \geq 5$ be odd. Then for any $C \geq 1$, $M(C, \Delta) \leq \left\lceil \frac{C+1}{2 \Delta} + \frac{C-1}{2C} \right\rceil$.

Sketch of proof.

- Since Δ is odd, $|V(G)|$ is even. Add a perfect matching M to G to obtain a $(\Delta + 1)$-regular multigraph G'. Orient the edges of G' in an Eulerian tour, and assign to each vertex $v \in V(G')$ its $(\Delta + 1)/2$ out-edges E_v^+.

- Remove M and partition E_v^+ into stars with C edges.

- **Number of occurrences** of each vertex $v \in V(G)$:
 - If an edge of M is in E_v^+, then: $\left\lceil \frac{\Delta-1}{2C} \right\rceil + \Delta - \frac{\Delta-1}{2} = \left\lceil \frac{C+1}{2} \frac{\Delta}{C} + \frac{C-1}{2C} \right\rceil$.
 - Otherwise, if no edge of M is in E_v^+, then:
 $$\left\lceil \frac{\Delta+1}{2C} \right\rceil + \Delta - \frac{\Delta+1}{2} = \left\lceil \frac{C+1}{2} \frac{\Delta}{C} + \frac{1-C}{2C} \right\rceil \leq \left\lceil \frac{C+1}{2} \frac{\Delta}{C} + \frac{C-1}{2C} \right\rceil.$$
Case \(\Delta \geq 5 \) odd (II)

Corollary

Let \(\Delta \geq 5 \) be odd. If \(\Delta \pmod{2C} = 1 \) or \(\Delta \pmod{2C} \geq C + 1 \), then

\[
M(C, \Delta) = \left\lceil \frac{C + 1}{2} \frac{\Delta}{2} \right\rceil.
\]

Corollary (Case \(C = 2 \))

For any \(\Delta \geq 5 \) odd, \(M(2, \Delta) = \left\lceil \frac{3\Delta}{4} \right\rceil \).

Proposition

Let \(\Delta \geq 5 \) be odd and let \(C \) be the class of \(\Delta \)-regular graphs that contain a perfect matching. Then

\[
M(C, \Delta, C) = \left\lceil \frac{C + 1}{C} \frac{\Delta}{2} \right\rceil.
\]
Case $\Delta \geq 5$ odd (II)

Corollary

Let $\Delta \geq 5$ be odd. If $\Delta \pmod{2C} = 1$ or $\Delta \pmod{2C} \geq C + 1$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.

Corollary (Case $C = 2$)

For any $\Delta \geq 5$ odd, $M(2, \Delta) = \left\lceil \frac{3\Delta}{4} \right\rceil$.

Proposition

Let $\Delta \geq 5$ be odd and let C be the class of Δ-regular graphs that contain a perfect matching. Then $M(C, \Delta, C) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.
Case $\Delta \geq 5$ odd (II)

Corollary

Let $\Delta \geq 5$ be odd. If $\Delta \pmod{2C} = 1$ or $\Delta \pmod{2C} \geq C + 1$, then

$$M(C, \Delta) = \left\lceil \frac{C+1}{2} \cdot \frac{\Delta}{C} \right\rceil.$$

Corollary (Case $C = 2$)

For any $\Delta \geq 5$ odd, $M(2, \Delta) = \left\lceil \frac{3\Delta}{4} \right\rceil$.

Proposition

Let $\Delta \geq 5$ be odd and let \mathcal{C} be the class of Δ-regular graphs than contain a perfect matching. Then $M(\mathcal{C}, \Delta, \mathcal{C}) = \left\lceil \frac{C+1}{2} \cdot \frac{\Delta}{C} \right\rceil$.
Motivation: traffic grooming

Statement of the problem

The parameter $M(C, \Delta)$

Basic properties of $M(C, \Delta)$

Some results

- Case $\Delta = 3, C = 4$
- Case $\Delta \geq 4$ even
- Case $\Delta \geq 5$ odd
- Improved lower bound when $\Delta \equiv C \pmod{2C}$

Conclusions
Improved lower bound when $\Delta \equiv C \pmod{2C}$

Theorem

Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.

Corollary (Case $C = 3$)

For any $\Delta \geq 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

Idea of the proof of the Theorem.

- We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
- Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.
- We proceed to build a Δ-regular graph G with no C-edge-partition where each vertex appears in at most $k \cdot \frac{C+1}{2} =: LB(C, \Delta)$ subgraphs.
- First, we construct a graph H where all vertices have degree Δ except one which has degree $\Delta - 1$. Furthermore, we build H so that it has girth strictly greater than C. Such a graph H exists by [Chandran, SIAM J. Discr. Math., 2003].
Improved lower bound when $\Delta \equiv C \pmod{2C}$

Theorem

Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.

Corollary (Case $C = 3$)

For any $\Delta \geq 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

Idea of the proof of the Theorem.

- We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
- Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.
- We proceed to build a Δ-regular graph G with no C-edge-partition where each vertex appears in at most $k \cdot \frac{C+1}{2} =: LB(C, \Delta)$ subgraphs.
- First, we construct a graph H where all vertices have degree Δ except one which has degree $\Delta - 1$. Furthermore, we build H so that it has girth strictly greater than C. Such a graph H exists by [Chandran, SIAM J. Discr. Math., 2003].
Improved lower bound when $\Delta \equiv C \pmod{2C}$

Theorem

Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.

Corollary (Case $C = 3$)

For any $\Delta \geq 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

Idea of the proof of the Theorem.

- We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
- Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.
- We proceed to build a Δ-regular graph G with no C-edge-partition where each vertex appears in at most $k \cdot \frac{C+1}{2} =: LB(C, \Delta)$ subgraphs.
- First, we construct a graph H where all vertices have degree Δ except one which has degree $\Delta - 1$. Furthermore, we build H so that it has girth strictly greater than C. Such a graph H exists by [Chandran, SIAM J. Discr. Math., 2003].
Improved lower bound when $\Delta \equiv C \pmod{2C}$

Theorem

Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.

Corollary (Case $C = 3$)

For any $\Delta \geq 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

Idea of the proof of the Theorem.

- We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
- Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.
- We proceed to build a Δ-regular graph G with no C-edge-partition where each vertex appears in at most $k \cdot \frac{C+1}{2} =: LB(C, \Delta)$ subgraphs.
- First, we construct a graph H where all vertices have degree Δ except one which has degree $\Delta - 1$. Furthermore, we build H so that it has girth strictly greater than C. Such a graph H exists by [Chandran, SIAM J. Discr. Math., 2003].
Improved lower bound when $\Delta \equiv C \pmod{2C}$

Theorem

Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.

Corollary (Case $C = 3$)

For any $\Delta \geq 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

Idea of the proof of the Theorem.

- We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
- Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.
- We proceed to build a Δ-regular graph G with no C-edge-partition where each vertex appears in at most $k \cdot \frac{C+1}{2} =: LB(C, \Delta)$ subgraphs.

First, we construct a graph H where all vertices have degree Δ except one which has degree $\Delta - 1$. Furthermore, we build H so that it has girth strictly greater than C. Such a graph H exists by [Chandran, SIAM J. Discr. Math., 2003].
Improved lower bound when \(\Delta \equiv C \pmod{2C} \)

Theorem

Let \(\Delta \geq 5 \) be odd. If \(\Delta \equiv C \pmod{2C} \), then \(M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1 \).

Corollary (Case \(C = 3 \))

For any \(\Delta \geq 5 \) odd, \(M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil \).

Idea of the proof of the Theorem.

- We prove that if \(\Delta = kC \) with \(k \) odd, then \(M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1 \).
- Since both \(\Delta \) and \(k \) are odd, so is \(C \), and therefore \(\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2} \).
- We proceed to build a \(\Delta \)-regular graph \(G \) with no \(C \)-edge-partition where each vertex appears in at most \(k \cdot \frac{C+1}{2} =: LB(C, \Delta) \) subgraphs.
- First, we construct a graph \(H \) where all vertices have degree \(\Delta \) except one which has degree \(\Delta - 1 \). Furthermore, we build \(H \) so that it has girth strictly greater than \(C \). Such a graph \(H \) exists by [Chandran, SIAM J. Discr. Math., 2003].
Improved lower bound when $\Delta \equiv C \pmod{2C}$

Theorem

Let $\Delta \geq 5$ be odd. If $\Delta \equiv C \pmod{2C}$, then $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.

Corollary (Case $C = 3$)

For any $\Delta \geq 5$ odd, $M(3, \Delta) = \left\lceil \frac{2\Delta+1}{3} \right\rceil$.

Idea of the proof of the Theorem.

- We prove that if $\Delta = kC$ with k odd, then $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$.
- Since both Δ and k are odd, so is C, and therefore $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil = k \cdot \frac{C+1}{2}$.
- We proceed to build a Δ-regular graph G with no C-edge-partition where each vertex appears in at most $k \cdot \frac{C+1}{2} =: LB(C, \Delta)$ subgraphs.
- First, we construct a graph H where all vertices have degree Δ except one which has degree $\Delta - 1$. Furthermore, we build H so that it has girth strictly greater than C. Such a graph H exists by [Chandran, SIAM J. Discr. Math., 2003].
Idea of the proof

- Make Δ copies of H
Idea of the proof

- Make Δ copies of H and add a cut-vertex v joined to all vertices of degree $\Delta - 1$ to make our Δ-regular graph G.
Idea of the proof

- Make Δ copies of H and add a cut-vertex v joined to all vertices of degree $\Delta - 1$ to make our Δ-regular graph G.

![Diagram showing the construction of a Δ-regular graph G from Δ copies of H, with a cut-vertex v connected to all vertices of degree $\Delta - 1$.]
Idea of the proof

- Make Δ copies of H and add a cut-vertex v joined to all vertices of degree $\Delta - 1$ to make our Δ-regular graph G.

Now suppose for the sake of contradiction that there is a C-edge-partition B of G where each vertex appears in at most $LB(C, \Delta)$ subgraphs.

Since the girth of G is greater than C, all the subgraphs in B are trees.
Idea of the proof

- Make Δ copies of H and add a cut-vertex v joined to all vertices of degree $\Delta - 1$ to make our Δ-regular graph G.

- Now suppose for the sake of **contradiction** that there is a C-edge-partition B of G where each vertex appears in at most $LB(C, \Delta)$ subgraphs.

- Since the girth of G is greater than C, all the subgraphs in B are trees.
Idea of the proof

- Make Δ copies of H and add a cut-vertex v joined to all vertices of degree $\Delta - 1$ to make our Δ-regular graph G.

Now suppose for the sake of contradiction that there is a C-edge-partition B of G where each vertex appears in at most $LB(C, \Delta)$ subgraphs.

Since the girth of G is greater than C, all the subgraphs in B are trees.
Idea of the proof

- Since $LB(C, \Delta) < \Delta$, v must have degree at least 2 in some subgraph $T \in \mathcal{B}$.

- Since $|E(T)| \leq C$, the tree T contains at most $\left\lfloor \frac{C-2}{2} \right\rfloor = \frac{C-3}{2}$ edges of a copy of H intersecting T.

- Now we only work in this copy H. Let $\alpha = |E(T \cap H)| \leq \frac{C-3}{2}$ ($\alpha = \frac{5-3}{2} = 1$ in the example).
Idea of the proof

- Since $LB(C, \Delta) < \Delta$, v must have degree at least 2 in some subgraph $T \in \mathcal{B}$.

- Since $|E(T)| \leq C$, the tree T contains at most $\left\lfloor \frac{C-2}{2} \right\rfloor = \frac{C-3}{2}$ edges of a copy of H intersecting T.

- Now we only work in this copy H. Let $\alpha = |E(T \cap H)| \leq \frac{C-3}{2}$ ($\alpha = \frac{5-3}{2} = 1$ in the example).
Idea of the proof

- Since $LB(C, \Delta) < \Delta$, v must have degree at least 2 in some subgraph $T \in \mathcal{B}$.

- Since $|E(T)| \leq C$, the tree T contains at most $\left\lfloor \frac{C - 2}{2} \right\rfloor = \frac{C - 3}{2}$ edges of a copy of H intersecting T.

- Now we only work in this copy H. Let $\alpha = |E(T \cap H)| \leq \frac{C - 3}{2}$ ($\alpha = \frac{5 - 3}{2} = 1$ in the example).
Idea of the proof

- Since $LB(C, \Delta) < \Delta$, v must have degree at least 2 in some subgraph $T \in B$.

- Since $|E(T)| \leq C$, the tree T contains at most $\left\lfloor \frac{C-2}{2} \right\rfloor = \frac{C-3}{2}$ edges of a copy of H intersecting T.

- Now we only work in this copy H. Let $\alpha = |E(T \cap H)| \leq \frac{C-3}{2}$ ($\alpha = \frac{5-3}{2} = 1$ in the example).
Idea of the proof

Let $B' = \{ B \cap H \}_{B \in (B - \{ T \})}$, with the empty subgraphs removed. That is, B' contains the subgraphs in B that partition the edges in H that are not in T.

Let $n = |V(H)|$, which is odd as in H there is one vertex of degree $\Delta - 1$ and all the others have degree Δ.
Idea of the proof

Let \(B' = \{ B \cap H \}_{B \in (B - \{T\})} \), with the empty subgraphs removed. That is, \(B' \) contains the subgraphs in \(B \) that partition the edges in \(H \) that are not in \(T \).

Let \(n = |V(H)| \), which is odd as in \(H \) there is one vertex of degree \(\Delta - 1 \) and all the others have degree \(\Delta \).
Idea of the proof

Therefore, the total number of edges of the trees in B' is

$$\sum_{T \in B'} |E(T)| = |E(H)| - \alpha = \frac{n\Delta - 1}{2} - \alpha = \frac{nkC - 1}{2} - \alpha. \quad (1)$$

As $\alpha \leq \frac{C-3}{2}$, from (1) we get

$$\sum_{T \in B'} |E(T)| \geq \frac{nkC - 1}{2} - \frac{C-3}{2} = \left(\frac{nk - 1}{2} \right) \cdot C + 1. \quad (2)$$

As each tree in B' has at most C edges, from (2) we get that

$$|B'| \geq \left\lceil \frac{nk - 1}{2} + \frac{1}{C} \right\rceil = \frac{nk - 1}{2} + \left\lceil \frac{1}{C} \right\rceil = \frac{nk - 1}{2} + 1. \quad (3)$$

Clearly, $\sum_{T \in B'} |V(T)| = \sum_{T \in B'} |E(T)| + |B'|$, and $|V(T \cap H)| = \alpha + 1$.
Idea of the proof

Therefore, the total number of edges of the trees in B' is

$$\sum_{T \in B'} |E(T)| = |E(H)| - \alpha = \frac{n\Delta - 1}{2} - \alpha = \frac{nKC - 1}{2} - \alpha. \quad (1)$$

As $\alpha \leq \frac{C-3}{2}$, from (1) we get

$$\sum_{T \in B'} |E(T)| \geq \frac{nKC - 1}{2} - \frac{C - 3}{2} = \left(\frac{nk - 1}{2}\right) \cdot C + 1. \quad (2)$$

As each tree in B' has at most C edges, from (2) we get that

$$|B'| \geq \left\lfloor \frac{nk - 1}{2} + \frac{1}{C} \right\rfloor = \frac{nk - 1}{2} + \left\lfloor \frac{1}{C} \right\rfloor = \frac{nk - 1}{2} + 1. \quad (3)$$

Clearly, $\sum_{T \in B'} |V(T)| = \sum_{T \in B'} |E(T)| + |B'|$, and $|V(T \cap H)| = \alpha + 1$.
Idea of the proof

Therefore, the total number of edges of the trees in B' is

$$\sum_{T \in B'} |E(T)| = |E(H)| - \alpha = \frac{n\Delta - 1}{2} - \alpha = \frac{nkC - 1}{2} - \alpha.$$ (1)

As $\alpha \leq \frac{C-3}{2}$, from (1) we get

$$\sum_{T \in B'} |E(T)| \geq \frac{nkC - 1}{2} - \frac{C-3}{2} = \left(\frac{nk - 1}{2}\right) \cdot C + 1.$$ (2)

As each tree in B' has at most C edges, from (2) we get that

$$|B'| \geq \left\lceil \frac{nk - 1}{2} + \frac{1}{C} \right\rceil = \frac{nk - 1}{2} + \left\lceil \frac{1}{C} \right\rceil = \frac{nk - 1}{2} + 1.$$ (3)

Clearly, $\sum_{T \in B'} |V(T)| = \sum_{T \in B'} |E(T)| + |B'|$, and $|V(T \cap H)| = \alpha + 1$.

Idea of the proof

Therefore, the total number of edges of the trees in B' is

$$
\sum_{T \in B'} |E(T)| = |E(H)| - \alpha = \frac{n\Delta - 1}{2} - \alpha = \frac{nkC - 1}{2} - \alpha. \quad (1)
$$

As $\alpha \leq \frac{C-3}{2}$, from (1) we get

$$
\sum_{T \in B'} |E(T)| \geq \frac{nkC - 1}{2} - \frac{C - 3}{2} = \left(\frac{nk - 1}{2}\right) \cdot C + 1. \quad (2)
$$

As each tree in B' has at most C edges, from (2) we get that

$$
|B'| \geq \left\lceil \frac{nk - 1}{2} + \frac{1}{C} \right\rceil = \frac{nk - 1}{2} + \left\lceil \frac{1}{C} \right\rceil = \frac{nk - 1}{2} + 1. \quad (3)
$$

Clearly, $\sum_{T \in B'} |V(T)| = \sum_{T \in B'} |E(T)| + |B'|$, and $|V(T \cap H)| = \alpha + 1$.
Idea of the proof

Therefore, using (1) and (3), we get that the total number of occurrences of the vertices of H in some tree of B is

$$\sum_{v \in V(H)} \left| \{ T \in B : v \in T \} \right| = \sum_{T \in B'} |V(T)| + |V(T \cap H)| = \sum_{T \in B'} |E(T)| + |B'| + \alpha + 1$$

$$= \frac{nkC - 1}{2} - \alpha + |B'| + \alpha + 1 \geq \frac{nkC - 1}{2} + \frac{nk - 1}{2} + 2$$

$$= nk \cdot \frac{C + 1}{2} + 1 = n \cdot \text{LB}(C, \Delta) + 1,$$

which implies that at least one vertex of H appears in at least $\text{LB}(C, \Delta) + 1$ subgraphs, which is a contradiction to B being a C-edge-partition of G in which each vertex appears in at most $\text{LB}(C, \Delta)$ subgraphs.
Idea of the proof

Therefore, using (1) and (3), we get that the total number of occurrences of the vertices of H in some tree of B is

\[
\sum_{v \in V(H)} |\{ T \in B : v \in T \}| = \sum_{T \in B'} |V(T)| + |V(T \cap H)| = \sum_{T \in B'} |E(T)| + \sum_{T \in B'} |B'| + \alpha + 1
\]

\[
= \frac{nkC - 1}{2} - \alpha + |B'| + \alpha + 1 \geq \frac{nkC - 1}{2} + \frac{nk - 1}{2} + 2
\]

\[
= nk \cdot \frac{C + 1}{2} + 1 = n \cdot LB(C, \Delta) + 1,
\]

which implies that at least one vertex of H appears in at least \(LB(C, \Delta) + 1 \) subgraphs, which is a contradiction to B being a C-edge-partition of G in which each vertex appears in at most \(LB(C, \Delta) \) subgraphs.
Motivation: traffic grooming

Statement of the problem

The parameter $M(C, \Delta)$

Basic properties of $M(C, \Delta)$

Some results

Conclusions
Summary of results: values of $M(C, \Delta)$

<table>
<thead>
<tr>
<th>C</th>
<th>Δ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>\ldots</th>
<th>Δ even</th>
<th>Δ odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>\ldots</td>
<td>Δ</td>
<td>Δ</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>\ldots</td>
<td>$\frac{3\Delta}{4}$</td>
<td>$\frac{3\Delta}{4}$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3 (2)</td>
<td>3</td>
<td>4</td>
<td>5 (4)</td>
<td>5</td>
<td>\ldots</td>
<td>$\frac{2\Delta}{3}$</td>
<td>$\frac{2\Delta+1}{3}$ (2)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>\ldots</td>
<td>$\frac{5\Delta}{8}$</td>
<td>$\geq \frac{5\Delta}{8}$ (=)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4 (3)</td>
<td>4</td>
<td>5</td>
<td>\ldots</td>
<td>$\frac{3\Delta}{5}$</td>
<td>$\geq \frac{3\Delta}{5}$ (=)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>≥ 3 (=)</td>
<td>4</td>
<td>5</td>
<td>\ldots</td>
<td>$\frac{7\Delta}{12}$</td>
<td>$\geq \frac{7\Delta}{12}$ (=)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>≥ 3 (=)</td>
<td>4</td>
<td>5 (4)</td>
<td>\ldots</td>
<td>$\frac{4\Delta}{7}$</td>
<td>$\geq \frac{4\Delta}{7}$ (=)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>≥ 3 (=)</td>
<td>4</td>
<td>≥ 4 (=)</td>
<td>\ldots</td>
<td>$\frac{9\Delta}{16}$</td>
<td>$\geq \frac{9\Delta}{16}$ (=)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>≥ 3 (=)</td>
<td>4</td>
<td>≥ 4 (=)</td>
<td>\ldots</td>
<td>$\frac{5\Delta}{9}$</td>
<td>$\geq \frac{5\Delta}{9}$ (=)</td>
<td></td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>≥ 3 (=)</td>
<td>4</td>
<td>≥ 4 (=)</td>
<td>\ldots</td>
<td>$\frac{C+1}{C} \frac{\Delta}{2}$</td>
<td>$\geq \frac{C+1}{C} \frac{\Delta}{2}$ (=)</td>
<td></td>
</tr>
</tbody>
</table>

Table: Known values of $M(C, \Delta)$. The red cases remain open. The (blue) cases in brackets only hold if the graph has a perfect matching. The symbol “(=)” means that the corresponding lower bound is attained.
Conclusions and further research

- We have studied a new model of traffic grooming that allows the network to support dynamic traffic without reconfiguring the electronic equipment at the nodes.

- We established the value of $M(C, \Delta)$ for “almost all” values of C and Δ, leaving open only the case where:
 - $\Delta \geq 5$ is odd;
 - $C \geq 4$;
 - $3 \leq \Delta \pmod{2C} \leq C - 1$; and
 - the request graph does not contain a perfect matching.

- For these open cases, we provided upper bounds that differ from the optimal value by at most one.

- **Further Research:**
 - Determine $M(C, \Delta)$ for the remaining cases:
 - $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ or $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$??
 - Other classes of request graphs that make sense from the telecommunications point of view?
Conclusions and further research

- We have studied a new model of traffic grooming that allows the network to support dynamic traffic without reconfiguring the electronic equipment at the nodes.

- We established the value of $M(C, \Delta)$ for “almost all” values of C and Δ, leaving open only the case where:
 - $\Delta \geq 5$ is odd;
 - $C \geq 4$;
 - $3 \leq \Delta \text{ (mod } 2C) \leq C - 1$; and
 - the request graph does not contain a perfect matching.

- For these open cases, we provided upper bounds that differ from the optimal value by at most one.

Further Research:
- Determine $M(C, \Delta)$ for the remaining cases:
 - $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ or $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$??
- Other classes of request graphs that make sense from the telecommunications point of view?
Conclusions and further research

- We have studied a new model of traffic grooming that allows the network to support dynamic traffic without reconfiguring the electronic equipment at the nodes.

- We established the value of $M(C, \Delta)$ for “almost all” values of C and Δ, leaving open only the case where:
 - $\Delta \geq 5$ is odd;
 - $C \geq 4$;
 - $3 \leq \Delta \pmod{2C} \leq C - 1$; and
 - the request graph does not contain a perfect matching.

- For these open cases, we provided upper bounds that differ from the optimal value by at most one.

Further Research:
- Determine $M(C, \Delta)$ for the remaining cases:
 $$\left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor \text{ or } \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor + 1$$
- Other classes of request graphs that make sense from the telecommunications point of view?
Conclusions and further research

- We have studied a new model of **traffic grooming** that allows the network to support **dynamic** traffic without reconfiguring the electronic equipment at the nodes.

- We established the value of $M(C, \Delta)$ for “almost all” values of C and Δ, leaving open only the case where:
 - $\Delta \geq 5$ is odd;
 - $C \geq 4$;
 - $3 \leq \Delta \pmod{2C} \leq C - 1$; and
 - the request graph does not contain a perfect matching.

- For these open cases, we provided upper bounds that differ from the optimal value by at most one.

Further Research:
- Determine $M(C, \Delta)$ for the remaining cases:
 $$\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil \text{ or } \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$$

- Other classes of request graphs that make sense from the telecommunications point of view?
Gràcies!