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Definition of the problem

@ MaAaXiMuM DEGREE-BOUNDED CONNECTED SUBGRAPH
(MDBCS,):

Input:
» an undirected graph G = (V, E),
» aninteger d > 2, and
» aweight function w : E — R™.
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» is connected, and
» has maximum degree < d.

@ It is one of the classical NP-complete problems of
[Garey and Johnson, Computers and Intractability, 1979].
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Definition of the problem

@ MaAaXiMuM DEGREE-BOUNDED CONNECTED SUBGRAPH
(MDBCS,):

Input:
» an undirected graph G = (V, E),
» aninteger d > 2, and
» a weight function w : E — R,

Output:
a subset of edges E’ C E of maximum weight, s.t. G = (V, E')

» is connected, and
» has maximum degree < d.

@ It is one of the classical NP-complete problems of
[Garey and Johnson, Computers and Intractability, 1979].

@ If the output subgraph is not required to be connected, the
problem is in P for any d (using matching techniques).

@ For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)
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Example with d = 3, w(e) = 1 for all e € E(G)
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Example with d = 3 (ll)
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Example with d = 3 (lll)
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Example with d = 3 (IV)
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State of the art

To the best of our knowledge, there were no results in the literature
except for the case d = 2, a.k.a. the LONGEST PATH problem:
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State of the art

To the best of our knowledge, there were no results in the literature
except for the case d = 2, a.k.a. the LONGEST PATH problem:

@ Approximation algorithms:
@] (Iogn) -approximation, using the color-coding method.
N. Alon, R. Yuster and U. Zwick, STOC’94.

2
@) (n ('°9 '°9”> )-approximation.

logn

A. Bjorklund and T. Husfeldt, SIAM J. Computing’03.

@ Hardness results:
It does not accept any constant-factor approximation.
D. Karger, R. Motwani and G. Ramkumar, Algorithmica’97.
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Our results

@ Approximation algorithms (n = |V(G)|, m = |[E(G)|):

» min{7, 7}-approximation algorithm for weighted graphs.
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Our results

@ Approximation algorithms (n = |V(G)|, m = |[E(G)|):

» min{7, 7}-approximation algorithm for weighted graphs.
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» when G accepts a low-degree spanning tree, in terms of d, then
MDBCS, can be approximated within a small constant factor.
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Our results

@ Approximation algorithms (n = |V(G)|, m = |[E(G)|):

» min{7, 7}-approximation algorithm for weighted graphs.

> min{%, 2|’;‘;n}-approximation algorithm for unweighted graphs.

» when G accepts a low-degree spanning tree, in terms of d, then
MDBCS, can be approximated within a small constant factor.

@ Hardness results:

» For each fixed d > 2, MDBCS, does not accept any
constant-factor approximation in general graphs.

Ignasi Sau (Technion) Degree-Constrained Subgraph Problems 4th June 2008 9/19



Approximation algorithm for weighted graphs
Input: undirected graph G = (V, E), a weight function w : E — R™,
and anintegerd > 2. Let n=|V|, m = |E|, and p = min{n/2, m/d}.
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Approximation algorithm for weighted graphs

Input: undirected graph G = (V, E), a weight function w : E — R™,
and anintegerd > 2. Let n=|V|, m = |E|, and p = min{n/2, m/d}.

F: set of d heaviest edges in G, with weight w(F).
W: set of endpoints of those edges. Let H = (W, F).
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Input: undirected graph G = (V, E), a weight function w : E — R™,
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F: set of d heaviest edges in G, with weight w(F).
W: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases accordingto H = (W, F):

(1) If H= (W, F) is connected, the algorithm returns H.
Claim: this yields a p-approximation.
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F: set of d heaviest edges in G, with weight w(F).
W: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases accordingto H = (W, F):

(1) If H= (W, F) is connected, the algorithm returns H.
Claim: this yields a p-approximation.

(2) If H= (W, F) consists of a collection F of k connected
components, we glue them in k — 1 phases. In each phase:

» For every two components C, C’' € F, compute
d(C,C’') = min{dist(u,u/,G) |ue C,u € C'}.
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and anintegerd > 2. Let n=|V|, m = |E|, and p = min{n/2, m/d}.

F: set of d heaviest edges in G, with weight w(F).
W: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases accordingto H = (W, F):

(1) If H= (W, F) is connected, the algorithm returns H.
Claim: this yields a p-approximation.

(2) If H= (W, F) consists of a collection F of k connected
components, we glue them in k — 1 phases. In each phase:

» For every two components C, C’' € F, compute
d(C,C’') = min{dist(u,u/,G) |ue C,u € C'}.

» Take a pair C, C' € F attaining the smallest d(C, C').

» Letu e Cand v € C' be two vertices realizing this distance.
Let p(u, u') be a shortest path between v and v’ in G.

Ignasi Sau (Technion) Degree-Constrained Subgraph Problems 4th June 2008 10/19



Approximation algorithm for weighted graphs
Input: undirected graph G = (V, E), a weight function w : E — R™,
and anintegerd > 2. Let n=|V|, m = |E|, and p = min{n/2, m/d}.

F: set of d heaviest edges in G, with weight w(F).
W: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases accordingto H = (W, F):

(1) If H= (W, F) is connected, the algorithm returns H.
Claim: this yields a p-approximation.

(2) If H= (W, F) consists of a collection F of k connected
components, we glue them in k — 1 phases. In each phase:

» For every two components C, C’' € F, compute
d(C,C’') = min{dist(u,u/,G) |ue C,u € C'}.
» Take a pair C, C' € F attaining the smallest d(C, C').
» Letu e Cand v € C' be two vertices realizing this distance.
Let p(u, u') be a shortest path between v and v’ in G.
» Then we merge C, C’, and the path p(u, u’) — new component C.
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Analysis of the algorithm

(a) Running time: clearly polynomial.
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Analysis of the algorithm

(a) Running time: clearly polynomial.

(b) Correctness:
» The output subgraph is connected.

» Claim: after i phases, A(H) <d - k+i+1.
The proof is done by induction. When i = k — 1 we get A(H) < d.
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Analysis of the algorithm

(a) Running time: clearly polynomial.

(b) Correctness:
» The output subgraph is connected.

» Claim: after i phases, A(H) <d - k+i+1.
The proof is done by induction. When i = k — 1 we get A(H) < d.

(c) Approximation ratio: follows from case (1).

Ignasi Sau (Technion) Degree-Constrained Subgraph Problems 4th June 2008 11/19



Preliminaries: hardness of approximation

@ Class APX (Approximable):

an NP-complete optimization problem is in APX if it can be
approximated within a constant factor.

Example: VERTEX COVER

@ Class PTAS (Polynomial-Time Approximation Scheme):

an NP-complete optimization problem is in PTAS if it can be
approximated within a constant factor 1 + ¢, for alle > 0
(the best one can hope for an NP-complete problem).

Example: MAXIMUM KNAPSACK
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Hardness result: idea of the proof

(1) First we prove that MDBCS, ¢ PTAS:
Reduction from TSP(1,2).
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» Let @ > 1 be the hardness factor of MDBCS, given by (1).
» We use a technique called error amplification:

* We build a sequence of families of graphs G, such that MDBCSy is
hard to approximate in G¥ within a factor o, unless P = NP.
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Hardness result: idea of the proof

(1) First we prove that MDBCS, ¢ PTAS:
Reduction from TSP(1,2).

(2) Then we prove that MDBCS, ¢ APX:
» Let @ > 1 be the hardness factor of MDBCS, given by (1).
» We use a technique called error amplification:

* We build a sequence of families of graphs G, such that MDBCSy is
hard to approximate in G¥ within a factor o, unless P = NP.

* This proves that the problem is not in APX.
(for any constant C, 3 k > 0 such that o > C).

» Let G' = G.
We explain the construction of G2: first take our graph G and...
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Error amplification to prove that MDBCS, ¢ APX

For each pair of vertices {u, v} € V2, u # v, we build the graph Gﬁ,v in
the following way:
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Error amplification to prove that MDBCS, ¢ APX (ll)

We replace each edge e; = (x, y) € E(G) with a copy G; of G,
i=1,...,m:

/N /N
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Error amplification to prove that MDBCS, ¢ APX (111
The copy of the vertex u € V(G) in G; is labeled u;. For each

ei = (x,y) € E(G), we add the edges (x, u;) and (y, v;) with weight ¢,
0<e<< 1.
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Error amplification to prove that MDBCS, ¢ APX (1V)

@ Suppose we have an approx. algo C with ratio p. We define G? as
the graph Gﬁ’v for which algorithm C gives the best solution.
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Error amplification to prove that MDBCS, ¢ APX (1V)

@ Suppose we have an approx. algo C with ratio p. We define G? as
the graph Gﬁ’v for which algorithm C gives the best solution.

@ Claim 1: OPT, > OPT? + 2¢ - OPT; =~ OPT2.
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Error amplification to prove that MDBCS, ¢ APX (1V)
@ Suppose we have an approx. algo C with ratio p. We define G? as
the graph Gﬁ’v for which algorithm C gives the best solution.
@ Claim 1: OPT, > OPT? + 2¢ - OPT; =~ OPT2.
@ Claim 2: Given any solution S, in G? with weight x, it is possible
to find a solution Sy in G with weight at least /x.
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Error amplification to prove that MDBCS, ¢ APX (1V)

@ Suppose we have an approx. algo C with ratio p. We define G? as
the graph Gﬁ’v for which algorithm C gives the best solution.
@ Claim 1: OPT, > OPT12 +2¢-OPTy =~ OPT12.
@ Claim 2: Given any solution S, in G? with weight x, it is possible
to find a solution Sy in G with weight at least /x.
To prove the claim, we distinguish two cases:
e Case a: S, intersects at least /x copies of G.
Let S; be the subgraph of G induced by the edges corresponding to
these copies of G in G?.
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to find a solution Sy in G with weight at least /x.
To prove the claim, we distinguish two cases:
e Case a: S, intersects at least /x copies of G.
Let S; be the subgraph of G induced by the edges corresponding to
these copies of G in G?.
e Case b: S; intersects strictly fewer than /x copies of G.
Let S; be S; N G;, with G; being the copy of G in G? such that
|E(S2 N Gj)| is maximized.
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e Case a: S, intersects at least /x copies of G.
Let S; be the subgraph of G induced by the edges corresponding to
these copies of G in G?.
e Case b: S; intersects strictly fewer than /x copies of G.
Let S; be S; N G;, with G; being the copy of G in G? such that
|E(S2 N Gj)| is maximized.
In both cases S; is connected, has maximum degree at most d,
and has at least \/x edges.
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Error amplification to prove that MDBCS, ¢ APX (1V)

@ Suppose we have an approx. algo C with ratio p. We define G? as
the graph Gﬁ,v for which algorithm C gives the best solution.
@ Claim 1: OPT, > OPT? + 2¢ - OPT; =~ OPT2.
@ Claim 2: Given any solution S, in G? with weight x, it is possible
to find a solution Sy in G with weight at least /x.
To prove the claim, we distinguish two cases:
e Case a: S, intersects at least /x copies of G.
Let S; be the subgraph of G induced by the edges corresponding to
these copies of G in G?.
e Case b: S; intersects strictly fewer than /x copies of G.
Let S; be S; N G;, with G; being the copy of G in G? such that
|E(S2 N Gj)| is maximized.
In both cases S; is connected, has maximum degree at most d,
and has at least \/x edges.
@ Combining Claims 1 and 2: if there exists a p-approximation in G2,

then it is possible to find a solution for G with weight at least
T PT. U
Pl > O\/; = we have a ,/p-approximation in G.
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Conclusions and further research
@ We have proved that MDBCSy, d > 2, is not in APX.
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Conclusions and further research
@ We have proved that MDBCSy, d > 2, is not in APX.

@ We have provided approximation algorithms for any d:

» min{3, Z}-approximation algorithm for weighted graphs.
> mm{logn, 2Iogn} approximation algorithm for unweighted graphs.
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@ We have provided approximation algorithms for any d:

» min{7, 7 }-approximation algorithm for weighted graphs.

> min{%, 2|’;‘én}-approximation algorithm for unweighted graphs.

» We have also proved that when G accepts a low-degree
spanning tree, in terms of d, then MDBCS, can be approximated
within a small constant factor in unweighted graphs.

Ignasi Sau (Technion) Degree-Constrained Subgraph Problems 4th June 2008 18/19



Conclusions and further research
@ We have proved that MDBCSy, d > 2, is not in APX.

@ We have provided approximation algorithms for any d:

» min{7, 7 }-approximation algorithm for weighted graphs.

> min{%, 2|’;‘én}-approximation algorithm for unweighted graphs.

» We have also proved that when G accepts a low-degree
spanning tree, in terms of d, then MDBCS, can be approximated
within a small constant factor in unweighted graphs.

@ Further Research:

» Close the huge complexity gap of MDBCS,, d > 2.

» Find polynomial cases or better approximation algorithms for
specific classes of graphs.

» Consider a parameterized version of the problem.
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Thanks!
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