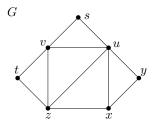
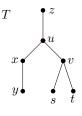
Computing Distances on Graph Associahedra is Fixed-parameter Tractable

Luís Felipe I. Cunha Ignasi Sau Uéverton S. Souza Mario Valencia-Pabon

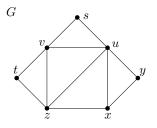
Univ. Federal Fluminense, Niterói, Brazil LIRMM, Univ. Montpellier, CNRS, France UFF+IMPA, Niterói+Rio de Janeiro, Brazil Univ. Lorraine, LORIA, Nancy, France

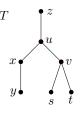
Seminário ParGO UFC, Fortaleza November 19, 2025





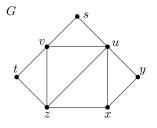
Elimination trees

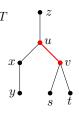

Tree *T* obtained from a graph *G* by picking recursively a vertex in each connected component of the current graph:



Elimination trees (or forests)

Tree *T* obtained from a graph *G* by picking recursively a vertex in each connected component of the current graph:

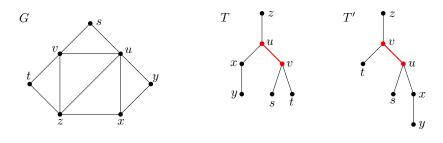




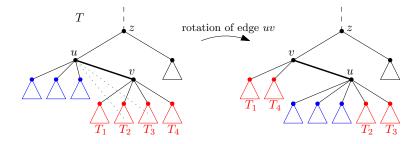
Elimination trees have been studied extensively in many contexts: graph theory, combinatorial optimization, polyhedral combinatorics, data structures, VLSI design, ...

Elimination trees (or forests)

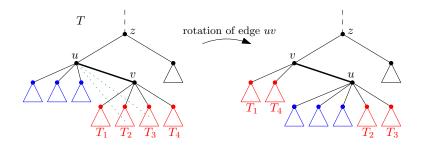
Tree *T* obtained from a graph *G* by picking recursively a vertex in each connected component of the current graph:



Elimination trees have been studied extensively in many contexts: graph theory, combinatorial optimization, polyhedral combinatorics, data structures, VLSI design, ...


Elimination trees (or forests)

Tree *T* obtained from a graph *G* by picking recursively a vertex in each connected component of the current graph:



Elimination trees have been studied extensively in many contexts: graph theory, combinatorial optimization, polyhedral combinatorics, data structures, VLSI design, ...

Rotation distance between elimination trees

Rotation distance between elimination trees

The rotation distance between two elimination trees (forests) T, T' of a graph G, denoted by dist(T, T'), is the minimum number of rotations it takes to transform T into T'.

Graph associahedra

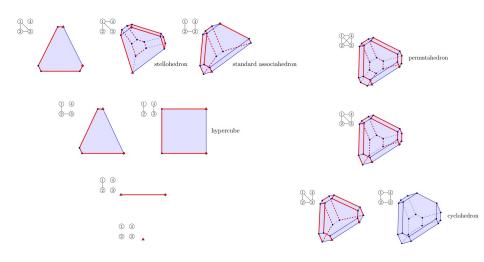
For any graph G, the flip graph of elimination forests of G under edge rotations is the skeleton of a polytope: graph associahedron $\mathcal{A}(G)$.

Object introduced by

[Carr, Devadoss, Postnikov. 2006-2009]

Graph associahedra

For any graph G, the flip graph of elimination forests of G under edge rotations is the skeleton of a polytope: graph associahedron $\mathcal{A}(G)$.


Object introduced by

[Carr, Devadoss, Postnikov. 2006-2009]

Famous particular cases of $\mathcal{A}(G)$ depending on the underlying graph G:

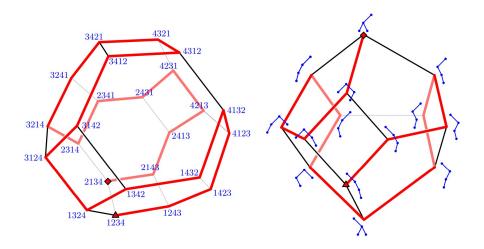
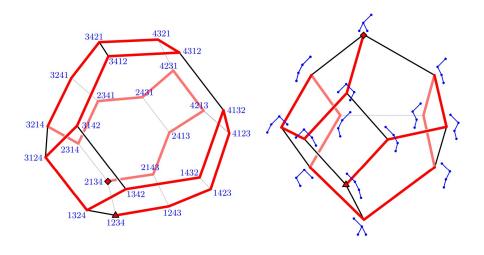
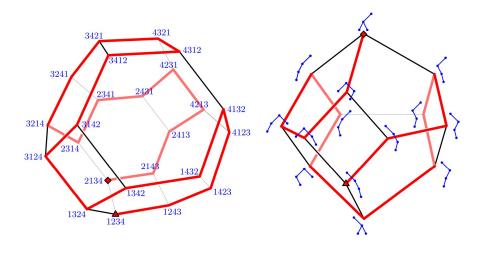

G	$\mathcal{A}(G)$
path	(standard) associahedron
complete graph	permutahedron
cycle	cyclohedron
star	stellohedron
matching	hypercube

Illustration of some famous examples


Shamelessly stolen from this very nice article:

Zooming in: permutahedron and (standard) associahedron


Shamelessly stolen from this very nice article: [Cardinal, Merino, Mütze. 2022]

Zooming in: permutahedron and (standard) associahedron

The (standard) associahedron has a rich history and literature, connecting computer science, combinatorics, algebra, and topology.

Zooming in: permutahedron and (standard) associahedron

Binary trees are in bijection with many other Catalan objects: triangulations of a convex polygon, well-formed parenthesis, Dyck paths,

Intensively studied: diameter of graph associahedra

Determining the diameter exactly, or upper/lower bounds, or estimates:

```
• If G is a path: [Sleator, Tarjan, Thurston. 1998] [Pournin. 2014]
```

• If G is a star: [Manneville, Pilaud. 2010]

• If G is a cycle: [Pournin. 2017]

• If G is a tree: [Manneville, Pilaud. 2010]

[Cardinal, Langerman, Pérez-Lantero. 2018]

• If G is a complete bipartite or trivially perfect graph:

[Cardinal, Pournin, Valencia-Pabon. 2022]

• If G is a caterpillar: [Berendsohn. 2022]

• If G has bounded treedepth or treewidth:

[Cardinal, Pournin, Valencia-Pabon. 2022]

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a

positive integer k.

Question: Is the rotation distance between T and T' at most k?

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a

positive integer k.

Question: Is the rotation distance between T and T' at most k?

Only few cases known to be solvable in polynomial time:

• If G is a complete graph: [Folklore]

• If G is a star: [Cardinal, Pournin, Valencia-Pabon. 2022]

• If G is a complete split graph: [Cardinal, Pournin, Valencia-Pabon. 2024]

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a

positive integer k.

Question: Is the rotation distance between T and T' at most k?

Only few cases known to be solvable in polynomial time:

• If G is a complete graph: [Folklore]

• If G is a star: [Cardinal, Pournin, Valencia-Pabon. 2022]

• If G is a complete split graph: [Cardinal, Pournin, Valencia-Pabon. 2024]

Notorious open problem (polynomial or NP-hard?): if G is a path.

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a

positive integer k.

Question: Is the rotation distance between T and T' at most k?

Only few cases known to be solvable in polynomial time:

• If G is a complete graph: [Folklore]

• If G is a star: [Cardinal, Pournin, Valencia-Pabon. 2022]

• If G is a complete split graph: [Cardinal, Pournin, Valencia-Pabon. 2024]

Notorious open problem (polynomial or NP-hard?): if *G* is a path.

This is **not** the problem we solve!

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a

positive integer k.

Question: Is the rotation distance between T and T' at most k?

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a

positive integer k.

Question: Is the rotation distance between T and T' at most k?

Is the problem NP-hard for a general graph G?

[Cardinal, Kleist, Klemz, Lubiw, Mütze, Neuhaus, Pournin. Dagstuhl 2022]

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a

positive integer k.

Question: Is the rotation distance between T and T' at most k?

Is the problem NP-hard for a general graph G?

[Cardinal, Kleist, Klemz, Lubiw, Mütze, Neuhaus, Pournin. Dagstuhl 2022]

Yes, it is!

[Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. ICALP 2023]

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a

positive integer k.

Question: Is the rotation distance between T and T' at most k?

Is the problem NP-hard for a general graph G?

[Cardinal, Kleist, Klemz, Lubiw, Mütze, Neuhaus, Pournin. Dagstuhl 2022]

Yes, it is!

[Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. ICALP 2023]

[Cardinal, Steiner. 2023]

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a

positive integer k.

Question: Is the rotation distance between T and T' at most k?

Is the problem NP-hard for a general graph G?

[Cardinal, Kleist, Klemz, Lubiw, Mütze, Neuhaus, Pournin. Dagstuhl 2022]

Yes, it is!

[Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. ICALP 2023] [Cardinal, Steiner. 2023]

This motivates the study of the parameterized complexity of the problem.

Instance of a parameterized problem: total size n, parameter k.

• XP problem: solvable in time $f(k) \cdot n^{g(k)}$.

- XP problem: solvable in time $f(k) \cdot n^{g(k)}$.
 - Example: $\mathcal{O}(n^k)$.

- XP problem: solvable in time $f(k) \cdot n^{g(k)}$.
 - Example: $\mathcal{O}(n^k)$.
- FPT problem: solvable in time $f(k) \cdot n^c$ for an absolute constant c.

- XP problem: solvable in time $f(k) \cdot n^{g(k)}$.
 - Example: $\mathcal{O}(n^k)$.
- FPT problem: solvable in time $f(k) \cdot n^c$ for an absolute constant c.
 - Example: $\mathcal{O}(2^k \cdot n^2)$.

- XP problem: solvable in time $f(k) \cdot n^{g(k)}$.
 - Example: $\mathcal{O}(n^k)$.
- FPT problem: solvable in time $f(k) \cdot n^c$ for an absolute constant c.
 - Example: $\mathcal{O}(2^k \cdot n^2)$.
- W[i]-hard problem, for $i \ge 1$: strong evidence that it is *not* FPT.

- XP problem: solvable in time $f(k) \cdot n^{g(k)}$.
 - Example: $\mathcal{O}(n^k)$.
- FPT problem: solvable in time $f(k) \cdot n^c$ for an absolute constant c.
 - Example: $\mathcal{O}(2^k \cdot n^2)$.
- W[i]-hard problem, for $i \ge 1$: strong evidence that it is *not* FPT.
- para-NP-hard problem: NP-hard for a fixed value of the parameter.

Statement of the parameterized problem

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a

positive integer k.

Parameter: k.

Question: Is the rotation distance between T and T' at most k?

Statement of the parameterized problem and our result

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a

positive integer k.

Parameter: *k*

Question: Is the rotation distance between T and T' at most k?

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$,

Statement of the parameterized problem and our result

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a

positive integer k.

Parameter: k

Question: Is the rotation distance between T and T' at most k?

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$,

with
$$f(k) = k^{k \cdot 2^{2}}$$
,

where the tower of exponentials has height at most $(3k+1)4k = \mathcal{O}(k^2)$.

Statement of the parameterized problem and our result

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T' of G, and a positive integer k.

Parameter:

Question: Is the rotation distance between T and T' at most k?

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$, with $f(k) = k^{k \cdot 2^{2^{-1}}}$,

where the tower of exponentials has height at most $(3k+1)4k = \mathcal{O}(k^2)$.

Prior to our work, only the case where G is a path was known to be FPT. [Cleary, St. John. 2009] [Lucas. 2010] [Kanj, Sedgwick, Xia. 2017] [Li, Xia. 2023]

Main ideas of the FPT algorithm

Goal: find an ℓ -rotation sequence σ from T to T', for some $\ell \leq k$.

Main ideas of the FPT algorithm

Goal: find an ℓ -rotation sequence σ from T to T', for some $\ell \leq k$.

High level: identify a subset of marked vertices $M \subseteq V(T)$, of size $\leq f(k)$, so that we can assume that the desired ℓ -rotation sequence σ uses only vertices in M.

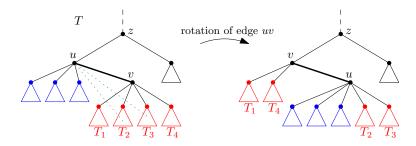
Main ideas of the FPT algorithm

Goal: find an ℓ -rotation sequence σ from T to T', for some $\ell \leq k$.

High level: identify a subset of marked vertices $M \subseteq V(T)$, of size $\leq f(k)$, so that we can assume that the desired ℓ -rotation sequence σ uses only vertices in M.

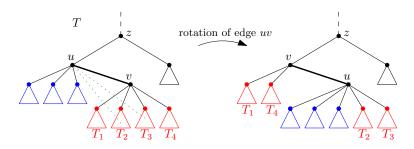
Once this is proved, an FPT algorithm follows directly by applying brute force and guessing all possible rotations using only vertices in M.

Main ideas of the FPT algorithm


Goal: find an ℓ -rotation sequence σ from T to T', for some $\ell \leq k$.

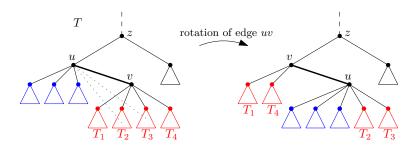
High level: identify a subset of marked vertices $M \subseteq V(T)$, of size $\leq f(k)$, so that we can assume that the desired ℓ -rotation sequence σ uses only vertices in M.

Once this is proved, an FPT algorithm follows directly by applying brute force and guessing all possible rotations using only vertices in M.


Let us see how we find such a "small" set $M \subseteq V(T)$ of marked vertices...

There are few children-bad vertices

Observation: a rotation may change the set of children of at most three vertices (but the parent of arbitrarily many vertices).


There are few children-bad vertices

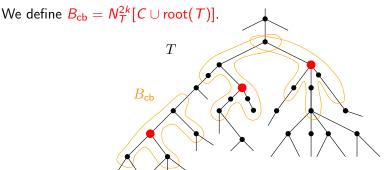
Observation: a rotation may change the set of children of at most three vertices (but the parent of arbitrarily many vertices).

A vertex $v \in V(T)$ is (T, T')-children-bad if its set of children in T is different from its set of children in T'.

There are few children-bad vertices

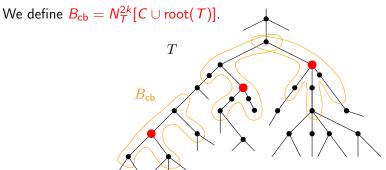
Observation: a rotation may change the set of children of at most three vertices (but the parent of arbitrarily many vertices).

A vertex $v \in V(T)$ is (T, T')-children-bad if its set of children in T is different from its set of children in T'.


We may assume that there are at most 3k (T, T')-children-bad vertices.

Observation: a rotation may change vertex distances (in T) by ≤ 1 .

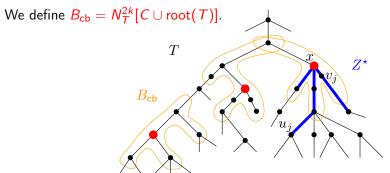
Observation: a rotation may change vertex distances (in T) by ≤ 1 . Let $C \subseteq V(T)$ be the set of (T, T')-children-bad vertices.


Observation: a rotation may change vertex distances (in T) by ≤ 1 .

Let $C \subseteq V(T)$ be the set of (T, T')-children-bad vertices.

Observation: a rotation may change vertex distances (in T) by ≤ 1 .

Let $C \subseteq V(T)$ be the set of (T, T')-children-bad vertices.



Lemma

If $\operatorname{dist}(T,T') \leq k$, then there exists an ℓ -rotation sequence from T to T', with $\ell \leq k$, using only vertices in B_{cb} .

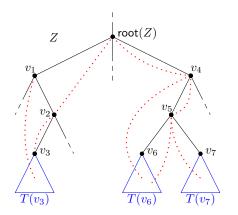
Observation: a rotation may change vertex distances (in T) by ≤ 1 .

Let $C \subseteq V(T)$ be the set of (T, T')-children-bad vertices.

Lemma

If $\operatorname{dist}(T,T') \leq k$, then there exists an ℓ -rotation sequence from T to T', with $\ell \leq k$, using only vertices in B_{cb} .

If $\Delta(T)$ is bounded (in particular, if $\Delta(G)$ is bounded), we are done!


Only obstacle to get our FPT algorithm: high-degree vertices in $T[B_{cb}]$.

Only obstacle to get our FPT algorithm: high-degree vertices in $T[B_{cb}]$.

Fix a connected component Z of $T[B_{cb}]$ (considered as a rooted tree).

Only obstacle to get our FPT algorithm: high-degree vertices in $T[B_{cb}]$. Fix a connected component Z of $T[B_{cb}]$ (considered as a rooted tree). trace(T, Z, v): "abstract" neighborhood of T(v) in its ancestors in Z.

Only obstacle to get our FPT algorithm: high-degree vertices in $T[B_{cb}]$. Fix a connected component Z of $T[B_{cb}]$ (considered as a rooted tree). trace(T, Z, v): "abstract" neighborhood of T(v) in its ancestors in Z.

$$\begin{split} & \operatorname{trace}(T, Z, v_1) = (1) \\ & \operatorname{trace}(T, Z, v_2) = (1, 1) \\ & \operatorname{trace}(T, Z, v_3) = (1, 1, 0) \\ & \operatorname{trace}(T, Z, v_4) = (1) \\ & \operatorname{trace}(T, Z, v_5) = (1, 0) \\ & \operatorname{trace}(T, Z, v_6) = (1, 1, 0) \\ & \operatorname{trace}(T, Z, v_7) = (1, 0, 0) \end{split}$$

Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable.

Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable.

Same type: same "variety of traces among children in Z"

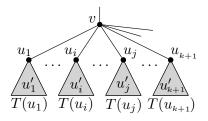
Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable.

Same type: same "variety of traces among children in Z" \rightarrow recursive!

Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable.

Same type: same "variety of traces among children in Z" \rightarrow recursive!

Problem: #children may be unbounded, and we want #types $\leq f(k)$.


Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable.

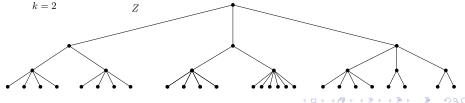
Same type: same "variety of traces among children in Z" \rightarrow recursive!

Problem: #children may be unbounded, and we want #types $\leq f(k)$.

Lemma

Let σ be an ℓ -rotation sequence from T to T', for some $\ell \leq k$. For every vertex $v \in V(T)$, there are at most k vertices $u_1, \ldots, u_k \in \operatorname{children}(T, v)$ such that σ uses a vertex in each of the rooted subtrees $T(u_1), \ldots, T(u_k)$.

Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable. Same type: same "variety of traces among children in Z" \to recursive! Problem: #children may be unbounded, and we want #types $\leq f(k)$.

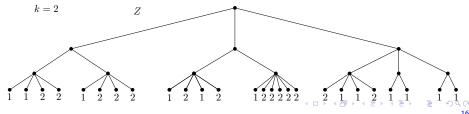

Lemma

Let σ be an ℓ -rotation sequence from T to T', for some $\ell \leq k$. For every vertex $v \in V(T)$, there are at most k vertices $u_1, \ldots, u_k \in \mathsf{children}(T, v)$ such that σ uses a vertex in each of the rooted subtrees $T(u_1), \ldots, T(u_k)$.

Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable. Same type: same "variety of traces among children in Z" \to recursive! Problem: #children may be unbounded, and we want #types $\leq f(k)$.

Lemma

Let σ be an ℓ -rotation sequence from T to T', for some $\ell \leq k$. For every vertex $v \in V(T)$, there are at most k vertices $u_1, \ldots, u_k \in \operatorname{children}(T, v)$ such that σ uses a vertex in each of the rooted subtrees $T(u_1), \ldots, T(u_k)$.

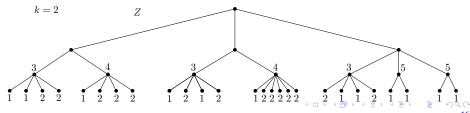


Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable.

Same type: same "variety of traces among children in Z" \rightarrow recursive! Problem: #children may be unbounded, and we want #types $\leq f(k)$.

Lemma

Let σ be an ℓ -rotation sequence from T to T', for some $\ell \leq k$. For every vertex $v \in V(T)$, there are at most k vertices $u_1, \ldots, u_k \in \text{children}(T, v)$ such that σ uses a vertex in each of the rooted subtrees $T(u_1), \ldots, T(u_k)$.

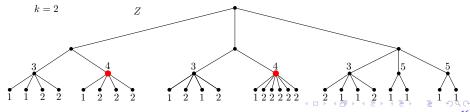


Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable.

Same type: same "variety of traces among children in Z" \rightarrow recursive! Problem: #children may be unbounded, and we want #types $\leq f(k)$.

Lemma

Let σ be an ℓ -rotation sequence from T to T', for some $\ell \leq k$. For every vertex $v \in V(T)$, there are at most k vertices $u_1, \ldots, u_k \in \text{children}(T, v)$ such that σ uses a vertex in each of the rooted subtrees $T(u_1), \ldots, T(u_k)$.

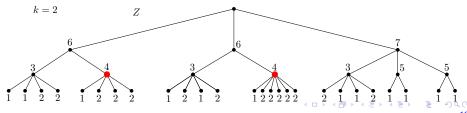


Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable. Same type: same "variety of traces among children in Z" \to recursive!

Problem: #children may be unbounded, and we want #types $\leq f(k)$.

Lemma

Let σ be an ℓ -rotation sequence from T to T', for some $\ell \leq k$. For every vertex $v \in V(T)$, there are at most k vertices $u_1, \ldots, u_k \in \text{children}(T, v)$ such that σ uses a vertex in each of the rooted subtrees $T(u_1), \ldots, T(u_k)$.

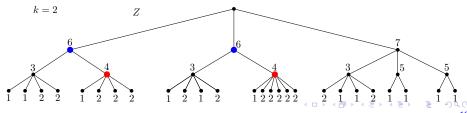


Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable.

Same type: same "variety of traces among children in Z" \rightarrow recursive! Problem: #children may be unbounded, and we want #types $\leq f(k)$.

Lemma

Let σ be an ℓ -rotation sequence from T to T', for some $\ell \leq k$. For every vertex $v \in V(T)$, there are at most k vertices $u_1, \ldots, u_k \in \text{children}(T, v)$ such that σ uses a vertex in each of the rooted subtrees $T(u_1), \ldots, T(u_k)$.

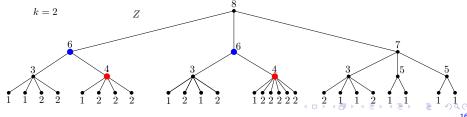


Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable.

Same type: same "variety of traces among children in Z" \rightarrow recursive! Problem: #children may be unbounded, and we want #types $\leq f(k)$.

Lemma

Let σ be an ℓ -rotation sequence from T to T', for some $\ell \leq k$. For every vertex $v \in V(T)$, there are at most k vertices $u_1, \ldots, u_k \in \text{children}(T, v)$ such that σ uses a vertex in each of the rooted subtrees $T(u_1), \ldots, T(u_k)$.



Goal: if $\tau(T, Z, v) = \tau(T, Z, v')$, then T(v) and T(v') interchangeable.

Same type: same "variety of traces among children in Z" \rightarrow recursive! Problem: #children may be unbounded, and we want #types $\leq f(k)$.

Lemma

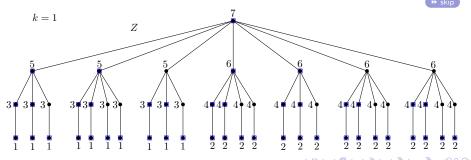
Let σ be an ℓ -rotation sequence from T to T', for some $\ell \leq k$. For every vertex $v \in V(T)$, there are at most k vertices $u_1, \ldots, u_k \in \text{children}(T, v)$ such that σ uses a vertex in each of the rooted subtrees $T(u_1), \ldots, T(u_k)$.

Number of types bounded by a function of k

Lemma

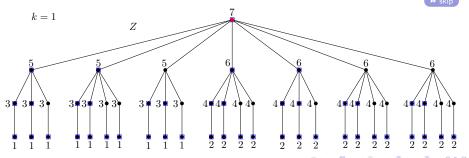
 $\{\tau(T,Z,v)\mid v\in V(Z)\}$ has size bounded by a function g(k),

Lemma

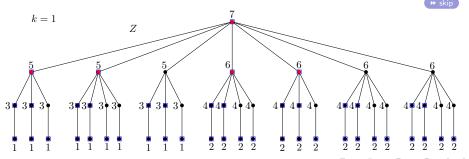

```
\{	au(T,Z,v)\mid v\in V(Z)\} has size bounded by a function g(k), with g(k)=k^{2^{2^{-1}}}, where the tower has height \operatorname{diam}(Z)=\mathcal{O}(k^2).
```

Lemma

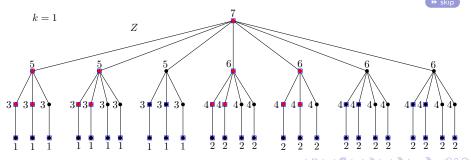
$$\{ au(T,Z,v)\mid v\in V(Z)\}$$
 has size bounded by a function $g(k)$, with
$$g(k)=k^{2^{2^{-1}}}, \text{ where the tower has height } \mathrm{diam}(Z)=\mathcal{O}(k^2).$$


Lemma

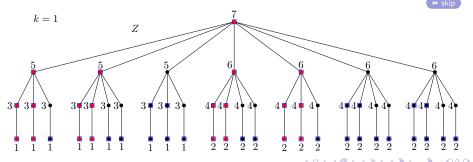
$$\{ au(T,Z,v)\mid v\in V(Z)\}$$
 has size bounded by a function $g(k)$, with $g(k)=k^{2^{2^{-1}}}$, where the tower has height $\operatorname{diam}(Z)=\mathcal{O}(k^2)$.


Lemma

$$\{ au(T,Z,v)\mid v\in V(Z)\}$$
 has size bounded by a function $g(k)$, with $g(k)=k^{2^{2^{*}}}$, where the tower has height $\operatorname{diam}(Z)=\mathcal{O}(k^2)$.


Lemma

$$\{ au(T,Z,v)\mid v\in V(Z)\}$$
 has size bounded by a function $g(k)$, with $g(k)=k^{2^{2^{-1}}}$, where the tower has height $\operatorname{diam}(Z)=\mathcal{O}(k^2)$.


Lemma

$$\{ au(T,Z,v)\mid v\in V(Z)\}$$
 has size bounded by a function $g(k)$, with $g(k)=k^{2^{2^{-1}}}$, where the tower has height $\mathrm{diam}(Z)=\mathcal{O}(k^2)$.

Lemma

$$\{ au(T,Z,v)\mid v\in V(Z)\}$$
 has size bounded by a function $g(k)$, with $g(k)=k^{2^{2^{-1}}}$, where the tower has height $\operatorname{diam}(Z)=\mathcal{O}(k^2)$.

Lemma

The set $M \subseteq V(T)$ of marked vertices has size bounded by a function h(k), with the same asymptotic growth as the function g(k) given by the number of types. Moreover, M can be computed in time $h(k) \cdot |V(G)|$.

Lemma

The set $M \subseteq V(T)$ of marked vertices has size bounded by a function h(k), with the same asymptotic growth as the function g(k) given by the number of types. Moreover, M can be computed in time $h(k) \cdot |V(G)|$.

Main technical lemma:

Lemma

If $\operatorname{dist}(T,T') \leq k$, then there exists an ℓ -rotation sequence from T to T', with $\ell \leq k$, using only vertices in M.

Lemma

The set $M \subseteq V(T)$ of marked vertices has size bounded by a function h(k), with the same asymptotic growth as the function g(k) given by the number of types. Moreover, M can be computed in time $h(k) \cdot |V(G)|$.

Main technical lemma:

Lemma

If $\operatorname{dist}(T,T') \leq k$, then there exists an ℓ -rotation sequence from T to T', with $\ell \leq k$, using only vertices in M.

Scheme of the proof:

• Let σ be an ℓ -rotation sequence from T to T' minimizing the number of non-marked vertices used by σ .

Lemma

The set $M \subseteq V(T)$ of marked vertices has size bounded by a function h(k), with the same asymptotic growth as the function g(k) given by the number of types. Moreover, M can be computed in time $h(k) \cdot |V(G)|$.

Main technical lemma:

Lemma

If $\operatorname{dist}(T,T') \leq k$, then there exists an ℓ -rotation sequence from T to T', with $\ell \leq k$, using only vertices in M.

Scheme of the proof:

- Let σ be an ℓ -rotation sequence from T to T' minimizing the number of non-marked vertices used by σ .
- Goal: define another sequence σ' using < non-marked vertices.

Lemma

The set $M \subseteq V(T)$ of marked vertices has size bounded by a function h(k), with the same asymptotic growth as the function g(k) given by the number of types. Moreover, M can be computed in time $h(k) \cdot |V(G)|$.

Main technical lemma:

Lemma

If $\operatorname{dist}(T,T') \leq k$, then there exists an ℓ -rotation sequence from T to T', with $\ell \leq k$, using only vertices in M.

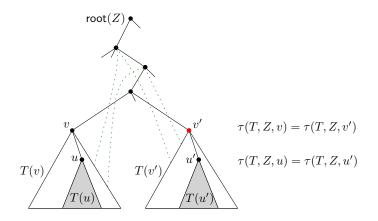
Scheme of the proof:

- Let σ be an ℓ -rotation sequence from T to T' minimizing the number of non-marked vertices used by σ .
- ullet Goal: define another sequence σ' using < non-marked vertices.
- Let $v \in V(T)$ be a downmost non-marked vertex used by σ .

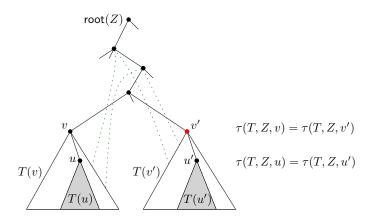
Lemma

The set $M \subseteq V(T)$ of marked vertices has size bounded by a function h(k), with the same asymptotic growth as the function g(k) given by the number of types. Moreover, M can be computed in time $h(k) \cdot |V(G)|$.

Main technical lemma:


Lemma

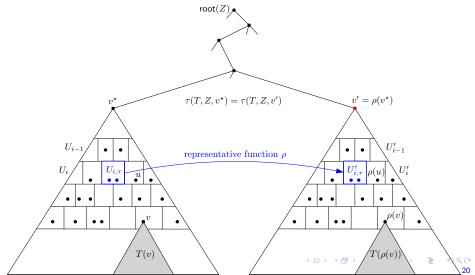
If $\operatorname{dist}(T,T') \leq k$, then there exists an ℓ -rotation sequence from T to T', with $\ell \leq k$, using only vertices in M.


Scheme of the proof:

- Let σ be an ℓ -rotation sequence from T to T' minimizing the number of non-marked vertices used by σ .
- ullet Goal: define another sequence σ' using < non-marked vertices.
- Let $v \in V(T)$ be a downmost non-marked vertex used by σ .
- We distinguish two cases...

If v has a marked (non-used) T-sibling v' with $\tau(T, Z, v) = \tau(T, Z, v')$:

If v has a marked (non-used) T-sibling v' with $\tau(T, Z, v) = \tau(T, Z, v')$:



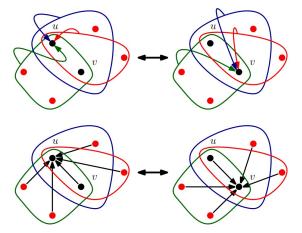
We define σ' from σ by just replacing v with v' in all the rotations of σ involving v.

All *T*-siblings v' of v with $\tau(T, Z, v) = \tau(T, Z, v')$ are non-marked.

All T-siblings v' of v with $\tau(T, Z, v) = \tau(T, Z, v')$ are non-marked.

In this case, to define σ' , we need to modify σ in a more global way:

ROTATION DISTANCE problem: distances on graph associahedra.


ROTATION DISTANCE problem: distances on graph associahedra.

Natural generalization: distances on hypergraphic polytopes.

Fix a hypergraph H. We define the hypergraphic polytope of H as:

Fix a hypergraph H. We define the hypergraphic polytope of H as:

- **Vertices**: all acyclic orientations of *H*.
- **Edges**: if the two corresponding rotations are related by a flip.

Computing distances on hypergraphic polytopes is NP-hard.

[Cardinal, Steiner. 2023]

Computing distances on hypergraphic polytopes is NP-hard.

[Cardinal, Steiner. 2023]

Is the problem FPT?

Computing distances on hypergraphic polytopes is NP-hard.

[Cardinal, Steiner. 2023]

Is the problem FPT?

Theorem (Cunha, S., Souza, Valencia-Pabon. 2025)

Computing distances on hypergraphic polytopes is W[2]-hard parameterized by the distance.

Computing distances on hypergraphic polytopes is NP-hard.

[Cardinal, Steiner. 2023]

Is the problem FPT?

Theorem (Cunha, S., Souza, Valencia-Pabon. 2025)

Computing distances on hypergraphic polytopes is W[2]-hard parameterized by the distance.

We present a parameterized reduction from k-Dominating Set.

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$,

with
$$f(k) = k^{k \cdot 2^{2}}$$
,

where the tower of exponentials has height at most $(3k+1)4k = \mathcal{O}(k^2)$.

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$,

with
$$f(k) = k^{k \cdot 2^{2} \cdot 2^{O(k^2)}}$$
,

where the tower of exponentials has height at most $(3k+1)4k = \mathcal{O}(k^2)$.

It should be possible to improve f(k) (dominated by the number of types).

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$,

with
$$f(k) = k^{k \cdot 2^{2^{-2^{\mathcal{O}(k^2)}}}}$$
,

where the tower of exponentials has height at most $(3k + 1)4k = \mathcal{O}(k^2)$.

It should be possible to improve f(k) (dominated by the number of types).

ROTATION DISTANCE	paths	general graphs
NP-hard	open	✓
FPT	√	√[this article]
Polynomial kernel	√	open

Theorem

The ROTATION DISTANCE problem can be solved in time $f(k) \cdot |V(G)|$,

with
$$f(k) = k^{k \cdot 2^{2^{k}}}$$
,

where the tower of exponentials has height at most $(3k + 1)4k = O(k^2)$.

It should be possible to improve f(k) (dominated by the number of types).

ROTATION DISTANCE	paths	general graphs
NP-hard	open	√
FPT	✓	√[this article]
Polynomial kernel	√	open

COMBINATORIAL SHORTEST PATH ON POLYMATROIDS:

- NP-hard. [Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. 2023]
- Is it also FPT?

Gràcies!