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Rotation distance between elimination trees

rotation of edge uv
— A
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The rotation distance between two elimination trees (forests) T, T’ of a
graph G, denoted by dist(T, T’), is the minimum number of rotations it
takes to transform T into T'.
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Graph associahedra

For any graph G, the flip graph of elimination forests of G under edge
rotations is the skeleton of a polytope: graph associahedron A(G).

Object introduced by

[Carr, Devadoss, Postnikov. 2006-2009]

Famous particular cases of A(G) depending on the underlying graph G:

G A(G)

path (standard) associahedron
complete graph | permutahedron

cycle cyclohedron

star stellohedron

matching hypercube
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Shamelessly stolen from this very nice article: [Cardinal, Merino, Miitze. 2022]
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Zooming in: permutahedron and (standard) associahedron
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The (standard) associahedron has a rich history and literature, connecting
computer science, combinatorics, algebra, and topology.



Zooming in: permutahedron and (standard) associahedron
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Binary trees are in bijection with many other Catalan objects:
triangulations of a convex polygon, well-formed parenthesis, Dyck paths, ...



Intensively studied: diameter of graph associahedra

Determining the diameter exactly, or upper/lower bounds, or estimates:

o If G is a path: [Sleator, Tarjan, Thurston. 1998]
[Pournin. 2014]

o If G is a star: [Manneville, Pilaud. 2010]
o If G is a cycle: [Pournin. 2017]
o If G is a tree: [Manneville, Pilaud. 2010]

[Cardinal, Langerman, Pérez-Lantero. 2018]

o If G is a complete bipartite or trivially perfect graph:
[Cardinal, Pournin, Valencia-Pabon. 2022]

o If G is a caterpillar: [Berendsohn. 2022]

o If G has bounded treedepth or treewidth:
[Cardinal, Pournin, Valencia-Pabon. 2022]
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Our focus: computing distances on graph associahedra

Suppose for simplicity that the considered graph G is connected.

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a
positive integer k.
Question: s the rotation distance between T and T’ at most k?

Only few cases known to be solvable in polynomial time:

o If G is a complete graph: [Folklore]
o If G is a star: [Cardinal, Pournin, Valencia-Pabon. 2022]
o If G is a complete split graph: [Cardinal, Pournin, Valencia-Pabon. 2024]

Notorious open problem (polynomial or NP-hard?): if G is a path.
This is the problem we solve!
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Back to the general case

ROTATION DISTANCE
Instance: A graph G, two elimination trees T and T’ of G, and a

positive integer k.
Question: s the rotation distance between T and T’ at most k?

Is the problem NP-hard for a general graph G?
[Cardinal, Kleist, Klemz, Lubiw, Miitze, Neuhaus, Pournin. Dagstuhl 2022]

Yes, it is!
[Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. ICALP 2023]
[Cardinal, Steiner. 2023]

This motivates the study of the | parameterized complexity | of the problem.
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Preliminaries: parameterized complexity in one slide

Instance of a parameterized problem: total size n, parameter k.

o XP problem: solvable in time f(k) - n&(¥).

o Example: O(n").

e FPT problem: solvable in time (k) - n® for an absolute constant c.

o Example: O(2% - n?).
e W(i]-hard problem, for i > 1: strong evidence that it is not FPT.

@ para-NP-hard problem: NP-hard for a fixed value of the parameter.
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Statement of the parameterized problem and our result

ROTATION DISTANCE

Instance: A graph G, two elimination trees T and T’ of G, and a
positive integer k.
Parameter: k.

Question: Is the rotation distance between T and T’ at most k?

The ROTATION DISTANCE problem can be solved in time f(k) - |V(G)
20(6)

with f(k) = k¥
where the tower of exponentials has height at most (3k + 1)4k = O(k?).

’

Y

Prior to our work, only the case where G is a path was known to be FPT.
[Cleary, St. John. 2009] [Lucas. 2010] [Kanj, Sedgwick, Xia..2017]  [Li. Xia._2023]
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Main ideas of the FPT algorithm

Goal: find an /-rotation sequence o from T to T', for some / < k.

High level: identify a subset of marked vertices M C V/(T), of
size < f(k), so that we can assume that the
desired ¢-rotation sequence o uses only vertices in M.

Once this is proved, an FPT algorithm follows directly by applying brute
force and guessing all possible rotations using only vertices in M.

Let us see how we find such a “small” set M C V/(T) of marked vertices...
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There are few children-bad vertices

rotation of edge uv

Tl TQ T3 T4 T2 T3

Observation: a rotation may change the set of children of at most three
vertices (but the parent of arbitrarily many vertices).

A vertex v € V(T)is (T, T')-children-bad if its set of children in T is
different from its set of children in T.

We may assume that there are at most 3k (T, T')-children-bad vertices.

13
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Restricting the rotations to small balls around bad vertices

Observation: a rotation may change vertex distances (in T) by < 1.
Let C C V(T) be the set of (T, T')-children-bad vertices.

We define B, = N2X[C U root(T)]. /T\

T

If dist(T, T') < k, then there exists an (-rotation sequence from T to T’,
with ¢ < k, using only vertices in Bep.

If A(T) is bounded (in particular, if A(G) is bounded); we are done!

14
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Towards the marking algorithm: trace of a vertex

Only obstacle to get our FPT algorithm: high-degree vertices in T [Bcp].
Fix a connected component Z of T[B.,] (considered as a rooted tree).

trace(T, Z,v): “abstract” neighborhood of T(v) in its ancestors in Z.

trace(T, Z, vy)
trace(T, Z, vs)
trace(T, Z, v3)
trace(T, Z, vy)
trace(T, )
trace(T Z V)
trace(T, Z, v7)

15



Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.

16



Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.

Same type: same “variety of traces among children in Z”

16



Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.

Same type: same “variety of traces among children in Z" — recursive!

16



Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.
Same type: same “variety of traces among children in Z" — recursive!

Problem: #children may be unbounded, and we want #types < f (k).

16



Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.

Same type: same “variety of traces among children in Z" — recursive!

Problem: #children may be unbounded, and we want #types < f (k).

Let o be an (-rotation sequence from T to T', for some ¢ < k. For every
vertex v € V(T), there are at most k vertices uy, . .., ux € children(T,v)
such that o uses a vertex in each of the rooted subtrees T (u1),. .., T (uk).

16



Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.
Same type: same “variety of traces among children in Z" — recursive!

Problem: #children may be unbounded, and we want #types < f(k).

Let o be an (-rotation sequence from T to T', for some ¢ < k. For every
vertex v € V(T), there are at most k vertices uy, . .., ux € children(T, v)
such that o uses a vertex in each of the rooted subtrees T (u1), ..., T (uk).

Crucial: enough to keep track of “at least k 4+ 1", not the actual number.

16



Defining the type of a vertex: 7(T,Z, v)

Goal: if 7(T,Z,v)=7(T,Z,v'), then T(v) and T (V') interchangeable.

Same type: same “variety of traces among children in Z" — recursive!

Problem: #children may be unbounded, and we want #types < f(k).

Let o be an (-rotation sequence from T to T', for some ¢ < k. For every
vertex v € V(T), there are at most k vertices uy, . .., ux € children(T, v)
such that o uses a vertex in each of the rooted subtrees T (u1), ..., T (uk).

Crucial: enough to keep track of “at least k 4+ 1", not the actual number.

k=2
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Number of types bounded by a function of kK — marking

{7(T,Z,v)|veV(Z)} has size bounded by a function g(k), with

20(k2)

g(k) = K2 , where the tower has height diam(Z) = O(k?).

’ Marking algorithm ‘: for every vertex v € V(Z), pre-mark up to k + 1
children of each type, and then prune from the root.

k=1
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The set of marked vertices satisfies what we want

The set M C V/(T) of marked vertices has size bounded by a function
h(k), with the same asymptotic growth as the function g(k) given by the
number of types. Moreover, M can be computed in time h(k) - |V(G)|.
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The set of marked vertices satisfies what we want

The set M C V/(T) of marked vertices has size bounded by a function
h(k), with the same asymptotic growth as the function g(k) given by the
number of types. Moreover, M can be computed in time h(k) - |V(G)|.

Main technical lemma:

If dist(T, T') < k, then there exists an (-rotation sequence from T to T',
with £ < k, using only vertices in M.

Scheme of the proof:
@ Let o be an /-rotation sequence from T to T’ minimizing the number
of non-marked vertices used by o.
@ Goal: define another sequence ¢’ using < non-marked vertices.
@ Let v € V(T) be a downmost non-marked vertex used by o.

@ We distinguish two cases...
18



Proof of the main technical lemma: Case 1

If v has a marked (non-used) T-sibling v/ with 7(T,Z,v) =7(T,Z,V):

root(Z)

T(T7 Z7 /U) = T(Tﬂ Z? v/)

T(T7 Z? u) = T(T7 Z? u/)
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Proof of the main technical lemma: Case 1

If v has a marked (non-used) T-sibling v/ with 7(T,Z,v) =7(T,Z,V):

root(Z)

T(T7 Z7 /U) = T(Tﬂ Z? v/)

T(T7 Z? u) = T(T7 Z? u/)

We define o’ from o by just replacing v with v/ in all the rotations of o
involving v.
19



Proof of the main technical lemma: Case 2

All T-siblings v of v with 7(T,Z,v) =7(T,Z, V') are non-marked.
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Proof of the main technical lemma: Case 2

All T-siblings v of v with 7(T,Z,v) =7(T,Z, V') are non-marked.

In this case, to define ¢/, we need to modify o in a more global way:
root(Z)

Ui—
- ‘ ‘ representative function p ‘ e ‘ -t
U; ‘ U m Ui r |p(uw) \Ui
Ld Ld L Ld L] Ld
el o]l ool ]
el HErE
T(v) T(p(v))
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ROTATION DISTANCE problem: distances on graph associahedra.

Natural generalization: distances on hypergraphic polytopes.
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New results: can we go beyond graph associahedra?

Fix a hypergraph H. We define the hypergraphic polytope of H as:

@ Vertices: all acyclic orientations of H.
o Edges: if the two corresponding rotations are related by a flip.
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New results: can we go beyond graph associahedra?

Computing distances on hypergraphic polytopes is NP-hard.
[Cardinal, Steiner. 2023]

Is the problem FPT?

Theorem (Cunha, S., Souza, Valencia-Pabon. 2025)

Computing distances on hypergraphic polytopes is W|[2]-hard
parameterized by the distance.

We present a parameterized reduction from k-DOMINATING SET.
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The ROTATION DISTANCE problem can be solved in time f(k) - |V(G)
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with f(k) = k2
where the tower of exponentials has height at most (3k + 1)4k = O(k?).
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Conclusions and further research

The ROTATION DISTANCE problem can be solved in time f(k) - |V(G)
2002

with f(k) = k¥ :
where the tower of exponentials has height at most (3k + 1)4k = O(k?).

7

It should be possible to improve f (k) (dominated by the number of types).

ROTATION DISTANCE || paths | general graphs |

NP-hard open v
FPT v | V[this article]
Polynomial kernel v open

COMBINATORIAL SHORTEST PATH ON POLYMATROIDS:

@ NP-hard. [Ilto, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto. 2023]

o Is it also FPT?
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Gracies!
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