FPT algorithm for a generalized cut problem and some applications

UFC, Fortaleza, Janeiro 2015

- ¹ CNRS, LAMSADE, Paris (France)
- ² KAIST, Daejeon (South Korea)
- ³ CNRS, LIRMM, Montpellier (France)

Outline of the talk

- Introduction
- Sketch of the FPT algorithm
- Some applications
- 4 Conclusions

Next section is...

- Introduction
- Sketch of the FPT algorithm
- Some applications
- 4 Conclusions

Some words on parameterized complexity

• Idea given an NP-hard problem with input size *n*, fix one parameter *k* of the input to see whether the problem gets more "tractable".

Example: the size of a VERTEX COVER.

• Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in time

$$f(k) \cdot n^{O(1)}$$
, for some function f .

Examples: *k*-Vertex Cover, *k*-Longest Path.

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

• MIN CUT: polynomial by classical max-flow min-cut theorem.

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

- MIN CUT: polynomial by classical max-flow min-cut theorem.
- MULTIWAY CUT: FPT by using important separators.

[Marx '06]

MULTICUT: Finally, FPT.

[Marx, Razgon + Bousquet, Daligault, Thomassé '10]

- STEINER CUT: Improved FPT algorithm by using randomized contractions.
 - [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 '12]

MIN BISECTION: Finally, FPT.

[Cygan, Lokshtanov, Pilipczuk², Saurabh '13]

We introduce a new cut problem

• A new cut problem: LIST ALLOCATION (to be defined in two slides).

Theorem

The LIST ALLOCATION problem is FPT.

We introduce a new cut problem

• A new cut problem: LIST ALLOCATION (to be defined in two slides).

Theorem

The LIST ALLOCATION problem is FPT.

- LIST ALLOCATION generalizes, in particular, MULTIWAY CUT.
- General enough so that several other problems can be reduced to it:
 - \star FPT algorithm for a parameterization of DIGRAPH HOMOMORPHISM.
 - * FPT algorithm for the MIN-MAX GRAPH PARTITIONING problem.
 - * FPT 2-approximation for TREE-CUT WIDTH.

Before defining the problem: allocations

- An *r*-allocation of a set *S* is an *r*-tuple $\mathcal{V} = (V_1, \dots, V_r)$ of possibly empty pairwise disjoint subsets of *S* whose union is *S*.
- Elements of \mathcal{V} : parts of \mathcal{V} .
- We denote by $\mathcal{V}^{(i)}$ the *i*-th part of \mathcal{V} , i.e., $\mathcal{V}^{(i)} = V_i$.

Before defining the problem: allocations

- An *r*-allocation of a set *S* is an *r*-tuple $\mathcal{V} = (V_1, \dots, V_r)$ of possibly empty pairwise disjoint subsets of *S* whose union is *S*.
- Elements of \mathcal{V} : parts of \mathcal{V} .
- We denote by $\mathcal{V}^{(i)}$ the *i*-th part of \mathcal{V} , i.e., $\mathcal{V}^{(i)} = V_i$.
- Let G = (V, E) be a graph and let \mathcal{V} be an r-allocation of V: $|\delta(\mathcal{V}^{(i)}, \mathcal{V}^{(j)})|$: #edges in G with one endpoint in $\mathcal{V}^{(i)}$ and one in $\mathcal{V}^{(j)}$.

Definition of the problem: LIST ALLOCATION

LIST ALLOCATION

Input: A tuple $I = (G, r, \lambda, \alpha)$, where G is an n-vertex graph, $r \in \mathbb{Z}_{\geqslant 1}$, $\lambda : V(G) \to 2^{[r]}$, and $\alpha : {[r] \choose 2} \to \mathbb{Z}_{\geqslant 0}$.

Definition of the problem: LIST ALLOCATION

LIST ALLOCATION

Input: A tuple $I = (G, r, \lambda, \alpha)$, where G is an n-vertex graph, $r \in \mathbb{Z}_{\geqslant 1}$, $\lambda : V(G) \to 2^{[r]}$, and $\alpha : {[r] \choose 2} \to \mathbb{Z}_{\geqslant 0}$. Parameter: $k = \sum \alpha$.

Definition of the problem: LIST ALLOCATION

LIST ALLOCATION

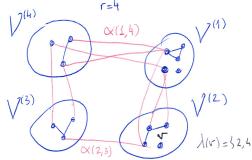
Input: A tuple $I = (G, r, \lambda, \alpha)$, where G is an n-vertex graph,

$$r \in \mathbb{Z}_{\geqslant 1}$$
, $\lambda : V(G) \to 2^{[r]}$, and $\alpha : {[r] \choose 2} \to \mathbb{Z}_{\geqslant 0}$.

Parameter: $k = \sum \alpha$.

Question: Decide whether there exists an r-allocation $\mathcal V$ of V(G) s.t.

- $\forall \{i,j\} \in {[r] \choose 2}, \ |\delta(\mathcal{V}^{(i)},\mathcal{V}^{(j)})| = \alpha(i,j)$ and
- $\forall v \in V(G)$, if $v \in \mathcal{V}^{(i)}$ then $i \in \lambda(v)$.



Next section is...

- Introduction
- Sketch of the FPT algorithm
- Some applications
- 4 Conclusions

High-level ideas of the FPT algorithm

• We use a series of FPT reductions:

Problem $A \xrightarrow{\text{FPT}} \text{Problem } B$: If problem B is FPT, then problem A is FPT.

High-level ideas of the FPT algorithm

We use a series of FPT reductions:

Problem $A \xrightarrow{\text{FPT}} \text{Problem } B$: If problem B is FPT, then problem A is FPT.

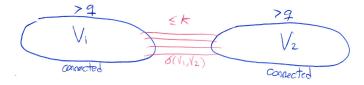
- At some steps, we obtain instances whose size is bounded by some function f(k).
- Then we will use that the LIST ALLOCATION problem is in XP:

Lemma

There exists an algorithm that, given an instance $I = (G, r, \lambda, \alpha)$ of List Allocation, computes all possible solutions in time $n^{O(k)} \cdot r^{O(k+\ell)}$, where ℓ is the number of connected components of G.

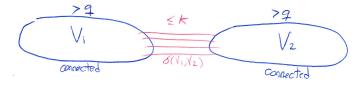
Some preliminaries

• Let G be a connected graph. A partition (V_1, V_2) of V(G) is a (q, k)-separation if $|V_1|, |V_2| > q$, $|\delta(V_1, V_2)| \le k$, and $G[V_1]$ and $G[V_2]$ are both connected.



Some preliminaries

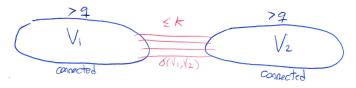
• Let G be a connected graph. A partition (V_1, V_2) of V(G) is a (q, k)-separation if $|V_1|, |V_2| > q$, $|\delta(V_1, V_2)| \le k$, and $G[V_1]$ and $G[V_2]$ are both connected.



• A graph G is (q, k)-connected if it does not contain any (q, k-1)-separation.

Some preliminaries

• Let G be a connected graph. A partition (V_1, V_2) of V(G) is a (q, k)-separation if $|V_1|, |V_2| > q$, $|\delta(V_1, V_2)| \leqslant k$, and $G[V_1]$ and $G[V_2]$ are both connected.



• A graph G is (q, k)-connected if it does not contain any (q, k-1)-separation.

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12)

There exists an algorithm that given a n-vertex connected graph G and two integers q, k, either finds a (q, k)-separation, or reports that no such separation exists, in time $(q + k)^{O(\min\{q,k\})} n^3 \log n$.

LIST ALLOCATION (LA)

```
LIST ALLOCATION (LA)

\downarrow FPT

CONNECTED LIST ALLOCATION (CLA)

Same input + graph G is connected and r \leq 2k
```

```
LIST ALLOCATION (LA)

$\int \text{FPT}$

CONNECTED LIST ALLOCATION (CLA)

$\int \text{FPT}$
```

HIGHLY CONNECTED LIST ALLOCATION (HCLA)

Same input + graph G is $(f_1(k), k+1)$ -connected, for $f_1(k) := 2^k \cdot (2k)^{2k}$

↓ FPT

CONNECTED LIST ALLOCATION (CLA)

↓ FPT

HIGHLY CONNECTED LIST ALLOCATION (HCLA)

Same input + graph G is $(f_1(k), k+1)$ -connected, for $f_1(k) := 2^k \cdot (2k)^{2k}$

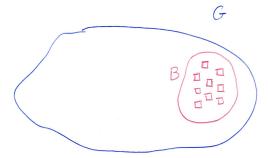
Claim (Unique big part)

For any solution \mathcal{V} of HCLA there exists a unique index $j \in [r]$ such that

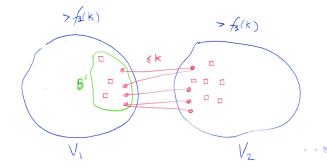
$$\sum_{i\in[r]\setminus j}|\mathcal{V}^{(i)}|\leqslant k\cdot f_1(k).$$

• Part $\mathcal{V}^{(j)}$ is called the big part.

• We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \le 2k$ (start with $B = \emptyset$):

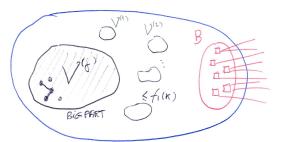


- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leq 2k$ (start with $B = \emptyset$):
 - ① If G has a $(f_1(k), k)$ -separation (V_1, V_2) :
 - W.l.o.g. let V_1 be the part with the smallest number of boundary vertices, and let B' be the new boundary: so $|B'| \leq 2k$.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.



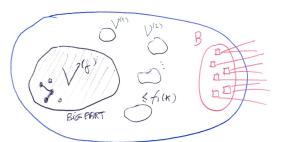
- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \le 2k$ (start with $B = \emptyset$):
 - ① If G has a $(f_1(k), k)$ -separation (V_1, V_2) :
 - W.l.o.g. let V_1 be the part with the smallest number of boundary vertices, and let B' be the new boundary: so $|B'| \leq 2k$.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.
 - ② Otherwise, find a set of "indistinguishable" vertices, and identify them.

 Idea We generate all partial solutions in the boundary, and for each of them we compute a solution of HCLA, using our "black box".

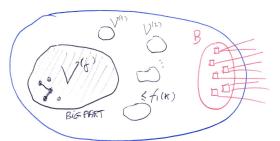


- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \le 2k$ (start with $B = \emptyset$):
 - If G has a $(f_1(k), k)$ -separation (V_1, V_2) :
 - W.l.o.g. let V_1 be the part with the smallest number of boundary vertices, and let B' be the new boundary: so $|B'| \leq 2k$.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.
 - ② Otherwise, find a set of "indistinguishable" vertices, and identify them.

 Idea By the high connectivity (Claim), each such solution has a unique big part $\mathcal{V}^{(j)}$: indistinguishable vertices for this behavior.



- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \le 2k$ (start with $B = \emptyset$):
 - ① If G has a $(f_1(k), k)$ -separation (V_1, V_2) :
 - W.l.o.g. let V_1 be the part with the smallest number of boundary vertices, and let B' be the new boundary: so $|B'| \leq 2k$.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.
 - ② Otherwise, find a set of "indistinguishable" vertices, and identify them.
 Idea If the graph is big enough, there are vertices that are indistinguishable for all behaviors ⇒ identify them. Return the graph.



- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \le 2k$ (start with $B = \emptyset$):
 - If G has a $(f_1(k), k)$ -separation (V_1, V_2) :
 - W.l.o.g. let V_1 be the part with the smallest number of boundary vertices, and let B' be the new boundary: so $|B'| \leq 2k$.
 - Call recursively shrink with input $(G[V_1], B')$, and update the graph.
 - ② Otherwise, find a set of "indistinguishable" vertices, and identify them.

 Idea If the graph is big enough, there are vertices that are indistinguishable for all behaviors ⇒ identify them. Return the graph.

Lemma

The above algorithm returns in FPT time an equivalent instance of CLA of size at most $f_2(k) := k \cdot (f_1(k))^2 + 2k + 2$. (Then we apply the XP algorithm.)

```
LIST ALLOCATION (LA)

$\pm$ FPT

CONNECTED LIST ALLOCATION (CLA)

$\pm$ FPT

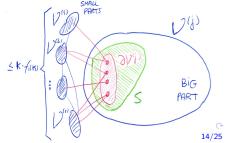
HIGHLY CONNECTED LIST ALLOCATION (HCLA)
```

SPLIT HIGHLY CONNECTED LIST ALLOCATION (SHCLA)

Same input + set $S \subseteq V(G)$ and a solution \mathcal{V} additionally needs to satisfy that if $j \in [r]$ is such that $\mathcal{V}^{(j)}$ is the big part of \mathcal{V} , then

$$\partial \mathcal{V}^{(j)} \subseteq \mathcal{S} \subseteq \mathcal{V}^{(j)}$$
.

↓ FPT



Crucial ingredient: Splitter Lemma

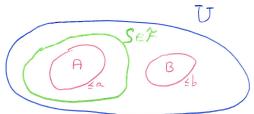
Splitters were first introduced by

[Naor, Schulman, Srinivasan '95]

We use the following deterministic version:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12)

There exists an algorithm that given a set U of size n and two integers $a,b\in [0,n]$, outputs a set $\mathcal{F}\subseteq 2^U$ where $|\mathcal{F}|=(a+b)^{O(\min\{a,b\})}\cdot \log n$ such that for every two sets $A,B\subseteq U$, where $A\cap B=\emptyset$, $|A|\leqslant a$, $|B|\leqslant b$, there exists a set $S\in \mathcal{F}$ where $A\subseteq S$ and $B\cap S=\emptyset$, in $(a+b)^{O(\min\{a,b\})}\cdot n\log n$ steps.



Reduction from HCLA to SHCLA: we use splitters

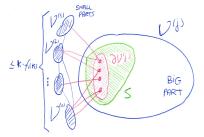
• We use the Splitter Lemma with universe U = V(G), a = k, and $b = k \cdot f_1(k)$, obtaining a family \mathcal{F} of subsets of V(G).

Reduction from HCLA to SHCLA: we use splitters

- We use the Splitter Lemma with universe U = V(G), a = k, and $b = k \cdot f_1(k)$, obtaining a family \mathcal{F} of subsets of V(G).
- Idea We want a set $S \subseteq V(G)$ that "splits" these two sets:

$$A = \partial \mathcal{V}^{(j)}$$
 and $B = \bigcup_{i \in [r] \setminus \{j\}} \mathcal{V}^{(i)}$.

For some $j \in [r]$: $|A| \leq k$ and $|B| \leq k \cdot f_1(k)$ (by the Claim).

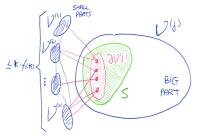


Reduction from HCLA to SHCLA: we use splitters

- We use the Splitter Lemma with universe U = V(G), a = k, and $b = k \cdot f_1(k)$, obtaining a family \mathcal{F} of subsets of V(G).
- Idea | We want a set $S \subseteq V(G)$ that "splits" these two sets:

$$A = \partial \mathcal{V}^{(j)}$$
 and $B = \bigcup_{i \in [r] \setminus \{j\}} \mathcal{V}^{(i)}$.

For some $j \in [r]$: $|A| \leq k$ and $|B| \leq k \cdot f_1(k)$ (by the Claim).

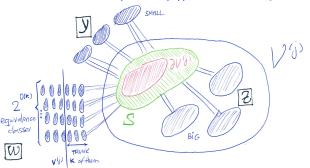


• It holds that I is a YES-instance of HCLA if and only if for some $S \in \mathcal{F}$, (I, S) is a YES-instance of SHCLA.

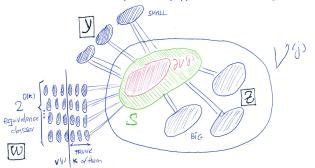
• Try all $j \in [r]$ so that $\mathcal{V}^{(j)}$ is the big part: assume $\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}$.

- Try all $j \in [r]$ so that $\mathcal{V}^{(j)}$ is the big part: assume $\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}$.
- Partition the connected components of $G \setminus S$ into 3 sets:

- Try all $j \in [r]$ so that $\mathcal{V}^{(j)}$ is the big part: assume $\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}$.
- Partition the connected components of $G \setminus S$ into 3 sets:
 - \mathcal{Y} : those that cannot go entirely in $\mathcal{V}^{(j)}$.
 - \mathbb{Z} : those that are big $(> k \cdot f_1(k))$ and that can go entirely in $\mathcal{V}^{(j)}$.
 - \mathcal{W} : those that are small $(\leqslant k \cdot f_1(k))$ and that can go entirely in $\mathcal{V}^{(j)}$.



- Try all $j \in [r]$ so that $\mathcal{V}^{(j)}$ is the big part: assume $\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}$.
- Partition the connected components of $G \setminus S$ into 3 sets:
 - \mathcal{Y} : those that cannot go entirely in $\mathcal{V}^{(j)}$.
 - \mathbb{Z} : those that are big $(> k \cdot f_1(k))$ and that can go entirely in $\mathcal{V}^{(j)}$.
 - \mathcal{W} : those that are small $(\leqslant k \cdot f_1(k))$ and that can go entirely in $\mathcal{V}^{(j)}$.



Lemma

The SHCLA problem can be solved in time $2^{O(k^2 \cdot \log k)} \cdot n$.

Piecing everything together

```
\begin{array}{c} \text{LIST ALLOCATION (LA)} \\ & \downarrow \text{FPT reduction} \end{array}
```

CONNECTED LIST ALLOCATION (CLA)

↓ FPT reduction

HIGHLY CONNECTED LIST ALLOCATION (HCLA)

↓ FPT reduction

SPLIT HIGHLY CONNECTED LIST ALLOCATION (SHCLA)

 \downarrow FPT algorithm to solve SHCLA

Theorem

LIST ALLOCATION can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.

Next section is...

- Introduction
- Sketch of the FPT algorithm
- Some applications
- 4 Conclusions

ARC-BOUNDED LIST DIGRAPH HOMOMORPHISM Input: Two digraphs G and H, a list $\lambda:V(G)\to 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of non-loop arcs in G mapped to each arc of H.

ARC-BOUNDED LIST DIGRAPH HOMOMORPHISM

Input: Two digraphs G and H, a list $\lambda: V(G) \to 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of non-loop arcs in G mapped to each arc of H.

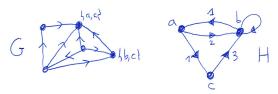
Parameter: $\mathbf{k} = \sum \alpha$.

ARC-BOUNDED LIST DIGRAPH HOMOMORPHISM

Input: Two digraphs G and H, a list $\lambda: V(G) \to 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of non-loop arcs in G mapped to each arc of H.

Parameter: $k = \sum \alpha$.

Question: Decide whether there exists a homomorphism from G to H respecting the constraints imposed by λ and α .



• It generalizes several homomorphism problems.

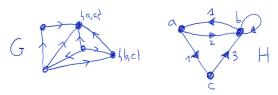
[Díaz, Serna, Thilikos '08]

ARC-BOUNDED LIST DIGRAPH HOMOMORPHISM

Input: Two digraphs G and H, a list $\lambda: V(G) \to 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of non-loop arcs in G mapped to each arc of H.

Parameter: $k = \sum \alpha$.

Question: Decide whether there exists a homomorphism from G to H respecting the constraints imposed by λ and α .



• It generalizes several homomorphism problems.

[Díaz, Serna, Thilikos '08]

Corollary

The Arc-Bounded List Digraph Homomorphism problem is FPT.

MIN-MAX GRAPH PARTITIONING

Input: An undirected graph G, $w, r \in \mathbb{Z}_{\geqslant 0}$, and $T \subseteq V(G)$ with |T| = r.

MIN-MAX GRAPH PARTITIONING

Input: An undirected graph G, $w, r \in \mathbb{Z}_{\geq 0}$, and $T \subseteq V(G)$ with |T| = r.

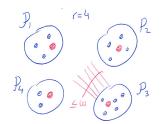
Parameter: $k = w \cdot r$.

MIN-MAX GRAPH PARTITIONING

Input: An undirected graph G, $w, r \in \mathbb{Z}_{\geq 0}$, and $T \subseteq V(G)$ with |T| = r.

Parameter: $k = w \cdot r$.

Question: Decide whether there exists a partition $\{\mathcal{P}_1,\ldots,\mathcal{P}_r\}$ of V(G)s.t. $\max_{i \in [r]} |\delta(\mathcal{P}_i, V(G) \setminus \mathcal{P}_i)| \leq w$ and for every $i \in [r], |\mathcal{P}_i \cap \mathcal{T}| = 1$.



- Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz'11]
- The "MIN-SUM" version is exactly the MULTIWAY CUT problem. [Marx '06]

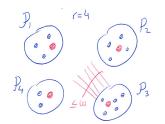
MIN-MAX GRAPH PARTITIONING

Input: An undirected graph G, $w, r \in \mathbb{Z}_{\geqslant 0}$, and $T \subseteq V(G)$ with |T| = r.

Parameter: $k = w \cdot r$.

Question: Decide whether there exists a partition $\{\mathcal{P}_1,\ldots,\mathcal{P}_r\}$ of V(G)

s.t. $\max_{i \in [r]} |\delta(\mathcal{P}_i, V(G) \setminus \mathcal{P}_i)| \leq w$ and for every $i \in [r], |\mathcal{P}_i \cap \mathcal{T}| = 1$.



- Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz'11]
- The "MIN-SUM" version is exactly the MULTIWAY CUT problem. [Marx '06]

Corollary

The MIN-MAX GRAPH PARTITIONING problem is FPT.

2-approximation for TREE-CUT WIDTH

- Tree-cut width is a graph invariant fundamental in the structure of graphs not admitting a fixed graph as an immersion. [Wollan '14]
- Tree-cut decompositions are a variation of tree decompositions based on edge cuts instead of vertex cuts.
- Tree-cut width also has algorithmic applications. [Ganian, Kim, Szeider '14]

2-approximation for TREE-CUT WIDTH

- Tree-cut width is a graph invariant fundamental in the structure of graphs not admitting a fixed graph as an immersion.
- Tree-cut decompositions are a variation of tree decompositions based on edge cuts instead of vertex cuts.
- Tree-cut width also has algorithmic applications. [Ganian, Kim, Szeider '14]

Corollary

There exists an algorithm that, given a graph G and a $k \in \mathbb{Z}_{\geqslant 0}$, in time $2^{O(k^2 \cdot \log k)} \cdot n^5 \cdot \log n$ either outputs a tree-cut decomposition of G with width at most 2k, or correctly reports that the tree-cut width of G is strictly larger than k.

Next section is...

- Introduction
- Sketch of the FPT algorithm
- Some applications
- 4 Conclusions

Theorem

LIST ALLOCATION can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.

Theorem

LIST ALLOCATION can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.

Some further research:

- Improve the running time of our algorithms.
- Can we find more applications of LIST ALLOCATION?
- Find an explicit (exact) FPT algorithm for tree-cut width.

Theorem

LIST ALLOCATION can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.

Some further research:

- Improve the running time of our algorithms.
- Can we find more applications of LIST ALLOCATION?
- Find an explicit (exact) FPT algorithm for tree-cut width.
- Recent work on finding (q, k)-separations:

[Montejano, S. '15]

• FPT when parameterized by both q and k.

Theorem

LIST ALLOCATION can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.

Some further research:

- Improve the running time of our algorithms.
- Can we find more applications of LIST ALLOCATION?
- Find an explicit (exact) FPT algorithm for tree-cut width.
- Recent work on finding (q, k)-separations:

[Montejano, S. '15]

- FPT when parameterized by both q and k.
- W[1]-hard when parameterized by q.
- No polynomial kernel when parameterized by k.

Theorem

LIST ALLOCATION can be solved in time $2^{O(k^2 \log k)} \cdot n^4 \cdot \log n$.

Some further research:

- Improve the running time of our algorithms.
- Can we find more applications of LIST ALLOCATION?
- Find an explicit (exact) FPT algorithm for tree-cut width.
- Recent work on finding (q, k)-separations:

[Montejano, S. '15]

- FPT when parameterized by both q and k.
- W[1]-hard when parameterized by q.
- No polynomial kernel when parameterized by k.
- \star FPT when parameterized by k?

Gràcies!

