
FPT algorithm for a generalized cut problem
and some applications

EunJung Kim1 Sang-Il Oum2

Christophe Paul3 Ignasi Sau3 Dimitrios M. Thilikos3

UFC, Fortaleza, Janeiro 2015

1 CNRS, LAMSADE, Paris (France)

2 KAIST, Daejeon (South Korea)

3 CNRS, LIRMM, Montpellier (France)

Réunion AGAPE Orléans. 30 janvier 2013

1/25

Outline of the talk

1 Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions

2/25

Next section is...

1 Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions

3/25

Some words on parameterized complexity

Idea given an NP-hard problem with input size n, fix one parameter
k of the input to see whether the problem gets more “tractable”.

Example: the size of a Vertex Cover.

Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in time

f (k) · nO(1), for some function f .

Examples: k-Vertex Cover, k-Longest Path.

4/25

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset
whose removal makes the graph satisfy some separation property.

Min Cut: polynomial by classical max-flow min-cut theorem.

Multiway Cut: FPT by using important separators. [Marx ’06]

Multicut: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé ’10]

Steiner Cut: Improved FPT algorithm by using randomized
contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

Min Bisection: Finally, FPT. [Cygan, Lokshtanov, Pilipczuk2, Saurabh ’13]

5/25

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset
whose removal makes the graph satisfy some separation property.

Min Cut: polynomial by classical max-flow min-cut theorem.

Multiway Cut: FPT by using important separators. [Marx ’06]

Multicut: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé ’10]

Steiner Cut: Improved FPT algorithm by using randomized
contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

Min Bisection: Finally, FPT. [Cygan, Lokshtanov, Pilipczuk2, Saurabh ’13]

5/25

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset
whose removal makes the graph satisfy some separation property.

Min Cut: polynomial by classical max-flow min-cut theorem.

Multiway Cut: FPT by using important separators. [Marx ’06]

Multicut: Finally, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé ’10]

Steiner Cut: Improved FPT algorithm by using randomized
contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

Min Bisection: Finally, FPT. [Cygan, Lokshtanov, Pilipczuk2, Saurabh ’13]

5/25

We introduce a new cut problem

A new cut problem: List Allocation (to be defined in two slides).

Theorem

The List Allocation problem is FPT.

List Allocation generalizes, in particular, Multiway Cut.

General enough so that several other problems can be reduced to it:

? FPT algorithm for a parameterization of Digraph Homomorphism.
? FPT algorithm for the Min-Max Graph Partitioning problem.
? FPT 2-approximation for Tree-cut width.

6/25

We introduce a new cut problem

A new cut problem: List Allocation (to be defined in two slides).

Theorem

The List Allocation problem is FPT.

List Allocation generalizes, in particular, Multiway Cut.

General enough so that several other problems can be reduced to it:

? FPT algorithm for a parameterization of Digraph Homomorphism.
? FPT algorithm for the Min-Max Graph Partitioning problem.
? FPT 2-approximation for Tree-cut width.

6/25

Before defining the problem: allocations

An r -allocation of a set S is an r -tuple V = (V1, . . . ,Vr) of possibly
empty pairwise disjoint subsets of S whose union is S .

Elements of V: parts of V.

We denote by V(i) the i-th part of V, i.e., V(i) = Vi .

Let G = (V ,E) be a graph and let V be an r -allocation of V :

|δ(V(i),V(j))|: #edges in G with one endpoint in V(i) and one in V(j).

7/25

Before defining the problem: allocations

An r -allocation of a set S is an r -tuple V = (V1, . . . ,Vr) of possibly
empty pairwise disjoint subsets of S whose union is S .

Elements of V: parts of V.

We denote by V(i) the i-th part of V, i.e., V(i) = Vi .

Let G = (V ,E) be a graph and let V be an r -allocation of V :

|δ(V(i),V(j))|: #edges in G with one endpoint in V(i) and one in V(j).

7/25

Definition of the problem: List Allocation

List Allocation
Input: A tuple I = (G , r , λ, α), where G is an n-vertex graph,
r ∈ Z>1, λ : V (G)→ 2[r], and α :

([r]
2

)
→ Z>0.

Parameter: k =
∑
α.

Question: Decide whether there exists an r -allocation V of V (G) s.t.

∀{i , j} ∈
([r]

2

)
, |δ(V(i),V(j))| = α(i , j) and

∀v ∈ V (G), if v ∈ V(i) then i ∈ λ(v).

8/25

Definition of the problem: List Allocation

List Allocation
Input: A tuple I = (G , r , λ, α), where G is an n-vertex graph,
r ∈ Z>1, λ : V (G)→ 2[r], and α :

([r]
2

)
→ Z>0.

Parameter: k =
∑
α.

Question: Decide whether there exists an r -allocation V of V (G) s.t.

∀{i , j} ∈
([r]

2

)
, |δ(V(i),V(j))| = α(i , j) and

∀v ∈ V (G), if v ∈ V(i) then i ∈ λ(v).

8/25

Definition of the problem: List Allocation

List Allocation
Input: A tuple I = (G , r , λ, α), where G is an n-vertex graph,
r ∈ Z>1, λ : V (G)→ 2[r], and α :

([r]
2

)
→ Z>0.

Parameter: k =
∑
α.

Question: Decide whether there exists an r -allocation V of V (G) s.t.

∀{i , j} ∈
([r]

2

)
, |δ(V(i),V(j))| = α(i , j) and

∀v ∈ V (G), if v ∈ V(i) then i ∈ λ(v).

8/25

Next section is...

1 Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions

9/25

High-level ideas of the FPT algorithm

We use a series of FPT reductions:

Problem A
FPT−−→ Problem B: If problem B is FPT, then problem A is FPT.

At some steps, we obtain instances whose size is bounded by some
function f (k).

Then we will use that the List Allocation problem is in XP:

Lemma

There exists an algorithm that, given an instance I = (G , r , λ, α) of List
Allocation, computes all possible solutions in time nO(k) · rO(k+`),
where ` is the number of connected components of G .

10/25

High-level ideas of the FPT algorithm

We use a series of FPT reductions:

Problem A
FPT−−→ Problem B: If problem B is FPT, then problem A is FPT.

At some steps, we obtain instances whose size is bounded by some
function f (k).

Then we will use that the List Allocation problem is in XP:

Lemma

There exists an algorithm that, given an instance I = (G , r , λ, α) of List
Allocation, computes all possible solutions in time nO(k) · rO(k+`),
where ` is the number of connected components of G .

10/25

Some preliminaries

Let G be a connected graph. A partition (V1,V2) of V (G) is a
(q, k)-separation if |V1|, |V2| > q, |δ(V1,V2)| 6 k , and G [V1] and
G [V2] are both connected.

A graph G is (q, k)-connected if it does not contain any
(q, k − 1)-separation.

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12)

There exists an algorithm that given a n-vertex connected graph G and two

integers q, k, either finds a (q, k)-separation, or reports that no such separation

exists, in time (q + k)O(min{q,k})n3 log n.

11/25

Some preliminaries

Let G be a connected graph. A partition (V1,V2) of V (G) is a
(q, k)-separation if |V1|, |V2| > q, |δ(V1,V2)| 6 k , and G [V1] and
G [V2] are both connected.

A graph G is (q, k)-connected if it does not contain any
(q, k − 1)-separation.

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12)

There exists an algorithm that given a n-vertex connected graph G and two

integers q, k, either finds a (q, k)-separation, or reports that no such separation

exists, in time (q + k)O(min{q,k})n3 log n.

11/25

Some preliminaries

Let G be a connected graph. A partition (V1,V2) of V (G) is a
(q, k)-separation if |V1|, |V2| > q, |δ(V1,V2)| 6 k , and G [V1] and
G [V2] are both connected.

A graph G is (q, k)-connected if it does not contain any
(q, k − 1)-separation.

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12)

There exists an algorithm that given a n-vertex connected graph G and two

integers q, k, either finds a (q, k)-separation, or reports that no such separation

exists, in time (q + k)O(min{q,k})n3 log n.

11/25

Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

↓ FPT

Highly Connected List Allocation (HCLA)

12/25

Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

Same input + graph G is connected and r 6 2k

↓ FPT

Highly Connected List Allocation (HCLA)

12/25

Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

↓ FPT

Highly Connected List Allocation (HCLA)

Same input + graph G is (f1(k), k + 1)-connected, for f1(k) := 2k · (2k)2k

Claim (Unique big part)

For any solution V of HCLA there exists a unique index j ∈ [r] such that∑
i∈[r]\j

|V(i)| 6 k · f1(k).

• Part V(j) is called the big part.

12/25

Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

↓ FPT

Highly Connected List Allocation (HCLA)

Same input + graph G is (f1(k), k + 1)-connected, for f1(k) := 2k · (2k)2k

Claim (Unique big part)

For any solution V of HCLA there exists a unique index j ∈ [r] such that∑
i∈[r]\j

|V(i)| 6 k · f1(k).

• Part V(j) is called the big part.

12/25

Reduction from CLA to HCLA: we shrink the graph

We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| 6 2k (start with B = ∅):

1 If G has a (f1(k), k)-separation (V1,V2):
W.l.o.g. let V1 be the part with the smallest number of boundary
vertices, and let B ′ be the new boundary: so |B ′| 6 2k.
Call recursively shrink with input (G [V1],B

′), and update the graph.
2 Otherwise, find a set of “indistinguishable”’ vertices, and identify them.

Idea We generate all partial solutions in the boundary, and for each of
them we compute a solution of HCLA, using our “black box”.

13/25

Reduction from CLA to HCLA: we shrink the graph

We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| 6 2k (start with B = ∅):

1 If G has a (f1(k), k)-separation (V1,V2):
W.l.o.g. let V1 be the part with the smallest number of boundary
vertices, and let B ′ be the new boundary: so |B ′| 6 2k.
Call recursively shrink with input (G [V1],B

′), and update the graph.

2 Otherwise, find a set of “indistinguishable”’ vertices, and identify them.

Idea We generate all partial solutions in the boundary, and for each of
them we compute a solution of HCLA, using our “black box”.

13/25

Reduction from CLA to HCLA: we shrink the graph

We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| 6 2k (start with B = ∅):

1 If G has a (f1(k), k)-separation (V1,V2):
W.l.o.g. let V1 be the part with the smallest number of boundary
vertices, and let B ′ be the new boundary: so |B ′| 6 2k.
Call recursively shrink with input (G [V1],B

′), and update the graph.
2 Otherwise, find a set of “indistinguishable”’ vertices, and identify them.

Idea We generate all partial solutions in the boundary, and for each of
them we compute a solution of HCLA, using our “black box”.

13/25

Reduction from CLA to HCLA: we shrink the graph

We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| 6 2k (start with B = ∅):

1 If G has a (f1(k), k)-separation (V1,V2):
W.l.o.g. let V1 be the part with the smallest number of boundary
vertices, and let B ′ be the new boundary: so |B ′| 6 2k.
Call recursively shrink with input (G [V1],B

′), and update the graph.
2 Otherwise, find a set of “indistinguishable”’ vertices, and identify them.

Idea By the high connectivity (Claim), each such solution has a

unique big part V(j): indistinguishable vertices for this behavior.

13/25

Reduction from CLA to HCLA: we shrink the graph

We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| 6 2k (start with B = ∅):

1 If G has a (f1(k), k)-separation (V1,V2):
W.l.o.g. let V1 be the part with the smallest number of boundary
vertices, and let B ′ be the new boundary: so |B ′| 6 2k.
Call recursively shrink with input (G [V1],B

′), and update the graph.
2 Otherwise, find a set of “indistinguishable”’ vertices, and identify them.

Idea If the graph is big enough, there are vertices that are
indistinguishable for all behaviors ⇒ identify them. Return the graph.

13/25

Reduction from CLA to HCLA: we shrink the graph

We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| 6 2k (start with B = ∅):

1 If G has a (f1(k), k)-separation (V1,V2):
W.l.o.g. let V1 be the part with the smallest number of boundary
vertices, and let B ′ be the new boundary: so |B ′| 6 2k.
Call recursively shrink with input (G [V1],B

′), and update the graph.

2 Otherwise, find a set of “indistinguishable”’ vertices, and identify them.

Idea If the graph is big enough, there are vertices that are
indistinguishable for all behaviors ⇒ identify them. Return the graph.

Lemma
The above algorithm returns in FPT time an equivalent instance of CLA of size

at most f2(k) := k · (f1(k))2 + 2k + 2. (Then we apply the XP algorithm.)

13/25

Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

↓ FPT

Highly Connected List Allocation (HCLA)

↓ FPT

Split Highly Connected List Allocation (SHCLA)

14/25

Series of FPT reductions

List Allocation (LA)

↓ FPT

Connected List Allocation (CLA)

↓ FPT

Highly Connected List Allocation (HCLA)

↓ FPT

Split Highly Connected List Allocation (SHCLA)

Same input + set S ⊆ V (G) and a solution V additionally needs to satisfy
that if j ∈ [r] is such that V(j) is the big part of V, then

∂V(j) ⊆ S ⊆ V(j).

14/25

Crucial ingredient: Splitter Lemma

Splitters were first introduced by [Naor, Schulman, Srinivasan ’95]

We use the following deterministic version:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12)

There exists an algorithm that given a set U of size n and two integers
a, b ∈ [0, n], outputs a set F ⊆ 2U where |F| = (a + b)O(min{a,b}) · log n
such that for every two sets A,B ⊆ U, where A ∩ B = ∅, |A| 6 a, |B| 6 b,
there exists a set S ∈ F where A ⊆ S and B ∩ S = ∅, in
(a + b)O(min{a,b}) · n log n steps.

15/25

Reduction from HCLA to SHCLA: we use splitters

We use the Splitter Lemma with universe U = V (G), a = k , and
b = k · f1(k), obtaining a family F of subsets of V (G).

Idea We want a set S ⊆ V (G) that “splits” these two sets:

A = ∂V(j) and B =
⋃

i∈[r]\{j}

V(i).

For some j ∈ [r]: |A| 6 k and |B| 6 k · f1(k) (by the Claim).

It holds that I is a Yes-instance of HCLA if and only if for some
S ∈ F , (I ,S) is a Yes-instance of SHCLA.

16/25

Reduction from HCLA to SHCLA: we use splitters

We use the Splitter Lemma with universe U = V (G), a = k , and
b = k · f1(k), obtaining a family F of subsets of V (G).

Idea We want a set S ⊆ V (G) that “splits” these two sets:

A = ∂V(j) and B =
⋃

i∈[r]\{j}

V(i).

For some j ∈ [r]: |A| 6 k and |B| 6 k · f1(k) (by the Claim).

It holds that I is a Yes-instance of HCLA if and only if for some
S ∈ F , (I ,S) is a Yes-instance of SHCLA.

16/25

Reduction from HCLA to SHCLA: we use splitters

We use the Splitter Lemma with universe U = V (G), a = k , and
b = k · f1(k), obtaining a family F of subsets of V (G).

Idea We want a set S ⊆ V (G) that “splits” these two sets:

A = ∂V(j) and B =
⋃

i∈[r]\{j}

V(i).

For some j ∈ [r]: |A| 6 k and |B| 6 k · f1(k) (by the Claim).

It holds that I is a Yes-instance of HCLA if and only if for some
S ∈ F , (I ,S) is a Yes-instance of SHCLA.

16/25

An algorithm to solve SHCLA

Try all j ∈ [r] so that V(j) is the big part: assume ∂V(j) ⊆ S ⊆ V(j).

Partition the connected components of G \ S into 3 sets:

Y: those that cannot go entirely in V(j).
Z: those that are big (> k · f1(k)) and that can go entirely in V(j).
W: those that are small (6 k · f1(k)) and that can go entirely in V(j).

Lemma

The SHCLA problem can be solved in time 2O(k2·log k) · n.

17/25

An algorithm to solve SHCLA

Try all j ∈ [r] so that V(j) is the big part: assume ∂V(j) ⊆ S ⊆ V(j).

Partition the connected components of G \ S into 3 sets:

Y: those that cannot go entirely in V(j).
Z: those that are big (> k · f1(k)) and that can go entirely in V(j).
W: those that are small (6 k · f1(k)) and that can go entirely in V(j).

Lemma

The SHCLA problem can be solved in time 2O(k2·log k) · n.

17/25

An algorithm to solve SHCLA

Try all j ∈ [r] so that V(j) is the big part: assume ∂V(j) ⊆ S ⊆ V(j).

Partition the connected components of G \ S into 3 sets:

Y: those that cannot go entirely in V(j).
Z: those that are big (> k · f1(k)) and that can go entirely in V(j).
W: those that are small (6 k · f1(k)) and that can go entirely in V(j).

Lemma

The SHCLA problem can be solved in time 2O(k2·log k) · n.

17/25

An algorithm to solve SHCLA

Try all j ∈ [r] so that V(j) is the big part: assume ∂V(j) ⊆ S ⊆ V(j).

Partition the connected components of G \ S into 3 sets:

Y: those that cannot go entirely in V(j).
Z: those that are big (> k · f1(k)) and that can go entirely in V(j).
W: those that are small (6 k · f1(k)) and that can go entirely in V(j).

Lemma

The SHCLA problem can be solved in time 2O(k2·log k) · n.
17/25

Piecing everything together

List Allocation (LA)

↓ FPT reduction

Connected List Allocation (CLA)

↓ FPT reduction

Highly Connected List Allocation (HCLA)

↓ FPT reduction

Split Highly Connected List Allocation (SHCLA)

↓ FPT algorithm to solve SHCLA

Theorem

List Allocation can be solved in time 2O(k2 log k) · n4 · log n.

18/25

Next section is...

1 Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions

19/25

Generalization of Digraph Homomorphism

Arc-Bounded List Digraph Homomorphism
Input: Two digraphs G and H, a list λ : V (G)→ 2V (H) of allowed images
for every vertex in G , and a function α prescribing the number of non-loop
arcs in G mapped to each arc of H.

Parameter: k =
∑
α.

Question: Decide whether there exists a homomorphism from G to H
respecting the constraints imposed by λ and α.

It generalizes several homomorphism problems. [D́ıaz, Serna, Thilikos ’08]

Corollary

The Arc-Bounded List Digraph Homomorphism problem is FPT.

20/25

Generalization of Digraph Homomorphism

Arc-Bounded List Digraph Homomorphism
Input: Two digraphs G and H, a list λ : V (G)→ 2V (H) of allowed images
for every vertex in G , and a function α prescribing the number of non-loop
arcs in G mapped to each arc of H.
Parameter: k =

∑
α.

Question: Decide whether there exists a homomorphism from G to H
respecting the constraints imposed by λ and α.

It generalizes several homomorphism problems. [D́ıaz, Serna, Thilikos ’08]

Corollary

The Arc-Bounded List Digraph Homomorphism problem is FPT.

20/25

Generalization of Digraph Homomorphism

Arc-Bounded List Digraph Homomorphism
Input: Two digraphs G and H, a list λ : V (G)→ 2V (H) of allowed images
for every vertex in G , and a function α prescribing the number of non-loop
arcs in G mapped to each arc of H.
Parameter: k =

∑
α.

Question: Decide whether there exists a homomorphism from G to H
respecting the constraints imposed by λ and α.

It generalizes several homomorphism problems. [D́ıaz, Serna, Thilikos ’08]

Corollary

The Arc-Bounded List Digraph Homomorphism problem is FPT.

20/25

Generalization of Digraph Homomorphism

Arc-Bounded List Digraph Homomorphism
Input: Two digraphs G and H, a list λ : V (G)→ 2V (H) of allowed images
for every vertex in G , and a function α prescribing the number of non-loop
arcs in G mapped to each arc of H.
Parameter: k =

∑
α.

Question: Decide whether there exists a homomorphism from G to H
respecting the constraints imposed by λ and α.

It generalizes several homomorphism problems. [D́ıaz, Serna, Thilikos ’08]

Corollary

The Arc-Bounded List Digraph Homomorphism problem is FPT.

20/25

Graph partitioning problem

Min-Max Graph Partitioning
Input: An undirected graph G , w , r ∈ Z>0, and T ⊆ V (G) with |T | = r .

Parameter: k = w · r .
Question: Decide whether there exists a partition {P1, . . . ,Pr} of V (G)
s.t. maxi∈[r] |δ(Pi ,V (G) \ Pi)| 6 w and for every i ∈ [r], |Pi ∩ T | = 1.

Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz’11]

The “Min-Sum” version is exactly the Multiway Cut problem. [Marx ’06]

Corollary

The Min-Max Graph Partitioning problem is FPT.

21/25

Graph partitioning problem

Min-Max Graph Partitioning
Input: An undirected graph G , w , r ∈ Z>0, and T ⊆ V (G) with |T | = r .
Parameter: k = w · r .

Question: Decide whether there exists a partition {P1, . . . ,Pr} of V (G)
s.t. maxi∈[r] |δ(Pi ,V (G) \ Pi)| 6 w and for every i ∈ [r], |Pi ∩ T | = 1.

Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz’11]

The “Min-Sum” version is exactly the Multiway Cut problem. [Marx ’06]

Corollary

The Min-Max Graph Partitioning problem is FPT.

21/25

Graph partitioning problem

Min-Max Graph Partitioning
Input: An undirected graph G , w , r ∈ Z>0, and T ⊆ V (G) with |T | = r .
Parameter: k = w · r .
Question: Decide whether there exists a partition {P1, . . . ,Pr} of V (G)
s.t. maxi∈[r] |δ(Pi ,V (G) \ Pi)| 6 w and for every i ∈ [r], |Pi ∩ T | = 1.

Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz’11]

The “Min-Sum” version is exactly the Multiway Cut problem. [Marx ’06]

Corollary

The Min-Max Graph Partitioning problem is FPT.

21/25

Graph partitioning problem

Min-Max Graph Partitioning
Input: An undirected graph G , w , r ∈ Z>0, and T ⊆ V (G) with |T | = r .
Parameter: k = w · r .
Question: Decide whether there exists a partition {P1, . . . ,Pr} of V (G)
s.t. maxi∈[r] |δ(Pi ,V (G) \ Pi)| 6 w and for every i ∈ [r], |Pi ∩ T | = 1.

Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz’11]

The “Min-Sum” version is exactly the Multiway Cut problem. [Marx ’06]

Corollary

The Min-Max Graph Partitioning problem is FPT.
21/25

2-approximation for Tree-cut width

Tree-cut width is a graph invariant fundamental in the structure of
graphs not admitting a fixed graph as an immersion. [Wollan ’14]

Tree-cut decompositions are a variation of tree decompositions based
on edge cuts instead of vertex cuts.

Tree-cut width also has algorithmic applications. [Ganian, Kim, Szeider ’14]

Corollary

There exists an algorithm that, given a graph G and a k ∈ Z>0, in time
2O(k2·log k) · n5 · log n either outputs a tree-cut decomposition of G with
width at most 2k, or correctly reports that the tree-cut width of G is
strictly larger than k.

22/25

2-approximation for Tree-cut width

Tree-cut width is a graph invariant fundamental in the structure of
graphs not admitting a fixed graph as an immersion. [Wollan ’14]

Tree-cut decompositions are a variation of tree decompositions based
on edge cuts instead of vertex cuts.

Tree-cut width also has algorithmic applications. [Ganian, Kim, Szeider ’14]

Corollary

There exists an algorithm that, given a graph G and a k ∈ Z>0, in time
2O(k2·log k) · n5 · log n either outputs a tree-cut decomposition of G with
width at most 2k, or correctly reports that the tree-cut width of G is
strictly larger than k.

22/25

Next section is...

1 Introduction

2 Sketch of the FPT algorithm

3 Some applications

4 Conclusions

23/25

Conclusions and further research

Theorem

List Allocation can be solved in time 2O(k2 log k) · n4 · log n.

Some further research:

Improve the running time of our algorithms.

Can we find more applications of List Allocation?

Find an explicit (exact) FPT algorithm for tree-cut width.

Recent work on finding (q, k)-separations: [Montejano, S. ’15]

FPT when parameterized by both q and k.
W[1]-hard when parameterized by q.
No polynomial kernel when parameterized by k.

F FPT when parameterized by k?

24/25

Conclusions and further research

Theorem

List Allocation can be solved in time 2O(k2 log k) · n4 · log n.

Some further research:

Improve the running time of our algorithms.

Can we find more applications of List Allocation?

Find an explicit (exact) FPT algorithm for tree-cut width.

Recent work on finding (q, k)-separations: [Montejano, S. ’15]

FPT when parameterized by both q and k.
W[1]-hard when parameterized by q.
No polynomial kernel when parameterized by k.

F FPT when parameterized by k?

24/25

Conclusions and further research

Theorem

List Allocation can be solved in time 2O(k2 log k) · n4 · log n.

Some further research:

Improve the running time of our algorithms.

Can we find more applications of List Allocation?

Find an explicit (exact) FPT algorithm for tree-cut width.

Recent work on finding (q, k)-separations: [Montejano, S. ’15]

FPT when parameterized by both q and k .

W[1]-hard when parameterized by q.
No polynomial kernel when parameterized by k.

F FPT when parameterized by k?

24/25

Conclusions and further research

Theorem

List Allocation can be solved in time 2O(k2 log k) · n4 · log n.

Some further research:

Improve the running time of our algorithms.

Can we find more applications of List Allocation?

Find an explicit (exact) FPT algorithm for tree-cut width.

Recent work on finding (q, k)-separations: [Montejano, S. ’15]

FPT when parameterized by both q and k .
W[1]-hard when parameterized by q.
No polynomial kernel when parameterized by k .

F FPT when parameterized by k?

24/25

Conclusions and further research

Theorem

List Allocation can be solved in time 2O(k2 log k) · n4 · log n.

Some further research:

Improve the running time of our algorithms.

Can we find more applications of List Allocation?

Find an explicit (exact) FPT algorithm for tree-cut width.

Recent work on finding (q, k)-separations: [Montejano, S. ’15]

FPT when parameterized by both q and k .
W[1]-hard when parameterized by q.
No polynomial kernel when parameterized by k .

F FPT when parameterized by k?

24/25

Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE

25/25

	Introduction
	Sketch of the FPT algorithm
	Some applications
	Conclusions

