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@ Introduction
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Some words on parameterized complexity

° given an NP-hard problem with input size n, fix one parameter
k of the input to see whether the problem gets more “tractable”.

Example: the size of a VERTEX COVER.

@ Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in time

f(k)-n°M) for some function f.

Examples: k-VERTEX COVER, k-LONGEST PATH.
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Many cut problems have been proved to be FPT

Cut problem | given a graph, find a minimum (vertex or edge) cutset
whose removal makes the graph satisfy some separation property.
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Many cut problems have been proved to be FPT

Cut problem | given a graph, find a minimum (vertex or edge) cutset
whose removal makes the graph satisfy some separation property.

e MiN CuT: polynomial by classical max-flow min-cut theorem.

e MurLTiwAy CuT: FPT by using important separators. [Marx '06]

e MULTICUT: FinaIIy, FPT. [Marx, Razgon + Bousquet, Daligault, Thomassé '10]

@ STEINER CUT: Improved FPT algorithm by using randomized
contractions. [Chitnis, Cygan, Hajiaghayi, Pilipczuk® '12]

e MiN BisectioN: Finally, FPT. [Cygan, Lokshtanov, Pilipczuk?, Saurabh '13]
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We introduce a new cut problem

@ A new cut problem: LiST ALLOCATION  (to be defined in two slides).

The L1sST ALLOCATION problem is FPT. I
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We introduce a new cut problem

@ A new cut problem: LiST ALLOCATION  (to be defined in two slides).

The L1sST ALLOCATION problem is FPT. l

@ LIST ALLOCATION generalizes, in particular, MULTIWAY CUT.

@ General enough so that several other problems can be reduced to it:

* FPT algorithm for a parameterization of DIGRAPH HOMOMORPHISM.
* FPT algorithm for the MIN-MAX GRAPH PARTITIONING problem.
* FPT 2-approximation for TREE-CUT WIDTH.
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Before defining the problem: allocations

@ An r-allocation of a set S is an r-tuple V = (V4. ..., V,) of possibly
empty pairwise disjoint subsets of S whose union is S.

@ Elements of V: parts of V.

e We denote by V() the i-th part of V, i.e., V() = V.
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Before defining the problem: allocations

@ An r-allocation of a set S is an r-tuple V = (V4. ..., V,) of possibly
empty pairwise disjoint subsets of S whose union is S.

@ Elements of V: parts of V.

e We denote by V() the i-th part of V, i.e., V() = V.

o Let G =(V,E) be a graph and let V be an r-allocation of V:
16(V), VU))|: H#tedges in G with one endpoint in V() and one in VU).
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Definition of the problem: LiST ALLOCATION

LisT ALLOCATION

Input: A tuple | = (G, r, A\, «), where G is an n-vertex graph,
reZs1, \: V(G) — 2l and o : ([51) — Z>o.
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Definition of the problem: LiST ALLOCATION

LiST ALLOCATION

Input: A tuple | = (G, r, A\, «), where G is an n-vertex graph,
reZs1, \: V(G) =2 and o : ([51) — Z>o.

Parameter: k =) a.
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Definition of the problem: LiST ALLOCATION

LisT ALLOCATION

Input: A tuple | = (G, r, A\, «), where G is an n-vertex graph,
reZs1, \: V(G) — 2l and o : ([51) — Z>o.
Parameter: k =) a.

Question: Decide whether there exists an r-allocation V of V(G) s.t.
o W{i.j} € (), 15D, V)| = a(i,j) and
o Vv e V(G), if ve V) then i € \(v).

V{Lf) r=h
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© Sketch of the FPT algorithm
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High-level ideas of the FPT algorithm

@ We use a series of FPT reductions:

Problem A T, Problem B: If problem B is FPT, then problem A is FPT.
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High-level ideas of the FPT algorithm

@ We use a series of FPT reductions:

Problem A T, Problem B: If problem B is FPT, then problem A is FPT.

@ At some steps, we obtain instances whose size is bounded by some
function f(k).

@ Then we will use that the LiST ALLOCATION problem is in XP:

There exists an algorithm that, given an instance | = (G, r,\, &) of LIST

ALLOCATION, computes all possible solutions in time n©(k) . fO(k+0),

where £ is the number of connected components of G.
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Some preliminaries

@ Let G be a connected graph. A partition (V4, V3) of V(G) is a
(g, k)-separation if |V4],| V2| > q, |6(V4, V2)| < k, and G[V4] and
G[ V2] are both connected.

b= ) 2k >a
v S
ezl S Congected
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Some preliminaries

@ Let G be a connected graph. A partition (V4, V3) of V(G) is a
(g, k)-separation if |V4],| V2| > q, |6(V4, V2)| < k, and G[V4] and
G[ V2] are both connected.

‘> 2 2k >a
Precies, ) » Congected

e A graph G is (g, k)-connected if it does not contain any
(g, k — 1)-separation.

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk? '12)

There exists an algorithm that given a n-vertex connected graph G and two
integers q, k, either finds a (q, k)-separation, or reports that no such separation
exists, in time (q + k)O(Min{a:k}) p3 jog n,
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Series of FPT reductions

LisT ArLocaTtioN (LA) ‘
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Series of FPT reductions

‘LIST ALLOCATION (LA) ‘

J FPT
‘CONNECTED LisT ALLocATION (CLA) ‘
Same input + graph G is connected and r < 2k
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Series of FPT reductions

‘LIST ALLOCATION (LA) ‘
J FPT
‘CONNECTED LisT ALLocATION (CLA) ‘
4L FPT
‘HIGHLY CONNECTED LIST ALLOCATION (HCLA)‘

Same input + graph G is (f1(k), k + 1)-connected, for f,(k) := 2% - (2k)?*

Claim (Unique big part)

For any solution )V of HCLA there exists a unique index j € [r] such that

S V0| < k- Ailk).
i€[r]\j

e Part VU) is called the big part.
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Reduction from CLA to HCLA: we shrink the graph

@ We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| < 2k (start with B = (}):
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Reduction from CLA to HCLA: we shrink the graph

@ We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| < 2k (start with B = (}):
@ If G has a (fi(k), k)-separation (Vi, V2):
o W.lo.g. let Vi be the part with the smallest number of boundary
vertices, and let B’ be the new boundary: so |B’| < 2k.
o Call recursively shrink with input (G[V4], B’), and update the graph.
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Reduction from CLA to HCLA: we shrink the graph

@ We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| < 2k (start with B = (}):
@ If G has a (f1(k), k)-separation (V4, V,):
o W.lo.g. let Vi be the part with the smallest number of boundary
vertices, and let B’ be the new boundary: so |B’| < 2k.
o Call recursively shrink with input (G[V4], B"), and update the graph.
@ Otherwise, find a set of “indistinguishable” " vertices, and identify them.
We generate all partial solutions in the boundary, and for each of
them we compute a solution of HCLA, using our “black box".
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Reduction from CLA to HCLA: we shrink the graph

@ We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| < 2k (start with B = (}):
@ If G has a (fi(k), k)-separation (Vi, V2):
o W.lo.g. let Vi be the part with the smallest number of boundary
vertices, and let B’ be the new boundary: so |B’| < 2k.
o Call recursively shrink with input (G[V4], B’), and update the graph.
@ Otherwise, find a set of “indistinguishable” ' vertices, and identify them.
By the high connectivity (Claim), each such solution has a

unique big part VU): indistinguishable vertices for this behavior.
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Reduction from CLA to HCLA: we shrink the graph

@ We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| < 2k (start with B = (}):
@ If G has a (f1(k), k)-separation (V4, V,):
o W.lo.g. let Vi be the part with the smallest number of boundary
vertices, and let B’ be the new boundary: so |B’| < 2k.
o Call recursively shrink with input (G[V4], B"), and update the graph.
@ Otherwise, find a set of “indistinguishable” " vertices, and identify them.

If the graph is big enough, there are vertices that are
indistinguishable for all behaviors = identify them. Return the graph.
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Reduction from CLA to HCLA: we shrink the graph

@ We apply to G the following recursive algorithm shrink, which receives a
graph G and a boundary set B with |B| < 2k (start with B = ():

Q If G has a (fi(k), k)-separation (V1, V2):
o W.lo.g. let Vi be the part with the smallest number of boundary
vertices, and let B’ be the new boundary: so |B’| < 2k.
o Call recursively shrink with input (G[V4], B), and update the graph.

@ Otherwise, find a set of “indistinguishable”’ vertices, and identify them.

If the graph is big enough, there are vertices that are
indistinguishable for all behaviors = identify them. Return the graph.

The above algorithm returns in FP'T time an equivalent instance of CLA of size
at most f(k) := k - (f1(k))? + 2k + 2. (Then we apply the XP algorithm.)
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Series of FPT reductions

‘LIST ALLOCATION (LA) ‘
L FPT
‘CONNECTED LisT ALLocAaTiON (CLA) ‘
J FPT
‘HIGHLY CONNECTED LIST ALLOCATION (HCLA)‘
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Series of FPT reductions

‘LIST ALLOCATION (LA) ‘
L FPT
‘CONNECTED LisT ALLocAaTiON (CLA) ‘
J FPT
‘HIGHLY CONNECTED LIST ALLOCATION (HCLA)‘
J FPT
‘SPLIT HiGHLY CONNECTED LIST ALLOCATION (SHCLA)‘

Same input + set S C V(G) and a solution V additionally needs to satisfy
that if j € [r] is such that VU is the big part of V, then

()

ovi) ¢ s c i), Vﬂ
Vo)
Lk Q{

SHALL
PaeTs

L/7(d)

/

s
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Crucial ingredient: Splitter Lemma

[*] Sp|lttel’5 were fIrSt introduced by [Naor, Schulman, Srinivasan '95]
@ We use the following deterministic version:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk? '12)

There exists an algorithm that given a set U of size n and two integers
a,b € [0, n], outputs a set F C 2V where | F| = (a + b)O(mir{a.b}) . jog n
such that for every two sets A, B C U, where ANB =), |A| < a, |B| < b,
there exists a set S € F where AC S and BNS =10, in

(a+ b)Omin{ab}h) . plog n steps.
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Reduction from HCLA to SHCLA: we use splitters

@ We use the Splitter Lemma with universe U = V/(G), a = k, and
b = k- fi(k), obtaining a family F of subsets of V(G).
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Reduction from HCLA to SHCLA: we use splitters

@ We use the Splitter Lemma with universe U = V/(G), a = k, and
b = k- fi(k), obtaining a family F of subsets of V(G).

° We want a set S C V/(G) that “splits” these two sets:
A=ovV) and B= [J VO
e[y}
For some j € [r]: |A| < k and |B| < k- fi(k) (by the Claim).
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Reduction from HCLA to SHCLA: we use splitters

@ We use the Splitter Lemma with universe U = V/(G), a = k, and
b = k- fi(k), obtaining a family F of subsets of V(G).

° We want a set S C V/(G) that “splits” these two sets:
A=ovV) and B= [J VO
e[y}
For some j € [r]: |A| < k and |B| < k- fi(k) (by the Claim).

m
)
tkfm
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4
@ It holds that / is a YES-instance of HCLA if and only if for some
SeF, (1,S)is a YEs-instance of SHCLA.
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An algorithm to solve SHCLA

@ Try all j € [r] so that VU) is the big part: assume 0VU) C S C VU),

17/25



An algorithm to solve SHCLA

@ Try all j € [r] so that VU) is the big part: assume 0VU) C S C VU),
@ Partition the connected components of G \ S into 3 sets:

17/25



An algorithm to solve SHCLA

@ Try all j € [r] so that VU) is the big part: assume 0VU) C S C VU),
@ Partition the connected components of G \ S into 3 sets:

e ): those that cannot go entirely in VU, .
o Z: those that are big (> k - fi(k)) and that can go entirely in VU), _
o W: those that are small (< k - ;(k)) and that can go entirely in VU,

v | & efheon
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An algorithm to solve SHCLA

@ Try all j € [r] so that VU) is the big part: assume 0VU) C S C VU),
@ Partition the connected components of G \ S into 3 sets:

e ): those that cannot go entirely in VU, .
o Z: those that are big (> k - fi(k)) and that can go entirely in VU). _
o W: those that are small (< k - ;(k)) and that can go entirely in VU,

v | & ofheon

The SHCLA problem can be solved in time 20(k*log k) . py.




Piecing everything together

‘LIST ALLOCATION (LA) ‘
4 FPT reduction
‘CONNECTED LisT ALLocATiON (CLA) ‘
1 FPT reduction
‘HIGHLY CONNECTED LIST ALLOCATION (HCLA)‘
4 FPT reduction
‘SPLIT HicHLY CONNECTED LIST ALLOCATION (SHCLA)‘
J FPT algorithm to solve SHCLA

. o 2
LIST ALLOCATION can be solved in time 20(k*10gk) . p* . og p.
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© Some applications
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Generalization of DIGRAPH HOMOMORPHISM

ARC-BOUNDED LiIST DIGRAPH HOMOMORPHISM
Input: Two digraphs G and H, a list A : V(G) — 2Y(H) of allowed images

for every vertex in G, and a function « prescribing the number of non-loop
arcs in G mapped to each arc of H.
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Generalization of DIGRAPH HOMOMORPHISM

ARC-BOUNDED LiST DIGRAPH HOMOMORPHISM

Input: Two digraphs G and H, a list A : V(G) — 2Y(H) of allowed images
for every vertex in G, and a function « prescribing the number of non-loop
arcs in G mapped to each arc of H.

Parameter: k =) a.

Question: Decide whether there exists a homomorphism from G to H
respecting the constraints imposed by A and a.

ba,e

o It generalizes several homomorphism problems. [Diaz, Serna, Thilikos '08]
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Generalization of DIGRAPH HOMOMORPHISM

ARC-BOUNDED LiST DIGRAPH HOMOMORPHISM

Input: Two digraphs G and H, a list A : V(G) — 2Y(H) of allowed images
for every vertex in G, and a function « prescribing the number of non-loop
arcs in G mapped to each arc of H.

Parameter: k =) a.

Question: Decide whether there exists a homomorphism from G to H
respecting the constraints imposed by A and a.

ba,e

o |t generalizes several homomorphism problems. [Diaz, Serna, Thilikos '08]

The ArRc-BOUNDED LiST DIGRAPH HOMOMORPHISM problem is FPT.
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Graph partitioning problem

MIN-MAX GRAPH PARTITIONING
Input: An undirected graph G, w,r € Z>p, and T C V(G) with |T| =r.
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Graph partitioning problem

MIN-MAX GRAPH PARTITIONING

Input: An undirected graph G, w,r € Z>p, and T C V(G) with |T| =r.
Parameter: k =w - r.

Question: Decide whether there exists a partition {P1,...,P,} of V(G)
s.t. maxjep [0(Pi, V(G) \ Pi)| < w and for every i € [r], [PiN T| = 1.

]D r=4 A D
o). @ 2

] Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz'11]

@ The “MIN-SuUM"” version is exactly the MuLTIWAY CUT problem. [Marx "06]
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Graph partitioning problem

MIN-MAX GRAPH PARTITIONING

Input: An undirected graph G, w,r € Z>p, and T C V(G) with |T| =r.
Parameter: k = w - r.

Question: Decide whether there exists a partition {P1,...,P,} of V(G)
s.t. maxjep [0(Pi, V(G) \ Pi)| < w and for every i € [r], [PiN T| = 1.

]D r=4 A D
' X
A @ O 2,

@ Important in approximation.

[Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz'11]
@ The "“MIN-SUM” version is exactly the MULTIWAY CUT problem.

[Marx '06]

The MIN-MAX GRAPH PARTITIONING problem is FPT.




2-approximation for TREE-CUT WIDTH

@ Tree-cut width is a graph invariant fundamental in the structure of
graphs not admitting a fixed graph as an immersion. [Wollan '14]

@ Tree-cut decompositions are a variation of tree decompositions based
on edge cuts instead of vertex cuts.

@ Tree-cut width also has algorithmic applications. [Ganian, Kim, Szeider '14]
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2-approximation for TREE-CUT WIDTH

@ Tree-cut width is a graph invariant fundamental in the structure of
graphs not admitting a fixed graph as an immersion. [Wollan '14]

@ Tree-cut decompositions are a variation of tree decompositions based
on edge cuts instead of vertex cuts.

@ Tree-cut width also has algorithmic applications. [Ganian, Kim, Szeider '14]

There exists an algorithm that, given a graph G and a k € Z>q, in time
2O(K?logk) . 5 . log n either outputs a tree-cut decomposition of G with
width at most 2k, or correctly reports that the tree-cut width of G is
strictly larger than k.
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@ Conclusions
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Conclusions and further research

k?log k) . n

LIST ALLOCATION can be solved in time 2°( 4 . log n.
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k?log k) . n

LIST ALLOCATION can be solved in time 2°( 4 . log n.

Some further research:

@ Improve the running time of our algorithms.
@ Can we find more applications of L1ST ALLOCATION?

e Find an explicit (exact) FPT algorithm for tree-cut width.

@ Recent work on finding (g, k)-separations: [Montejano, S. '15]
o FPT when parameterized by both g and k.
o W/[1]-hard when parameterized by g.
o No polynomial kernel when parameterized by k.
* FPT when parameterized by k?
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