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Crucial notion in complexity theory: NP-completeness

Cook-Levin Theorem (1971): the SAT problem is NP-complete.

Karp (1972): list of 21 important NP-complete problems.

Nowadays, literally thousands of problems are known to be NP-hard:
unless P = NP, they cannot be solved in polynomial time.

But what does it mean for a problem to be NP-hard?

No algorithm solves all instances optimally in polynomial time.
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Are all instances really hard to solve?

Maybe there are relevant subsets of instances that can be solved efficiently.

VLSI design: the number of circuit layers is usually ≤ 10.

Computational biology: Real instances of DNA chain reconstruction
usually have treewidth ≤ 11.

Robotics: Number of degrees of freedom in motion planning problems ≤ 10.

Compilers: Checking compatibility of type declarations is hard, but usually
the depth of type declarations is ≤ 10.

Message In many applications, not only the total size of the instance
matters, but also the value of an additional parameter.
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The area of parameterized complexity

Idea Measure the complexity of an algorithm in terms of the input size
and an additional integer parameter.

This theory started in the late 80’s, by Downey and Fellows:

Today, it is a well-established area with hundreds of articles published
every year in the most prestigious TCS journals and conferences.
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Parameterized problems
In a parameterized problem, an instance is a pair (x , k), where

x is a typical input (in our setting, a graph).
k is a positive integer called the parameter.

Examples of parameterized problems on graphs, with an instance (G , k):

1 k-Vertex Cover: Does G contain a set S ⊆ V (G), with |S| ≤ k,
containing at least an endpoint of every edge?

2 k-Clique: Does G contain a set S ⊆ V (G), with |S| ≥ k,
of pairwise adjacent vertices?

3 Vertex k-Coloring: Can V (G) be colored with ≤ k colors, so
that adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?
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They behave quite differently...

1 k-Vertex Cover: solvable in time 2k · n2

= f (k) · nO(1)

The problem is FPT (fixed-parameter tractable)

2 k-Clique: solvable in time k2 · nk

= f (k) · ng(k)

The problem is XP (slice-wise polynomial)

3 Vertex k-Coloring: NP-hard for every fixed k ≥ 3

The problem is para-NP-hard
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Why k-Clique may not be FPT?

k-Clique: Solvable in time k2 · nk = f (k) · ng(k)

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm for k-Clique.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

10



Why k-Clique may not be FPT?

k-Clique: Solvable in time k2 · nk = f (k) · ng(k)

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm for k-Clique.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

10



Why k-Clique may not be FPT?

k-Clique: Solvable in time k2 · nk = f (k) · ng(k)

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm for k-Clique.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

10



Why k-Clique may not be FPT?

k-Clique: Solvable in time k2 · nk = f (k) · ng(k)

Why k-Clique may not be FPT?

So far, nobody has managed to find an FPT algorithm for k-Clique.

(also, nobody has found a poly-time algorithm for 3-SAT)

Working hypothesis of parameterized complexity: k-Clique is not FPT

(in classical complexity: 3-SAT cannot be solved in poly-time)

10



How to transfer hardness among parameterized problems?

Let A, B be two parameterized problems.

A parameterized reduction from A to B is an algorithm such that:

Instance (x , k) of A time f (k) · |x |O(1) Instance (x ′, k ′) of B

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of B.
2 k ′ ≤ g(k) for some computable function g : N→ N.

W[1]-hard problem: ∃ parameterized reduction from k-Clique to it.

W[2]-hard problem: ∃ param. reduction from k-Dominating Set to it.

W[i ]-hard: strong evidence of not being FPT. Hypothesis: FPT 6= W[1]
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Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

12



Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

12



Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

12



Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

12



Kernelization

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x , k) of A polynomial time Instance (x ′, k ′) of A

1 (x , k) is a Yes-instance of A ⇔ (x ′, k ′) is a Yes-instance of A.
2 |x ′|+ k ′ ≤ g(k) for some computable function g : N→ N.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is FPT ⇔ it admits a kernel

12



Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT ⇔ it admits a kernel

Do all FPT problems admit polynomial kernels?

NO!

Theorem (Bodlaender, Downey, Fellows, Hermelin. 2009)
Deciding whether a graph has a Path with ≥ k vertices is FPT but does
not admit a polynomial kernel, unless NP ⊆ coNP/poly.
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Typical approach to deal with a parameterized problem

Parameterized problem L
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k-Vertex Cover

k-Path

Vertex k-Coloring
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Treewidth via k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex
connected to a k-clique.

Example of a 2-tree:

[Figure by Julien Baste]

Invariant that measures the topological resemblance of a graph to a tree.

Construction suggests the notion of tree decomposition: small separators.
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An equivalent (and more common) definition of treewidth

Tree decomposition of a graph G :

pair (T , {Bt | t ∈ V (T )}), where
T is a tree, and
Bt ⊆ V (G) ∀t ∈ V (T ) (bags),

satisfying the following:⋃
t∈V (T ) Bt = V (G),
∀{u, v} ∈ E (G), ∃t ∈ V (T )
with {u, v} ⊆ Bt .
∀v ∈ V (G), bags containing v
define a connected subtree of T .

Width of a tree decomposition:
maxt∈V (T ) |Bt | − 1.

Treewidth of a graph G :
minimum width of a tree
decomposition of G .

G

17
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Why treewidth?

Treewidth is important for (at least) 3 different reasons:

1 Treewidth is a fundamental combinatorial tool in graph theory:
key role in the Graph Minors project of Robertson and Seymour.

2 Treewidth behaves very well algorithmically, and algorithms
parameterized by treewidth appear very often in FPT algorithms.

3 In many practical scenarios, it turns out that the treewidth of the
associated graph is small (programming languages, road networks, ...).
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Next section is...

1 Introduction
Parameterized complexity
Treewidth

2 FPT algorithms parameterized by treewidth

3 The F-Deletion problem
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Treewidth behaves very well algorithmically

Monadic Second Order Logic (MSOL):
Graph logic that allows quantification over sets of vertices and edges.

Example: DomSet(S) : [ ∀v ∈ V (G) \ S,∃u ∈ S : {u, v} ∈ E (G) ]

Theorem (Courcelle. 1990)
Every problem expressible in MSOL can be solved in time f (tw) · n on
graphs on n vertices and treewidth at most tw.

In parameterized complexity: FPT parameterized by treewidth.

Examples: Vertex Cover, Dominating Set, Hamiltonian Cycle,
Clique, Independent Set, k-Coloring for fixed k, ...
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Only good news?

1 Are all “natural” graph problems FPT parameterized by treewidth?

The vast majority, but not all of them:

List Coloring is W[1]-hard parameterized by treewidth.
[Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, Thomassen. 2007]

Some problems involving weights or colors are even NP-hard on graphs
of constant treewidth (even on trees!).

2 For the problems that are FPT parameterized by treewidth, what
about the existence of polynomial kernels?

Most natural problems (Vertex Cover, Dominating Set, ...)
do not admit polynomial kernels parameterized by treewidth.
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Is it enough to prove that a problem is FPT?

Typically, Courcelle’s theorem allows to prove that a problem is FPT...

... but the running time can (and must) be huge!

f (tw) · nO(1)

= 2345678tw

· nO(1)

Major goal find the smallest possible function f (tw).

This is a very active area in parameterized complexity.

Remark: Algorithms parameterized by treewidth appear very often as a
“black box” in all kinds of parameterized algorithms.
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Lower bounds on the running times of FPT algorithms

Suppose that we have an FPT algorithm in time kO(k) · nO(1).

Is it possible to obtain an FPT algorithm in time 2O(k) · nO(1)?
Is it possible to obtain an FPT algorithm in time 2O(

√
k) · nO(1)?

Very helpful tool: (Strong) Exponential Time Hypothesis – (S)ETH

ETH: The 3-SAT problem on n variables cannot be solved in time 2o(n)

SETH: The SAT problem on n variables cannot be solved in time (2− ε)n

[Impagliazzo, Paturi. 1999]

SETH ⇒ ETH ⇒ FPT 6= W[1] ⇒ P 6= NP

Typical statements:
ETH ⇒ k-Vertex Cover cannot be solved in time 2o(k) · nO(1).
ETH ⇒ Planar k-Vertex Cover cannot in time 2o(

√
k) · nO(1).
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Dynamic programming on tree decompositions

Typically, FPT algorithms parameterized by treewidth are based on
dynamic programming (DP) over a tree decomposition.

Starting from the leaves of the tree decomposition, a set of
appropriately defined partial solutions is computed recursively until
the root, where a global solution is obtained.

The way that these partial solutions are defined depends on each
particular problem:

G′

GB

B

A

[Figure by Valentin Garnero]
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Two behaviors for problems parameterized by treewidth
Local problems Vertex Cover, Dominating Set, Clique,

Independent Set, q-Coloring for fixed q.

B

It is sufficient to store, for each bag B, the subset of vertices of B
that belong to a partial solution: 2tw choices
The “natural” DP algorithms lead to (optimal) single-exponential
algorithms:

2O(tw) · nO(1).
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Connectivity problems seem to be more complicated...
Connectivity problems Hamiltonian Cycle, Longest Path,

Steiner Tree, Connected Vertex Cover.

B

It is not sufficient to store the subset of vertices of B that belong to a
partial solution, but also how they are matched (Bell number):

2O(tw·log tw) choices

The “natural” DP algorithms provide only time 2O(tw·log tw) · nO(1).
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Two types of behavior

There seem to be two behaviors for problems parameterized by treewidth:

Local problems:

2O(tw) · nO(1)

Vertex Cover, Dominating Set, ...

Connectivity problems:

2O(tw·log tw) · nO(1)

Longest Path, Steiner Tree, ...

27



The revolution of single-exponential algorithms
It was believed that, except on sparse graphs (planar, surfaces), algorithms
in time 2O(tw·log tw) · nO(1) were optimal for connectivity problems.

This was false!!

Cut&Count technique: [Cygan, Nederlof, Pilipczuk2, van Rooij, Wojtaszczyk. 2011]

Randomized single-exponential algorithms for connectivity problems.

1 Relax the connectivity requirement by considering a set of cuts that contain
the relevant (connected) solutions.

2 Count modulo 2 the number of cuts, because the non-connected solutions
will cancel out. By assigning random weights to the vertices/edges,
guarantee that w.h.p. the optimal solution is unique (Isolation Lemma).

Deterministic algorithms with algebraic tricks: [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

Representative sets in matroids: [Fomin, Lokshtanov, Saurabh. 2014]
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End of the story?

Do all connectivity problems admit single-exponential algorithms
(on general graphs) parameterized by treewidth?

No!

Cycle Packing: find the maximum number of vertex-disjoint cycles.

An algorithm in time 2O(tw·log tw) · nO(1) is optimal under the ETH.
[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk. 2011]

This reduction uses a framework introduced by [Lokshtanov, Marx, Saurabh. 2011]

There are other examples of such problems...
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Next section is...

1 Introduction
Parameterized complexity
Treewidth

2 FPT algorithms parameterized by treewidth

3 The F-Deletion problem

30



Minors and topological minors

G H
[Figure by Gwenaël Joret]

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg ≤ 2.

Therefore: H topological minor of G ⇒ H minor of G

31



Minors and topological minors

G H
[Figure by Gwenaël Joret]

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg ≤ 2.

Therefore: H topological minor of G ⇒ H minor of G

31



Minors and topological minors

G H
[Figure by Gwenaël Joret]

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg ≤ 2.

Therefore: H topological minor of G ⇒ H minor of G

31



Minors and topological minors

G H
[Figure by Gwenaël Joret]

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg ≤ 2.

Therefore: H topological minor of G : H minor of G

31



The F -M-Deletion problem

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any of the graphs in F as a minor?

F = {K2}: Vertex Cover.
Easily solvable in time 2Θ(tw) · nO(1).

F = {K3}: Feedback Vertex Set.
“Hardly” solvable in time 2Θ(tw) · nO(1). [Cut&Count. 2011]

F = {K5, K3,3}: Vertex Planarization.
Solvable in time 2Θ(tw·log tw) · nO(1). [Jansen, Lokshtanov, Saurabh. 2014 + Pilipczuk. 2015]
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Covering topological minors

Let F be a fixed finite collection of graphs.

F-M-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a minor?

F-TM-Deletion
Input: A graph G and an integer k.
Parameter: The treewidth tw of G .
Question: Does G contain a set S ⊆ V (G) with |S| ≤ k such that
viam G − S does not contain any graph in F as a topol. minor?

Both problems are NP-hard if F contains some edge. [Lewis, Yannakakis. 1980]

FPT by Courcelle’s Theorem.
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Work with Julien Baste and Dimitrios M. Thilikos (2016-)

Objective

Determine, for every fixed F , the (asymptotically) smallest function fF
such that F-M-Deletion/F-TM-Deletion can be solved in time

fF (tw) · nO(1)

on n-vertex graphs.

We do not want to optimize the degree of the polynomial factor.

We do not want to optimize the constants.

Our hardness results hold under the ETH.
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Summary of our results: arXiv 1704.07284+1907.04442

For every F : F-M/TM-Deletion in time 22O(tw·log tw) · nO(1).

F connected1 + planar2: F-M-Deletion in time 2O(tw·log tw) · nO(1).

G planar + F connected: F-M-Deletion in time 2O(tw) · nO(1).

(For F-TM-Deletion we need: F contains a subcubic planar graph.)

F (connected): F-M/TM-Deletion not in time 2o(tw) · nO(1)

unless the ETH fails, even if G planar.

F = {H}, H connected: complete tight dichotomy...

1Connected collection F : all the graphs are connected.
2Planar collection F : contains at least one planar graph.
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A dichotomy for hitting a connected minor

Theorem
Let H be a connected graph.
The {H}-M-Deletion problem is solvable in time

2O(tw) · nO(1), if H �c or H �c .

2O(tw·log tw) · nO(1), otherwise.

In both cases, the running time is asymptotically optimal under the ETH.

skip
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Complexity of hitting a single connected minor H

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house

C5

K5

Classification of the complexity of {H}-M-Deletion for all connected
simple planar graphs H with |V (H)| ≤ 5 and |E (H)| ≥ 1: for the 9 graphs
on the left (resp. 20 graphs on the right), the problem is solvable in time
2Θ(tw) · nO(1) (resp. 2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion, K1,4
should be on the left.
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A compact statement for a single connected graph

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house

C5

K5

All these cases can be succinctly described as follows:

All graphs on the left are contractions of or

All graphs on the right are not contractions of or
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We have three types of results

1 General algorithms

For every F : time 22O(tw·log tw) · nO(1).
F connected + planar: time 2O(tw·log tw) · nO(1).
F connected���

�XXXX+ planar: time 2O(tw·log tw) · nO(1).
G planar + F connected: time 2O(tw) · nO(1).

2 Ad-hoc single-exponential algorithms
Some use “typical” dynamic programming.
Some use the rank-based approach. [Bodlaender, Cygan, Kratsch, Nederlof. 2013]

3 Lower bounds under the ETH
2o(tw) is “easy”.
2o(tw·log tw) is much more involved and we get ideas from:

[Lokshtanov, Marx, Saurabh. 2011] [Marcin Pilipczuk. 2017] [Bonnet, Brettell, Kwon, Marx. 2017]
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Some ideas of the general algorithms

For every F : time 22O(tw·log tw) · nO(1).

F connected + planar: time 2O(tw·log tw) · nO(1).

G planar + F connected: time 2O(tw) · nO(1).

We build on the machinery of boundaried graphs and representatives:

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos. 2009]

[Fomin, Lokshtanov, Saurabh, Thilikos. 2010]

[Kim, Langer, Paul, Reidl, Rossmanith, S., Sikdar. 2013]

[Garnero, Paul, S., Thilikos. 2014]

F connected����
�XXXXX+ planar: time 2O(tw·log tw) · nO(1).

Extra: Bidimensionality, irrelevant vertices, protrusion decompositions...

skip
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Algorithm for a general collection F

We see G as a t-boundaried graph.

folio of G : set of all its F-minor-free
minors, up to size OF (t).

We compute, using DP over a tree
decomposition of G , the following
parameter for every folio C:

p(G , C) = min{|S| : S ⊆ V (G) ∧ folio(G−S) = C}

G′

GB

B

A

For every t-boundaried graph G ,
|folio(G)| = OF (1) ·

(
t2

t

)

= 2OF (t·log t)

The number of distinct folios is 22OF (t·log t) .

This gives an algorithm running in time 22OF (tw·log tw) · nO(1). skip
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Algorithm for a connected and planar collection F

For a fixed F , we define an equivalence
relation ≡(F ,t) on t-boundaried graphs:

G1 ≡(F ,t) G2 if ∀G ′ ∈ Bt ,
F �m G ′ ⊕ G1 ⇐⇒ F �m G ′ ⊕ G2.

R(F ,t): set of minimum-size
representatives of ≡(F ,t).

G′

GB

B

A

We compute, using DP over a tree decomposition of G ,
the following parameter for every representative R:

p(G , R) = min{|S| : S ⊆ V (G) ∧ repF ,t(G − S) = R}

The number of representatives is |R(F ,t)| = 2OF (t·log t). Planarity!
# labeled graphs of size ≤ t and tw ≤ h is 2Oh(t·log t). [Baste, Noy, S. 2017]

This gives an algorithm running in time 2OF (tw·log tw) · nO(1). skip
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Algorithm for any connected collection F

R(F ,t): set of minimum-size representatives of ≡(F ,t).

Suppose that we can prove that, for every R ∈ R(F ,t),
|V (R)| = OF (t).

We are done: |R(F ,t)| = 2OF (t·log t) and the same DP works!

Flat Wall Theorem: As R is F-minor-free, if tw(R \ B) > cF ,
R \B contains a large flat wall, where we can find an irrelevant vertex.

R has a treewidth modulator of size O(t) containing its boundary B.

We can then find a linear protrusion decomposition of R.

By applying protrusion reduction, we obtain that |V (R)| = OF (t).
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Hard part: finding an irrelevant vertex inside a flat wall

f11 b

f10

Df10

[Figure by Dimitrios M. Thilikos]skip
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Algorithm when the input graph G is planar

Idea get an improved bound on |R(F ,t)|.

We use a sphere-cut decomposition of the input planar graph G .
[Seymour, Thomas. 1994] [Dorn, Penninkx, Bodlaender, Fomin. 2010]

Nice topological properties: each separator corresponds to a noose.

The number of representatives is |R(F ,t)| = 2OF (t).
Number of planar triangulations on t vertices is 2O(t). [Tutte. 1962]

This gives an algorithm running in time 2OF (tw) · nO(1).

We can extend this algorithm to input graphs G embedded in arbitrary
surfaces by using surface-cut decompositions. skip [Rué, S., Thilikos. 2014]
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What’s next about F -Deletion?

Goal classify the (asymptotically) tight complexity of F-M-Deletion
and F-TM-Deletion for every family F .

Concerning the minor version:
We obtained a tight dichotomy when |F| = 1 (connected).

Missing: When |F| ≥ 2 (connected): 2Θ(tw) or 2Θ(tw·log tw)?

Consider families F containing disconnected graphs.
Deletion to genus at most g : 2Og (tw·log tw) · nO(1). [Kociumaka, Pilipczuk. 2017]

Concerning the topological minor version:

Dichotomy for {H}-TM-Deletion when H connected (+planar).

We do not know if there exists some F such that F-TM-Deletion
cannot be solved in time 2o(tw2) · nO(1) under the ETH.

Conjecture For every (connected) family F , the F-TM-Deletion
problem is solvable in time 2O(tw·log tw) · nO(1).
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For topological minors, there is (at least) one change

bull butterfly

bannerchair

claw

diamond

co-bannercricket

kite

paw

dart
K2,3

px

W4K5-e
C3 C4

P2

P3

P4

P5

C5K4 K1,4

2Θ(tw) 2Θ(tw·log tw)

P3 ∪ 2K1

P2 ∪ P3

K3 ∪ 2K1

gem house K5
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Gràcies!

FREEDOM FOR ALL CATALAN POLITICAL PRISONERS IN SPAIN
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